WO2008126877A1 - Exhaust purification device for internal combustion engine - Google Patents

Exhaust purification device for internal combustion engine Download PDF

Info

Publication number
WO2008126877A1
WO2008126877A1 PCT/JP2008/057041 JP2008057041W WO2008126877A1 WO 2008126877 A1 WO2008126877 A1 WO 2008126877A1 JP 2008057041 W JP2008057041 W JP 2008057041W WO 2008126877 A1 WO2008126877 A1 WO 2008126877A1
Authority
WO
WIPO (PCT)
Prior art keywords
selective reduction
catalyst
main catalyst
exhaust gas
selective
Prior art date
Application number
PCT/JP2008/057041
Other languages
French (fr)
Japanese (ja)
Inventor
Shunsuke Toshioka
Tomihisa Oda
Kazuhiro Itoh
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Publication of WO2008126877A1 publication Critical patent/WO2008126877A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/2073Selective catalytic reduction [SCR] with means for generating a reducing substance from the exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2882Catalytic reactors combined or associated with other devices, e.g. exhaust silencers or other exhaust purification devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2067Urea
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • B01D53/9477Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on separate bricks, e.g. exhaust systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an exhaust emission control device for an internal combustion engine.
  • N_ ⁇ x selective reduction catalyst the NO x contained in the exhaust gas by ammonia in the engine exhaust passage disposed, NO contained in the upstream of the N_ ⁇ x election selective reduction based catalyst in the exhaust gas N_ ⁇ capable of occluding x x storage catalyst or an internal combustion engine in which an oxidation catalyst is arranged is known (for example, Japanese 2 0 0 6 - see 5 1 2 5 2 9 JP).
  • the NO x selective reduction catalyst is not performed Atsushi Nobori due to the catalytic reaction differs from the NO x storage catalyst and the oxidation catalyst carrying a noble metal such as platinum, thus the engine after starting N_ ⁇ x selective reduction catalyst N_ ⁇ x
  • the temperature is raised by the exhaust gas temperature flowing into the selective reduction catalyst.
  • the oxidation reaction starts in the NO x storage catalyst or oxidation catalyst, the exhaust gas temperature will rise, but the N 0 x selective reduction catalyst is located downstream, so the N 0 x selective reduction catalyst will rise in temperature. takes the amount of time until the selective reduction of N_ ⁇ x is started, it is impossible you to ensure good cleaning action of the thus was after engine start by N_ ⁇ x. Disclosure of the invention
  • An object of the present invention is to provide an exhaust purification system of an internal combustion engine capable of ensuring a good cleaning action of N_ ⁇ x after engine start.
  • N_ ⁇ x selective reduction catalyst in the engine exhaust passage , In the exhaust purification system of an internal combustion engine so as to selectively reduce New Omicron chi contained in the exhaust gas after the removal Monia generated from the urea to supply urea N_ ⁇ x selective reduction catalyst, Nyu_ ⁇ chi a selective reduction catalyst New ⁇ chi selective reduction main catalyst is disposed upstream of the New Omicron chi selective reduction main catalyst and volume than Nyu_ ⁇ chi selective reduction main catalyst, and a small Nyu_ ⁇ chi selective reduction cocatalyst heat capacity and pressure loss is constituted by, Nyu_ ⁇ chi selective reduction cocatalyst exhaust purification system of an internal combustion engine which is adapted to start the selective reduction action of Nyu_ ⁇ chi early after engine start by supplying New Omicron chi selective reduction promoter catalyze urea to Is provided.
  • Nyu_ ⁇ ⁇ selective reduction supplemental catalyst as described above, Nyu_ ⁇ ⁇ selective reduction main is located upstream of the catalyst and Nyu_ ⁇ ⁇ selective reduction main catalyst activated after starting early because volume and heat capacity is smaller than the selective reduction action of Nyu_ ⁇ ⁇ is is started. As a result, the purification rate of Nyu_ ⁇ ⁇ is made to improve.
  • FIG. 1 is an overall view of a compression ignition type internal combustion engine
  • FIG. 2 is NO x enlarged perspective view of the selective reduction main catalyst and N_ ⁇ x selective reduction supplemental catalyst shown in FIG. 1, another 3 compression ignition internal combustion engine
  • Figure 1 shows an overall view of a compression ignition type internal combustion engine.
  • 1 is an engine body
  • 2 is a combustion chamber of each cylinder
  • 3 is an electronically controlled fuel injection valve for injecting fuel into each combustion chamber
  • 4 is an intake manifold
  • 5 is an exhaust manifold.
  • the intake manifold 4 is connected to the outlet of the compressor 7 a of the exhaust turbocharger 7 via the intake duct 6, and the inlet of the compressor 7 a is connected to the air cleaner 9 via the intake air amount detector 8 Is done.
  • a throttle valve 10 driven by the step motor is arranged, and a cooling device 11 for cooling the intake air flowing in the intake duct 6 is arranged around the intake duct 6.
  • the engine cooling water is guided into the cooling device 11 and the intake air is cooled by the engine cooling water.
  • the exhaust manifold 5 is connected to the inlet of the exhaust turbine 7 b of the exhaust turbocharger 7, and the outlet of the exhaust turbine 7 b is connected to the inlet of the oxidation catalyst 12.
  • a particulate filter 1 3 is arranged adjacent to the oxidation catalyst 1 2 to collect particulate matter contained in the exhaust gas, and the outlet of this particulate filter 1 3. is connected to the inlet mouth of N_ ⁇ x selective reduction main catalyst 1 5 through the exhaust pipe 1 4.
  • Medium 1 6 tactile oxidation is coupled to the outlet of the N_ ⁇ x selective reduction main catalyst 1 5.
  • N_ ⁇ x selective reduction main catalyst 1 5 Volume than N_ ⁇ x selective reduction main catalyst 1 5 to the exhaust pipe 1 in 4 of the NO x selective reduction main catalyst 1 5 on the upstream according to the present invention, a small N_ ⁇ x selective reduction cocatalyst 1 7 heat capacity and pressure loss Be placed. '' As shown in Fig. 1, this N ⁇ x selective reduction auxiliary catalyst 1 7 is located upstream of the exhaust pipe 1 4 with a urea water supply valve 1 8, which is connected to the supply pipe 1 9, It is connected to a urea water tank 2 1 through a supply pump 20.
  • the urea water stored in the urea water tank 2 1 is injected into the exhaust gas flowing through the exhaust pipe 14 from the urea water supply valve 1 8 by the supply pump 2 0, and ammonia generated from the urea ((NH 2 ) 2 C ⁇ + H 2 0 ⁇ 2 NH 3 + C 0 2 ) is reduced in NO J ⁇ N ⁇ x selective reduction auxiliary catalyst 17 and NO x selective reduction main catalyst 15 contained in the exhaust gas.
  • the exhaust manifold 5 and the intake manifold 4 are connected to each other via an exhaust gas recirculation (hereinafter referred to as EGR) passage 2 2, and an electronically controlled EGR control valve 2 3 is disposed in the EGR passage 2 2.
  • EGR exhaust gas recirculation
  • EGR A cooling device 24 for cooling the EGR gas flowing in the EGR passage 22 is disposed around the passage 22.
  • the engine cooling water is guided into the cooling device 24, and the EGR gas is cooled by the engine cooling water.
  • each fuel injection valve 3 is connected to a common rail 26 via a fuel supply pipe 25, and this common rail 26 is connected to a fuel tank 28 via an electronically controlled variable discharge fuel pump 27. Is done.
  • the fuel stored in the fuel tank 2 8 is supplied to the common rail 26 by the fuel pump 2 7, and the fuel supplied to the common rail 26 is supplied to the fuel injection valve via each fuel supply pipe 25. Supplied to 3.
  • the oxidation catalyst 1 2 carries a example a noble metal catalyst such as platinum, the oxidation catalyst 1 2 oxidizes the HC contained in the exhaust gas and the working to convert NO contained in the exhaust gas to N 0 2 It works.
  • the particulate filter 13 a particulate filter that does not support a catalyst can be used, and a particulate filter that supports a noble metal catalyst such as platinum can also be used.
  • N_ ⁇ x selective reduction cocatalyst 1 7 and N_ ⁇ x selective reduction main catalyst 1 5 is composed of F e Zeorai Bok ammonia adsorption type having a high N_ ⁇ x purification rate at low temperatures, or adsorption of ammonia Non-functional titanium and vanadium catalyst.
  • the oxidation catalyst 16 carries, for example, a noble metal catalyst made of platinum, and this oxidation catalyst 16 acts to oxidize ammonia leaked from the N 0 x selective reduction main catalyst 15.
  • Figure 2 shows an enlarged perspective view of N_ ⁇ x selective reduction cocatalyst 1 7 and NO x selection selective reduction source main catalyst 1 5 shown in FIG.
  • the NO x selective reduction main catalyst 15 has a plurality of cells 3 1 extending in the axial direction separated by a plurality of thin partition walls 30 intersecting each other.
  • the x selective reduction auxiliary catalyst 1 7 also has a plurality of cells 33 extending in the axial direction separated by a plurality of thin partition walls 3 2 intersecting each other.
  • the axial length is short compared to N_ ⁇ x selective reduction cocatalyst 1 7
  • the N_ ⁇ x selective reduction main catalyst 1 5 as shown in FIG.
  • N_ ⁇ x selective reduction cocatalyst 1 7 has a smaller diameter than the N_ ⁇ x selective reduction main catalyst 1 5. Therefore, the NO x selective reduction auxiliary catalyst 17 has a smaller volume than the NO x selective reduction main catalyst 15 and therefore has a smaller heat capacity.
  • the NO x selective reduction cocatalyst 1 7 by as shown in FIG. 2 in order to reduce the heat capacity of the NO x selective reduction cocatalyst 1 7 co Reducing the pressure loss N_ ⁇ x selective reduction cocatalyst 1 7 cell 3
  • the flow area of 3 is larger than the flow area of the cell 3 1 of N0 x selective reduction main catalyst 15 and the thickness of the thin partition 3 2 of the N0 x selective reduction auxiliary catalyst 1 7 is N0.
  • the selective reduction main catalyst 15 is formed thinner than the thin partition wall 30 of the 15.
  • N_ ⁇ x selective reduction aid for N_ ⁇ thin partition walls 3 1 x selective reduction main catalyst 1 5 is formed ceramic Kkuka et but that further small fence the heat capacity of the NO x selective reduction cocatalyst 1 7
  • the thin wall 3 2 of the catalyst 17 can be formed from a metal plate.
  • N_ ⁇ x selective reduction main catalyst 1 5 because not carrying a noble metal such as platinum not performed heating the catalytic reaction and hence the engine starting after the NO x selective reduction main catalyst 1 5 the NO x selective reduction main catalyst 1
  • New Omicron chi selective reduction main catalyst 1 5 smaller volume and heat capacity as compared to, vo chi selective reduction that is activated after starting early Te ⁇ Tsu Since the auxiliary catalyst 17 is arranged, the selective reduction action of ⁇ ⁇ starts early after the engine starts. As a result, it is possible to improve the purification rate vo chi.
  • FIG. 3 shows another embodiment of the compression ignition type internal combustion engine.
  • Patikyure Tofiru evening 1 3 arranged downstream of the oxidation catalyst 1 6, therefore the inlet of the outlet of the oxidation catalyst 1 2
  • the exhaust pipe 1 4 through the New Omicron chi selective reduction main catalyst 1 5 Connected to Volume, small vo chi selective reduction cocatalyst 1 7 heat capacity and pressure loss are arranged than Nyu_ ⁇ chi selective reduction main catalyst 1 5 to vo chi selective reduction main catalyst 1 5 upstream of the exhaust pipe 1 in 4 in this embodiment .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biomedical Technology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

In an internal combustion engine, a selective NOx reduction main catalyst (15)is placed in an engine exhaust path and a selective NOx reduction auxiliary catalyst (17) having smaller volume, heat capacity, and pressure loss than the selective NOx reduction main catalyst (15) is placed on the upstream of the selective NOx reduction main catalyst (15). Urea is supplied from a urea water supply valve (18) to the selective NOx reduction auxiliary catalyst (17), and selective reduction of NOx by the selective NOx reduction auxiliary catalyst (17) is started as early as possible after the engine is started.

Description

明 細 書 内燃機関の排気浄化装置 技術分野  Description Exhaust gas purification device for internal combustion engine Technical field
本発明は内燃機関の排気浄化装置に関する。 背景技術  The present invention relates to an exhaust emission control device for an internal combustion engine. Background art
機関排気通路内にアンモニアによって排気ガス中に含まれる NO xを選択的に還元しうる N〇x選択還元触媒を配置し、 この N〇x選 択還元触媒の上流に排気ガス中に含まれる NOxを吸蔵しうる N〇x 吸蔵触媒や酸化触媒を配置した内燃機関が公知である (例えば特開 2 0 0 6 — 5 1 2 5 2 9号公報を参照) 。 Selectively reduced may N_〇 x selective reduction catalyst the NO x contained in the exhaust gas by ammonia in the engine exhaust passage disposed, NO contained in the upstream of the N_〇 x election selective reduction based catalyst in the exhaust gas N_〇 capable of occluding x x storage catalyst or an internal combustion engine in which an oxidation catalyst is arranged is known (for example, Japanese 2 0 0 6 - see 5 1 2 5 2 9 JP).
ところで NOx選択還元触媒は白金等の貴金属を担持している N Ox吸蔵触媒や酸化触媒とは異なって触媒反応による昇温が行われ ず、 従って機関始動後 N〇x選択還元触媒は N〇x選択還元触媒に流 入する排気ガス温によって温度上昇せしめられる。 この場合、 NO x吸蔵触媒や酸化触媒において酸化反応が開始されれば排気ガス温 は上昇するが N〇 x選択還元触媒は下流に配置されているため N〇 x 選択還元触媒が温度上昇して N〇xの選択還元が開始されるまで時 間を要し、 斯く して機関始動後に N〇xの良好な浄化作用を確保す ることができないという問題がある。 発明の開示 Meanwhile the NO x selective reduction catalyst is not performed Atsushi Nobori due to the catalytic reaction differs from the NO x storage catalyst and the oxidation catalyst carrying a noble metal such as platinum, thus the engine after starting N_〇 x selective reduction catalyst N_〇 x The temperature is raised by the exhaust gas temperature flowing into the selective reduction catalyst. In this case, if the oxidation reaction starts in the NO x storage catalyst or oxidation catalyst, the exhaust gas temperature will rise, but the N 0 x selective reduction catalyst is located downstream, so the N 0 x selective reduction catalyst will rise in temperature. takes the amount of time until the selective reduction of N_〇 x is started, it is impossible you to ensure good cleaning action of the thus was after engine start by N_〇 x. Disclosure of the invention
本発明の目的は機関始動後に N〇xの良好な浄化作用を確保する ことのできる内燃機関の排気浄化装置を提供することにある。 An object of the present invention is to provide an exhaust purification system of an internal combustion engine capable of ensuring a good cleaning action of N_〇 x after engine start.
本発明によれば、 機関排気通路内に N〇x選択還元触媒を配置し 、 N〇x選択還元触媒に尿素を供給してこの尿素から発生するアン モニァにより排気ガス中に含まれる Ν Ο χを選択的に還元するよう にした内燃機関の排気浄化装置において、 Ν〇χ選択還元触媒が Ν 〇χ選択還元主触媒と、 Ν Ο χ選択還元主触媒の上流に配置されかつ Ν〇χ選択還元主触媒より も容積、 熱容量および圧損の小さい Ν〇χ 選択還元補助触媒とにより構成され、 Ν〇χ選択還元補助触媒に尿 素を供給して Ν Ο χ選択還元補助触媒により機関始動後早期に Ν〇χ の選択還元作用を開始させるようにした内燃機関の排気浄化装置が 提供される。 According to the present invention, arranged N_〇 x selective reduction catalyst in the engine exhaust passage , In the exhaust purification system of an internal combustion engine so as to selectively reduce New Omicron chi contained in the exhaust gas after the removal Monia generated from the urea to supply urea N_〇 x selective reduction catalyst, Nyu_〇 chi a selective reduction catalyst New 〇 chi selective reduction main catalyst is disposed upstream of the New Omicron chi selective reduction main catalyst and volume than Nyu_〇 chi selective reduction main catalyst, and a small Nyu_〇 chi selective reduction cocatalyst heat capacity and pressure loss is constituted by, Nyu_〇 chi selective reduction cocatalyst exhaust purification system of an internal combustion engine which is adapted to start the selective reduction action of Nyu_〇 chi early after engine start by supplying New Omicron chi selective reduction promoter catalyze urea to Is provided.
上述のように Ν〇χ選択還元補助触媒は、 Ν〇χ選択還元主触媒の 上流に配置されかつ Ν〇χ選択還元主触媒に比べて容積および熱容 量が小さいので始動後早期に活性化されて Ν〇χの選択還元作用が 開始される。 その結果、 Ν〇χの浄化率が向上せしめられる。 図面の簡単な説明 Nyu_〇 χ selective reduction supplemental catalyst as described above, Nyu_〇 χ selective reduction main is located upstream of the catalyst and Nyu_〇 χ selective reduction main catalyst activated after starting early because volume and heat capacity is smaller than the selective reduction action of Nyu_〇 χ is is started. As a result, the purification rate of Nyu_〇 χ is made to improve. Brief Description of Drawings
図 1 は圧縮着火式内燃機関の全体図、 図 2 は図 1 に示される N O x選択還元主触媒と N〇x選択還元補助触媒の拡大斜視図、 図 3 は圧 縮着火式内燃機関の別の実施例を示す全体図である。 発明を実施するための最良の形態 Figure 1 is an overall view of a compression ignition type internal combustion engine, FIG. 2 is NO x enlarged perspective view of the selective reduction main catalyst and N_〇 x selective reduction supplemental catalyst shown in FIG. 1, another 3 compression ignition internal combustion engine FIG. BEST MODE FOR CARRYING OUT THE INVENTION
図 1 に圧縮着火式内燃機関の全体図を示す。  Figure 1 shows an overall view of a compression ignition type internal combustion engine.
図 1 を参照すると、 1 は機関本体、 2は各気筒の燃焼室、 3 は各 燃焼室 2内に夫々燃料を噴射するための電子制御式燃料噴射弁、 4 は吸気マニホルド、 5は排気マニホルドを夫々示す。 吸気マ二ホル ド 4は吸気ダク ト 6 を介して排気ターボチャージャ 7のコンプレツ サ 7 aの出口に連結され、 コンプレッサ 7 aの入口は吸入空気量検 出器 8 を介してエアク リーナ 9 に連結される。 吸気ダク ト 6内には ステップモー夕により駆動されるスロッ トル弁 1 0が配置され、 更 に吸気ダク ト 6周り には吸気ダク ト 6内を流れる吸入空気を冷却す るための冷却装置 1 1 が配置される。 図 1 に示される実施例では機 関冷却水が冷却装置 1 1 内に導かれ、 機関冷却水によって吸入空気 が冷却される。 Referring to FIG. 1, 1 is an engine body, 2 is a combustion chamber of each cylinder, 3 is an electronically controlled fuel injection valve for injecting fuel into each combustion chamber 2, 4 is an intake manifold, and 5 is an exhaust manifold. Respectively. The intake manifold 4 is connected to the outlet of the compressor 7 a of the exhaust turbocharger 7 via the intake duct 6, and the inlet of the compressor 7 a is connected to the air cleaner 9 via the intake air amount detector 8 Is done. In the intake duct 6 A throttle valve 10 driven by the step motor is arranged, and a cooling device 11 for cooling the intake air flowing in the intake duct 6 is arranged around the intake duct 6. In the embodiment shown in Fig. 1, the engine cooling water is guided into the cooling device 11 and the intake air is cooled by the engine cooling water.
一方、 排気マニホルド 5は排気ターボチャージャ 7の排気夕ービ ン 7 bの入口に連結され、 排気タービン 7 bの出口は酸化触媒 1 2 の入口に連結される。 この酸化触媒 1 2の下流には酸化触媒 1 2 に 隣接して排気ガス中に含まれる粒子状物質を捕集するためのパティ キュレー トフィル夕 1 3が配置され、 このパティキュレー トフィル 夕 1 3の出口は排気管 1 4を介して N〇x選択還元主触媒 1 5の入 口に連結される。 この N〇x選択還元主触媒 1 5の出口には酸化触 媒 1 6が連結される。 本発明によれば NOx選択還元主触媒 1 5上 流の排気管 1 4内に N〇x選択還元主触媒 1 5より も容積、 熱容量 および圧損の小さい N〇x選択還元補助触媒 1 7が配置される。 ' 図 1 に示されるようにこの N〇x選択還元補助触媒 1 7上流の排 気管 1 4内には尿素水供給弁 1 8が配置され、 この尿素水供給弁 1 8 は供給管 1 9、 供給ポンプ 2 0 を介して尿素水タンク 2 1 に連結 される。 尿素水タンク 2 1 内に貯蔵されている尿素水は供給ポンプ 2 0 によって尿素水供給弁 1 8から排気管 1 4内を流れる排気ガス 中に噴射され、 尿素から発生したアンモニア ( (N H2 ) 2 C〇 + H 20→ 2 NH3 + C 02) によって排気ガス中に含まれる N OJ^ N〇 x選択還元補助触媒 1 7および N O x選択還元主触媒 1 5 において還 元される。 On the other hand, the exhaust manifold 5 is connected to the inlet of the exhaust turbine 7 b of the exhaust turbocharger 7, and the outlet of the exhaust turbine 7 b is connected to the inlet of the oxidation catalyst 12. Downstream of this oxidation catalyst 1 2, a particulate filter 1 3 is arranged adjacent to the oxidation catalyst 1 2 to collect particulate matter contained in the exhaust gas, and the outlet of this particulate filter 1 3. is connected to the inlet mouth of N_〇 x selective reduction main catalyst 1 5 through the exhaust pipe 1 4. Medium 1 6 tactile oxidation is coupled to the outlet of the N_〇 x selective reduction main catalyst 1 5. Volume than N_〇 x selective reduction main catalyst 1 5 to the exhaust pipe 1 in 4 of the NO x selective reduction main catalyst 1 5 on the upstream according to the present invention, a small N_〇 x selective reduction cocatalyst 1 7 heat capacity and pressure loss Be placed. '' As shown in Fig. 1, this N〇 x selective reduction auxiliary catalyst 1 7 is located upstream of the exhaust pipe 1 4 with a urea water supply valve 1 8, which is connected to the supply pipe 1 9, It is connected to a urea water tank 2 1 through a supply pump 20. The urea water stored in the urea water tank 2 1 is injected into the exhaust gas flowing through the exhaust pipe 14 from the urea water supply valve 1 8 by the supply pump 2 0, and ammonia generated from the urea ((NH 2 ) 2 C ○ + H 2 0 → 2 NH 3 + C 0 2 ) is reduced in NO J ^ N ○ x selective reduction auxiliary catalyst 17 and NO x selective reduction main catalyst 15 contained in the exhaust gas.
排気マニホル ド 5 と吸気マニホルド 4 とは排気ガス再循環 (以下 、 E G Rと称す) 通路 2 2 を介して互いに連結され、 E G R通路 2 2内には電子制御式 E G R制御弁 2 3が配置される。 また、 E G R 通路 2 2周りには E G R通路 2 2内を流れる E G Rガスを冷却する ための冷却装置 2 4が配置される。 図 1 に示される実施例では機関 冷却水が冷却装置 2 4内に導かれ、 機関冷却水によって E G Rガス が冷却される。 一方、 各燃料噴射弁 3 は燃料供給管 2 5 を介してコ モンレール 2 6 に連結され、 このコモンレール 2 6 は電子制御式の 吐出量可変な燃料ポンプ 2 7 を介して燃料タンク 2 8 に連結される 。 燃料タンク 2 8 内に貯蔵されている燃料は燃料ポンプ 2 7 によつ てコモンレール 2 6内に供給され、 コモンレール 2 6内に供給され た燃料は各燃料供給管 2 5 を介して燃料噴射弁 3 に供給される。 酸化触媒 1 2は例えば白金のような貴金属触媒を担持しており、 この酸化触媒 1 2 は排気ガス中に含まれる N Oを N 0 2に転換する 作用と排気ガス中に含まれる H Cを酸化させる作用をなす。 一方、 パティキュレー トフィルタ 1 3 としては触媒を担持していないパテ ィキュレー トフィル夕を用いることもできる し、 例えば白金のよう な貴金属触媒を担持したパティキュレー トフィル夕を用いることも できる。 The exhaust manifold 5 and the intake manifold 4 are connected to each other via an exhaust gas recirculation (hereinafter referred to as EGR) passage 2 2, and an electronically controlled EGR control valve 2 3 is disposed in the EGR passage 2 2. . EGR A cooling device 24 for cooling the EGR gas flowing in the EGR passage 22 is disposed around the passage 22. In the embodiment shown in FIG. 1, the engine cooling water is guided into the cooling device 24, and the EGR gas is cooled by the engine cooling water. On the other hand, each fuel injection valve 3 is connected to a common rail 26 via a fuel supply pipe 25, and this common rail 26 is connected to a fuel tank 28 via an electronically controlled variable discharge fuel pump 27. Is done. The fuel stored in the fuel tank 2 8 is supplied to the common rail 26 by the fuel pump 2 7, and the fuel supplied to the common rail 26 is supplied to the fuel injection valve via each fuel supply pipe 25. Supplied to 3. The oxidation catalyst 1 2 carries a example a noble metal catalyst such as platinum, the oxidation catalyst 1 2 oxidizes the HC contained in the exhaust gas and the working to convert NO contained in the exhaust gas to N 0 2 It works. On the other hand, as the particulate filter 13, a particulate filter that does not support a catalyst can be used, and a particulate filter that supports a noble metal catalyst such as platinum can also be used.
また、 N〇x選択還元補助触媒 1 7および N〇x選択還元主触媒 1 5は低温で高い N〇x浄化率を有するアンモニア吸着タイプの F e ゼォライ 卜から構成されるか、 或いはアンモニアの吸着機能がない チタン · バナジウム系の触媒から構成される。 酸化触媒 1 6 は例え ば白金からなる貴金属触媒を担持しており、 この酸化触媒 1 6 は N 〇x選択還元主触媒 1 5から漏出したアンモニアを酸化する作用を なす。 Further, either N_〇 x selective reduction cocatalyst 1 7 and N_〇 x selective reduction main catalyst 1 5 is composed of F e Zeorai Bok ammonia adsorption type having a high N_〇 x purification rate at low temperatures, or adsorption of ammonia Non-functional titanium and vanadium catalyst. The oxidation catalyst 16 carries, for example, a noble metal catalyst made of platinum, and this oxidation catalyst 16 acts to oxidize ammonia leaked from the N 0 x selective reduction main catalyst 15.
図 2 に図 1 に示される N〇x選択還元補助触媒 1 7および N O x選 択還元主触媒 1 5の拡大斜視図を示す。 図 2からわかるように N O x選択還元主触媒 1 5 は互いに交差する複数の薄肉隔壁 3 0 によつ て分離された軸線方向に延びる複数のセル 3 1 を有しており、 N O x選択還元補助触媒 1 7 も互いに交差する複数の薄肉隔壁 3 2 によ つて分離された軸線方向に延びる複数のセル 3 3を有している。 一方、 図 2に示されるように N〇x選択還元補助触媒 1 7は N〇x 選択還元主触媒 1 5に比べて軸線方向の長さが短かく、 しかも N〇 x選択還元補助触媒 1 7は N〇x選択還元主触媒 1 5に比べて小さな 径を有する。 従って NOx選択還元補助触媒 1 7は NOx選択還元主 触媒 1 5に比べて容積が小さく、 従って熱容量も小さい。 Figure 2 shows an enlarged perspective view of N_〇 x selective reduction cocatalyst 1 7 and NO x selection selective reduction source main catalyst 1 5 shown in FIG. As can be seen from FIG. 2, the NO x selective reduction main catalyst 15 has a plurality of cells 3 1 extending in the axial direction separated by a plurality of thin partition walls 30 intersecting each other. The x selective reduction auxiliary catalyst 1 7 also has a plurality of cells 33 extending in the axial direction separated by a plurality of thin partition walls 3 2 intersecting each other. On the other hand, the axial length is short compared to N_〇 x selective reduction cocatalyst 1 7 The N_〇 x selective reduction main catalyst 1 5 as shown in FIG. 2, moreover N_〇 x selective reduction cocatalyst 1 7 has a smaller diameter than the N_〇 x selective reduction main catalyst 1 5. Therefore, the NO x selective reduction auxiliary catalyst 17 has a smaller volume than the NO x selective reduction main catalyst 15 and therefore has a smaller heat capacity.
また、 NOx選択還元補助触媒 1 7 による圧損を小さくすると共 に NOx選択還元補助触媒 1 7の熱容量を小さくするために図 2に 示される如く N〇x選択還元補助触媒 1 7のセル 3 3の流路面積は N〇x選択還元主触媒 1 5のセル 3 1 の流路面積より も大きく形成 されており、 N〇x選択還元補助触媒 1 7の薄肉隔壁 3 2の厚みは N〇x選択還元主触媒 1 5の薄肉隔壁 3 0の厚みに比べて薄く形成 されている。 Furthermore, the NO x selective reduction cocatalyst 1 7 by as shown in FIG. 2 in order to reduce the heat capacity of the NO x selective reduction cocatalyst 1 7 co Reducing the pressure loss N_〇 x selective reduction cocatalyst 1 7 cell 3 The flow area of 3 is larger than the flow area of the cell 3 1 of N0 x selective reduction main catalyst 15 and the thickness of the thin partition 3 2 of the N0 x selective reduction auxiliary catalyst 1 7 is N0. x The selective reduction main catalyst 15 is formed thinner than the thin partition wall 30 of the 15.
また、 N〇x選択還元主触媒 1 5の薄肉隔壁 3 1はセラミ ックか ら形成されているが NOx選択還元補助触媒 1 7の熱容量を更に小 さくするために N〇x選択還元補助触媒 1 7の薄肉隔壁 3 2を金属 板から形成することもできる。 Further, N_〇 x selective reduction aid for N_〇 thin partition walls 3 1 x selective reduction main catalyst 1 5 is formed ceramic Kkuka et but that further small fence the heat capacity of the NO x selective reduction cocatalyst 1 7 The thin wall 3 2 of the catalyst 17 can be formed from a metal plate.
ところで N〇x選択還元主触媒 1 5は白金等の貴金属を担持して いないので触媒反応による昇温が行われず、 従って機関始動後 NO x選択還元主触媒 1 5は NOx選択還元主触媒 1 5に流入する排気ガ ス温によって温度上昇せしめられる。 この場合、 酸化触媒 1 2にお いて酸化反応が開始されれば排気ガス温は上昇するが N〇 x選択還 元主触媒 1 5は下流に配置されているため N〇x選択還元主触媒 1 5が温度上昇して N〇xの選択還元が開始されるまで時間を要し、 斯く して機関始動後に N〇xの良好な浄化作用を確保することがで きなくなる。 しかしながら本発明では N〇x選択還元主触媒 1 5の上流に、 Ν Οχ選択還元主触媒 1 5に比べて容積および熱容量が小さく、 従つ て始動後早期に活性化される ΝΟχ選択還元補助触媒 1 7が配置さ れているので機関始動後早期に Ν〇χの選択還元作用が開始される 。 その結果、 ΝΟχの浄化率を向上することができる。 Meanwhile N_〇 x selective reduction main catalyst 1 5 because not carrying a noble metal such as platinum not performed heating the catalytic reaction and hence the engine starting after the NO x selective reduction main catalyst 1 5 the NO x selective reduction main catalyst 1 The temperature rises due to the exhaust gas temperature flowing into 5. In this case, N_〇 since the exhaust gas temperature if it had contact to the oxidation catalyst 1 2 oxidation reaction begins to rise but the original main catalyst 1 5 instead N_〇 x selected is arranged downstream x selective reduction main catalyst 1 5 takes time until the selective reduction of the temperature rise to N_〇 x is started, will not come in to ensure a good cleaning action of N_〇 x after engine start and thus. However upstream of N_〇 x selective reduction main catalyst 1 5 In the present invention, New Omicron chi selective reduction main catalyst 1 5 smaller volume and heat capacity as compared to, vo chi selective reduction that is activated after starting early Te従Tsu Since the auxiliary catalyst 17 is arranged, the selective reduction action of Νχ χ starts early after the engine starts. As a result, it is possible to improve the purification rate vo chi.
図 3に圧縮着火式内燃機関の別の実施例を示す。 この実施例では パティキュレー トフィル夕 1 3が酸化触媒 1 6の下流に配置され、 従ってこの実施例では酸化触媒 1 2の出口が排気管 1 4を介して Ν Οχ選択還元主触媒 1 5の入口に連結される。 この実施例でも ΝΟχ 選択還元主触媒 1 5上流の排気管 1 4内に Ν〇χ選択還元主触媒 1 5より も容積、 熱容量および圧損の小さい ΝΟχ選択還元補助触媒 1 7が配置される。 FIG. 3 shows another embodiment of the compression ignition type internal combustion engine. In this embodiment Patikyure Tofiru evening 1 3 arranged downstream of the oxidation catalyst 1 6, therefore the inlet of the outlet of the oxidation catalyst 1 2 In this embodiment the exhaust pipe 1 4 through the New Omicron chi selective reduction main catalyst 1 5 Connected to Volume, small vo chi selective reduction cocatalyst 1 7 heat capacity and pressure loss are arranged than Nyu_〇 chi selective reduction main catalyst 1 5 to vo chi selective reduction main catalyst 1 5 upstream of the exhaust pipe 1 in 4 in this embodiment .

Claims

. 1. 機関排気通路内に NOx選択還元触媒を配置し、 該 N〇x選択 還元触媒に尿素を供給して該尿素から発生するアンモニアにより排 気ガス中に含まれる NO xを選択的に還元するようにした内燃機関 の排気浄化装置において、 上記 N〇x選択還元触媒が N〇x選択還元 口 . 1. the NO x selective reduction catalyst arranged in the engine exhaust passage, included are the NO x selective manner into exhaust gas by the ammonia generated from the urea to supply urea to the N_〇 x selective reduction catalyst In the exhaust gas purification apparatus for an internal combustion engine that is to be reduced, the N0 x selective reduction catalyst is the N0 x selective reduction port.
主触媒と、 該 NOx選択還元主触媒の上流に配置されかつ該 !^〇!(選 択還元主触媒より も容積、 熱容量および圧損の小さい N〇x選択還 元補助触媒とにより構成され、 該の N〇x選.択還元補助触媒に尿素を 供給して該 N〇x選択還元補助触媒により機関始動後早期に N〇xの 選択還元作用を開始させるようにした内燃囲機関の排気浄化装置。 A main catalyst, the NO x is disposed upstream of the selective reduction main catalyst and the! ^ 〇! (Than selection selective reduction original main catalyst volume, is constituted by a small N_〇 x selective reduction based cocatalyst heat capacity and pressure loss, the in N_〇 x election. selective reduction based cocatalyst by supplying urea to said N_〇 x selective reduction cocatalyst by the燃囲institution among which is adapted to start the selective reduction action of N_〇 x early after engine startup exhaust gas purification apparatus.
2. 上記 NOx選択還元主触媒および NOx選択還元補助触媒は互 いに交差する複数の薄肉隔壁によって分離された軸線方向に延びる 複数のセルを有しており、 該 N〇x選択還元補助触媒のセルの流路 面積は該 N〇x選択還元主触媒のセルの流路面積より も大きく形成 されている請求項 1 に記載の内燃機関の排気浄化装置。 2. have the the NO x selective reduction main catalyst and the NO x selective reduction supplemental catalyst plurality of cells extending in an axial direction which are separated by a plurality of thin partition walls which intersect the physician each other, the N_〇 x selective reduction supplemental the flow passage area of the cell of the catalyst exhaust gas control apparatus according to claim 1, which is larger than the flow passage area of the cell of the N_〇 x selective reduction main catalyst.
3. 上記 N〇x選択還元主触媒および NOx選択還元補助触媒は互 いに交差する複数の薄肉隔壁によって分離された軸線方向に延びる 複数のセルを有しており、 該 N〇x選択還元補助触媒の薄肉隔壁の 厚みは該 NOx選択還元主触媒の薄肉隔壁の厚みに比べて薄く形成 されている請求項 1 に記載の内燃機関の排気浄化装置。 3. the N_〇 x selective reduction main catalyst and the NO x selective reduction supplemental catalyst has a plurality of cells extending in an axial direction which are separated by a plurality of thin partition walls which intersect the physician each other, the N_〇 x selective reduction 2. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein a thickness of the thin partition wall of the auxiliary catalyst is formed thinner than a thickness of the thin partition wall of the NO x selective reduction main catalyst.
4. 上記 NOx選択還元主触媒および NOx選択還元補助触媒は互 いに交差する複数の薄肉隔壁によって分離された軸線方向に延びる 複数のセルを有しており、 該 NO x選択還元補助触媒の薄肉隔壁は 金属板から形成されており、 該 NOx選択還元主触媒の薄肉隔壁は セラミ ックから形成されている請求項 1 に記載の内燃機関の排気浄 化装置。 4. The NO x selective reduction auxiliary catalyst and the NO x selective reduction auxiliary catalyst have a plurality of cells extending in the axial direction separated by a plurality of thin partition walls intersecting each other, and the NO x selective reduction auxiliary catalyst 2. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the thin partition wall is formed of a metal plate, and the thin partition wall of the NO x selective reduction main catalyst is formed of ceramic.
PCT/JP2008/057041 2007-04-05 2008-04-03 Exhaust purification device for internal combustion engine WO2008126877A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-099123 2007-04-05
JP2007099123A JP2008255890A (en) 2007-04-05 2007-04-05 Exhaust emission control device of internal combustion engine

Publications (1)

Publication Number Publication Date
WO2008126877A1 true WO2008126877A1 (en) 2008-10-23

Family

ID=39863974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/057041 WO2008126877A1 (en) 2007-04-05 2008-04-03 Exhaust purification device for internal combustion engine

Country Status (2)

Country Link
JP (1) JP2008255890A (en)
WO (1) WO2008126877A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5846488B2 (en) * 2011-12-15 2016-01-20 三菱自動車工業株式会社 Exhaust gas purification device for internal combustion engine
CN104903554B (en) 2012-10-18 2019-04-16 庄信万丰股份有限公司 The SCR system of close-coupled

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11350941A (en) * 1998-06-12 1999-12-21 Toyota Motor Corp Reduction agent refining device
JP2003200062A (en) * 2001-10-26 2003-07-15 Denso Corp Catalyst for vehicle
JP2005351160A (en) * 2004-06-10 2005-12-22 Hino Motors Ltd Exhaust emission control method and device
JP2006291812A (en) * 2005-04-08 2006-10-26 Mitsubishi Motors Corp Exhaust emission control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11350941A (en) * 1998-06-12 1999-12-21 Toyota Motor Corp Reduction agent refining device
JP2003200062A (en) * 2001-10-26 2003-07-15 Denso Corp Catalyst for vehicle
JP2005351160A (en) * 2004-06-10 2005-12-22 Hino Motors Ltd Exhaust emission control method and device
JP2006291812A (en) * 2005-04-08 2006-10-26 Mitsubishi Motors Corp Exhaust emission control device

Also Published As

Publication number Publication date
JP2008255890A (en) 2008-10-23

Similar Documents

Publication Publication Date Title
US8713922B2 (en) Engine exhaust purification device
US20100199643A1 (en) Exhaust gas purification system
US20110047994A1 (en) Exhaust gas purification apparatus
JPH0932540A (en) Exhaust emission control device of diesel engine
JP2007177672A (en) Exhaust emission control device
US20110030351A1 (en) Exhaust gas purification apparatus
JP2013142363A (en) Exhaust emission control device of diesel engine
JP2009091984A (en) Exhaust emission control device
US8099952B2 (en) Exhaust purification device of an internal combustion engine
JP2006266192A (en) Exhaust emission control device for engine
JP5166848B2 (en) Exhaust purification device
JP2004036450A (en) Exhaust emission control device for internal combustion engine
WO2008126877A1 (en) Exhaust purification device for internal combustion engine
JP2016211437A (en) Exhaust emission control device for internal combustion engine
JP2005307769A (en) Exhaust emission control device
JP5084655B2 (en) Exhaust purification device
JP4671834B2 (en) Engine exhaust gas purification device
JP2006316654A (en) Exhaust emission control device
JP2022054620A (en) Reductant supply device
JP2010196569A (en) Exhaust emission control system and exhaust emission control method
JP6805948B2 (en) Exhaust purification device
JP2010138783A (en) Post processing apparatus for internal combustion engine, exhaust gas purification apparatus, and exhaust gas purifying method using the same
JP2008232055A (en) Exhaust emission control system for internal combustion engine
JP2009121266A (en) Exhaust emission control device
JP2010150978A (en) Exhaust emission control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08740144

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08740144

Country of ref document: EP

Kind code of ref document: A1