JP2005349806A - Photofabrication method and apparatus therefor - Google Patents

Photofabrication method and apparatus therefor Download PDF

Info

Publication number
JP2005349806A
JP2005349806A JP2004175987A JP2004175987A JP2005349806A JP 2005349806 A JP2005349806 A JP 2005349806A JP 2004175987 A JP2004175987 A JP 2004175987A JP 2004175987 A JP2004175987 A JP 2004175987A JP 2005349806 A JP2005349806 A JP 2005349806A
Authority
JP
Japan
Prior art keywords
light
ultraviolet
liquid crystal
wavelength
predetermined wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004175987A
Other languages
Japanese (ja)
Other versions
JP4510529B2 (en
Inventor
Tomoya Ono
智也 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nabtesco Corp
Original Assignee
Nabtesco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nabtesco Corp filed Critical Nabtesco Corp
Priority to JP2004175987A priority Critical patent/JP4510529B2/en
Publication of JP2005349806A publication Critical patent/JP2005349806A/en
Application granted granted Critical
Publication of JP4510529B2 publication Critical patent/JP4510529B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photofabrication method and an apparatus, which utilize, of UV contained in light from a light source, the UV of a predetermined wavelength that is effective to the curing of a photocurable resin composition and which prevent or suppress the degradation by UV of a liquid crystal drawing mask used in the photofabrication to prolong the service life of the mask. <P>SOLUTION: The photofabrication method and the apparatus are provided, which method and apparatus, in forming a photocured resin layer by irradiating a light on a shaping surface consisting of a UV-curable resin composition and by the UV of a predetermined wavelength contained in the light, on one hand reflect the UV of the predetermined wavelength used for forming the photocured resin layer and introduce it to the liquid crystal drawing mask and on the other utilize a UV separation apparatus that makes the UV other than the predetermined wavelength transmit and separates it out of the system to remove, and which, while utilizing highly efficiently the UV of the predetermined wavelength, suppress the deterioration of the liquid crystal drawing mask by UV to attain an extended life. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は光硬化性樹脂組成物を紫外線によって光硬化させて造形を行う光造形方法およびそのための装置に関する。より詳細には、本発明は、描画マスクとして用いる液晶描画マスクの紫外線または紫外線と赤外線による劣化を抑制して液晶描画マスクの長寿命化を達成しながら、更には液晶描画マスクを介して造形面に照射される光の強度分布を均一にしながら、外観および寸法精度に優れる高品質の光造形物を、高い造形精度で且つ速い造形速度で、生産性良く製造するための光造形方法および装置に関する。   The present invention relates to an optical modeling method and an apparatus therefor for performing modeling by photocuring a photocurable resin composition with ultraviolet rays. More specifically, the present invention achieves a longer life of the liquid crystal drawing mask by suppressing deterioration due to ultraviolet rays or ultraviolet rays and infrared rays of the liquid crystal drawing mask used as the drawing mask, and further, the modeling surface through the liquid crystal drawing mask. The present invention relates to an optical modeling method and apparatus for manufacturing a high-quality optically shaped object excellent in appearance and dimensional accuracy with high modeling accuracy and high modeling speed with high productivity while uniforming the intensity distribution of light irradiated on .

近年、三次元CADに入力されたデータに基づいて光硬化性樹脂を硬化させて立体造形物を製造する光学造形方法および装置が実用化されている。この光造形技術は、設計の途中で外観デザインを検証するためのモデル、部品の機能性をチェックするためのモデル、鋳型を製作するための樹脂型、金型を製作するためのベースモデルなどのような複雑な三次元物体を容易に造形できることから注目を集めている。   In recent years, an optical modeling method and apparatus for manufacturing a three-dimensional model by curing a photocurable resin based on data input to a three-dimensional CAD has been put into practical use. This stereolithography technology includes a model for verifying the appearance design in the middle of design, a model for checking the functionality of parts, a resin mold for manufacturing a mold, a base model for manufacturing a mold, etc. It attracts attention because it can easily form such complex three-dimensional objects.

光学造形方法によって造形物を製造するに当たっては、造形浴を用いる方法が汎用されており、その手順としては、造形浴に液状の光硬化性樹脂を入れ、液面に所望のパターンが得られるようにコンピューターで制御されたスポット状の紫外線レーザー光を選択的に照射して所定の厚みに光硬化させて硬化樹脂層を形成し、その硬化樹脂層を造形浴内で下方に移動させて造形浴内の光硬化性樹脂液を該硬化樹脂層上に流動させて光硬化性樹脂液の層を形成させ、その光硬化性樹脂液層にスポット状の紫外線レーザー光を照射して硬化樹脂層を形成し、前記の工程を所定の形状および寸法の立体造形物が得られるまで繰り返して行う方法が広く採用されている。   In manufacturing a modeled object by the optical modeling method, a method using a modeling bath is widely used, and as a procedure, a liquid photocurable resin is put in the modeling bath so that a desired pattern can be obtained on the liquid surface. A spot-shaped ultraviolet laser beam controlled by a computer is selectively irradiated to be photocured to a predetermined thickness to form a cured resin layer, and the cured resin layer is moved downward in the modeling bath to form a modeling bath. The photocurable resin liquid is flowed onto the cured resin layer to form a layer of the photocurable resin liquid, and the cured resin layer is formed by irradiating the photocurable resin liquid layer with a spot-like ultraviolet laser beam. A method of forming and repeating the above steps until a three-dimensional object having a predetermined shape and size is obtained is widely adopted.

しかしながら、スポット状の紫外線レーザー光を用いる上記した従来法による場合は、1個のスポット状レーザー光を光硬化性樹脂の表面に照射しながら移動させて面状の光硬化したパターンを形成するいわゆる点描方式であるため、造形に長い時間を要し、生産性が低いという問題がある。しかも、光源として用いられる紫外線レーザー装置は極めて高価であるため、この種の光学的立体造形装置を高価格なものにしている。   However, in the case of the above-described conventional method using spot-shaped ultraviolet laser light, a so-called planar photocured pattern is formed by moving one spot-shaped laser light while irradiating the surface of the photocurable resin. Since it is a stippling method, it takes a long time for modeling, and there is a problem that productivity is low. Moreover, since the ultraviolet laser device used as the light source is extremely expensive, this type of optical three-dimensional modeling apparatus is made expensive.

スポット状レーザー光を用いる上記した従来技術の問題点を解消するために、スポット状レーザー光照射装置よりも安価な光源、例えば、高圧水銀ランプ、超高圧水銀ランプ、水銀ランプ、メタルハライドランプ、キセノンランプなどの高輝度放電ランプ[High Intensity Dis-charge Lamp)(HIDランプ)]などの光源を使用して、光源の下流に描画マスクを配置し、描画マスクを介して造形しようとする断面形状パターンに応じた光を光硬化性樹脂組成物よりなる造形面に照射して、描画マスクのマスク画像に対応する所定の断面形状パターンを有する硬化樹脂層を形成させる工程を繰り返えして立体造形物を製造する光造形技術が開発されている。そしてその際に、描画マスクとして、微小ドットエリアでの遮光および透光が可能な複数の微小液晶シャッターを線状または面状に配置した液晶描画マスクを用いて光造形を行う方法が知られている(例えば特許文献1〜4を参照)。   In order to eliminate the above-described problems of the prior art using spot laser light, a light source that is less expensive than a spot laser light irradiation device, such as a high-pressure mercury lamp, an ultra-high pressure mercury lamp, a mercury lamp, a metal halide lamp, or a xenon lamp Using a light source such as a high-intensity discharge lamp (High Intensity Dis-charge Lamp) (HID lamp), a drawing mask is placed downstream of the light source, and the cross-sectional shape pattern to be formed is drawn through the drawing mask. A three-dimensional model is formed by repeating the process of irradiating a modeling surface made of the photocurable resin composition with a corresponding light to form a cured resin layer having a predetermined cross-sectional shape pattern corresponding to the mask image of the drawing mask. Has been developed. At that time, as a drawing mask, there is known a method of performing optical modeling using a liquid crystal drawing mask in which a plurality of minute liquid crystal shutters capable of shielding and transmitting light in a minute dot area are arranged in a line or a plane. (For example, see Patent Documents 1 to 4).

光学的立体造形においては、スポット状レーザー光を用いて点描方式で立体造形物を製造する上記した従来技術、および高輝度放電ランプなどの比較的安価な光源を使用し液晶描画マスクを介して光硬化性樹脂組成物よりなる造形面に光を照射して光硬化した樹脂層を形成する上記した従来の造形技術のいずれにおいても、光硬化性樹脂組成物として紫外線硬化性の樹脂組成物を用いて、紫外線レーザー光または光源からの光に含まれる紫外線によって光硬化した樹脂層を形成することが一般に広く行われている。その理由としては、(1)紫外線は波長が短く造形面に深く侵入しないことにより、造形面への光線の侵入深度の調節が容易で、薄くて厚さの均一な光硬化した樹脂層を順次形成することが可能で、寸法精度に優れる造形物を製造できること;(2)一方、可視光線および赤外線は波長が長く造形面に深く侵入するため、造形面への光線の侵入深度の調節が困難で、所定の厚さを有し且つ厚さの均一な光硬化した樹脂層を形成しにくく、それに伴って寸法精度に優れる立体造形物の製造が困難であること;(3)紫外線で硬化し且つ可視光線や赤外線で硬化しない紫外線硬化性樹脂組成物を用いると明るい場所でも光造形作業を行うことができるのに対して、可視光線で硬化する光硬化性樹脂組成物を用いると、光照射していない部分も雰囲気中の可視光線によって硬化してしまい、所定の形状パターンに光硬化することができず造形作業を暗室で行う必要があり、光硬化性樹脂組成物の取り扱い性および造形時の作業性に極めて劣ること;(4)赤外線で硬化する光硬化性樹脂組成物を用いると所定の鮮明な輪郭を有する光硬化した形状パターンの形成が困難で、寸法精度に優れる造形物が得られにくいことなどが挙げられる。   In optical three-dimensional modeling, light is transmitted through a liquid crystal drawing mask using the above-described conventional technique for manufacturing a three-dimensional model by spotting using spot laser light and a relatively inexpensive light source such as a high-intensity discharge lamp. In any of the above-described conventional modeling techniques for forming a photocured resin layer by irradiating light onto a modeling surface made of a curable resin composition, an ultraviolet curable resin composition is used as the photocurable resin composition. In general, a resin layer photocured by ultraviolet laser light or ultraviolet light contained in light from a light source is widely used. The reasons for this are as follows: (1) UV light has a short wavelength and does not penetrate deeply into the modeling surface, making it easy to adjust the depth of penetration of the light beam into the modeling surface. (2) On the other hand, visible light and infrared rays have long wavelengths and penetrate deep into the modeling surface, so it is difficult to adjust the penetration depth of the light into the modeling surface. It is difficult to form a photocured resin layer having a predetermined thickness and a uniform thickness, and accordingly, it is difficult to produce a three-dimensional modeled article having excellent dimensional accuracy; (3) cured with ultraviolet rays In addition, when an ultraviolet curable resin composition that is not cured by visible light or infrared light is used, an optical modeling operation can be performed even in a bright place, whereas when a photocurable resin composition that is cured by visible light is used, light irradiation is performed. The part which is not done It is hardened by visible light inside and cannot be photocured to a predetermined shape pattern, and it is necessary to perform modeling work in a dark room, which is extremely inferior in handling property of the photocurable resin composition and workability at the time of modeling. (4) When a photocurable resin composition that is cured by infrared rays is used, it is difficult to form a photocured shape pattern having a predetermined sharp outline, and it is difficult to obtain a molded article having excellent dimensional accuracy. It is done.

光硬化性樹脂組成物として紫外線硬化性樹脂組成物を用いて紫外線によって光硬化した樹脂層を形成する上記した造形技術のうち、液晶描画マスクを介して造形面に光を照射して光硬化した樹脂層を形成させる技術は、上記したように、スポット状紫外線レーザー光を造形面に照射して点描方式で照射して光硬化した樹脂層を形成する技術に比べて、一度に硬化できる面積が大きいために造形速度が速く、しかもレーザー発射装置に比べて安価な光源を使用できるなどの点で優れている。しかしながら、本発明者が液晶描画マスクを用いて紫外線によって光硬化した樹脂層を形成する光造形技術について研究を重ねたところ、光源からの光に含まれる紫外線によって液晶描画マスクが早期に劣化し、短期間のうちにそのマスク機能(すなわち微小ドットエリアでの遮光および透光機能)が失われ易いという欠点があり、液晶描画マスクを用いる光造形技術を実用上有効なものにするためには液晶描画マスクの紫外線による早期劣化を防止して、その寿命の長期化を図る必要があることが判明した。   Among the above-described modeling techniques for forming a resin layer photocured by ultraviolet rays using an ultraviolet curable resin composition as a photocurable resin composition, photocuring was performed by irradiating the modeling surface with light through a liquid crystal drawing mask. As described above, the technology for forming the resin layer has an area that can be cured at a time, compared to the technology that forms the resin layer that is photocured by irradiating the modeling surface with spot-like ultraviolet laser light and irradiating it with a stippling method. Since it is large, it is excellent in that the modeling speed is high and an inexpensive light source can be used as compared with a laser emitting device. However, when the present inventor repeated research on the optical modeling technology for forming a resin layer photocured by ultraviolet rays using a liquid crystal drawing mask, the liquid crystal drawing mask deteriorates early due to ultraviolet rays contained in the light from the light source, There is a drawback that the mask function (that is, the light shielding and translucency function in the minute dot area) is easily lost within a short period of time, and in order to make the optical modeling technique using the liquid crystal drawing mask practically effective, the liquid crystal It has been found that it is necessary to prevent the early deterioration of the drawing mask due to ultraviolet rays and to extend its life.

液晶自体は、液晶ディスプレーとしてパーソナルコンピューター、携帯電話、大型テレビジョンなどで近年汎用されており、また液晶プロジェクターなどの分野でも使用されている。これらの用途では、液晶による表示のために、通常、高圧水銀ランプ、超高圧水銀ランプ、メタルハライドランプ、キセノンランプなどのような、紫外線を含む光を放射する光源が用いられている。そのため、これらの分野では紫外線による液晶の劣化防止が検討されているが、これらの分野で液晶による表示に利用されている光線は主に可視光線であって紫外線は殆ど利用されないため、すべての紫外線をカットするか、またはすべての紫外線と紫外線に近い短波長の可視光線をカットして液晶の寿命を延ばすことが専ら試みられている。そのような従来技術としては、例えば、波長430nm以下の光線をカット(波長が400nm以下である紫外線のすべてと波長が400〜430nmの短波長の可視光線をカット)する、液晶プロジェクターなどに用いるための紫外線吸フィルターガラスが知られている(特許文献5を参照)。   The liquid crystal itself has been widely used in recent years as a liquid crystal display in personal computers, mobile phones, large televisions, and the like, and is also used in the field of liquid crystal projectors. In these applications, a light source that emits light including ultraviolet rays, such as a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a metal halide lamp, or a xenon lamp, is usually used for display by liquid crystal. Therefore, in these fields, the prevention of deterioration of the liquid crystal due to ultraviolet rays has been studied, but in these fields, the light rays used for the liquid crystal display are mainly visible rays, and ultraviolet rays are hardly used. Attempts have been made exclusively to extend the life of liquid crystals by cutting all ultraviolet rays and short-wavelength visible rays close to ultraviolet rays. As such a conventional technique, for example, for use in a liquid crystal projector or the like that cuts light having a wavelength of 430 nm or less (cuts all ultraviolet rays having a wavelength of 400 nm or less and visible light having a short wavelength of 400 to 430 nm). UV absorbing filter glass is known (see Patent Document 5).

しかしながら、液晶描画マスクを用いる光造形技術においては、上記したように、光造形時の光硬化性樹脂組成物の取り扱い性や作業性、得られる光造形物の寸法精度などの点から、光硬化性樹脂組成物として紫外線硬化性樹脂組成物を用いて、光源からの光に含まれる紫外線によって造形面に所定の形状パターンを有する光硬化した樹脂層を形成する必要があるため、光源からの光に含まれるすべての紫外線をカットすると光造形自体が実施できなくなる。したがって、パーソナルコンピューター、携帯電話、大型テレビジョンなどの液晶ディスプレーや液晶プロジェクターなどを対象とする、前記特許文献5に記載されているような従来技術(液晶の紫外線による劣化を抑制するために全ての紫外線をカットする従来技術)は光造形技術では採用できず、液晶描画マスクを用いる光造形技術に特有の、紫外線に対する耐久性の向上技術の開発が必要である。そのことは、液晶描画マスクを用いて紫外線を利用して三次元の立体造形物を製造する光造形技術および二次元の造形物(造形パターン)を製造する光造形技術(例えば液晶描画マスクを用いるレジスト技術など)の両方に共通している。   However, in the optical modeling technique using a liquid crystal drawing mask, as described above, from the viewpoints of the handleability and workability of the photocurable resin composition at the time of optical modeling, and the dimensional accuracy of the resulting optical modeling object, photocuring Since it is necessary to form a photocured resin layer having a predetermined shape pattern on the modeling surface by ultraviolet rays contained in the light from the light source using the ultraviolet curable resin composition as the curable resin composition, the light from the light source If all the ultraviolet rays contained in are cut, stereolithography itself cannot be performed. Therefore, the conventional technology as described in the above-mentioned patent document 5 (in order to suppress deterioration of liquid crystals due to ultraviolet rays), which is intended for liquid crystal displays and liquid crystal projectors such as personal computers, mobile phones, and large televisions. Conventional technology for cutting off ultraviolet rays) cannot be adopted in stereolithography technology, and it is necessary to develop technology for improving durability against ultraviolet rays, which is specific to stereolithography technology using a liquid crystal drawing mask. That is, an optical modeling technique for manufacturing a three-dimensional three-dimensional object using ultraviolet rays using a liquid crystal drawing mask and an optical modeling technique for manufacturing a two-dimensional object (modeling pattern) (for example, using a liquid crystal drawing mask). Common to both resist technology).

液晶描画マスクを介して紫外線を照射して光造形を行うに当って、紫外線による液晶描画マスクの劣化を抑制する観点から、光硬化性樹脂組成物の硬化に利用する所定波長の紫外線を透過させ、その一方で光硬化性樹脂組成物の硬化に利用しない前記所定波長以外の波長の紫外線を吸収および/または反射するフィルターを使用すること方法が考えられる。しかしながら、それを実施しようとして所定波長の紫外線のみを透過する紫外線フィルターの利用を試みたところ、従来知られている紫外線フィルターでは、光硬化性樹脂組成物の硬化に利用する所定波長の紫外線のフィルターの透過率は高くても85%程度であって、該所定波長の紫外線の15%またはそれ以上がフィルターで吸収および/または反射されて失われてしまい、光源からの光に含まれる該所定波長の紫外線を効率良く有効に利用することが困難であることが判明した。所定波長の紫外線の利用率が低下すると、鮮明な硬化画像の形成が困難になったり、エネルギー強度のより高い高価な光源を使用する必要を生ずるなどの点で問題がある。   In performing stereolithography by irradiating ultraviolet rays through a liquid crystal drawing mask, from the viewpoint of suppressing deterioration of the liquid crystal drawing mask due to ultraviolet rays, ultraviolet rays having a predetermined wavelength used for curing the photocurable resin composition are transmitted. On the other hand, it is conceivable to use a filter that absorbs and / or reflects ultraviolet rays having a wavelength other than the predetermined wavelength that is not used for curing the photocurable resin composition. However, when an attempt was made to use an ultraviolet filter that transmits only ultraviolet rays having a predetermined wavelength in order to carry out the same, an ultraviolet filter having a predetermined wavelength that is used for curing a photocurable resin composition is known as a conventionally known ultraviolet filter. The transmittance of the light is about 85% at the highest, and 15% or more of the ultraviolet ray having the predetermined wavelength is lost by being absorbed and / or reflected by the filter, and the predetermined wavelength included in the light from the light source It has been found that it is difficult to efficiently and effectively use ultraviolet rays. When the utilization rate of ultraviolet rays having a predetermined wavelength is lowered, there is a problem in that it becomes difficult to form a clear cured image, and it becomes necessary to use an expensive light source with higher energy intensity.

また、液晶描画マスクは、紫外線ほどではないが、加熱作用の大きな赤外線によっても劣化する傾向があり、かかる点から、液晶描画マスクを用いる光造形技術では、液晶描画マスクの紫外線による劣化の抑制と共に赤外線による劣化をも防止または抑制して、液晶描画マスクの寿命を一層延ばすことのできる技術の開発が求められている。   In addition, liquid crystal drawing masks tend to be deteriorated even by infrared rays having a large heating effect, although not as much as ultraviolet rays. From this point, in the optical modeling technique using a liquid crystal drawing mask, the deterioration of the liquid crystal drawing mask due to ultraviolet rays is suppressed. There is a need for the development of a technology that can prevent or suppress deterioration due to infrared rays and further extend the life of the liquid crystal drawing mask.

さらに、液晶描画マスクを用いて光造形を行うに当っては、紫外線による液晶描画マスクの劣化防止と併せて、外観、寸法精度、強度の均一性などに優れる高品質の光造形物を高い造形精度で製造するために液晶描画マスクを介して造形面に照射される光の強度分布が均一であることが求められているが、紫外線による液晶描画マスクの劣化防止と造形面に照射される紫外線の強度分布の均一化を同時に達成できる従来技術が知られていないのが現状である。   Furthermore, when performing optical modeling using a liquid crystal drawing mask, in addition to preventing deterioration of the liquid crystal drawing mask due to ultraviolet rays, high-quality optical modeling objects that are superior in appearance, dimensional accuracy, strength uniformity, etc. In order to manufacture with high accuracy, it is required that the intensity distribution of the light irradiated to the modeling surface through the liquid crystal drawing mask is uniform, but the ultraviolet rays irradiated to the modeling surface and prevention of deterioration of the liquid crystal drawing mask due to ultraviolet rays In the current situation, there is no known prior art that can simultaneously achieve uniform intensity distribution.

特開昭62−288844号公報Japanese Patent Laid-Open No. 62-288844 特開平3−227222号公報Japanese Patent Laid-Open No. 3-227222 特開平7−2905789号公報JP 7-2905789 A 特開平8−112863号公報JP-A-8-112863 特開2003−48749号公報JP 2003-48749 A

本発明の目的は、紫外線硬化性樹脂組成物を用い、液晶描画マスクを使用して、光源からの光に含まれる紫外線によって光硬化した樹脂層を形成する光造形技術において、液晶描画マスクの紫外線による劣化または紫外線と赤外線による劣化を抑制して、液晶描画マスクの耐久寿命を延長させること、それと同時に光源からの光に含まれる所定波長の紫外線を高い効率で無駄なく有効に利用しながら、目的とする光硬化した造形物を、高い造形精度で且つ硬化ムラや強度ムラの発生を防ぎつつ、速い造形速度で、生産性良く且つ低コストで製造することのできる光造形方法および装置を提供することである。
さらに、本発明の目的は、紫外線や赤外線による液晶描画マスクの劣化の抑制、所定波長の紫外線の高効率での有効利用と併せて、液晶描画マスクを介して造形面に照射される光の強度分布を均一にして、造形精度に一層優れ、しかも硬化ムラや強度ムラの一層低減された光造形物を製造することのできる光造形方法および装置を提供することである。
特に、本発明の目的は、高価な紫外線レーザー装置を用いずに、例えば、高圧水銀ランプ、超高圧水銀ランプ、水銀ランプ、メタルハライドランプ、キセノンランプなどのような安価な光源を用いて、紫外線、または紫外線と赤外線による液晶描画マスクの劣化を抑制して液晶描画マスクの長寿命化を実現しながら、同時に前記した安価な光源からの光に含まれる所定波長の紫外線を高い効率で有効利用しながら、また光の強度分布の均一化を図りながら、高い造形精度を有し且つ硬化ムラや強度ムラのない高品質の造形物を、速い造形速度で且つ経済的に製造することのできる実用化技術を提供することである。
An object of the present invention is to provide a UV modeling resin that uses an ultraviolet curable resin composition and uses a liquid crystal drawing mask to form a resin layer photocured by ultraviolet rays contained in light from a light source. By suppressing deterioration due to UV light or infrared light and infrared light and extending the durability life of the liquid crystal drawing mask, at the same time, it is possible to effectively and efficiently use ultraviolet light of a predetermined wavelength contained in the light from the light source without waste. An optical modeling method and apparatus capable of manufacturing a photo-cured model with high modeling accuracy and at a high modeling speed with high productivity and low cost while preventing occurrence of curing unevenness and strength unevenness are provided. That is.
Furthermore, the object of the present invention is to suppress the deterioration of the liquid crystal drawing mask due to ultraviolet rays and infrared rays, and to effectively use the ultraviolet rays of a predetermined wavelength with high efficiency, and the intensity of light irradiated to the modeling surface through the liquid crystal drawing mask. It is an object of the present invention to provide an optical modeling method and apparatus capable of producing an optical modeling object with uniform distribution, further excellent modeling accuracy, and further reduced curing unevenness and strength unevenness.
In particular, the object of the present invention is to use an inexpensive light source such as a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a mercury lamp, a metal halide lamp, a xenon lamp, etc. without using an expensive ultraviolet laser device, Or while suppressing the deterioration of the liquid crystal drawing mask due to ultraviolet rays and infrared rays and realizing a long life of the liquid crystal drawing mask, at the same time, efficiently using ultraviolet rays of a predetermined wavelength contained in the light from the above-mentioned inexpensive light source with high efficiency In addition, while achieving uniform light intensity distribution, it is a practical technology that can produce high-quality shaped objects that have high modeling accuracy and that are free of curing unevenness and intensity unevenness at a high modeling speed and economically. Is to provide.

上記の目的を達成すべく本発明者は鋭意検討を重ねてきた。その結果、液晶描画マスクを介して紫外線硬化性樹脂組成物よりなる造形面に光を照射し、光に含まれる紫外線によって所定の形状パターンを有する光硬化した樹脂層を形成する工程を経て光造形物を製造するに当たって、光源からの光に含まれる紫外線のすべてをそのまま光硬化した樹脂層の形成に用いるのではなく、所定波長の紫外線のみを用いて光硬化した樹脂層を形成し、所定波長の紫外線とは異なる波長の紫外線による液晶描画マスクの曝露を防止するとよいということに想到した。そして、更に検討を重ねた結果、その際に所定波長の紫外線と該所定波長の紫外線とは波長の異なる紫外線の選別(分離)を、所定波長の紫外線のみを透過させそれ以外の紫外線を吸収および/または反射する前記した紫外線フィルターを用いて行うのではなく、光硬化に利用する所定波長の紫外線を反射させ且つ該所定波長の紫外線とは波長の異なる紫外線を透過させて分離・除去する紫外線選別装置を用いると、光硬化に利用する所定波長の紫外線の殆ど全量を、エネルギー強度の低減を生ずることなく光硬化性樹脂組成物の硬化に有効に利用できることを見出した。   In order to achieve the above object, the present inventor has intensively studied. As a result, light modeling is performed through a process of irradiating a modeling surface made of an ultraviolet curable resin composition through a liquid crystal drawing mask and forming a photocured resin layer having a predetermined shape pattern by ultraviolet rays contained in the light. In manufacturing a product, not all of the ultraviolet light contained in the light from the light source is used as it is to form a resin layer that is photocured as it is, but a photocured resin layer is formed using only ultraviolet rays of a predetermined wavelength, It was conceived that the exposure of the liquid crystal drawing mask by ultraviolet rays having a wavelength different from that of the ultraviolet rays should be prevented. As a result of further investigation, the selection (separation) of ultraviolet rays having a predetermined wavelength and ultraviolet rays having different wavelengths from each other at that time is allowed to pass only ultraviolet rays having a predetermined wavelength and absorb other ultraviolet rays. Rather than using the above-described UV filter to reflect, UV screening that reflects and separates and removes UV light of a predetermined wavelength used for photocuring and transmits UV light having a wavelength different from that of the predetermined wavelength. It has been found that when the apparatus is used, almost all of the ultraviolet rays having a predetermined wavelength used for photocuring can be effectively used for curing the photocurable resin composition without causing a reduction in energy intensity.

本発明者は、上記の紫外線選別装置として、中空の透明な筒状体の内壁面に、光硬化性樹脂組成物の硬化に利用する所定波長の紫外線を反射し且つ該所定波長の紫外線とは波長の異なる紫外線を透過して分離する紫外線選別膜層を設けた筒状体を作製して使用することを試みた。その結果、前記筒状体の入口側の開口部から光を導入したときに、光硬化に利用する前記所定波長の紫外線が筒状体によって吸収されずに、筒状体の内壁面に設けた紫外線選別膜層によって100%に近い反射率で順次反射されながら元の光強度を維持しつつ筒状体の出口側の開口部から導出されること、しかもその際に筒状体の出口側の開口部から導出される前記所定波長の紫外線の強度分布が均一化していること、その一方で前記所定波長の紫外線とは波長の異なる紫外線は筒状体の側壁から筒状体外に透過して系外に効率よく分離でき、したがって前記筒状体をベースとする前記紫外線選別装置が、液晶描画マスクを用いて光造形を行う際に極めて有効であることを見出した。   The present inventor, as the above-described ultraviolet screening device, reflects the ultraviolet ray having a predetermined wavelength used for curing the photocurable resin composition on the inner wall surface of a hollow transparent cylindrical body, and what is the ultraviolet ray having the predetermined wavelength? An attempt was made to produce and use a cylindrical body provided with an ultraviolet screening film layer that transmits and separates ultraviolet rays having different wavelengths. As a result, when light was introduced from the opening on the inlet side of the cylindrical body, the ultraviolet light having the predetermined wavelength used for photocuring was not absorbed by the cylindrical body and provided on the inner wall surface of the cylindrical body. It is derived from the opening on the outlet side of the cylindrical body while maintaining the original light intensity while being sequentially reflected at a reflectance close to 100% by the ultraviolet screening film layer, and at that time, on the outlet side of the cylindrical body The intensity distribution of the ultraviolet light having the predetermined wavelength derived from the opening is made uniform, while ultraviolet light having a wavelength different from that of the predetermined wavelength is transmitted from the side wall of the cylindrical body to the outside of the cylindrical body. It has been found that the ultraviolet ray separation device based on the cylindrical body can be efficiently separated to the outside, and is thus extremely effective when performing optical modeling using a liquid crystal drawing mask.

また、本発明者は、前記した紫外線選別装置では、前記所定波長の紫外線と異なる波長を有する紫外線の透過と併せて赤外線の透過を行えるように設計することが可能で、その場合には前記所定波長の紫外線とは異なる波長の紫外線および赤外線の両方による液晶描画マスクの曝露を防止することができ、それによって液晶描画マスクの使用可能寿命を一層長くできることを見出した。   In addition, the present inventor can design the above-described ultraviolet screening apparatus so that it can transmit infrared rays in combination with transmission of ultraviolet rays having a wavelength different from the ultraviolet rays having the predetermined wavelength. It has been found that the exposure of the liquid crystal drawing mask by both ultraviolet rays and infrared rays having different wavelengths from the ultraviolet rays of the wavelength can be prevented, thereby further extending the usable life of the liquid crystal drawing mask.

そして、本発明者は、光源として超高圧水銀ランプまたは高圧水銀ランプを使用し、超高圧水銀ランプまたは高圧水銀ランプから放射される光に含まれる波長365nmの紫外線(通称「i線」)によって光硬化した樹脂層を形成すると共に、波長340nm以下の紫外線を液晶描画マスクの上流に配置した前記紫外線選別装置によって分離除去すると、速い光硬化速度を保ちながら、紫外線による液晶描画マスクの劣化をより効果的に抑制することができ、実用性などの点で優れる光造形技術を提供できることを見出し、それらの種々の知見に基づいて本発明を完成した。   The present inventor uses an ultra-high pressure mercury lamp or a high-pressure mercury lamp as a light source, and emits light by ultraviolet light having a wavelength of 365 nm (commonly called “i-line”) contained in the light emitted from the ultra-high pressure mercury lamp or the high-pressure mercury lamp. When the cured resin layer is formed and ultraviolet rays with a wavelength of 340 nm or less are separated and removed by the ultraviolet ray sorting device arranged upstream of the liquid crystal drawing mask, the deterioration of the liquid crystal drawing mask due to ultraviolet rays is more effective while maintaining a high photocuring speed. The present invention has been completed on the basis of these various findings.

すなわち、本発明は、
(1) 光硬化性樹脂組成物よりなる造形面に、微小ドットエリアでの遮光および透光が可能な複数の微小液晶シャッターを線状または面状に配置した液晶描画マスクを介して制御下に光を照射して所定の形状パターンを有する光硬化した樹脂層を形成した後、該光硬化した樹脂層の上に1層分の光硬化性樹脂組成物を施して造形面を形成し、該光硬化性樹脂組成物よりなる造形面に液晶描画マスクを介して制御下に光を照射して所定の形状パターンを有する光硬化した樹脂層を更に形成する工程を、目的とする立体造形物が形成されるまで繰り返す光造形方法であって、光硬化性樹脂組成物として紫外線硬化性樹脂組成物を使用し、光発射手段と液晶描画マスクとの間の位置に、光硬化性樹脂組成物の光硬化に利用する所定波長の紫外線を反射すると共に、該所定波長の紫外線とは波長の異なる紫外線を透過させて分離・除去する紫外線選別装置を配置し、該紫外線選別装置によって、光源からの光に含まれる紫外線のうち光硬化性樹脂組成物の光硬化に利用する所定波長の紫外線を反射させて該反射された所定波長の紫外線を液晶描画マスクの方向へと導くと同時に、該所定波長の紫外線とは波長の異なる紫外線を紫外線選別装置を透過させて不要光として分離・除去して、前記所定波長の紫外線とは波長の異なる紫外線による液晶描画マスクの曝露を防止しながら、紫外線選別装置によって反射された前記所定波長の紫外線を液晶描画マスクを介して造形面に照射して所定の形状パターンを有する光硬化した樹脂層を形成することを特徴とする光造形方法である。
That is, the present invention
(1) Controlled through a liquid crystal drawing mask in which a plurality of minute liquid crystal shutters capable of light shielding and translucency in a minute dot area are arranged in a linear or planar manner on a modeling surface made of a photocurable resin composition After irradiating light to form a photocured resin layer having a predetermined shape pattern, a photocurable resin composition for one layer is applied on the photocured resin layer to form a modeling surface, A target three-dimensional model is a step of further forming a photocured resin layer having a predetermined shape pattern by irradiating light under control through a liquid crystal drawing mask on a modeling surface made of a photocurable resin composition. It is an optical modeling method that is repeated until it is formed, using an ultraviolet curable resin composition as a photocurable resin composition, and a photocurable resin composition at a position between a light emitting means and a liquid crystal drawing mask. UV light of a predetermined wavelength used for photocuring An ultraviolet ray sorting device that transmits and separates and removes ultraviolet rays having a wavelength different from the ultraviolet ray having the predetermined wavelength, and the ultraviolet ray sorting device allows the photocurable resin to be included in the light from the light source. Reflecting ultraviolet rays of a predetermined wavelength used for photocuring of the composition to guide the reflected ultraviolet rays of the predetermined wavelength toward the liquid crystal drawing mask, and simultaneously selecting ultraviolet rays having a wavelength different from that of the predetermined wavelength. By passing through the device and separating / removing it as unnecessary light, the ultraviolet light of the predetermined wavelength reflected by the ultraviolet screening device is liquid crystal while preventing exposure of the liquid crystal drawing mask by ultraviolet light having a wavelength different from that of the predetermined wavelength. An optical modeling method characterized in that a photocured resin layer having a predetermined shape pattern is formed by irradiating a modeling surface through a drawing mask.

そして、本発明は、
(2) 光硬化性樹脂組成物よりなる造形面に、微小ドットエリアでの遮光および透光が可能な複数の微小液晶シャッターを線状または面状に配置した液晶描画マスクを介して制御下に光を照射して所定の形状パターンを有する光硬化した樹脂層を形成する工程を有する光造形方法であって、光硬化性樹脂組成物として紫外線硬化性樹脂組成物を使用し、光発射手段と液晶描画マスクとの間の位置に、光硬化性樹脂組成物の光硬化に利用する所定波長の紫外線を反射すると共に、該所定波長の紫外線とは波長の異なる紫外線を透過させて分離・除去する紫外線選別装置を配置し、該紫外線選別装置によって、光源からの光に含まれる紫外線のうち光硬化性樹脂組成物の光硬化に利用する所定波長の紫外線を反射させて該反射された所定波長の紫外線を液晶描画マスクの方向へと導くと同時に、該所定波長の紫外線とは波長の異なる紫外線を紫外線選別装置を透過させて不要光として分離・除去して、前記所定波長の紫外線とは波長の異なる紫外線による液晶描画マスクの曝露を防止しながら、紫外線選別装置によって反射された前記所定波長の紫外線を液晶描画マスクを介して造形面に照射して所定の形状パターンを有する光硬化した樹脂層を形成することを特徴とする光造形方法である。
And this invention,
(2) Controlled through a liquid crystal drawing mask in which a plurality of minute liquid crystal shutters capable of light shielding and translucency in a minute dot area are arranged linearly or planarly on a modeling surface made of a photocurable resin composition An optical modeling method including a step of irradiating light to form a photocured resin layer having a predetermined shape pattern, using an ultraviolet curable resin composition as a photocurable resin composition, and a light emitting means Reflects ultraviolet rays having a predetermined wavelength used for photocuring the photocurable resin composition at a position between the liquid crystal drawing mask and transmits and separates and removes ultraviolet rays having a wavelength different from that of the predetermined wavelength. An ultraviolet ray sorting device is arranged, and the ultraviolet ray sorting device reflects ultraviolet rays having a predetermined wavelength used for photocuring of the photocurable resin composition among the ultraviolet rays contained in the light from the light source, and reflects the reflected predetermined wavelength. purple At the same time as guiding the outside line in the direction of the liquid crystal drawing mask, the ultraviolet ray having a wavelength different from the ultraviolet ray having the predetermined wavelength is transmitted through the ultraviolet ray sorting device to be separated and removed as unnecessary light. While preventing exposure of the liquid crystal drawing mask by different ultraviolet rays, the photocured resin layer having a predetermined shape pattern by irradiating the modeling surface with the ultraviolet rays of the predetermined wavelength reflected by the ultraviolet ray sorter through the liquid crystal drawing mask It is an optical modeling method characterized by forming.

さらに、本発明は、
(3) 前記紫外線選別装置が、液晶描画マスクを介して造形面に照射される前記所定波長の紫外線を含む光の強度分布を均一化する機能を更に有する前記(1)または(2)の光造形方法;および、
(4) 前記紫外線選別装置が、光硬化した樹脂層の形成に用いる前記所定波長の紫外線の95%以上を反射し且つ該所定波長の紫外線よりも短波長の紫外線の85%以上を透過して不要光として分離・除去する紫外線選別装置である前記(1)〜(3)のいずれかの光造形方法;
である。
Furthermore, the present invention provides
(3) The light according to (1) or (2), wherein the ultraviolet screening device further has a function of uniformizing an intensity distribution of light including ultraviolet light having the predetermined wavelength that is irradiated onto a modeling surface through a liquid crystal drawing mask. Modeling method; and
(4) The ultraviolet ray sorting device reflects 95% or more of the ultraviolet ray having the predetermined wavelength used for forming the photocured resin layer and transmits 85% or more of the ultraviolet ray having a shorter wavelength than the ultraviolet ray having the predetermined wavelength. The optical shaping method according to any one of (1) to (3), which is an ultraviolet ray sorting device that separates and removes unnecessary light;
It is.

そして、本発明は、
(5) 紫外線選別装置が、両端の開口した中空の透明な筒状体の内壁面に、前記所定波長の紫外線を反射し且つ該所定波長の紫外線とは波長の異なる紫外線を透過する紫外線選別膜層を形成した紫外線選別装置からなり、該紫外線選別装置の筒状体の入口側の開口部から光を導入して、光硬化性樹脂の硬化に利用する前記所定波長の紫外線を、筒状体の内壁面に形成した紫外線選別膜層により筒状体内で順次反射させながら光の強度分布を均一化しつつ筒状体の出口側の開口部から導出すると共に、前記所定波長の紫外線とは波長の異なる紫外線を前記筒状体の側壁から筒状体外に透過させて分離・除去する前記した(1)〜(4)のいずれかの光造形方法;および、
(6) 紫外線選別装置の筒状体の内壁面に形成した紫外線選別膜層が、屈折率の高い非吸収性の誘電体物質と屈折率の低い非吸収性の誘電体物質を交互に膜状に多層コーティングした誘電体多層膜コーティングよりなる前記(5)の光造形方法;
である。
And this invention,
(5) An ultraviolet screening film in which the ultraviolet screening device reflects the ultraviolet light having the predetermined wavelength and transmits the ultraviolet light having a wavelength different from that of the predetermined wavelength on the inner wall surface of the hollow transparent cylindrical body having both ends opened. An ultraviolet ray sorting device having a layer formed thereon, and introducing the light from the opening on the inlet side of the cylindrical body of the ultraviolet ray sorting device to use the ultraviolet rays of the predetermined wavelength to be used for curing the photocurable resin. The ultraviolet ray selection film layer formed on the inner wall surface of the cylindrical body sequentially reflects the light within the cylindrical body while uniforming the light intensity distribution and leading out from the opening on the outlet side of the cylindrical body. The optical shaping method according to any one of (1) to (4) described above, wherein different ultraviolet rays are transmitted from the side wall of the cylindrical body to the outside of the cylindrical body for separation and removal; and
(6) The UV screening film layer formed on the inner wall surface of the cylindrical body of the UV screening device is a film of alternating non-absorbing dielectric material having a high refractive index and non-absorbing dielectric material having a low refractive index. The optical shaping method according to (5), further comprising: a dielectric multilayer coating coated on the substrate;
It is.

さらに、本発明は、
(7) 前記紫外線選別装置が、更に波長780nm以上の光線の85%以上を透過して不要光として分離・除去する機能を有し、それによって波長780nm以上の光線による液晶描画マスクの曝露を更に防止または抑制する前記(1)〜(6)のいずれかの光造形方法;
(8) 光硬化した樹脂層を形成するための前記所定波長の紫外線が、光源からの光に含まれる紫外線のうちで、紫外線硬化性樹脂組成物を速やかに硬化することのできる光強度を有し且つ液晶描画マスクに対する劣化作用が比較的小さな紫外線である前記した(1)〜(7)のいずれか1項に記載の光造形方法;
(9) 光硬化した樹脂層を形成するための前記所定波長の紫外線が、300〜390nmの範囲内の波長を有する紫外線である前記(1)〜(8)のいずれかの光造形方法;および、
(10) 光源として高輝度放電ランプを使用する前記(1)〜(9)のいずれかの光造形方法;
である。
Furthermore, the present invention provides
(7) The ultraviolet ray sorting device further has a function of transmitting 85% or more of light having a wavelength of 780 nm or more and separating and removing it as unnecessary light, thereby further exposing the liquid crystal drawing mask by light having a wavelength of 780 nm or more. The optical modeling method according to any one of (1) to (6) above, which is to be prevented or suppressed;
(8) The ultraviolet ray having the predetermined wavelength for forming the photocured resin layer has a light intensity capable of quickly curing the ultraviolet curable resin composition among the ultraviolet rays contained in the light from the light source. And the optical shaping method according to any one of (1) to (7), wherein the deterioration effect on the liquid crystal drawing mask is relatively small ultraviolet rays;
(9) The optical shaping method according to any one of (1) to (8), wherein the ultraviolet ray having the predetermined wavelength for forming the photocured resin layer is an ultraviolet ray having a wavelength in the range of 300 to 390 nm; ,
(10) The optical shaping method according to any one of (1) to (9), wherein a high-intensity discharge lamp is used as a light source;
It is.

そして、本発明は、
(11) 光硬化性樹脂組成物として、波長365nmまたはその近傍の紫外線によって少なくとも硬化するが波長400nm以上の可視光線および赤外線では硬化しない紫外線硬化性樹脂組成物を用い、光源として超高圧水銀ランプまたは高圧水銀ランプを使用し、紫外線選別装置として、超高圧水銀ランプまたは高圧水銀ランプから放射される光に含まれる波長365nmまたはその近傍の紫外線の95%以上を反射し且つ波長340nm以下の紫外線の85%以上を透過する紫外線選別装置を液晶描画マスクの上流側に配置して、液晶描画マスクの波長340nm以下の紫外線による曝露を防止または抑制しながら、光硬化した樹脂層を波長365nmまたはその近傍の紫外線によって形成する前記(1)〜(10)のいずれかの光造形方法である。
And this invention,
(11) An ultraviolet curable resin composition that is at least cured by ultraviolet light having a wavelength of 365 nm or in the vicinity thereof but is not cured by visible light or infrared light having a wavelength of 400 nm or more is used as the light curable resin composition, A high-pressure mercury lamp is used, and as an ultraviolet ray sorting device, 85% or more of ultraviolet rays having a wavelength of 365 nm or less and having a wavelength of 365 nm or less reflected in a wavelength 365 nm included in the light emitted from the ultra-high pressure mercury lamp or the light radiated from the high-pressure mercury lamp. % Of the UV light screening device is disposed at the upstream side of the liquid crystal drawing mask to prevent or suppress the exposure of the liquid crystal drawing mask by ultraviolet light having a wavelength of 340 nm or less, while the photocured resin layer is formed at a wavelength of 365 nm or in the vicinity thereof. Stereolithography according to any one of the above (1) to (10) formed by ultraviolet rays Is the method.

さらに、本発明は、
(12) 光硬化性樹脂組成物よりなる造形面を形成する手段;
光硬化性樹脂組成物を硬化させる所定波長の紫外線とそれ以外の波長の紫外線を含む光を放射する光発射手段;
微小ドットエリアでの遮光および透光が可能な複数の微小光シャッターを線状または面状に配置した液晶描画マスク;および、
光硬化性樹脂組成物を硬化させる前記所定波長の紫外線を反射させるが、該所定波長以外の波長の紫外線を透過・分離する、光発射手段と液晶描画マスクとの間に配置した紫外線選別装置;
を備えていることを特徴とする光造形装置である。
Furthermore, the present invention provides
(12) Means for forming a modeling surface comprising a photocurable resin composition;
A light emitting means for radiating light containing ultraviolet rays of a predetermined wavelength and ultraviolet rays of other wavelengths for curing the photocurable resin composition;
A liquid crystal drawing mask in which a plurality of minute light shutters capable of shielding and transmitting light in a minute dot area are arranged in a line or a plane; and
An ultraviolet ray sorter disposed between the light emitting means and the liquid crystal drawing mask, which reflects the ultraviolet ray having the predetermined wavelength for curing the photocurable resin composition, but transmits and separates the ultraviolet ray having a wavelength other than the predetermined wavelength;
Is an optical modeling apparatus.

そして、本発明は、
(13) 紫外線選別装置が、両端で開口した中空の透明な筒状体の内壁面に、前記所定波長の紫外線を反射し且つ該所定波長の紫外線とは波長の異なる紫外線を透過・分離する紫外線選別膜層を形成した紫外線選別装置からなる前記(12)の光造形装置;
(14) 紫外線選別装置の筒状体の内壁面に形成した紫外線選別膜層が、屈折率の高い誘電体物質と屈折率の低い誘電体物質を交互に多層にコーティングした誘電体多層コーティング膜層である前記(13)の光造形装置;
(15) 前記紫外線選別装置が、更に波長780nm以上の光線の85%以上を透過して不要光として分離する機能を有する前記(12)〜(14)のいずれかの光造形装置;および、
(16) 光源が、高輝度放電ランプである前記(12)〜(15)のいずれかの光造形装置;
である。
And this invention,
(13) An ultraviolet ray that reflects the ultraviolet ray having the predetermined wavelength on the inner wall surface of the hollow transparent cylindrical body opened at both ends, and transmits and separates the ultraviolet ray having a wavelength different from the ultraviolet ray having the predetermined wavelength. The stereolithography apparatus according to (12), comprising an ultraviolet ray sorting device on which a sorting film layer is formed;
(14) The dielectric multi-layer coating film layer in which the ultraviolet screening film layer formed on the inner wall surface of the cylindrical body of the ultraviolet screening device is alternately coated in multiple layers with a dielectric material having a high refractive index and a dielectric material having a low refractive index. The optical modeling apparatus according to (13), which is
(15) The optical shaping apparatus according to any one of (12) to (14), wherein the ultraviolet ray sorting apparatus further has a function of transmitting 85% or more of light having a wavelength of 780 nm or more and separating the light as unnecessary light;
(16) The optical modeling apparatus according to any one of (12) to (15), wherein the light source is a high-intensity discharge lamp;
It is.

本発明による場合は、液晶描画マスクの紫外線による劣化または紫外線と赤外線による劣化を抑制して、液晶描画マスクの耐久寿命を延長させながら、目的とする光硬化した造形物や光硬化した造形パターンなどを、高い造形精度で且つ硬化ムラや強度ムラの発生を防ぎつつ、速い造形速度で、生産性良く、且つ低コストで製造することができる。
さらに、本発明による場合は、光源などの光発射手段から放出される光に含まれる紫外線のうち、光造形に利用する所定波長の紫外線を、そのエネルギー強度の低下を生ずることなく、100%に近い率で維持しながら光造形に有効に利用することができるため、造形精度に優れる鮮明な光硬化物を効率よく形成することができる。
In the case of the present invention, while suppressing the deterioration of the liquid crystal drawing mask due to ultraviolet rays or the deterioration of ultraviolet rays and infrared rays and extending the durable life of the liquid crystal drawing mask, the target photocured shaped article or photocured shaped pattern, etc. Can be manufactured with high modeling accuracy, high curing speed, high productivity, and low cost while preventing the occurrence of curing unevenness and strength unevenness.
Further, in the case of the present invention, among the ultraviolet rays contained in the light emitted from the light emitting means such as the light source, the ultraviolet rays having a predetermined wavelength used for the optical modeling are reduced to 100% without causing a decrease in the energy intensity. Since it can be effectively used for optical modeling while maintaining at a close rate, a clear photocured product excellent in modeling accuracy can be efficiently formed.

また、本発明において、紫外線選別装置として、両端の開口した中空の透明な筒状体の内壁面に光硬化性樹脂組成物の光硬化に利用する所定波長の紫外線を反射すると共に該所定波長の紫外線とは波長の異なる紫外線を透過する紫外線選別膜層を形成した紫外線選別装置を使用した場合には、光造形に利用する前記所定波長の紫外線の強度分布の均一化を同時に達成することができ、それによって光造形物における硬化ムラ、強度ムラなどの発生を防止して、造形精度および寸法精度などに優れる光造形物を同時に形成することができる。   Further, in the present invention, as the ultraviolet ray sorting device, the ultraviolet ray having a predetermined wavelength used for photocuring of the photocurable resin composition is reflected on the inner wall surface of the hollow transparent cylindrical body having both ends opened. In the case of using an ultraviolet screening device in which an ultraviolet screening film layer that transmits ultraviolet light having a wavelength different from that of ultraviolet light is used, it is possible to simultaneously achieve uniform intensity distribution of the ultraviolet light having the predetermined wavelength used for stereolithography. Thus, it is possible to prevent the occurrence of curing unevenness, strength unevenness and the like in the optical modeling object, and to simultaneously form the optical modeling object having excellent modeling accuracy and dimensional accuracy.

本発明による場合は、光源として高価な紫外線レーザー装置を用いなくても、例えば、高圧水銀ランプ、超高圧水銀ランプ、水銀ランプ、メタルハライドランプ、キセノンランプなどのような安価な光源を使用し、それらの光源から発射される光に含まれる紫外線のうちの所定波長の紫外線を高率で利用して、紫外線、または紫外線と赤外線による液晶描画マスクの劣化を抑制しながら、前記した高品質の造形物や光硬化した形状パターンなどを、速い造形速度で且つ経済的に製造することができる。   According to the present invention, an inexpensive light source such as a high-pressure mercury lamp, an ultra-high pressure mercury lamp, a mercury lamp, a metal halide lamp, or a xenon lamp is used without using an expensive ultraviolet laser device as the light source. The above-mentioned high-quality shaped article is obtained while suppressing deterioration of the liquid crystal drawing mask due to ultraviolet rays or ultraviolet rays and infrared rays by using ultraviolet rays having a predetermined wavelength among ultraviolet rays contained in light emitted from the light source of And photocured shape patterns can be produced economically at a high modeling speed.

以下に本発明について詳細に説明する。
本発明では、
(1) 紫外線硬化性樹脂組成物よりなる造形面に、微小ドットエリアでの遮光および透光が可能な複数の微小液晶シャッターを線状または面状に配置した液晶描画マスクを介して制御下に光を照射して所定の形状パターンを有する光硬化した樹脂層を形成した後、該光硬化した樹脂層の上に1層分の紫外線硬化性樹脂組成物を施して造形面を形成し、該紫外線硬化性樹脂組成物よりなる造形面に液晶描画マスクを介して制御下に光を照射して所定の形状パターンを有する光硬化した樹脂層を更に形成する工程を、目的とする立体造形物が形成されるまで繰り返して立体造形物を製造するか;或いは、
(2) 紫外線硬化性樹脂組成物よりなる造形面に、前記した液晶描画マスクを介して制御下に光を照射して、所定の形状パターンを有する光硬化した樹脂層を有する製品(例えばレジストなどのような製品)を製造する。
The present invention is described in detail below.
In the present invention,
(1) Under control through a liquid crystal drawing mask in which a plurality of minute liquid crystal shutters capable of shielding and transmitting light in a minute dot area are linearly or planarly arranged on a modeling surface made of an ultraviolet curable resin composition After forming a photocured resin layer having a predetermined shape pattern by irradiating light, an ultraviolet curable resin composition for one layer is applied on the photocured resin layer to form a modeling surface, A target three-dimensional model is a step of further forming a photocured resin layer having a predetermined shape pattern by irradiating light under control through a liquid crystal drawing mask on a modeling surface made of an ultraviolet curable resin composition. Repetitively producing a three-dimensional model until it is formed; or
(2) A product (for example, a resist or the like) having a photocured resin layer having a predetermined shape pattern by irradiating light on a modeling surface made of an ultraviolet curable resin composition under control through the liquid crystal drawing mask described above Products).

立体造形物の製造に係る前記した(1)の造形技術は、一般に、液状の紫外線硬化性樹脂組成物を充填した造形浴中に造形テーブルを配置し、造形テーブルを下降させることによって造形テーブル面に1層分の液状の紫外線硬化性樹脂組成物層を形成させ、液晶描画マスクを介して制御下に光を照射して所定のパターンおよび厚みを有する光硬化した樹脂層(以下「光硬化層」ということがある)を形成した後、造形テーブルを更に下降させて該光硬化層面に1層分の液状の紫外線硬化性樹脂組成物層を形成させて液晶描画マスクを介して制御下に光を照射して所定のパターンおよび厚みを有する光硬化層を一体に積層形成する工程を繰り返して行う、造形浴法を採用して行うことができる。   The above-described modeling technique (1) related to the manufacture of a three-dimensional model is generally a modeling table surface by placing a modeling table in a modeling bath filled with a liquid ultraviolet curable resin composition and lowering the modeling table. 1 layer of a liquid ultraviolet curable resin composition layer is formed, and a photocured resin layer (hereinafter referred to as “photocured layer”) having a predetermined pattern and thickness by irradiating light under control through a liquid crystal drawing mask. The molding table is further lowered to form a liquid ultraviolet curable resin composition layer for one layer on the surface of the photocured layer, and light is controlled through a liquid crystal drawing mask. Can be carried out by adopting a modeling bath method in which a step of integrally laminating and forming a photocured layer having a predetermined pattern and thickness is repeated.

また、立体造形物の製造に係る前記した(1)の造形技術は、例えば、気体雰囲気中に造形テーブルを配置し、その造形テーブル面に1層分の液状、ペースト状、粉末状または薄膜状の紫外線硬化性樹脂組成物を施して液晶描画マスクを介して制御下に光を照射して所定のパターンおよび厚みを有する光硬化層を形成した後、該光硬化層面に1層分の液状、ペースト状、粉末状または薄膜状の紫外線硬化性樹脂組成物を施して液晶描画マスクを介して制御下に光を照射して所定のパターンおよび厚みを有する光硬化層を一体に積層形成する工程を繰り返して行う方法を採用して行うこともできる。この方法による場合は、造形テーブルまたは光硬化層を上向きにしておき、その上面に紫外線硬化性樹脂組成物を施し、液晶描画マスクを介して光照射して光硬化層を順次積層形成してゆく方式を採用してもよいし、造形テーブルまたは光硬化層を垂直または斜めに配置しておいて造形テーブル面または光硬化層面上に紫外線硬化性樹脂層を施し液晶描画マスクを介して光照射して光硬化層を順次積層形成してゆく方式を採用してもよいし、或いは造形テーブルまたは光硬化層を下向きに配置しておいて造形テーブル面または光硬化層面に紫外線硬化性樹脂層組成物を施し液晶描画マスクを介して光照射して順次下方に光硬化層を積層形成してゆく方式を採用してもよい。造形テーブル面または光硬化層面に紫外線硬化性樹脂組成物を施すに当たっては、例えば、ブレード塗装、流延塗装、ローラー塗装、転写塗装、ハケ塗り、スプレー塗装などの適当な方法を採用することができる。   In addition, the above-described modeling technique (1) related to the manufacture of a three-dimensional model is, for example, a modeling table is arranged in a gas atmosphere, and one layer of liquid, paste, powder, or thin film is formed on the modeling table surface. After applying a UV curable resin composition of the above and irradiating light under control through a liquid crystal drawing mask to form a photocured layer having a predetermined pattern and thickness, a liquid for one layer is formed on the photocured layer surface, A step of applying a paste-form, powder-form or thin-film-form ultraviolet curable resin composition and irradiating light under control through a liquid crystal drawing mask to integrally form a photocured layer having a predetermined pattern and thickness. It is also possible to adopt a method that is repeated. In the case of this method, the modeling table or the photocuring layer is faced upward, an ultraviolet curable resin composition is applied to the upper surface, and the photocuring layer is sequentially laminated by irradiating light through a liquid crystal drawing mask. The method may be adopted, or the modeling table or photo-curing layer is placed vertically or diagonally, an ultraviolet curable resin layer is applied on the modeling table surface or the photo-curing layer surface, and light is irradiated through a liquid crystal drawing mask. A method of sequentially laminating and forming photocuring layers may be employed, or an ultraviolet curable resin layer composition may be disposed on the modeling table surface or the photocuring layer surface with the modeling table or photocuring layer disposed downward. A method may be employed in which light is irradiated through a liquid crystal drawing mask and a photo-curing layer is sequentially stacked below. In applying the ultraviolet curable resin composition to the modeling table surface or the photocured layer surface, for example, an appropriate method such as blade coating, cast coating, roller coating, transfer coating, brush coating, spray coating, etc. can be adopted. .

また、上記(2)の造形技術は、例えば、適当な基材(金属、プラスチック、布帛、紙、セラミック、ガラス、木材、それらの2つ以上の複合体など)の上に紫外線硬化性樹脂組成物の層を形成し、そこに微小ドットエリアでの遮光および透光が可能な複数の微小液晶シャッターを線状または面状に配置した液晶描画マスクを介して制御下に光を照射して、所定の形状パターンを有する光硬化した樹脂層にするのに用いることができる。そのため上記(2)の造形技術は、基材上に所定の形状パターンを有する光硬化した樹脂層を有する例えば、レジストやその他の製品の製造に利用することができる。
そのうちでも、本願発明は、上記(1)の立体造形物の製造技術に特に有効に使用することができる。
In addition, the modeling technique of (2) described above is, for example, an ultraviolet curable resin composition on an appropriate base material (metal, plastic, fabric, paper, ceramic, glass, wood, composite of two or more thereof). Form a layer of objects, and irradiate light under control through a liquid crystal drawing mask in which a plurality of micro liquid crystal shutters that can shield and transmit light in a micro dot area are arranged in a line or plane, It can be used to form a photocured resin layer having a predetermined shape pattern. Therefore, the modeling technique (2) can be used for the production of, for example, a resist or other product having a photocured resin layer having a predetermined shape pattern on a substrate.
Among these, this invention can be used especially effectively for the manufacturing technique of the three-dimensional molded item of said (1).

本発明で用いる液晶描画マスクは、微小ドットエリアでの遮光および透光が可能な複数の微小液晶シャッターを線状(例えばX方向、またはY方向)に配列した線状液晶描画マスク、或いは面状(X−Y方向)に並列配置した正方形状または長方形状の面状液晶描画マスクのいずれでもよく、そのうちでも面状の液晶描画マスクを用いることが造形速度(造形効率)などの点から好ましい。線状液晶描画マスクまたは面状液晶描画マスクに配置する微小液晶シャッター(画素子)の数は特に制限されず、従来から知られているものなどを使用することができる。液晶シャッター(液晶表示素子)としては、例えば、QVGA(画素数=320ドット×240ドット)、VGA(画素数=640×480ドット)、SVGA(画素数=800×600ドット)、UXGA(画素数=1024×768ドット)、QSXGA(画素数=2560×2648ドット)などを用いることができ、これらの液晶シャッターは従来から広く販売されている。
液晶描画マスクを構成する液晶の種類、液晶描画マスクを構成する他の部分の材質、液晶描画マスクの構造などの違いによって、液晶描画マスクの紫外線による劣化し易さにはある程度の差はあるが、本発明による場合は、いずれの液晶描画マスクに対してもその劣化を抑制して、使用可能寿命を長くすることができる。
The liquid crystal drawing mask used in the present invention is a linear liquid crystal drawing mask in which a plurality of minute liquid crystal shutters capable of shielding and transmitting light in a minute dot area are arranged in a linear shape (for example, the X direction or the Y direction), or a planar shape. Any of a square or rectangular planar liquid crystal drawing mask arranged in parallel in the (X-Y direction) may be used, and among these, it is preferable to use a planar liquid crystal drawing mask from the viewpoint of modeling speed (modeling efficiency). The number of micro liquid crystal shutters (image elements) arranged on the linear liquid crystal drawing mask or the planar liquid crystal drawing mask is not particularly limited, and conventionally known ones can be used. As a liquid crystal shutter (liquid crystal display element), for example, QVGA (number of pixels = 320 dots × 240 dots), VGA (number of pixels = 640 × 480 dots), SVGA (number of pixels = 800 × 600 dots), UXGA (number of pixels) = 1024 × 768 dots), QSXGA (number of pixels = 2560 × 2648 dots), and the like, and these liquid crystal shutters have been widely sold.
Although there is some difference in the degree of deterioration of the liquid crystal drawing mask due to ultraviolet rays due to differences in the type of liquid crystal that makes up the liquid crystal drawing mask, the material of other parts that make up the liquid crystal drawing mask, the structure of the liquid crystal drawing mask, etc. In the case of the present invention, any liquid crystal drawing mask can be prevented from deteriorating and the usable life can be extended.

本発明の光造形を行うに当たっては、液晶描画マスクを静止した状態で液晶描画マスクを介して紫外線硬化性樹脂組成物よりなる造形面に光を照射して1層分の光硬化した樹脂層を形成してもよいし、1層分の光硬化した樹脂層の形成途中に液晶描画マスクのマスク画像を断続的に変えると共に液晶描画マスクを次の位置に移動させて光硬化した樹脂層を形成してもよいし、1層分の光硬化した樹脂層の形成時に液晶描画マスクのマスク画像をテレビジョン画像や映画のように動画的に連続して変化させるのと同期して液晶描画マスクを連続的に移動させて1層分の光硬化した樹脂層を形成してもよいし、または前記した方式の2つ以上を採用して光造形を行ってもいずれでもよい。   In carrying out the optical modeling of the present invention, a photocured resin layer of one layer is formed by irradiating the modeling surface made of the ultraviolet curable resin composition through the liquid crystal drawing mask with the liquid crystal drawing mask stationary. It may be formed, or the mask image of the liquid crystal drawing mask is intermittently changed during the formation of the photocured resin layer for one layer, and the photocured resin layer is formed by moving the liquid crystal drawing mask to the next position. Alternatively, the liquid crystal drawing mask may be synchronized with the change of the mask image of the liquid crystal drawing mask continuously like a television image or movie when forming a photo-cured resin layer for one layer. It may be moved continuously to form a photo-cured resin layer for one layer, or two or more of the above-described methods may be adopted for stereolithography.

本発明では、光源として、紫外線レーザー発射装置(例えばArレーザー発射装置、He−Cdレーザー発射装置、LDレーザー発射装置など)を用いることもできるが、超高圧水銀ランプ、高圧水銀ランプ、メタルハライドランプ、キセノンランプなどのような高輝度放電ランプ(HIDランプ)やハロゲンランプが好ましく使用される。そのうちでも、後記するように、超高圧水銀ランプ、高圧水銀ランプが、光硬化した樹脂層を短時間に形成し得る光強度を有する波長の紫外線を含むこと、光硬化した樹脂層の形成に利用しない他の波長の紫外線の分離・除去が容易であることなどの点から好ましく用いられ、特に超高圧水銀ランプがより好ましく用いられる。   In the present invention, an ultraviolet laser emitting device (for example, an Ar laser emitting device, a He-Cd laser emitting device, an LD laser emitting device, etc.) can also be used as a light source, but an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a metal halide lamp, A high-intensity discharge lamp (HID lamp) such as a xenon lamp or a halogen lamp is preferably used. Among them, as will be described later, the ultra-high pressure mercury lamp and the high-pressure mercury lamp contain ultraviolet rays having a light intensity capable of forming a photocured resin layer in a short time, and are used for forming a photocured resin layer. It is preferably used from the standpoint that it is easy to separate and remove ultraviolet rays having other wavelengths, and an ultra-high pressure mercury lamp is particularly preferably used.

光源の形状、大きさ、数は特に制限されず、液晶描画マスクの形状や寸法は、形成しようとする光硬化した樹脂層の形状パターンの形状やサイズなどに応じて適宜選択することができ、光源は、例えば、点状、球状、棒状、面状であってもよい。
紫外線選別装置として、下記で具体的に説明する両端で開口した中空の透明な筒状体の内壁面に、光硬化性樹脂組成物の光硬化に利用する所定波長の紫外線(以下これを単に「所定波長の紫外線」ということがある)を反射し且つ該所定波長の紫外線とは波長の異なる紫外線(以下これを「所定波長以外の紫外線」ということがある)を透過する紫外線選別膜層を形成した紫外線選別装置を使用する場合は、光源などの光発射手段からの光が紫外線選別装置の筒状体の入口側開口部から筒状体に良好に導入され得るような形状およびサイズの光源などの光発射手段を使用するとよい。
The shape, size and number of the light source are not particularly limited, and the shape and dimensions of the liquid crystal drawing mask can be appropriately selected according to the shape and size of the shape pattern of the photocured resin layer to be formed, The light source may be, for example, a dot shape, a spherical shape, a rod shape, or a planar shape.
As an ultraviolet ray sorting apparatus, ultraviolet rays having a predetermined wavelength used for photocuring of the photocurable resin composition (hereinafter simply referred to as “ An ultraviolet screening film layer that reflects ultraviolet rays having a predetermined wavelength (which may be referred to as “ultraviolet rays other than the predetermined wavelength”) is reflected. In the case of using the ultraviolet ray sorting device, the light source having such a shape and size that the light from the light emitting means such as the light source can be satisfactorily introduced into the cylindrical body from the entrance side opening of the cylindrical body of the ultraviolet ray sorting device, etc. It is recommended to use the light emitting means.

光源は、紫外線選別装置の背部側に液晶描画マスクなどと共に移動可能に設けてもよいし、または造形精度の向上、造形速度の向上、装置の軽量化、保守性の向上などの目的で、光源を固定位置に動かないように設ける共に光源からの光を光ファイバー、ライトガイドやその他の光伝達手段を通して紫外線選別装置の背部に導き、光ファイバーやライトガイドやその他の光伝達手段から光を発射させ、その光に含まれる紫外線を紫外線選別装置によって選別して、所定波長以外の紫外線を系外に分離して除き、所定波長の紫外線を液晶描画マスクを介して、造形面に光を照射するようにしてもよい。
また、造形速度の向上のために複数の光源を用いて集光し光エネルギーを高くさせる方式を採ってもよい。特に光ファイバーやライトガイドなどを使用する場合は複数光源を集光させ易いというメリットがある。
The light source may be movably provided on the back side of the UV sorting device together with a liquid crystal drawing mask or the like. Alternatively, the light source may be used for the purpose of improving modeling accuracy, improving modeling speed, reducing the weight of the device, and improving maintainability. The light from the light source is guided to the back of the ultraviolet ray sorting device through the optical fiber, light guide and other light transmission means, and the light is emitted from the optical fiber, light guide and other light transmission means, The ultraviolet rays contained in the light are sorted by an ultraviolet ray sorting device, ultraviolet rays other than the predetermined wavelength are separated and removed from the system, and ultraviolet rays of the predetermined wavelength are irradiated to the modeling surface through the liquid crystal drawing mask. May be.
Moreover, you may employ | adopt the system which condenses and raises light energy using a some light source for the improvement of modeling speed. In particular, when an optical fiber or a light guide is used, there is an advantage that a plurality of light sources can be easily condensed.

本発明では、光源などの光発射手段から発射される光に含まれる紫外線をそのまま光硬化した樹脂層の形成に用いずに、光発射手段と液晶描画マスクの間に、所定波長の紫外線を反射すると共に所定波長以外の紫外線を透過させる紫外線選別装置を配置し、該紫外線選別装置によって、光源からの光に含まれる紫外線のうち、所定波長の紫外線を反射させて該反射された所定波長の紫外線を液晶描画マスクの方向へと導くと同時に所定波長以外の紫外線を透過させて不要光として分離・除去して、所定波長以外の紫外線による液晶描画マスクの曝露を防止しながら所定波長の紫外線を液晶描画マスクを介して造形面に照射して所定の形状パターンを有する光硬化した樹脂層を形成する。   In the present invention, the ultraviolet rays contained in the light emitted from the light emitting means such as the light source are not directly used for forming the photocured resin layer, and the ultraviolet rays having a predetermined wavelength are reflected between the light emitting means and the liquid crystal drawing mask. In addition, an ultraviolet ray sorting device that transmits ultraviolet rays having a wavelength other than the predetermined wavelength is arranged, and the ultraviolet ray sorting device reflects ultraviolet rays having a predetermined wavelength out of the ultraviolet rays contained in the light from the light source. Is guided to the direction of the liquid crystal drawing mask, and at the same time, ultraviolet rays other than the predetermined wavelength are transmitted and separated and removed as unnecessary light to prevent exposure of the liquid crystal drawing mask by ultraviolet rays other than the predetermined wavelength while the ultraviolet rays of the predetermined wavelength are liquid crystal A modeling surface is irradiated through a drawing mask to form a photocured resin layer having a predetermined pattern.

光源などの光発射手段から発射される光に、光硬化した樹脂層の形成に用いる所定波長の紫外線を間に挟んで、所定波長の紫外線よりも波長の長い紫外線と、所定波長の紫外線よりも波長の短い紫外線が含まれている場合は、該波長の長い紫外線と該波長の短い紫外線の両方を紫外線選別装置を透過させて分離除去して両者による液晶描画マスクの曝露を防止または抑制することが液晶描画マスクの劣化抑制の点からより好ましいが、場合によっては、前記した波長の長い紫外線および波長の短い紫外線のそれぞれのエネルギー強度などに応じて、所定波長以外の紫外線による液晶描画マスクのより効率的な劣化防止のために、エネルギー強度の高い一方の紫外線のみを紫外線選別装置を透過させて分離するようにしてもよい。   Light emitted from a light emitting means such as a light source is sandwiched between ultraviolet rays having a predetermined wavelength used for forming a photocured resin layer, ultraviolet rays having a longer wavelength than ultraviolet rays having a predetermined wavelength, and ultraviolet rays having a predetermined wavelength. When ultraviolet rays having a short wavelength are included, both the ultraviolet rays having the long wavelength and the ultraviolet rays having the short wavelength are transmitted through the ultraviolet ray sorter to separate and remove, thereby preventing or suppressing the exposure of the liquid crystal drawing mask by both. Is more preferable from the viewpoint of suppressing deterioration of the liquid crystal drawing mask, but in some cases, depending on the energy intensity of the ultraviolet light having a long wavelength and the ultraviolet light having a short wavelength, the liquid crystal drawing mask with ultraviolet light having a wavelength other than the predetermined wavelength may be used. In order to prevent efficient deterioration, only one ultraviolet ray having high energy intensity may be separated by passing through the ultraviolet ray sorting device.

紫外線選別装置としては、所定波長の紫外線を高率で反射、好ましくは95%以上の割合で反射して液晶描画マスクの方向に導くと共に、所定波長以外の紫外線を高率で透過、好ましくは85%以上の割合で透過して不要光として分離・除去できる装置であればいずれも採用することができる。そのうちでも、紫外線選別装置としては、両端で開口した中空の透明な筒状体を有し、該筒状体の内壁面に所定波長の紫外線を反射すると同時に所定波長以外の紫外線を透過する紫外線選別膜層を形成した紫外線選別装置が好ましく使用される。この紫外線選別装置を使用した場合は、筒状体の入口側の開口部から入射した光のうち、所定波長の紫外線が筒状体の内壁面に形成した紫外線選別膜層によって筒状体内で入口側から出口側へと次々に反射されて最後に筒状体の出口側の開口部から導出され、それと同時に所定波長以外の紫外線は筒状体の壁部を透過して筒状体外へと分離・除去されて、光源などの光発射手段から発射された光に含まれていた紫外線のうち、所定波長の紫外線が該所定波長の紫外線の当初のエネルギー強度に近いエネルギー強度(一般に95%以上のエネルギー強度)を保ちながら筒状体の出口側の開口部から導出される。
その結果、紫外線選別装置の筒状体の出口側の開口部から導出された所定波長の紫外線を液晶描画マスクを介して造形面に照射する際に、所定波長以外の紫外線による液晶描画マスクの曝露がなくなり、液晶描画マスクの劣化が大幅に低減できると共に、光源などの光発射手段から発射される光に含まれている所定波長の紫外線を高い効率で有効に利用することができる。
しかも、筒状体内に入射した光に含まれる所定波長の紫外線が筒状体の内壁面に形成した紫外線選別膜層によって次々と反射しながら筒状体の出口側の開口部へと向う間にその光強度分布が均一化されて、光強度ムラのない所定波長の紫外線が液晶描画マスクを介して造形面に照射されるので、強度ムラや硬化ムラなどのない均一の光硬化層を造形面に形成することができる。
As the ultraviolet ray sorting device, ultraviolet rays having a predetermined wavelength are reflected at a high rate, preferably at a rate of 95% or more and guided toward the liquid crystal drawing mask, and ultraviolet rays other than the predetermined wavelength are transmitted at a high rate, preferably 85. Any apparatus that can be transmitted at a rate of at least% and can be separated / removed as unnecessary light can be used. Among them, as an ultraviolet ray sorting device, there is a hollow transparent cylindrical body opened at both ends, and an ultraviolet ray sorting that reflects ultraviolet rays of a predetermined wavelength on the inner wall surface of the cylindrical body and at the same time transmits ultraviolet rays other than the predetermined wavelength. An ultraviolet screening device in which a film layer is formed is preferably used. When this ultraviolet ray sorting device is used, out of the light incident from the opening on the inlet side of the cylindrical body, ultraviolet rays having a predetermined wavelength enter the cylindrical body by the ultraviolet ray sorting film layer formed on the inner wall surface of the cylindrical body. Reflected one after another from the side to the outlet side and finally led out from the opening on the outlet side of the cylindrical body, and at the same time, ultraviolet rays other than the predetermined wavelength are transmitted through the wall of the cylindrical body and separated out of the cylindrical body Of the ultraviolet rays contained in the light emitted from the light emitting means such as the light source after being removed, the ultraviolet ray having a predetermined wavelength has an energy intensity close to the initial energy intensity of the ultraviolet ray having the predetermined wavelength (generally 95% or more) It is derived from the opening on the outlet side of the cylindrical body while maintaining (energy intensity).
As a result, when irradiating the modeling surface with ultraviolet rays having a predetermined wavelength derived from the opening on the outlet side of the cylindrical body of the ultraviolet ray sorting device, the exposure of the liquid crystal drawing mask with ultraviolet rays having a wavelength other than the predetermined wavelength is performed. Thus, deterioration of the liquid crystal drawing mask can be greatly reduced, and ultraviolet rays having a predetermined wavelength contained in light emitted from light emitting means such as a light source can be effectively used with high efficiency.
Moreover, while the ultraviolet rays having a predetermined wavelength included in the light incident on the cylindrical body are reflected one after another by the ultraviolet ray selection film layer formed on the inner wall surface of the cylindrical body, the ultraviolet rays are directed toward the opening on the outlet side of the cylindrical body. Since the light intensity distribution is made uniform and ultraviolet rays with a predetermined wavelength without light intensity unevenness are irradiated to the modeling surface through the liquid crystal drawing mask, a uniform photocured layer without intensity unevenness and curing unevenness is formed on the modeling surface. Can be formed.

上記した紫外線選別装置における筒状体は、透明で光透過率の高い材料、例えばガラス、メタクリル樹脂などから形成することができ、そのうちでもガラスから製造されていることが耐熱性などの点から好ましい。筒状体を形成するガラスとしては、例えば、「パイレックス」(登録商標)、硼珪酸クラウンガラス、合成石英ガラス、「ゼロデュア」(登録商標)、チタン珪酸ガラス、光学クラウンガラス、サファイアガラス、セレン亜鉛ガラスなどを挙げることができる。
また、筒状体の内壁面に形成する紫外線選別膜層としては、所定波長の紫外線を高率で反射し且つ所定波長以外の紫外線を高率で透過できる材料よりなる膜であればよく、また紫外線選別膜層は単層膜層であってもまたは複層膜層であってもよい。そのうちでも、紫外線選別膜層としては、屈折率の高い非吸収性の誘電体物質(例えばAl23、HfO2、ZrO2など)と屈折率の低い非吸収性の誘電体物質(例えばMgF2、SiO2など)を交互に膜状に多層にコーティングした誘電体多層膜コーティングが好ましい。かかる誘電体多層膜コーティングによる場合は、光の干渉作用により、所定波長の紫外線が筒状体の内壁面で次々と反射されて筒状体の出口側開口部へと進み、一方所定波長以外の紫外線が筒状体の壁部を透過して筒状体の外部に分離・除去される。前記した誘電体多層膜コーティングとしては、光伸光工業社製の「コールドミラー」に使用されている紫外線餞別膜層などを挙げることができる。
透明なガラス製の筒状体の内壁面に前記誘電体多層膜コーティングを形成した筒状体を備えた紫外線選別装置を使用した場合には、波長365nmおよびその近傍の紫外線(所定波長の紫外線)のほぼ全量が筒状体内で次々と反射されて筒状体の出口側の開口部から95%以上の効率で導出され、一方所定波長以外の紫外線(特に波長340nm以下の紫外線)の90%以上が筒状体の壁面を透過して筒状体の外側に分離・除去される。
The cylindrical body in the ultraviolet screening device described above can be formed of a transparent and high light transmittance material such as glass or methacrylic resin, and among these, it is preferable from the viewpoint of heat resistance and the like. . Examples of the glass forming the cylindrical body include “Pyrex” (registered trademark), borosilicate crown glass, synthetic quartz glass, “Zerodur” (registered trademark), titanium silicate glass, optical crown glass, sapphire glass, and selenium zinc. Glass etc. can be mentioned.
Further, the ultraviolet screening film layer formed on the inner wall surface of the cylindrical body may be a film made of a material that reflects ultraviolet rays having a predetermined wavelength at a high rate and transmits ultraviolet rays other than the predetermined wavelength at a high rate. The ultraviolet screening film layer may be a single layer film layer or a multilayer film layer. Among them, the ultraviolet screening film layer includes a non-absorbing dielectric material having a high refractive index (for example, Al 2 O 3 , HfO 2 , ZrO 2, etc.) and a non-absorbing dielectric material having a low refractive index (for example, MgF). 2 , SiO 2, etc.) are preferably coated with a dielectric multilayer coating in which the films are alternately coated in a multilayer. In the case of such a dielectric multi-layer coating, ultraviolet rays having a predetermined wavelength are successively reflected on the inner wall surface of the cylindrical body due to the interference of light and proceed to the opening on the outlet side of the cylindrical body, while other than the predetermined wavelength. Ultraviolet rays pass through the wall of the cylindrical body and are separated and removed outside the cylindrical body. Examples of the dielectric multilayer coating described above include an ultraviolet distinguishing film layer used in a “cold mirror” manufactured by Koshin Kogyo Kogyo Co., Ltd.
In the case of using an ultraviolet screening device provided with a cylindrical body in which the dielectric multilayer film coating is formed on the inner wall surface of a transparent glass cylindrical body, a wavelength of 365 nm and ultraviolet rays in the vicinity thereof (ultraviolet rays of a predetermined wavelength) Is almost successively reflected in the cylindrical body and derived from the opening on the outlet side of the cylindrical body with an efficiency of 95% or more, while 90% or more of ultraviolet rays other than the predetermined wavelength (especially ultraviolet rays having a wavelength of 340 nm or less). Passes through the wall surface of the cylindrical body and is separated and removed from the outside of the cylindrical body.

なお、本明細書でいう、光硬化した樹脂層の形成に利用する所定波長の紫外線の効率(%)とは、光源などの光発射手段から発射されて紫外線選別装置に入射した光に含まれる所定波長の紫外線の合計エネルギー(合計光強度)に対する紫外線選別装置で反射されて紫外線選別装置から導出された所定波長の紫外線の合計エネルギー(合計光強度)の%をいう。また、所定波長以外の紫外線の透過率(%)とは、光源などの光発射手段から発射されて紫外線選別装置に入射した光に含まれる所定波長以外の紫外線の合計エネルギー(合計光強度)に対する紫外線選別装置を透過して紫外線選別装置の外部に放出される所定波長以外の紫外線の合計エネルギー(合計光強度)の%をいう。   As used herein, the efficiency (%) of ultraviolet light having a predetermined wavelength used for forming a photocured resin layer is included in light emitted from a light emitting means such as a light source and incident on an ultraviolet sorting device. It means the percentage of the total energy (total light intensity) of ultraviolet rays of a predetermined wavelength reflected from the ultraviolet screening device and derived from the ultraviolet screening device with respect to the total energy (total light intensity) of ultraviolet rays of a predetermined wavelength. Further, the transmittance (%) of ultraviolet rays other than the predetermined wavelength is the total energy (total light intensity) of ultraviolet rays other than the predetermined wavelength included in the light emitted from the light emitting means such as a light source and incident on the ultraviolet sorting device. It means% of the total energy (total light intensity) of ultraviolet rays other than a predetermined wavelength that are transmitted through the ultraviolet ray sorting device and emitted to the outside of the ultraviolet ray sorting device.

本発明で紫外線選別装置として好ましく使用される、中空で透明な筒状体をベースとする上記した紫外線選別装置においては、筒状体の形状は特に制限されず、例えば、長方形の筒状体、正方形の筒状体、円筒体、楕円形の筒状体、多角形の筒状体、三角形の筒状体などのいずれでもよい。そのうちでも、長方形または正方形の筒状体を採用した場合には、筒状体内に入射した光源などからの光のうち、光硬化性樹脂組成物の硬化に用いる所定波長の紫外線が筒状体の内壁面に形成した紫外線選別膜層によって次々と反射されながら筒状体の出口側の開口部から導出される際に、該所定波長の紫外線の導出時の横断面形状が、筒状体の横断面形状と相似した長方形または正方形になって、一般に長方形または正方形をなす液晶描画マスクの形状と一致するため、液晶描画マスクを介して所定波長の紫外線を造形面に無駄なく円滑に照射することができる。   In the above-described ultraviolet screening apparatus based on a hollow and transparent cylindrical body that is preferably used as the ultraviolet screening apparatus in the present invention, the shape of the cylindrical body is not particularly limited, for example, a rectangular cylindrical body, Any of a square cylindrical body, a cylindrical body, an elliptical cylindrical body, a polygonal cylindrical body, a triangular cylindrical body, and the like may be used. Among them, when a rectangular or square cylindrical body is employed, out of light from a light source or the like incident on the cylindrical body, ultraviolet rays of a predetermined wavelength used for curing the photocurable resin composition are in the cylindrical body. When being led out from the opening on the outlet side of the cylindrical body while being successively reflected by the ultraviolet screening film layer formed on the inner wall surface, the cross-sectional shape at the time of deriving the ultraviolet light of the predetermined wavelength is the transverse of the cylindrical body Since it becomes a rectangle or square similar to the surface shape and matches the shape of a liquid crystal drawing mask that is generally rectangular or square, ultraviolet rays of a predetermined wavelength can be smoothly and smoothly irradiated onto the modeling surface through the liquid crystal drawing mask. it can.

前記した紫外線選別装置における筒状体の長さ、筒状体の中空部の寸法(断面寸法)、壁厚などは制限されず、使用する光源などの光発射手段の種類、形状、寸法などに応じて決めることができる。一般的には、筒状体としては、入口側の開口部から出口側の開口部までの長さが1cm〜5m、中空部の内径(中空部が方形の場合は対角線の長さ)が10μm〜30cm、壁厚が10μm〜50mmのものが、装置の取り扱い性、所定波長の紫外線の反射効率、所定波長以外の紫外線の吸収効率、反射回数などの点から好ましく採用される。   The length of the cylindrical body, the dimension of the hollow part of the cylindrical body (cross-sectional dimension), the wall thickness, etc. are not limited, and the type, shape, dimensions, etc. of the light emitting means such as the light source used are not limited. Can be decided accordingly. Generally, the cylindrical body has a length from the opening on the inlet side to the opening on the outlet side of 1 cm to 5 m, and the inner diameter of the hollow portion (the length of the diagonal line when the hollow portion is square) is 10 μm. Those having a thickness of ˜30 cm and a wall thickness of 10 μm to 50 mm are preferably employed from the viewpoints of the handleability of the apparatus, the reflection efficiency of ultraviolet rays having a predetermined wavelength, the absorption efficiency of ultraviolet rays other than the predetermined wavelength, the number of reflections, and the like.

光硬化した樹脂層の形成に用いる所定波長の紫外線としては、紫外線硬化性樹脂組成物の硬化波長(特に紫外線硬化性樹脂組成物中に含まれる光重合開始剤や光増感剤の種類、光重合開始剤や光増感剤の吸収波長、そのうちでも最適吸収波長)、紫外線硬化性樹脂組成物を構成する樹脂成分、モノマー成分、その他の成分の紫外線硬化特性(特に光硬化を生ずる光波長との関係)、光源の種類、光源に含まれる紫外線の種類、分光分布、その強度などの各々の状況に応じて、それらを総合的に勘案して決めることが好ましい。特に、光硬化した樹脂層を形成する前記所定波長の紫外線としては、光源からの光に含まれる紫外線のうちで、紫外線硬化性樹脂組成物を速やかに硬化することのできる光強度(光エネルギー)を有し且つ液晶描画マスクに対する劣化作用が比較的小さな紫外線を利用することが好ましい。   As the ultraviolet ray having a predetermined wavelength used for forming the photocured resin layer, the curing wavelength of the ultraviolet curable resin composition (particularly, the type of photopolymerization initiator and photosensitizer contained in the ultraviolet curable resin composition, light Absorption wavelengths of polymerization initiators and photosensitizers, among them, the optimum absorption wavelength), UV curing characteristics of resin components, monomer components, and other components that constitute UV curable resin compositions (especially the light wavelengths that cause photocuring) It is preferable to determine in consideration comprehensively according to each situation such as the type of light source, the type of ultraviolet light contained in the light source, the spectral distribution, and the intensity thereof. In particular, as the ultraviolet ray having the predetermined wavelength for forming the photocured resin layer, the light intensity (light energy) that can quickly cure the ultraviolet curable resin composition among the ultraviolet rays contained in the light from the light source. It is preferable to use ultraviolet rays having a relatively low deterioration effect on the liquid crystal drawing mask.

一般に、紫外線の波長が短くなるに従って、液晶描画マスクに対する劣化作用が大きくなり、使用可能な光硬化性樹脂組成物の種類が少なくなり、しかも安価で且つ良好に使用できる光学部品や材料が少なくなるので、光硬化した樹脂層の形成に利用する紫外線としては、その波長が300〜390nmの範囲にあるものが好ましく、330〜390nmの範囲にあるものがより好ましく、350〜390nmの範囲にあるものが更に好ましい。そのため、光源としては、前記した300〜390nm、そのうちでも330〜390nm、特に350〜390nmの波長範囲内に紫外線硬化性樹脂組成物を良好に硬化することのできる光強度を有する紫外線を含み、前記した波長範囲の紫外線と、300nm未満の紫外線(そのうちでも330nm未満、特に350nm未満の紫外線)とを、紫外線選別装置で選別できる分光分布を有する光源が好ましく用いられる。そのような光源の具体例としては、超高圧水銀ランプ、高圧水銀ランプ、低圧水銀ランプ、メタルハライドランプ、キセノンランプなどの高輝度放電ランプ(HIDランプ)やハロゲンランプなどを挙げることができ、これらのうちでも超高圧水銀ランプまたは高圧水銀ランプが好ましく用いられる。   In general, as the wavelength of ultraviolet rays becomes shorter, the deterioration effect on the liquid crystal drawing mask increases, the number of usable photocurable resin compositions decreases, and the number of optical parts and materials that can be used inexpensively and favorably decreases. Therefore, the ultraviolet ray used for forming the photocured resin layer preferably has a wavelength in the range of 300 to 390 nm, more preferably in the range of 330 to 390 nm, and more preferably in the range of 350 to 390 nm. Is more preferable. Therefore, the light source includes ultraviolet rays having a light intensity capable of satisfactorily curing the ultraviolet curable resin composition in the wavelength range of 300 to 390 nm, of which 330 to 390 nm, particularly 350 to 390 nm, A light source having a spectral distribution capable of sorting ultraviolet rays in the above wavelength range and ultraviolet rays of less than 300 nm (among them, ultraviolet rays of less than 330 nm, particularly less than 350 nm) is preferably used. Specific examples of such a light source include high-intensity discharge lamps (HID lamps) such as ultra-high pressure mercury lamps, high-pressure mercury lamps, low-pressure mercury lamps, metal halide lamps, xenon lamps, and halogen lamps. Among them, an ultrahigh pressure mercury lamp or a high pressure mercury lamp is preferably used.

本発明において、光源として好ましく用いられる超高圧水銀ランプは、図1に示すような互いに明確に分離した複数のピークよりなる分光分布を有しており、また高圧水銀ランプも図2に示すような互いに明確に分離した複数のピークよりなる分光分布を有している。図1および図2に見るように、超高圧水銀ランプおよび高圧水銀ランプから放射される光は、波長365nmおよびその近傍に光硬化性樹脂組成物の硬化に適する強度の高い紫外線ピークを独立して有し、365nmと400nmとの間には他の紫外線ピークが存在せず、365nm以外の紫外線の大半が0〜340nmの波長範囲に分布している。
したがって、波長365nmまたはその近傍の紫外線によって少なくとも硬化し且つ波長400nm以上の可視光線および赤外線によっては硬化しない紫外線硬化性樹脂組成物を用い、光源として超高圧水銀ランプまたは高圧水銀ランプを使用して、これらの水銀ランプから放射される光のうち、波長365nmまたはその近傍の紫外線およびそれよりも長波長の光線を反射させ、波長340nm以下の紫外線を透過して系外に分離・除去する紫外線選別手段を液晶描画マスクの上流側(光源などの光発射手段と液晶描画マスクの間)に配置することによって、該365nmまたはその近傍の紫外線を液晶描画マスクを介して通過させて光硬化した樹脂層を速やかに且つ円滑に形成できると同時に、それよりも波長が短くて液晶描画マスクに対する劣化作用の大きな紫外線の大半を液晶描画マスクに到達する前に分離・除去して、紫外線による液晶描画マスクの劣化をより効果的に抑制することができる。
In the present invention, an ultra-high pressure mercury lamp preferably used as a light source has a spectral distribution comprising a plurality of peaks clearly separated from each other as shown in FIG. 1, and the high-pressure mercury lamp is also as shown in FIG. It has a spectral distribution consisting of a plurality of peaks clearly separated from each other. As shown in FIGS. 1 and 2, the light emitted from the ultra-high pressure mercury lamp and the high-pressure mercury lamp independently has a high-intensity ultraviolet peak suitable for curing the photocurable resin composition at a wavelength of 365 nm and its vicinity. And there is no other ultraviolet peak between 365 nm and 400 nm, and most of the ultraviolet light other than 365 nm is distributed in the wavelength range of 0 to 340 nm.
Therefore, using an ultra-high pressure mercury lamp or a high-pressure mercury lamp as a light source, using an ultraviolet curable resin composition that is at least cured by ultraviolet light having a wavelength of 365 nm or in the vicinity thereof and not cured by visible light or infrared light having a wavelength of 400 nm or more, Among the light emitted from these mercury lamps, ultraviolet screening means for reflecting ultraviolet light having a wavelength of 365 nm or its vicinity and light having a wavelength longer than that and transmitting ultraviolet light having a wavelength of 340 nm or less to separate and remove the light outside the system. Is placed on the upstream side of the liquid crystal drawing mask (between the light emitting means such as the light source and the liquid crystal drawing mask), and the photo-cured resin layer is allowed to pass through the 365 nm or near ultraviolet rays through the liquid crystal drawing mask. It can be formed quickly and smoothly, and at the same time the wavelength is shorter than that, making it a liquid crystal drawing mask. The majority of large UV degradation effect of separating and removing before reaching the liquid crystal image drawing mask, it is possible to more effectively suppress the deterioration of the liquid crystal image drawing mask with ultraviolet.

超高圧水銀ランプと高圧水銀ランプを比較した場合には、超高圧水銀ランプの方が高圧水銀ランプに比べてアークの長さが短く、ランプ自体が小型化されているために、光造形装置に取り付けた時に場所をとらず取り付けが容易であるなどの利点があり、またそれ以外にも放射エネルギーが大きいという利点があり、そのため、超高圧水銀ランプがより好ましく用いられる。   When comparing ultra-high pressure mercury lamps with high-pressure mercury lamps, the ultra-high pressure mercury lamp has a shorter arc length than the high-pressure mercury lamp and the lamp itself is downsized. There is an advantage that installation is easy without taking up space, and there is an advantage that the radiant energy is large in addition to that, and therefore, an ultra-high pressure mercury lamp is more preferably used.

本発明では、造形精度の向上、造形速度の向上、装置の軽量化、保守性の向上、装置コストのダウンなどの目的で、液晶描画マスクの上流側(背部側)に配置する光源の種類、形状、数、液晶描画マスクの形状やサイズなどに応じて、光源からの光を液晶描画マスクに良好に導くための手段(例えば集光レンズ、フレネルレンズなど)、また液晶描画マスクによって形成されたマスク画像(液晶描画マスクを通った光画像)を紫外線硬化性樹脂組成物よりなる造形面の所定位置に高造形精度で照射させるための手段(例えば投影ンズ、プロジェクタレンズなど)を配置することが好ましい。   In the present invention, for the purpose of improving modeling accuracy, improving modeling speed, reducing the weight of the apparatus, improving maintainability, reducing the cost of the apparatus, and the like, the type of light source disposed on the upstream side (back side) of the liquid crystal drawing mask, Depending on the shape, number, shape and size of the liquid crystal drawing mask, etc., a means for guiding the light from the light source to the liquid crystal drawing mask satisfactorily (for example, a condensing lens, a Fresnel lens, etc.) and the liquid crystal drawing mask Means (for example, a projection lens, a projector lens, etc.) for irradiating a mask image (light image that has passed through a liquid crystal drawing mask) to a predetermined position on a modeling surface made of an ultraviolet curable resin composition with high modeling accuracy may be disposed. preferable.

本発明では、光硬化性樹脂組成物として、紫外線により硬化し、可視光線および赤外線では硬化しない紫外線硬化性樹脂組成物を用いるのがよい。紫外線硬化性樹脂組成物は、液状、ペースト、粉末状、薄膜状などのいずでの形態であってもよく、特に液状であることが光造形時の取扱性などの点から好ましい。   In the present invention, an ultraviolet curable resin composition that is cured by ultraviolet rays and is not cured by visible light and infrared rays is preferably used as the photocurable resin composition. The ultraviolet curable resin composition may be in any form such as liquid, paste, powder, and thin film, and is particularly preferably in the form of liquid from the viewpoint of handleability during optical modeling.

本発明では、紫外線硬化性樹脂組成物として、紫外線によって硬化を行う光造形において従来から用いられている、例えば、ウレタンアクリレートオリゴマー、エポキシアクリレートオリゴマー、エステルアクリレートオリゴマー、多官能エポキシ樹脂などの各種オリゴマー;イソボルニルアクリレート、イソボルニルメタクリレート、ジシクロペンテニルアクリレート、ジシクロペンテニルメタクリレート、ジシクロペンテニロキシエチルアクリレート、ジシクロペンテニロキシエチルメタクリレート、ジシクロペタニルアクリレート、ジシクロペタニルメタクリレート、ボルニルアクリレート、ボルニルメタクリレート、2−ヒドロキシエチルアクリレート、シクロヘキシルアクリレート、2−ヒドロキシプロピルアクリレート、フェノキシエチルアクリレート、モルホリンアクリルアミド、モルホリンメタクリルアミド、アクリルアミドなどのアクリル系化合物やN−ビニルピロリドン、N−ビニルカプロラクタム、酢酸ビニル、スチレンなどの各種の単官能性ビニル化合物;トリメチロールプロパントリアクリレート、エチレンオキサイド変性トリメチロールプロパントリアクリレート、エチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ポリエチレングリコールジアクリレート、1,4−ブタンジオールジアクリレート、1,6−ヘキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート、ジシクロペンタニルジアクリレート、ポリエステルジアクリレート、エチレンオキサイド変性ビスフェノールAジアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、プロピレンオキサイド変性トリメチロールプロパントリアクリレート、プロピレンオキサイド変性ビスフェノールAジアクリレート、トリス(アクリロキシエチル)イソシアヌレートなど多官能性ビニル化合物;水素添加ビスフェノールAジグリシジルエーテル、3,4−エポキシシクロヘキシルメチル−3,4−エポキシシクロヘキサンカルボキシレート、2−(3,4−エポキシシクロヘキシル−5,5−スピロ−3,4−エポキシ)シクロヘキサン−メタ−ジオキサン、ビス(3,4−エポキシシクロヘキシルメチル)アジペートなどの各種エポキシ系化合物などの1種または2種以上と、紫外線の波長領域で光重合開始作用を有する光重合開始剤および必要に応じて増感剤などを含有する紫外線硬化性樹脂組成物を用いることができる。   In the present invention, as an ultraviolet curable resin composition, various oligomers conventionally used in stereolithography that is cured by ultraviolet rays, such as urethane acrylate oligomers, epoxy acrylate oligomers, ester acrylate oligomers, and polyfunctional epoxy resins; Isobornyl acrylate, isobornyl methacrylate, dicyclopentenyl acrylate, dicyclopentenyl methacrylate, dicyclopentenyloxyethyl acrylate, dicyclopentenyloxyethyl methacrylate, dicyclopentanyl acrylate, dicyclopetanyl methacrylate, bornyl Acrylate, bornyl methacrylate, 2-hydroxyethyl acrylate, cyclohexyl acrylate, 2-hydroxypropyl acrylate, pheno Acrylic compounds such as ciethyl acrylate, morpholine acrylamide, morpholine methacrylamide, and acrylamide, and various monofunctional vinyl compounds such as N-vinyl pyrrolidone, N-vinyl caprolactam, vinyl acetate, and styrene; trimethylolpropane triacrylate, ethylene oxide Modified trimethylolpropane triacrylate, ethylene glycol diacrylate, tetraethylene glycol diacrylate, polyethylene glycol diacrylate, 1,4-butanediol diacrylate, 1,6-hexanediol diacrylate, neopentyl glycol diacrylate, dicyclopenta Nyl diacrylate, polyester diacrylate, ethylene oxide modified bisphenol A diacrylate, Polyfunctional vinyl compounds such as taerythritol triacrylate, pentaerythritol tetraacrylate, propylene oxide modified trimethylolpropane triacrylate, propylene oxide modified bisphenol A diacrylate, tris (acryloxyethyl) isocyanurate; hydrogenated bisphenol A diglycidyl ether, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, 2- (3,4-epoxycyclohexyl-5,5-spiro-3,4-epoxy) cyclohexane-meta-dioxane, bis (3,4 -Epoxycyclohexylmethyl) A photopolymerization initiator having a photopolymerization initiating action in the wavelength region of ultraviolet rays, and one or more of various epoxy compounds such as adipate, and the like. If necessary, an ultraviolet curable resin composition containing a sensitizer or the like can be used.

使用する光源の種類(特に光源から放射される光の紫外線波長領域での分光分布)、光硬化した樹脂層の形成に用いる紫外線の波長(所定波長)、光硬化した樹脂層の形成に使用しない分離・除去すべき紫外線の波長などに応じて、紫外線硬化性樹脂組成物の紫外線による硬化波長を調整することが好ましい。紫外線硬化性樹脂組成物の紫外線による硬化波長の調整は、例えば、紫外線硬化性樹脂組成物中に配合する光重合開始剤の種類(特に最適紫外線吸収波長)、紫外線硬化性樹脂組成物を構成するポリマーやモノマーの種類や組成、増感剤の種類、他の成分の種類や配合組成などを選ぶことにより行うことができる。   The type of light source used (particularly the spectral distribution of the light emitted from the light source in the ultraviolet wavelength region), the wavelength of the ultraviolet light used to form the photocured resin layer (predetermined wavelength), and not used to form the photocured resin layer It is preferable to adjust the curing wavelength of the ultraviolet curable resin composition by ultraviolet rays according to the wavelength of the ultraviolet rays to be separated and removed. Adjustment of the curing wavelength by ultraviolet rays of the ultraviolet curable resin composition includes, for example, the type of photopolymerization initiator (particularly optimum ultraviolet absorption wavelength) to be blended in the ultraviolet curable resin composition, and the ultraviolet curable resin composition. This can be done by selecting the type and composition of the polymer or monomer, the type of the sensitizer, the type or composition of the other components.

何ら限定されるものではないが、本発明で用いる紫外線硬化性樹脂組成物で用い得る光重合開始剤としては、例えば、イソブチルベンゾインエーテル(最適UV吸収240〜270nm)、イソプロピルベンゾインエーテル(同240〜270nm)、ベンゾインエチルエーテル、ベンゾインメチルエーテル(同300〜380nm)などのベンゾインエーテル系光重合開始剤;1−フェニル−1,2−プロパンジオン−2−(o−エトキシカルボニル)オキシム(同250〜400nm)などのα−アシロキシムエステル系光重合開始剤;2,2−メトキシ−2−フェニルアセトフェノン(同250〜350nm)、ヒドロキシシクロヘキシルフェニルケトン(同250〜319nm)などのベンジルケタール系光重合開始剤;ジエトキシアセトフェノン(同240〜350nm)、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン(同310〜390nm)、2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン(同200〜300nm)などのアセトフェノン誘導体系光重合開始剤;ベンゾフェニン(同240〜350nm)、クロロチオキサントン(同275〜400nm)、2−クロロチオキサントン(同200〜400nm)、イソプロピルチオキサントン(同250〜400nm)、2−メチルチオキサントン(同250〜400nm)、ハロゲン置換アルキル−アリールケトン(同240〜360nm)などのベンゾイル系光重合開始剤などを挙げることができる。   Although not limited in any way, examples of the photopolymerization initiator that can be used in the ultraviolet curable resin composition used in the present invention include isobutyl benzoin ether (optimum UV absorption 240 to 270 nm), isopropyl benzoin ether (240 to the same). 270 nm), benzoin ethyl ether, benzoin methyl ether (300-380 nm) and other benzoin ether photopolymerization initiators; 1-phenyl-1,2-propanedione-2- (o-ethoxycarbonyl) oxime (250- Α-acyloxime ester photopolymerization initiators such as 400 nm); benzyl ketal photopolymerization initiators such as 2,2-methoxy-2-phenylacetophenone (250 to 350 nm) and hydroxycyclohexyl phenyl ketone (250 to 319 nm) Agent: Diethoxy Cetophenone (240-350 nm), 2,2-dimethoxy-1,2-diphenylethane-1-one (310-390 nm), 2-hydroxy-2-methyl-1-phenyl-propan-1-one (same) 200-300 nm) and other acetophenone derivative-based photopolymerization initiators; benzophenine (240-350 nm), chlorothioxanthone (275-400 nm), 2-chlorothioxanthone (200-400 nm), isopropylthioxanthone (250-400 nm) Benzoyl-based photopolymerization initiators such as 2-methylthioxanthone (250 to 400 nm) and halogen-substituted alkyl-aryl ketone (240 to 360 nm).

光造形に使用する光源の種類(光源から放射される光における紫外線領域での分光分布)、光硬化した樹脂層の形成に用いる紫外線の波長、光硬化した樹脂層の形成に用いずに分離・除去する紫外線の波長などに応じて、より適した光重合開始剤を選択して、紫外線硬化性樹脂組成物中に配合するとよい。光源として超高圧水銀ランプまたは高圧水銀ランプを用いて、365nmまたはその近傍の波長を有する紫外線によって光硬化した樹脂層を形成し、波長340nm以下の紫外線を分離・除去する上記した方法によって光造形を行う場合には、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン[例えばチバスペシャリティーケミカル社製「イルガキュア(登録商標)651」など]、2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン[例えばチバスペシャリティーケミカル社製「ダロキュア(登録商標)1173」など]などの光重合開始剤を含有する紫外線硬化性樹脂組成物を用いることが好ましい。   The type of light source used for stereolithography (spectral distribution in the ultraviolet region of the light emitted from the light source), the wavelength of the ultraviolet light used to form the photocured resin layer, and separation without using the photocured resin layer A more suitable photopolymerization initiator may be selected according to the wavelength of the ultraviolet rays to be removed and blended in the ultraviolet curable resin composition. Using an ultra-high pressure mercury lamp or a high-pressure mercury lamp as a light source, a resin layer photocured by ultraviolet rays having a wavelength of 365 nm or the vicinity thereof is formed, and optical shaping is performed by the above-described method of separating and removing ultraviolet rays having a wavelength of 340 nm or less. When performing, 2,2-dimethoxy-1,2-diphenylethane-1-one [eg, “Irgacure (registered trademark) 651” manufactured by Ciba Specialty Chemical Co., Ltd.], 2-hydroxy-2-methyl-1- It is preferable to use an ultraviolet curable resin composition containing a photopolymerization initiator such as phenyl-propan-1-one [for example, “Darocur (registered trademark) 1173” manufactured by Ciba Specialty Chemicals, etc.].

本発明で使用する紫外線硬化性樹脂組成物は、必要に応じて、さらに、レベリング剤、リン酸エステル塩系界面活性剤以外の界面活性剤、有機高分子改質剤、有機可塑剤、固体微粒子(例えば、カーボンブラック微粒子などの無機微粒子、ポリスチレン微粒子、ポリエチレン微粒子、ポリプロピレン微粒子、アクリル樹脂微粒子、合成ゴム微粒子などの有機重合体微粒子など)やウィスカーなどの充填材の1種または2種以上を含有していてもよい。充填材を含有させておくと、硬化時の体積収縮の低減による寸法精度の向上、機械的物性や耐熱性の向上などを図ることができる。   The ultraviolet curable resin composition used in the present invention may further include a leveling agent, a surfactant other than a phosphate ester-based surfactant, an organic polymer modifier, an organic plasticizer, solid fine particles, if necessary. Contains one or more fillers such as inorganic fine particles such as carbon black fine particles, polystyrene fine particles, polyethylene fine particles, polypropylene fine particles, organic polymer fine particles such as acrylic resin fine particles, and synthetic rubber fine particles. You may do it. When a filler is contained, it is possible to improve dimensional accuracy by reducing volume shrinkage during curing, improve mechanical properties and heat resistance, and the like.

以下に図3および図4を参照して、本発明について具体的に説明するが、本発明は図3および図4に示したものに何ら限定されるものではない。
図3は本発明の光造形に使用する光造形装置全体を模式的に示した具体例であり、図4は本発明の光造形に使用する光造形装置の要部(光源と紫外線選別装置の部分)の具体例を示したものである。図4において、(a)は長手方向の断面図、図4の(b)〜(d)は図4の(a)におけるX−X部分での横断面図(紫外線選別装置の横断面図)である。
図3および図4において、1は超高圧水銀ランプなどの光源、2は紫外線選別装置、3は凸レンズ(フレネルレンズへの集光用)、4は反射ミラー、5はフレネルレンズ、6は液晶描画マスク、7は投影レンズおよび8は紫外線硬化性樹脂組成物よりなる造形面を示す。
さらに、図3および図4において、紫外線選別装置2は、図4に示すように、両端で開口した中空の透明な筒状体2aと筒状体2aの内壁面2bに形成した所定波長の紫外線を反射し且つ該所定波長の紫外線とは波長の異なる紫外線を透過する紫外線選別膜層2cから構成されている。
Hereinafter, the present invention will be described in detail with reference to FIGS. 3 and 4, but the present invention is not limited to those shown in FIGS. 3 and 4.
FIG. 3 is a specific example schematically showing the entire optical modeling apparatus used for the optical modeling of the present invention, and FIG. 4 shows the main part of the optical modeling apparatus used for the optical modeling of the present invention (the light source and the ultraviolet sorting apparatus). A specific example of (part) is shown. 4, (a) is a cross-sectional view in the longitudinal direction, and (b) to (d) in FIG. 4 are cross-sectional views taken along the line XX in FIG. 4 (a) (transverse cross-sectional view of the ultraviolet ray sorting device). It is.
3 and 4, 1 is a light source such as an ultra-high pressure mercury lamp, 2 is an ultraviolet ray sorting device, 3 is a convex lens (for condensing on a Fresnel lens), 4 is a reflecting mirror, 5 is a Fresnel lens, and 6 is a liquid crystal drawing. A mask, 7 is a projection lens, and 8 is a modeling surface made of an ultraviolet curable resin composition.
Further, in FIGS. 3 and 4, as shown in FIG. 4, the ultraviolet ray sorter 2 has a predetermined wavelength ultraviolet ray formed on the hollow transparent cylindrical body 2a opened at both ends and the inner wall surface 2b of the cylindrical body 2a. And the ultraviolet ray selecting film layer 2c that transmits ultraviolet rays having a wavelength different from that of the predetermined wavelength.

図3に示すように、光源1からの光は紫外線選別装置2にその入口側の開口部から入射し、光源からの光に含まれる光線のうち、光硬化した樹脂層の形成に利用する所定波長の紫外線は紫外線選別装置2の筒状体2aの内壁面2bに形成した紫外線選別膜層2cによって反射されて紫外線選別装置2内をその出口側の開口部に向って順次反射されて出口側の開口部から導出される。その際に、所定波長の紫外線は、紫外線選別装置2の筒状体2aを順次反射されて出口側の開口部に向って進む間に、その強度分布が均一化されるため、筒状体2aの出口側の開口部から導出された所定波長の紫外線においては、例えば光線の中央と周辺部とで光強度がほぼ等しくなっている。一方、光源からの光に含まれる光線のうち、光硬化した樹脂層の形成に利用されない所定波長以外の紫外線は、紫外線選別装置2の筒状体2aの側壁部を透過して外部に分離・除去される。
次いで、紫外線選別装置2の筒状体2a内を反射しながらその出口側の開口部から導出された所定波長の紫外線は反射ミラー4によって向きを変え、フレネルレンズ5を経て液晶描画マスク6の背部へと導かれる。この段階では、光源1からの光に含まれていた所定波長以外の紫外線は完全に分離・除去されているか又はその量が大幅に低減しているので、所定波長以外の紫外線による液晶描画マスク6の劣化が防止または抑制される。液晶描画マスク6の背部に導かれた所定波長の紫外線は、液晶描画マスク6のマスク画像に対応した所定のパターンで液晶描画マスク6を通過し、投影レンズ7を経て紫外線硬化性樹脂組成物よりなる造形面8に照射されて、液晶描画マスク6のマスク画像に対応する所定の形状パターンを有する光硬化した樹脂層が造形面8に形成される。
As shown in FIG. 3, the light from the light source 1 enters the ultraviolet ray sorter 2 through the opening on the entrance side, and among the light rays contained in the light from the light source, the predetermined light used for forming a photocured resin layer. The ultraviolet ray having the wavelength is reflected by the ultraviolet ray sorting film layer 2c formed on the inner wall surface 2b of the cylindrical body 2a of the ultraviolet ray sorting device 2, and is sequentially reflected in the ultraviolet ray sorting device 2 toward the opening on the outlet side. Derived from the opening. At this time, the ultraviolet rays having a predetermined wavelength are reflected on the cylindrical body 2a of the ultraviolet ray sorter 2 in order, and the intensity distribution is made uniform while proceeding toward the opening on the outlet side. In the ultraviolet ray having a predetermined wavelength derived from the opening on the exit side, for example, the light intensity is substantially equal at the center and the peripheral part of the light beam. On the other hand, among the light rays included in the light from the light source, ultraviolet rays having a wavelength other than the predetermined wavelength that are not used for forming the photocured resin layer are transmitted through the side wall portion of the cylindrical body 2a of the ultraviolet ray sorting device 2 and separated outside. Removed.
Next, the ultraviolet rays having a predetermined wavelength led out from the opening on the exit side while reflecting inside the cylindrical body 2 a of the ultraviolet ray sorting device 2 are changed in direction by the reflection mirror 4, passed through the Fresnel lens 5, and the back portion of the liquid crystal drawing mask 6. Led to. At this stage, the ultraviolet rays other than the predetermined wavelength contained in the light from the light source 1 are completely separated and removed, or the amount thereof is greatly reduced. Is prevented or suppressed. The ultraviolet ray having a predetermined wavelength guided to the back of the liquid crystal drawing mask 6 passes through the liquid crystal drawing mask 6 in a predetermined pattern corresponding to the mask image of the liquid crystal drawing mask 6, passes through the projection lens 7, and is received from the ultraviolet curable resin composition. A photocured resin layer having a predetermined shape pattern corresponding to the mask image of the liquid crystal drawing mask 6 is irradiated on the modeling surface 8 to be formed on the modeling surface 8.

上記の装置において、紫外線選別装置2の筒状体2aの横断面形状は、例えば、図4の(b)に示すような長方形、(c)に示すような正方形、(d)に示すような円形、また図示はしないが楕円形、多角形などのいずれでもよい。そのうちでも、液晶描画マスク6は一般に長方形または正方形であることが多いので、筒状体2aの横断面形状を(b)に示すような長方形、または(c)に示すような正方形にすると、筒状体2aの出口側の開口部から導出される所定波長の紫外線の横断面形状が長方形または正方向となって、液晶描画マスク6の形状と一致するため、液晶描画マスク6を介して造形面8に紫外線を無駄なく、均一に照射することができる。   In the above apparatus, the cross-sectional shape of the cylindrical body 2a of the ultraviolet ray sorting apparatus 2 is, for example, a rectangle as shown in FIG. 4B, a square as shown in FIG. 4C, and as shown in FIG. It may be any of a circle, an ellipse, a polygon, etc. although not shown. Among them, since the liquid crystal drawing mask 6 is generally rectangular or square in many cases, if the cross-sectional shape of the cylindrical body 2a is a rectangle as shown in (b) or a square as shown in (c), the cylinder Since the cross-sectional shape of the ultraviolet ray having a predetermined wavelength derived from the opening on the outlet side of the body 2a becomes a rectangle or a positive direction and matches the shape of the liquid crystal drawing mask 6, the modeling surface is interposed through the liquid crystal drawing mask 6. 8 can be irradiated uniformly with no ultraviolet rays.

上記において、紫外線選別装置2の筒状体2aの内壁面2bに形成する紫外線選別膜層2cとして、所定波長の紫外線を反射し且つ所定波長以外の紫外線と赤外線を透過するものを採用した場合には、所定波長以外の紫外線だけではなく、赤外線も筒状体2aの側壁部を透過して分離・除去されるので、所定波長以外の紫外線および赤外線による液晶描画マスク6の曝露がなくなり、液晶描画マスク6の劣化が一層防止されて、耐久寿命を一層長くすることができる。   In the above, when the ultraviolet ray selection film layer 2c formed on the inner wall surface 2b of the cylindrical body 2a of the ultraviolet ray sorter 2 is one that reflects ultraviolet rays of a predetermined wavelength and transmits ultraviolet rays and infrared rays other than the predetermined wavelength. Since not only ultraviolet rays other than the predetermined wavelength but also infrared rays pass through the side wall portion of the cylindrical body 2a and are separated and removed, the exposure of the liquid crystal drawing mask 6 by ultraviolet rays and infrared rays other than the predetermined wavelength is eliminated, and the liquid crystal drawing The deterioration of the mask 6 is further prevented, and the durability life can be further extended.

上記の図3の光造形装置においては、液晶描画マスク6のマスク画像は、製造を目的とする光造形物の形状パターン、構造、サイズなどに対応してコンピューターに予め記憶させておいた情報に応じて、液晶描画マスク6に配置された複数の微小な液晶シャッターのうち、光を通過させるべき箇所に位置する液晶シャッターは光を通過させるように開き、一方光を遮蔽させるべき箇所に位置する液晶シャッターは閉じて光の通過を阻止し、そのような操作を、所定の断面形状を有する光硬化した樹脂層が形成されるまで繰り返すように設計されている(立体造形物を製造する場合)。   In the stereolithography apparatus of FIG. 3 described above, the mask image of the liquid crystal drawing mask 6 is information stored in advance in a computer corresponding to the shape pattern, structure, size, etc. of the stereolithography object intended for manufacture. Correspondingly, among the plurality of minute liquid crystal shutters arranged on the liquid crystal drawing mask 6, the liquid crystal shutter located at a position where light should pass is opened so as to allow light to pass therethrough, while being located at a position where light should be shielded. The liquid crystal shutter is closed to prevent the passage of light, and such an operation is designed to be repeated until a photocured resin layer having a predetermined cross-sectional shape is formed (when manufacturing a three-dimensional model). .

図3および図4に例示した本発明の光造形装置を使用する場合は、所定波長以外の紫外線を吸収するだけでなく、光造形に用いる所定波長の紫外線をも多少なりと吸収して(通常15%程度吸収)所定波長の紫外線の強度を低下させる紫外線フィルターを使用する場合とは異なり、光源1からの光を上記した紫外線選別装置2に直接入射して、光源1からの光に含まれる所定波長以外の紫外線、または所定波長以外の紫外線と赤外線を筒状体2aの壁部を透過させて分離・除去しながら、光源1からの光に含まれる所定波長の紫外線の全量またはそれに近い量(一般に95%以上)が紫外線選別装置2の筒状体2aの出口側の開口部から導出される。その結果、光源1からの光に含まれる所定波長の紫外線を高効率で有効に利用しながら、光造形を行うことができる。
図3に示した光造形装置では、光源1からの光を紫外線選別装置2、凸レンズ3、反射ミラー4、フレネルレンズ5を経て液晶描画マスク6に導いているが、光源1からの光を紫外線選別装置2を通過させた後に、そのまま直接フレネルレンズ5を経て液晶描画マスク6に導くようにしてもよい。
When the optical modeling apparatus of the present invention illustrated in FIGS. 3 and 4 is used, it not only absorbs ultraviolet rays other than a predetermined wavelength but also absorbs ultraviolet rays of a predetermined wavelength used for optical modeling (usually) Unlike the case of using an ultraviolet filter that reduces the intensity of ultraviolet rays of a predetermined wavelength, the light from the light source 1 is directly incident on the ultraviolet sorting device 2 and is included in the light from the light source 1. The total amount of ultraviolet rays with a predetermined wavelength contained in the light from the light source 1 or a quantity close to it while passing through the wall of the cylindrical body 2a to separate and remove ultraviolet rays with a wavelength other than the predetermined wavelength, or ultraviolet rays and infrared rays with a wavelength other than the predetermined wavelength. (Generally 95% or more) is led out from the opening on the outlet side of the cylindrical body 2a of the ultraviolet ray sorter 2. As a result, it is possible to perform optical modeling while effectively using ultraviolet rays of a predetermined wavelength included in the light from the light source 1 with high efficiency.
In the stereolithography apparatus shown in FIG. 3, the light from the light source 1 is guided to the liquid crystal drawing mask 6 through the ultraviolet screening device 2, the convex lens 3, the reflection mirror 4, and the Fresnel lens 5. After passing through the sorting device 2, it may be directly led to the liquid crystal drawing mask 6 through the Fresnel lens 5 as it is.

液晶描画マスク6は特に制限されず、製造しようとする光造形物の形状や寸法(特に断面形状やその寸法)などに応じて適当な形状のものを採用することができる。液晶描画マスク6は、例えば正方形であってもよいし、長方形であってもよいし、またはその他の形状であってもよい。   The liquid crystal drawing mask 6 is not particularly limited, and a liquid crystal drawing mask having an appropriate shape can be employed according to the shape and dimensions (particularly the cross-sectional shape and dimensions thereof) of the optically shaped object to be manufactured. The liquid crystal drawing mask 6 may be, for example, a square, a rectangle, or another shape.

《試験例1》[液晶描画マスクの紫外線に対する耐久試験]
(1) 液晶描画マスクの紫外線に対する耐久試験を行うために、図5に示す装置を使用した。図5の装置において、1は光源[(有)ワイエルティー製の超高圧水銀ランプ「YLT−MX200」;出力200W]、2は紫外線選別装置、6は液晶描画マスク(カシオ計算機株式会社製のVGA液晶)、9は光源1からの光を導くための石英ファイバー[(有)ワイエルティー製、直径5mm]を示す。図5の装置では、紫外線選別装置2として、長方形の横断面形状を有する中空のガラス[「パイレックス」(登録商標)]製の筒状体(中空部の内側寸法=2cm×15cm、筒状体の長さ=18.5cm)の内壁面に、屈折率の高い非吸収性の誘電体物質(Al23)と屈折率の低い非吸収性の誘電体物質(MgF2)を交互に膜状に30層にコーティングした誘電体多層膜コーティングした装置を使用した。この紫外線選別装置2は、波長365nmの紫外線(i線)およびその近傍の紫外線のを、筒状体の内壁面で順次反射しながら筒状体の出口側の開口部から97%以上の効率で導出し、一方波長340nm以下の紫外線および赤外線を85%以上の効率で紫外線選別装置2の筒状体の側壁部を透過させて分離・除去する機能を有する。
<< Test Example 1 >> [Endurance test of liquid crystal drawing mask against ultraviolet rays]
(1) The apparatus shown in FIG. 5 was used in order to perform a durability test against ultraviolet rays of the liquid crystal drawing mask. In the apparatus of FIG. 5, 1 is a light source [super-high pressure mercury lamp “YLT-MX200” manufactured by YELTY; output 200 W], 2 is an ultraviolet sorting device, 6 is a liquid crystal drawing mask (VGA manufactured by Casio Computer Co., Ltd.) (Liquid crystal), 9 indicates a quartz fiber [made by Welty, diameter 5 mm] for guiding the light from the light source 1. In the apparatus of FIG. 5, a cylindrical body made of hollow glass having a rectangular cross-sectional shape [“Pyrex” (registered trademark)] (inside dimension of hollow portion = 2 cm × 15 cm, cylindrical body as the ultraviolet ray sorting apparatus 2. Of non-absorbing dielectric material (Al 2 O 3 ) having a high refractive index and non-absorbing dielectric material (MgF 2 ) having a low refractive index are alternately formed on the inner wall surface having a length of 18.5 cm. An apparatus coated with a dielectric multilayer film in which 30 layers were coated was used. This ultraviolet ray sorter 2 is capable of efficiently reflecting ultraviolet rays (i-line) having a wavelength of 365 nm and ultraviolet rays in the vicinity thereof with an efficiency of 97% or more from the opening on the outlet side of the cylindrical body while sequentially reflecting on the inner wall surface of the cylindrical body. On the other hand, it has a function of separating and removing ultraviolet rays and infrared rays having a wavelength of 340 nm or less through the side wall portion of the cylindrical body of the ultraviolet ray sorting device 2 with an efficiency of 85% or more.

(2) 図5に示す装置を使用して、光硬化した樹脂層の形成に利用する波長365nmの紫外線の照射照度が平均で1900mJ/secになる条件を採用して、図1に示した分光分布を有する光源1(超高圧水銀ランプ)からの光を石英ファイバー9、紫外線選別装置2を経て液晶描画マスク6に連続照射したところ、波長365nmの紫外線の累積照射照度が9400J/cm2に達した時点でも、液晶描画マスク6では微小ドットエリアでの遮光と透光の駆動(オン−オフ駆動)が正常どおりに実行可能であり、波長365nmの紫外線の累積照射照度が12000J/cm2に達した時点で、ようやく、微小ドットエリアでの遮光と透光の駆動(オン−オフ駆動)が不可能な欠陥箇所(面積約7mm2)が液晶描画マスク面に発生した。 (2) Using the apparatus shown in FIG. 5, the condition shown in FIG. 1 was adopted under the condition that the irradiation intensity of ultraviolet rays with a wavelength of 365 nm used for forming a photocured resin layer becomes 1900 mJ / sec on average. When the light from the light source 1 (super high pressure mercury lamp) having a distribution is continuously irradiated onto the liquid crystal drawing mask 6 through the quartz fiber 9 and the ultraviolet ray sorter 2, the cumulative irradiation illuminance of ultraviolet rays having a wavelength of 365 nm reaches 9400 J / cm 2 . Even at this point, the liquid crystal drawing mask 6 can perform light shielding and light transmission (on-off drive) in a minute dot area as normal, and the cumulative irradiation illuminance of ultraviolet light having a wavelength of 365 nm reaches 12000 J / cm 2 . when the, finally, the driving of the light shielding and light transmitting in a minute dot area (oN - oFF driving) is impossible defective portion (area of about 7 mm 2) is generated in the liquid crystal image drawing mask surface .

(3) 図5に示す装置において、紫外線選別装置2を装置から取り外し(使用せずに)、代わりに赤外線吸収フィルター[メレスグリオ社製「KG 1」;波長365nmの紫外線(i線)およびその近傍の紫外線の透過率90%以上、波長800nmの光線の遮蔽率(吸収率)約50%、波長1000nm以上の赤外線の遮蔽率(吸収率)ほぼ100%]を配置し、それ以外は上記(2)と同じ条件を採用して、液晶描画マスク6の紫外線による劣化試験を行ったところ、波長365nmの紫外線の累積照射照度が2300J/cm2に達した時点で、微小ドットエリアでの遮光と透光の駆動(オン−オフ駆動)が不可能な欠陥箇所(面積約25mm2)が液晶描画マスク面に発生し、そのまま試験を継続したところ、該欠陥箇所の面積は、累積照射照度が7000J/cm2に達した時点で75mm2に拡大し、累積照射照度が12000J/cm2に達した時点では125mm2にまで大幅に拡大した。 (3) In the apparatus shown in FIG. 5, the ultraviolet sorting apparatus 2 is removed (not used) from the apparatus, and instead an infrared absorption filter [“KG 1” manufactured by Melles Griot; ultraviolet (i-line) with wavelength of 365 nm and its vicinity The transmittance of ultraviolet rays of 90% or more, the shielding rate (absorption rate) of light with a wavelength of 800 nm is about 50%, and the shielding rate (absorption rate) of infrared rays with a wavelength of 1000 nm or more is almost 100%. When the deterioration test by the ultraviolet rays of the liquid crystal drawing mask 6 was performed under the same conditions as in (2), when the cumulative irradiation illuminance of ultraviolet rays having a wavelength of 365 nm reached 2300 J / cm 2 , When a defect portion (area of about 25 mm 2 ) where light cannot be driven (on-off drive) occurs on the liquid crystal drawing mask surface and the test was continued as it was, the area of the defect portion was Cumulative irradiance is expanded to 75 mm 2 at which point 7000J / cm 2, was expanded significantly to the 125 mm 2 at the time the cumulative irradiance reached 12000J / cm 2.

(4) 上記(2)と(3)の結果の対比から明らかなように、上記(2)では紫外線選別装置2を使用して、光硬化した樹脂層の形成に利用する紫外線(波長365nmおよびその近傍の紫外線)を液晶描画マスク6に導くと共に、それ以外の波長の紫外線(365nmよりも短波長の紫外線)をカットして365nmよりも短波長の紫外線による液晶描画マスク6の曝露を防止しながら光照射を行ったことにより、紫外線選別装置2を使用しないで波長365nmおよびその近傍の紫外線並びにそれよりも短波長の紫外線に液晶描画マスク7を曝露しながら光照射を行った上記(3)に比べて、液晶描画マスク6の寿命が大幅に延長された。 (4) As is clear from the comparison of the results of (2) and (3) above, in the above (2), the ultraviolet rays used for forming the photocured resin layer using the ultraviolet ray sorting device 2 (wavelength 365 nm and In addition to guiding the ultraviolet rays in the vicinity thereof to the liquid crystal drawing mask 6, ultraviolet rays having wavelengths other than that (ultraviolet rays shorter than 365 nm) are cut to prevent the exposure of the liquid crystal drawing mask 6 by ultraviolet rays having a wavelength shorter than 365 nm. (3) The light irradiation was performed while exposing the liquid crystal drawing mask 7 to ultraviolet light having a wavelength of 365 nm and the vicinity thereof and ultraviolet light having a wavelength shorter than that without using the ultraviolet ray sorting device 2 by performing the light irradiation. Compared to the above, the life of the liquid crystal drawing mask 6 is greatly extended.

《実施例1》
(1) 図3に示す光造形装置を使用して光学的立体造形を製造した。
図3の光造形装置では、光源1、紫外線選別装置2および液晶描画マスク6として、上記の試験例1で使用したのと同じものを使用した。また、反射ミラー4は光伸光学工業株式会社製「コールドミラー」、フレネルレンズ5は本特殊光学樹脂株式会社製のフレネルレンズ、投影レンズ7は株式会社ニコン製「EL−Nikkor」を使用した。紫外線硬化性樹脂組成物は、シーメット株式会社製「CPX−1000」[硬化感度2.5mJ;紫外線硬化波長365nm;光重合開始剤としてイルガキュア(登録商標)651を含有]を使用した。
(2) 上記(1)に示した図3の光造形装置を使用して、紫外線硬化性樹脂組成物よりなる造形面8への投影サイズ=40mm×30mm、造形面8での光エネルギー強度2.5mW/cm2の条件下に、照射時間1sec、照射深度0.1mmの条件下で造形面に光照射して光硬化した樹脂層を形成する操作を繰り返して、縦×横×高さ=22mm×32mm×25mmの立体造形物を製造した(光造形時間1時間)。
(3) 上記(2)により得られた立体造形物は、外観が良好で、しかも寸法精度に優れていた。
Example 1
(1) Optical stereolithography was manufactured using the optical modeling apparatus shown in FIG.
In the stereolithography apparatus of FIG. 3, the same light source 1, ultraviolet ray sorter 2 and liquid crystal drawing mask 6 as those used in Test Example 1 were used. The reflection mirror 4 was a “cold mirror” manufactured by Koshin Kogyo Co., Ltd., the Fresnel lens 5 was a Fresnel lens manufactured by this special optical resin, and the projection lens 7 was “EL-Nikkor” manufactured by Nikon Corporation. As the ultraviolet curable resin composition, “CPX-1000” [curing sensitivity: 2.5 mJ; ultraviolet curing wavelength: 365 nm; containing Irgacure (registered trademark) 651 as a photopolymerization initiator] was used.
(2) Using the optical modeling apparatus of FIG. 3 shown in (1) above, projection size onto the modeling surface 8 made of an ultraviolet curable resin composition = 40 mm × 30 mm, light energy intensity 2 on the modeling surface 8 Repeat the operation of forming a photocured resin layer by irradiating the modeling surface with light under the conditions of 0.5 mW / cm 2 , irradiation time of 1 sec and irradiation depth of 0.1 mm, and length × width × height = A three-dimensional model having a size of 22 mm × 32 mm × 25 mm was manufactured (optical modeling time 1 hour).
(3) The three-dimensional structure obtained by the above (2) has a good appearance and excellent dimensional accuracy.

本発明の光造形方法および装置は、液晶描画マスクの紫外線による劣化、または紫外線と赤外線による劣化を防止または抑制して、高価な液晶描画マスクの使用可能寿命を大幅に延長しながら、外観、寸法精度、力学的特性などに優れる高品質の光造形物を、高い造形速度で、生産性良く、しかも従来よりも低コストで、経済的に製造するのに有効である。
本発明の光造形方法および装置は、光源などの光発射手段からの光に含まれる、光硬化性樹脂組成物の硬化に利用する所定波長の紫外線のほぼ全量をその光強度の低下を生ずることなく光造形に有効に利用することができ、しかも該所定波長の紫外線の強度分布を紫外線選別装置によって均一化して光硬化物における硬化ムラや強度ムラの発生を防止ながら光造形を行うことができる。
本発明の光造形方法および装置は、小型から大型に至る各種の立体造形物の製造に有効に使用することができる。
本発明の方法および装置による場合は、精密部品、電気・電子部品、家具、建築構造物、自動車用部品、各種容器類、鋳物、金型、母型などのためのモデルや加工用モデル、複雑な熱媒回路の設計用の部品、複雑な構造の熱媒挙動の解析企画用の部品、その他の複雑な形状や構造を有する各種の立体造形物、リソグラフなどの面状の光硬化した樹脂層を、高い造形速度および寸法精度で円滑に製造することができる。
The stereolithography method and apparatus of the present invention prevents or suppresses deterioration of the liquid crystal drawing mask due to ultraviolet rays or ultraviolet rays and infrared rays, greatly extending the usable life of the expensive liquid crystal drawing mask, It is effective for economically producing a high-quality optically shaped object excellent in accuracy, mechanical properties, etc. at a high modeling speed, with good productivity, and at a lower cost than in the past.
The optical modeling method and apparatus of the present invention causes a reduction in the light intensity of almost the entire amount of ultraviolet rays having a predetermined wavelength used for curing the photocurable resin composition contained in light from a light emitting means such as a light source. Can be effectively used for optical modeling, and the optical intensity can be made while uniforming the intensity distribution of the ultraviolet rays of the predetermined wavelength by the ultraviolet ray sorting device to prevent the occurrence of curing unevenness and intensity unevenness in the photocured product. .
The stereolithography method and apparatus of the present invention can be effectively used for the production of various three-dimensional models ranging from small to large.
In the case of the method and apparatus of the present invention, models for precision parts, electrical / electronic parts, furniture, building structures, automotive parts, various containers, castings, molds, mother molds, etc., complex models Parts for designing simple heat transfer circuits, parts for analysis and planning of heat transfer behavior of complex structures, other various three-dimensional objects with complicated shapes and structures, and planar photocured resin layers such as lithographs Can be manufactured smoothly with high modeling speed and dimensional accuracy.

超高圧水銀ランプから放射される光の分光分布を示す図である。It is a figure which shows the spectral distribution of the light radiated | emitted from an ultra high pressure mercury lamp. 高圧水銀ランプから放射される光の分光分布を示す図である。It is a figure which shows the spectral distribution of the light radiated | emitted from a high pressure mercury lamp. 本発明の光造形装置の一例を示す図である。It is a figure which shows an example of the optical modeling apparatus of this invention. 本発明の光造形装置の要部の一例を示す図である。It is a figure which shows an example of the principal part of the optical modeling apparatus of this invention. 試験例1(液晶描画マスクの紫外線による劣化試験)で使用した試験装置を示す図である。It is a figure which shows the test apparatus used by Test Example 1 (deterioration test by the ultraviolet-ray of a liquid crystal drawing mask).

符号の説明Explanation of symbols

1 光源
2 所定波長の紫外線を反射し且つ所定波長以外の紫外線を透過して分離・除去するための紫外線選別装置
3 凸レンズ
4 反射ミラー
5 フレネルレンズ
6 液晶描画マスク
7 投影レンズ
8 紫外線硬化性樹脂組成物よりなる造形面
9 石英ファイバー
DESCRIPTION OF SYMBOLS 1 Light source 2 Ultraviolet sorter for reflecting and separating ultraviolet light having a predetermined wavelength and transmitting ultraviolet light having a wavelength other than the predetermined wavelength 3 Convex lens 4 Reflecting mirror 5 Fresnel lens 6 Liquid crystal drawing mask 7 Projection lens 8 Ultraviolet curable resin composition Surface made of objects 9 Quartz fiber

Claims (16)

光硬化性樹脂組成物よりなる造形面に、微小ドットエリアでの遮光および透光が可能な複数の微小液晶シャッターを線状または面状に配置した液晶描画マスクを介して制御下に光を照射して所定の形状パターンを有する光硬化した樹脂層を形成した後、該光硬化した樹脂層の上に1層分の光硬化性樹脂組成物を施して造形面を形成し、該光硬化性樹脂組成物よりなる造形面に液晶描画マスクを介して制御下に光を照射して所定の形状パターンを有する光硬化した樹脂層を更に形成する工程を、目的とする立体造形物が形成されるまで繰り返す光造形方法であって、光硬化性樹脂組成物として紫外線硬化性樹脂組成物を使用し、光発射手段と液晶描画マスクとの間の位置に、光硬化性樹脂組成物の光硬化に利用する所定波長の紫外線を反射すると共に、該所定波長の紫外線とは波長の異なる紫外線を透過させて分離・除去する紫外線選別装置を配置し、該紫外線選別装置によって、光源からの光に含まれる紫外線のうち光硬化性樹脂組成物の光硬化に利用する所定波長の紫外線を反射させて該反射された所定波長の紫外線を液晶描画マスクの方向へと導くと同時に、該所定波長の紫外線とは波長の異なる紫外線を紫外線選別装置を透過させて不要光として分離・除去して、前記所定波長の紫外線とは波長の異なる紫外線による液晶描画マスクの曝露を防止しながら、紫外線選別装置によって反射された前記所定波長の紫外線を液晶描画マスクを介して造形面に照射して所定の形状パターンを有する光硬化した樹脂層を形成することを特徴とする光造形方法。   Light is irradiated under control through a liquid crystal drawing mask in which multiple micro liquid crystal shutters that can block and transmit light in a micro dot area are arranged in a linear or planar manner on a modeling surface made of a photocurable resin composition Then, after forming a photocured resin layer having a predetermined shape pattern, a photocurable resin composition for one layer is applied on the photocured resin layer to form a modeling surface, and the photocurability A target three-dimensional model is formed by further irradiating light on the modeling surface made of the resin composition under control through a liquid crystal drawing mask to further form a photocured resin layer having a predetermined shape pattern. The optical shaping method is repeated until the photocurable resin composition is used as a photocurable resin composition, and is used for photocuring the photocurable resin composition at a position between the light emitting means and the liquid crystal drawing mask. Reflects ultraviolet rays of a predetermined wavelength to be used Both are arranged with an ultraviolet ray sorting device that transmits and separates and removes ultraviolet rays having a wavelength different from the ultraviolet ray of the predetermined wavelength, and the ultraviolet ray sorting device allows the photocurable resin composition of the ultraviolet rays contained in the light from the light source. The ultraviolet ray having a predetermined wavelength used for photocuring is reflected to guide the reflected ultraviolet ray having the predetermined wavelength toward the liquid crystal drawing mask. The liquid crystal drawing mask reflects the ultraviolet light having the predetermined wavelength reflected by the ultraviolet ray sorter while preventing the exposure of the liquid crystal drawing mask by ultraviolet light having a wavelength different from the ultraviolet light having the predetermined wavelength. And forming a photocured resin layer having a predetermined shape pattern by irradiating the modeling surface through the optical modeling method. 光硬化性樹脂組成物よりなる造形面に、微小ドットエリアでの遮光および透光が可能な複数の微小液晶シャッターを線状または面状に配置した液晶描画マスクを介して制御下に光を照射して所定の形状パターンを有する光硬化した樹脂層を形成する工程を有する光造形方法であって、光硬化性樹脂組成物として紫外線硬化性樹脂組成物を使用し、光発射手段と液晶描画マスクとの間の位置に、光硬化性樹脂組成物の光硬化に利用する所定波長の紫外線を反射すると共に、該所定波長の紫外線とは波長の異なる紫外線を透過させて分離・除去する紫外線選別装置を配置し、該紫外線選別装置によって、光源からの光に含まれる紫外線のうち光硬化性樹脂組成物の光硬化に利用する所定波長の紫外線を反射させて該反射された所定波長の紫外線を液晶描画マスクの方向へと導くと同時に、該所定波長の紫外線とは波長の異なる紫外線を紫外線選別装置を透過させて不要光として分離・除去して、前記所定波長の紫外線とは波長の異なる紫外線による液晶描画マスクの曝露を防止しながら、紫外線選別装置によって反射された前記所定波長の紫外線を液晶描画マスクを介して造形面に照射して所定の形状パターンを有する光硬化した樹脂層を形成することを特徴とする光造形方法。   Light is irradiated under control through a liquid crystal drawing mask in which multiple micro liquid crystal shutters that can block and transmit light in a micro dot area are arranged in a linear or planar manner on a modeling surface made of a photocurable resin composition A photo-forming method comprising a step of forming a photo-cured resin layer having a predetermined shape pattern, wherein an ultraviolet curable resin composition is used as the photo-curable resin composition, and a light emitting means and a liquid crystal drawing mask A UV sorting device that reflects UV light of a predetermined wavelength used for photocuring of the photocurable resin composition at a position between and a UV light having a wavelength different from that of the predetermined wavelength and separates and removes the UV light The ultraviolet ray sorting device reflects the ultraviolet ray having a predetermined wavelength used for photocuring the photocurable resin composition out of the ultraviolet ray contained in the light from the light source, and the reflected ultraviolet ray having the predetermined wavelength is reflected. At the same time, the ultraviolet rays having a wavelength different from the ultraviolet rays having the predetermined wavelength are transmitted through the ultraviolet ray sorting device to be separated and removed as unnecessary light. The photo-cured resin layer having a predetermined shape pattern is formed by irradiating the modeling surface through the liquid crystal drawing mask with the ultraviolet ray having the predetermined wavelength reflected by the ultraviolet ray sorter while preventing the exposure of the liquid crystal drawing mask by An optical modeling method characterized by that. 前記紫外線選別装置が、液晶描画マスクを介して造形面に照射される前記所定波長の紫外線を含む光の強度分布を均一化する機能を更に有する請求項1または2に記載の光造形方法。   The optical modeling method according to claim 1, wherein the ultraviolet sorting device further has a function of uniformizing an intensity distribution of light including ultraviolet rays having the predetermined wavelength that is irradiated onto a modeling surface through a liquid crystal drawing mask. 前記紫外線選別装置が、光硬化した樹脂層の形成に用いる前記所定波長の紫外線の95%以上を反射し且つ該所定波長の紫外線よりも短波長の紫外線の85%以上を透過して不要光として分離・除去する紫外線選別装置である請求項1〜3のいずれか1項に記載の光造形方法。   The ultraviolet ray sorting device reflects 95% or more of the ultraviolet ray having the predetermined wavelength used for forming the photocured resin layer and transmits 85% or more of the ultraviolet ray having a shorter wavelength than the predetermined wavelength as unnecessary light. The stereolithography method according to any one of claims 1 to 3, which is an ultraviolet ray sorting device for separating and removing. 紫外線選別装置が、両端の開口した中空の透明な筒状体の内壁面に、前記所定波長の紫外線を反射し且つ該所定波長の紫外線とは波長の異なる紫外線を透過する紫外線選別膜層を形成した紫外線選別装置からなり、該紫外線選別装置の筒状体の入口側の開口部から光を導入して、光硬化性樹脂の硬化に利用する前記所定波長の紫外線を、筒状体の内壁面に形成した紫外線選別膜層により筒状体内で順次反射させながら光の強度分布を均一化しつつ筒状体の出口側の開口部から導出すると共に、前記所定波長の紫外線とは波長の異なる紫外線を前記筒状体の側壁から筒状体外に透過させて分離・除去する請求項1〜4のいずれか1項に記載の光造形方法。   The ultraviolet ray sorting device forms an ultraviolet ray sorting film layer that reflects the ultraviolet ray having the predetermined wavelength and transmits the ultraviolet ray having a wavelength different from the ultraviolet ray having the predetermined wavelength on the inner wall surface of the hollow transparent cylindrical body having both ends opened. The ultraviolet ray of the predetermined wavelength, which is used for curing the photocurable resin by introducing light from the opening on the inlet side of the cylindrical body of the ultraviolet sorter. The ultraviolet ray selection film layer formed on the cylindrical body is led out from the opening on the outlet side of the cylindrical body while making the light intensity distribution uniform while sequentially reflecting in the cylindrical body, and ultraviolet light having a wavelength different from the ultraviolet light of the predetermined wavelength is derived. The optical modeling method according to any one of claims 1 to 4, wherein the cylindrical body is separated and removed by being transmitted from a side wall of the cylindrical body to the outside of the cylindrical body. 紫外線選別装置の筒状体の内壁面に形成した紫外線選別膜層が、屈折率の高い非吸収性の誘電体物質と屈折率の低い非吸収性の誘電体物質を交互に膜状に多層コーティングした誘電体多層膜コーティングよりなる請求項5に記載の光造形方法。   The UV screening film layer formed on the inner wall of the cylindrical body of the UV screening device is a multilayer coating of alternating non-absorbing dielectric material with high refractive index and non-absorbing dielectric material with low refractive index. The stereolithography method according to claim 5, comprising a dielectric multilayer coating applied. 前記紫外線選別装置が、更に波長780nm以上の光線の85%以上を透過して不要光として分離・除去する機能を有し、それによって波長780nm以上の光線による液晶描画マスクの曝露を更に防止または抑制する請求項1〜6のいずれか1項に記載の光造形方法。   The ultraviolet sorting device further has a function of separating and removing 85% or more of light having a wavelength of 780 nm or more as unnecessary light, thereby further preventing or suppressing exposure of the liquid crystal drawing mask by light having a wavelength of 780 nm or more. The optical modeling method according to any one of claims 1 to 6. 光硬化した樹脂層を形成するための前記所定波長の紫外線が、光源からの光に含まれる紫外線のうちで、紫外線硬化性樹脂組成物を速やかに硬化することのできる光強度を有し且つ液晶描画マスクに対する劣化作用が比較的小さな紫外線である請求項1〜7のいずれか1項に記載の光造形方法。   The liquid crystal has a light intensity capable of quickly curing the ultraviolet curable resin composition among the ultraviolet rays contained in the light from the light source, the ultraviolet ray having the predetermined wavelength for forming the photocured resin layer. The stereolithography method according to any one of claims 1 to 7, wherein the deterioration effect on the drawing mask is relatively small ultraviolet rays. 光硬化した樹脂層を形成するための前記所定波長の紫外線が、300〜390nmの範囲内の波長を有する紫外線である請求項1〜8のいずれか1項に記載の光造形方法。   The stereolithography method according to any one of claims 1 to 8, wherein the ultraviolet ray having the predetermined wavelength for forming the photocured resin layer is an ultraviolet ray having a wavelength within a range of 300 to 390 nm. 光源として高輝度放電ランプを使用する請求項1〜9のいずれか1項に記載の光造形方法。   The optical shaping method according to any one of claims 1 to 9, wherein a high-intensity discharge lamp is used as the light source. 光硬化性樹脂組成物として、波長365nmまたはその近傍の紫外線によって少なくとも硬化するが波長400nm以上の可視光線および赤外線では硬化しない紫外線硬化性樹脂組成物を用い、光源として超高圧水銀ランプまたは高圧水銀ランプを使用し、紫外線選別装置として、超高圧水銀ランプまたは高圧水銀ランプから放射される光に含まれる波長365nmまたはその近傍の紫外線の95%以上を反射し且つ波長340nm以下の紫外線の85%以上を透過する紫外線選別装置を液晶描画マスクの上流側に配置して、液晶描画マスクの波長340nm以下の紫外線による曝露を防止または抑制しながら、光硬化した樹脂層を波長365nmまたはその近傍の紫外線によって形成する請求項1〜10のいずれか1項に記載の光造形方法。   As the photocurable resin composition, an ultraviolet curable resin composition that is at least cured by ultraviolet light having a wavelength of 365 nm or in the vicinity thereof but is not cured by visible light or infrared light having a wavelength of 400 nm or more is used. As an ultraviolet ray sorting device, it reflects 95% or more of the ultraviolet light in the wavelength 365 nm or the vicinity contained in the light emitted from the ultra high pressure mercury lamp or the high pressure mercury lamp, and 85% or more of the ultraviolet light having a wavelength of 340 nm or less. An ultraviolet sorting device that transmits light is disposed on the upstream side of the liquid crystal drawing mask, and a photocured resin layer is formed with ultraviolet light having a wavelength of 365 nm or its vicinity while preventing or suppressing exposure of the liquid crystal drawing mask to ultraviolet rays having a wavelength of 340 nm or less. The optical modeling method according to any one of claims 1 to 10. 光硬化性樹脂組成物よりなる造形面を形成する手段;
光硬化性樹脂組成物を硬化させる所定波長の紫外線とそれ以外の波長の紫外線を含む光を放射する光発射手段;
微小ドットエリアでの遮光および透光が可能な複数の微小光シャッターを線状または面状に配置した液晶描画マスク;および、
光硬化性樹脂組成物を硬化させる前記所定波長の紫外線を反射させるが、該所定波長以外の波長の紫外線を透過・分離する、光発射手段と液晶描画マスクとの間に配置した紫外線選別装置;
を備えていることを特徴とする光造形装置。
Means for forming a shaped surface comprising a photocurable resin composition;
A light emitting means for radiating light containing ultraviolet rays of a predetermined wavelength and ultraviolet rays of other wavelengths for curing the photocurable resin composition;
A liquid crystal drawing mask in which a plurality of minute light shutters capable of shielding and transmitting light in a minute dot area are arranged in a line or a plane; and
An ultraviolet ray sorter disposed between the light emitting means and the liquid crystal drawing mask, which reflects the ultraviolet ray having the predetermined wavelength for curing the photocurable resin composition, but transmits and separates the ultraviolet ray having a wavelength other than the predetermined wavelength;
An optical shaping apparatus comprising:
紫外線選別装置が、両端で開口した中空の透明な筒状体の内壁面に、前記所定波長の紫外線を反射し且つ該所定波長の紫外線とは波長の異なる紫外線を透過・分離する紫外線選別膜層を形成した紫外線選別装置からなる請求項12に記載の光造形装置。   An ultraviolet screening film layer in which an ultraviolet screening device reflects ultraviolet light having the predetermined wavelength on the inner wall surface of a hollow transparent cylindrical body opened at both ends, and transmits and separates ultraviolet light having a wavelength different from that of the predetermined wavelength. The stereolithography apparatus according to claim 12, comprising an ultraviolet sorting device having a shape formed thereon. 紫外線選別装置の筒状体の内壁面に形成した紫外線選別膜層が、屈折率の高い誘電体物質と屈折率の低い誘電体物質を交互に多層にコーティングした誘電体多層コーティング膜層である請求項13に記載の光造形装置。   The ultraviolet screening film layer formed on the inner wall surface of the cylindrical body of the ultraviolet screening device is a dielectric multilayer coating film layer in which a dielectric material having a high refractive index and a dielectric material having a low refractive index are alternately coated in multiple layers. Item 13. The optical modeling apparatus according to Item 13. 前記紫外線選別装置が、更に波長780nm以上の光線の85%以上を透過して不要光として分離する機能を有する請求項12〜14のいずれか1項に記載の光造形装置。   The optical modeling device according to any one of claims 12 to 14, wherein the ultraviolet ray sorting device further has a function of transmitting 85% or more of light having a wavelength of 780 nm or more and separating the light as unnecessary light. 光源が高輝度放電ランプである請求項12〜15のいずれか1項に記載の光造形装置。
The optical modeling apparatus according to claim 12, wherein the light source is a high-intensity discharge lamp.
JP2004175987A 2004-06-14 2004-06-14 Stereolithography method and apparatus Expired - Lifetime JP4510529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004175987A JP4510529B2 (en) 2004-06-14 2004-06-14 Stereolithography method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004175987A JP4510529B2 (en) 2004-06-14 2004-06-14 Stereolithography method and apparatus

Publications (2)

Publication Number Publication Date
JP2005349806A true JP2005349806A (en) 2005-12-22
JP4510529B2 JP4510529B2 (en) 2010-07-28

Family

ID=35584646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004175987A Expired - Lifetime JP4510529B2 (en) 2004-06-14 2004-06-14 Stereolithography method and apparatus

Country Status (1)

Country Link
JP (1) JP4510529B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107708476A (en) * 2015-08-18 2018-02-16 欧莱雅 What is connected can photoactivation preparation applicator
CN111941847A (en) * 2020-08-06 2020-11-17 温州大学平阳智能制造研究院 Synthesize radiating LCD photocuring 3D and print light projection arrangement
WO2022110477A1 (en) * 2020-11-30 2022-06-02 深圳市创想三维科技有限公司 Light source device for photo-curing 3d printing
KR102564913B1 (en) * 2022-02-22 2023-08-09 서울과학기술대학교 산학협력단 3d volumetric printer based on a movable light transmission window and a mixture of two-wavelength selectively absorption resins

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07266429A (en) * 1994-03-29 1995-10-17 Hitachi Ltd Optical shaping device
JPH07329191A (en) * 1994-06-09 1995-12-19 Denken Eng Kk Photoforming
JPH08192469A (en) * 1995-01-20 1996-07-30 Ushio Inc Photo-setting resin curing method
JPH08281810A (en) * 1995-04-18 1996-10-29 New Kurieishiyon:Kk Optically molding apparatus
JPH09207228A (en) * 1996-02-06 1997-08-12 Toshiba Corp Optically shaping device
JPH10323906A (en) * 1997-05-26 1998-12-08 Azuma Koki:Kk Optical shaping device using lamp
JP2002139844A (en) * 2000-10-30 2002-05-17 Nikon Corp Aligner, exposing method and device manufacturing method
JP2003266546A (en) * 2002-03-12 2003-09-24 Teijin Seiki Co Ltd Optical stereoscopic shaping method and apparatus therefor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07266429A (en) * 1994-03-29 1995-10-17 Hitachi Ltd Optical shaping device
JPH07329191A (en) * 1994-06-09 1995-12-19 Denken Eng Kk Photoforming
JPH08192469A (en) * 1995-01-20 1996-07-30 Ushio Inc Photo-setting resin curing method
JPH08281810A (en) * 1995-04-18 1996-10-29 New Kurieishiyon:Kk Optically molding apparatus
JPH09207228A (en) * 1996-02-06 1997-08-12 Toshiba Corp Optically shaping device
JPH10323906A (en) * 1997-05-26 1998-12-08 Azuma Koki:Kk Optical shaping device using lamp
JP2002139844A (en) * 2000-10-30 2002-05-17 Nikon Corp Aligner, exposing method and device manufacturing method
JP2003266546A (en) * 2002-03-12 2003-09-24 Teijin Seiki Co Ltd Optical stereoscopic shaping method and apparatus therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107708476A (en) * 2015-08-18 2018-02-16 欧莱雅 What is connected can photoactivation preparation applicator
CN107708476B (en) * 2015-08-18 2022-10-21 欧莱雅 Coupled photoactivatable formulation applicator
CN111941847A (en) * 2020-08-06 2020-11-17 温州大学平阳智能制造研究院 Synthesize radiating LCD photocuring 3D and print light projection arrangement
CN111941847B (en) * 2020-08-06 2022-03-08 温州大学平阳智能制造研究院 Synthesize radiating LCD photocuring 3D and print light projection arrangement
WO2022110477A1 (en) * 2020-11-30 2022-06-02 深圳市创想三维科技有限公司 Light source device for photo-curing 3d printing
KR102564913B1 (en) * 2022-02-22 2023-08-09 서울과학기술대학교 산학협력단 3d volumetric printer based on a movable light transmission window and a mixture of two-wavelength selectively absorption resins

Also Published As

Publication number Publication date
JP4510529B2 (en) 2010-07-28

Similar Documents

Publication Publication Date Title
JP4417911B2 (en) Optical three-dimensional modeling method and apparatus
JP3792168B2 (en) Optical three-dimensional modeling method and apparatus
US9523919B2 (en) Methods for making differentially pattern cured microstructured articles
KR100618602B1 (en) Method for producing optical sheet and optical sheet
JP4824382B2 (en) Optical three-dimensional modeling method and apparatus
WO2007108443A1 (en) Prism sheet, surface light source device, and method of producing prism sheet
JP2022518805A (en) Systems, methods, and materials for ultra-high throughput additive manufacturing
JP4510529B2 (en) Stereolithography method and apparatus
JP4292061B2 (en) Stereolithography method and apparatus
JP4969058B2 (en) Optical 3D modeling equipment
JP4515853B2 (en) Optical 3D modeling equipment
JP4578211B2 (en) Stereolithography method and apparatus
JP7088650B2 (en) Optical body and light emitting device
JPH01159627A (en) Production of screen
JP4459742B2 (en) Optical 3D modeling equipment
JP2004188604A (en) Optical three-dimensional shaping apparatus
JP5665351B2 (en) Manufacturing method of optical components
JPWO2019155933A5 (en)
JP2007275861A (en) Forming method of cured resin layer
TW201941913A (en) Resin-stacked optical body and method of manufacture therefor
JP4459741B2 (en) Optical 3D modeling method
JP2004216730A (en) Optical three-dimensional shaping method and apparatus therefor
TWI444669B (en) Optical films, method of making and method of using
JP7119775B2 (en) Method for manufacturing resin mold, method for forming concavo-convex pattern, method for manufacturing intermediate mold, method for manufacturing intermediate mold and optical element
KR20070101497A (en) Transmission projection screen and method of manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100430

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4510529

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250