JP2005349496A - Method of depositing micro-substance on substrate - Google Patents

Method of depositing micro-substance on substrate Download PDF

Info

Publication number
JP2005349496A
JP2005349496A JP2004170125A JP2004170125A JP2005349496A JP 2005349496 A JP2005349496 A JP 2005349496A JP 2004170125 A JP2004170125 A JP 2004170125A JP 2004170125 A JP2004170125 A JP 2004170125A JP 2005349496 A JP2005349496 A JP 2005349496A
Authority
JP
Japan
Prior art keywords
micropipette
substrate
tip
electrode
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004170125A
Other languages
Japanese (ja)
Inventor
Futoshi Iwata
太 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shizuoka University NUC
Original Assignee
Shizuoka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shizuoka University NUC filed Critical Shizuoka University NUC
Priority to JP2004170125A priority Critical patent/JP2005349496A/en
Publication of JP2005349496A publication Critical patent/JP2005349496A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Micromachines (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of depositing a micro-substance of nano-scale in an arbitrary position of a substrate. <P>SOLUTION: According to a method of depositing micro-substance on the substrate, a micropipette in which an electrode is inserted into the interior, and which is filled with a dispersion liquid containing charged microsubstance obtained by dispersing microsubstance in an aqueous liquid, is disposed with the tip close to the substrate surface, and subsequently an electric field is applied between the electrode and the substrate, thereby electrically migrating the charged microsubstance in the dispersion liquid toward the substrate surface and then discharging the same from the tip of the micropipette to be deposited on the substrate surface. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、基板上にナノスケールの微小物質を堆積させる方法に関する。   The present invention relates to a method for depositing nanoscale micromaterials on a substrate.

近年のナノテクノロジーの発達に伴い、電子デバイス、メモリー、ナノマシンなどの微小領域の先端技術が注目を集めている。こうした微細なデバイスの製作には、従来、半導体デバイスプロセスで実績のあるフォトリソグラフィーが利用されているが、フォトリソグラフィーは、露光、現像、エッチングといった一連のプロセスが必要であるため、システム全体が複雑になり、また加工寸法が光の波長により制限を受けるという問題がある。   Along with the development of nanotechnology in recent years, advanced technologies in micro domains such as electronic devices, memories, and nanomachines are attracting attention. Conventionally, photolithography, which has a proven track record in semiconductor device processes, has been used to manufacture such fine devices, but photolithography requires a series of processes such as exposure, development, and etching, so the entire system is complicated. In addition, there is a problem that the processing size is limited by the wavelength of light.

非特許文献1には、走査型プローブ顕微鏡を用いるナノスケール超音波振動切削、ピペットプローブ微細加工などの様々な微細加工技術が紹介されている。   Non-Patent Document 1 introduces various micromachining techniques such as nanoscale ultrasonic vibration cutting using a scanning probe microscope and pipette probe micromachining.

走査型プローブ顕微鏡は、プローブと名付けられている針状具の先端の位置を、レーザとフォトデテクタ(センサ)を用いた撮像装置で監視しながら、基板などの加工対象物の表面に沿って移動させ、所定位置での基板の状態の観察する光学装置であり、上記非特許文献1には、この装置を用いることにより、微細加工が可能であると説明されている。   A scanning probe microscope moves along the surface of an object to be processed such as a substrate while monitoring the position of the tip of a needle-like tool named a probe with an imaging device using a laser and a photo detector (sensor). An optical apparatus that observes the state of the substrate at a predetermined position, and Non-Patent Document 1 describes that microfabrication is possible by using this apparatus.

非特許文献1には、微細加工のひとつとして、内部に電極ワイヤを挿入したマイクロピペットをプローブとして利用し、硫酸銅水溶液等のイオン溶液を基板の表面に点着して金属めっき(ドットめっき)する方法が記載されている。
応用物理、第73巻、第4号(2004)の490〜493頁
In Non-Patent Document 1, as one of microfabrication, a micropipette with an electrode wire inserted therein is used as a probe, and an ion solution such as an aqueous copper sulfate solution is spotted on the surface of the substrate to perform metal plating (dot plating). How to do is described.
Applied Physics, Vol. 73, No. 4 (2004), pages 490-493

本発明は、カーボンナノチューブ、蛋白質粒子、DNA粒子、金属もしくは非金属の微粒子などの様々な種類のナノスケールの微小物質を基板の任意な位置に堆積させる方法を提供することを目的とする。   It is an object of the present invention to provide a method for depositing various kinds of nanoscale micro substances such as carbon nanotubes, protein particles, DNA particles, metal or non-metal fine particles at arbitrary positions on a substrate.

本発明は、内部に電極が挿入され、また微小物質を水性液に分散させて得られた帯電状態の微小物質を含む分散液が充填されているマイクロピペットを、その先端部が基板表面に近接するように配置し、次いで、上記電極と基板との間に電界を印加することにより、分散液中の帯電微小物質を基板表面に向けて電気泳動させたのちマイクロピペットの先端部から排出させて基板表面に堆積させることからなる基板上に微小物質を堆積させる方法にある。本発明における分散液とは、水性媒体もしくは油性媒体(有機溶媒など)を分散媒とする分散液を意味する。   The present invention provides a micropipette in which an electrode is inserted and filled with a dispersion containing a charged fine substance obtained by dispersing a fine substance in an aqueous liquid, and the tip of the micropipette is close to the substrate surface. Next, by applying an electric field between the electrode and the substrate, the charged fine substance in the dispersion is electrophoresed toward the substrate surface and then discharged from the tip of the micropipette. There is a method of depositing a minute substance on a substrate comprising depositing on a substrate surface. The dispersion in the present invention means a dispersion using an aqueous medium or oily medium (such as an organic solvent) as a dispersion medium.

本発明の方法を利用することにより、カーボンナノチューブ、蛋白質粒子、DNA粒子、金属もしくは非金属の微粒子などの様々な種類のナノスケールの微小物質を基板の任意な位置に堆積させることが可能となる。   By using the method of the present invention, it becomes possible to deposit various kinds of nano-scale minute substances such as carbon nanotubes, protein particles, DNA particles, metal or non-metal fine particles at arbitrary positions on the substrate. .

本発明の基板上に微小物質を堆積させる方法について、添付図面を参照しながら詳しく説明する。   A method for depositing a minute substance on a substrate of the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明の基板上に微小物質を堆積させる方法を実施するために有利に利用できる走査型マイクロピペットプローブ顕微鏡装置の基本構成を説明する図であり、このような構成の走査型マイクロピペットプローブ顕微鏡装置は既に知られている。   FIG. 1 is a diagram for explaining a basic configuration of a scanning micropipette probe microscope apparatus that can be advantageously used for carrying out the method of depositing a micro substance on a substrate of the present invention. Pipette probe microscope devices are already known.

図1において、走査型マイクロピペットプローブ顕微鏡装置は、基板(あるいは試料)1を載せる精密基台2、精密基台を縦横および高さ方向(すなわち、XYZ方向)の精密な移動を起こさせるPZT(チタン酸ジルコン酸鉛磁器)素子3、基板1の上方にて、任意の方向に相対的に移動可能なマイクロピペット(プローブ)4、マイクロピペットの先端にシェアフォースを印加して微細な横振動を励振させるPZT(チタン酸ジルコン酸鉛磁器)振動子5、PZT振動子の励振を駆動する発振器6、マイクロピペットの先端部にレーザ光を照射するレーザダイオード7、レーザダイオードからマイクロピペット先端部に照射されるレーザ光をさらに集束させるレンズ8、マイクロピペットの先端部を透過あるいは先端部で回折したレーザ光を集光し、電流信号に変換する二分割フォトデテクタ9、フォトデテクタから出力した電流信号を電圧信号に変える電流電圧変換器10、電流電圧変換器で変換された電圧信号を演算してマイクロピペットの先端部の位置情報を演算する演算回路11、演算回路と精密基台制御回路12とを結合するロックインアンプ13(発振器6からの発振情報が入力される)、精密基台を移動させるPZT素子3を駆動するPZTドライバ14、そして精密基台制御回路からの制御情報に基づいてPZTドライバに精密移動情報を送るコンピュータ15、そしてコンピュータから出力されたマイクロピペットの先端部の状態の情報を画像情報として表示するディスプレイ16から構成されている。   In FIG. 1, a scanning micropipette probe microscope apparatus includes a precision base 2 on which a substrate (or sample) 1 is placed, and a precision base PZT (which causes precision movement in the vertical and horizontal directions and in the height direction (ie, XYZ directions)). Lead zirconate titanate porcelain) Micro-pipette (probe) 4 that can move relatively in any direction above element 3 and substrate 1, and a shear force applied to the tip of the micro-pipette to apply fine lateral vibration A PZT (lead zirconate titanate porcelain) vibrator 5 to be excited, an oscillator 6 for driving the excitation of the PZT vibrator, a laser diode 7 for irradiating the tip of the micropipette with laser light, and a laser pipe for irradiating the tip of the micropipette Lens 8 for further focusing the laser light to be transmitted, laser transmitted through the tip of the micropipette or diffracted at the tip A two-divided photodetector 9 that collects light and converts it into a current signal, a current-voltage converter 10 that converts a current signal output from the photodetector into a voltage signal, a voltage signal converted by the current-voltage converter, and a micropipette Arithmetic circuit 11 for calculating the position information of the tip of the head, a lock-in amplifier 13 for coupling the arithmetic circuit and the precision base control circuit 12 (oscillation information from the oscillator 6 is input), and PZT for moving the precision base A PZT driver 14 for driving the element 3, a computer 15 for sending precise movement information to the PZT driver based on control information from the precision base control circuit, and information on the state of the tip of the micropipette output from the computer It is comprised from the display 16 displayed as information.

図2は、本発明の基板上に微小物質を堆積させる方法を実施するために有利に利用できる電極付きマイクロピペットの構成と、微小物質の堆積の原理を説明する図である。マイクロピペット4の内部には外部電源と接続した電極(たとえば、ワイヤ状電極)17が備えられている。電極17と基台2とは、電源を介して電気的に接続しており、必要な時に、電極17と基台2との間に電圧が印加されるようになっている。   FIG. 2 is a diagram illustrating the configuration of a micropipette with electrodes that can be advantageously used to carry out the method of depositing a micromaterial on the substrate of the present invention, and the principle of the micromaterial deposition. An electrode (for example, a wire electrode) 17 connected to an external power source is provided inside the micropipette 4. The electrode 17 and the base 2 are electrically connected via a power source, and a voltage is applied between the electrode 17 and the base 2 when necessary.

図2は、図1の走査型マイクロピペットプローブ顕微鏡装置を操作してマイクロピペット4の先端部を基板1の表面に近接して配置した状態を示している。   FIG. 2 shows a state in which the tip of the micropipette 4 is arranged close to the surface of the substrate 1 by operating the scanning micropipette probe microscope apparatus of FIG.

本発明の基板上に微小物質を堆積させる方法は、図1と図2に示した装置を用いることにより有利に実施することができるので、次に図1と図2を参照しながら、本発明の方法を詳しく説明する。   Since the method of depositing a minute substance on the substrate of the present invention can be advantageously performed by using the apparatus shown in FIGS. 1 and 2, the present invention will be described with reference to FIGS. The method will be described in detail.

走査型マイクロピペットプローブ顕微鏡装置自体は、既に市販されており、市販の製品を購入するか、あるいは自作することにより用意することができる。ただし、本発明で用いるマイクロピペットは、その先端の開口部の内径が1μm以下、特に200nm程度あるいはそれ以下の非常に細いガラス管であるところから、通常は、キャピラリーガラス管と呼ばれる細いガラス管(たとえば、外径1.0mm、内径0.6mm)をマイクロプペットプラーと呼ばれる加熱装置を用いて熱引き操作をすることにより作製する。   The scanning micropipette probe microscope apparatus itself is already on the market, and can be prepared by purchasing a commercially available product or making it yourself. However, since the micropipette used in the present invention is a very thin glass tube having an inner diameter of the opening at the tip of 1 μm or less, particularly about 200 nm or less, it is usually a thin glass tube called a capillary glass tube ( For example, an outer diameter of 1.0 mm and an inner diameter of 0.6 mm are manufactured by performing a heat pulling operation using a heating device called a micro puppet puller.

次に、マイクロピペットにワイヤー電極17のような電極を図2のように装着し、このようにして製作した電極付きマイクロピペットに試料液を入れる。試料液は、カーボンナノチューブ、蛋白質粒子、DNA粒子、金属もしくは非金属の微粒子などの様々な種類のナノスケールの微小物質を純水などの水性媒体に分散した分散液である。一般に、金属ナノ微粒子に代表される微小物質は、水性媒体に分散させ、コロイダル溶液とした場合に、プラスまたはマイナスに帯電する。従って、試料液中の微小物質は特に帯電のための処理を施さなくても良い場合が多いが、必要に応じて公知の帯電処理を施してもよい。   Next, an electrode such as the wire electrode 17 is attached to the micropipette as shown in FIG. 2, and the sample solution is put into the micropipette with an electrode thus manufactured. The sample liquid is a dispersion liquid in which various kinds of nano-scale minute substances such as carbon nanotubes, protein particles, DNA particles, metal or non-metal fine particles are dispersed in an aqueous medium such as pure water. In general, a fine substance typified by metal nanoparticles is charged positively or negatively when dispersed in an aqueous medium to form a colloidal solution. Therefore, the minute substance in the sample solution does not necessarily need to be subjected to a treatment for charging in many cases, but may be subjected to a known charging treatment if necessary.

次いで、試料液を充填した電極付きマイクロピペット4を図1の励振用PZT振動子5に装着する。図1の装置では、発振器6からの信号に従って、励振用PZT振動子5にて振動が発生し、この振動がマイクロピペット4の先端部に伝達され、そのマイクロピペット先端部が横方向に僅かに(例えば、振動振幅が2〜3nmにて)振動する。このマイクロピペットの振動下にある先端部にレーザダイオード7から発射され、レンズ8でさらに集束されたレーザ光を照射し、この先端部を透過する、あるいは先端部により回折するレーザ光を二分割フォトダイオード9で受光して電気信号に変換し、この信号は、電流電圧回路10、演算回路11、ロックインアンプ13、そして制御回路12を経て必要な電気的な処理が施され、コンピュータ15に入力される。そして、マイロピペット先端部の状態がディスプレイ16にてリアルタイムに画像化される。このマイロピペット先端部の画像を確認しながら、PZTドライバ14により、精密移動用PZT素子3を駆動させ、精密基台2を、縦横および高さ方向(すなわち、XYZ方向)に精密に移動させ、基板1の表面の所望の位置に、マイクロピペット4の先端部を接近させる。なお、PZT振動子5から印加された振動エネルギーにより横方向に僅かに振動するマイクロピペット4の先端部には、基板1への接近につれて、シェアーフォースがかかり、このため、該先端部の振動は弱くなる。そして、マイクロピペットの先端部が基板1の表面に接触するか、あるいはほぼ接触状態に近くなると、マイクロピペット先端部の振動は消失する。   Next, the electrode-equipped micropipette 4 filled with the sample solution is attached to the excitation PZT vibrator 5 shown in FIG. In the apparatus of FIG. 1, vibration is generated in the excitation PZT vibrator 5 according to the signal from the oscillator 6, and this vibration is transmitted to the tip of the micropipette 4, and the tip of the micropipette is slightly in the lateral direction. It vibrates (for example, at a vibration amplitude of 2 to 3 nm). A laser beam emitted from a laser diode 7 and irradiated with a laser beam further focused by a lens 8 is irradiated onto the tip portion under the vibration of the micropipette and transmitted through the tip portion or diffracted by the tip portion. Light is received by the diode 9 and converted into an electrical signal. This signal is subjected to necessary electrical processing through the current / voltage circuit 10, the arithmetic circuit 11, the lock-in amplifier 13, and the control circuit 12, and is input to the computer 15. Is done. Then, the state of the tip of the myro pipette is imaged in real time on the display 16. While confirming the image of the micropipette tip, the PZT driver 14 drives the precision moving PZT element 3 to precisely move the precision base 2 in the vertical and horizontal directions and in the height direction (that is, the XYZ directions) The tip of the micropipette 4 is brought close to a desired position on the surface of the substrate 1. The tip of the micropipette 4 that slightly vibrates in the lateral direction due to the vibration energy applied from the PZT vibrator 5 is subjected to a shear force as it approaches the substrate 1. become weak. When the tip of the micropipette comes into contact with the surface of the substrate 1 or is almost in contact, the vibration of the tip of the micropipette disappears.

マイクロピペット4の先端部が基板1に接触あるいは略接触した状態(図2に示す状態)で、精密基台2とワイヤー電極17の間に電圧を印加する(極は、試料液中の微小物質粒子の電荷を考慮して決める)と、試料液中の荷電微粒子は電気泳動により、基板1の表面に向って移動し、次いで、マイクロピペットの先端部から排出され基板1の表面に堆積するようになる。このような操作により、所望量の荷電微粒子を所望の位置にさせることができる。基板1の表面に堆積した微粒子の状態は、ディスプレイ16により観察することができる。ついで、コンピュータ15よりPZTドライバ14に精密基台2の移動情報を送信して、精密基台2を改めて、縦横および高さ方向(XYZ)方向に精密に移動させ、基板1の表面の別の所望の位置に、マイクロピペット4の先端部を接近させて、上記と同様な操作を行なう。   A voltage is applied between the precision base 2 and the wire electrode 17 while the tip of the micropipette 4 is in contact with or substantially in contact with the substrate 1 (as shown in FIG. 2) (the pole is a minute substance in the sample solution) The charged fine particles in the sample solution move toward the surface of the substrate 1 by electrophoresis, and then are discharged from the tip of the micropipette and deposited on the surface of the substrate 1. become. By such an operation, a desired amount of charged fine particles can be brought to a desired position. The state of the fine particles deposited on the surface of the substrate 1 can be observed by the display 16. Next, the movement information of the precision base 2 is transmitted from the computer 15 to the PZT driver 14, and the precision base 2 is moved again in the vertical and horizontal directions and in the height direction (XYZ) direction. The tip of the micropipette 4 is brought close to a desired position, and the same operation as described above is performed.

従って、上記の操作を繰り返すことにより、基板の表面の所望の位置に所望の量の微小物質を堆積させることが可能になる。   Therefore, by repeating the above operation, it is possible to deposit a desired amount of minute substance at a desired position on the surface of the substrate.

本発明の基板上に微小物質を堆積させる方法を実施するために有利に利用できる走査型マイクロピペットプローブ顕微鏡装置の基本構成を説明する図である。It is a figure explaining the basic composition of the scanning micropipette probe microscope apparatus which can be used advantageously in order to carry out the method of depositing a minute substance on the substrate of the present invention. 本発明の基板上に微小物質を堆積させる方法を実施するために有利に利用できる電極付きマイクロピペットの構成と、微小物質の堆積の原理を説明する図である。It is a figure explaining the structure of the micropipette with an electrode which can be advantageously utilized in order to implement the method to deposit a micromaterial on the board | substrate of this invention, and the principle of deposition of a micromaterial.

符号の説明Explanation of symbols

1 基板
2 精密基台
3 PZT素子
4 マイクロピペット(プローブ)
5 励振用PZT振動子
6 発振器
7 レーザダイオード
8 集束レンズ
9 二分割フォトデテクタ
10 電流電圧変換器
11 演算回路
12 制御回路
13 ロックインアンプ
14 PZTドライバ
15 コンピュータ
16 ディスプレイ
17 ワイヤー電極
1 Substrate 2 Precision base 3 PZT element 4 Micropipette (probe)
5 PZT vibrator 6 for excitation 6 Oscillator 7 Laser diode 8 Focusing lens 9 Two-divided photodetector 10 Current-voltage converter 11 Arithmetic circuit 12 Control circuit 13 Lock-in amplifier 14 PZT driver 15 Computer 16 Display 17 Wire electrode

Claims (5)

内部に電極が挿入され、また微小物質を水性液に分散させて得られた帯電状態の微小物質を含む分散液が充填されているマイクロピペットを、その先端部が基板表面に近接するように配置し、次いで、上記電極と基板との間に電界を印加することにより、分散液中の帯電微小物質を基板表面に向けて電気泳動させたのちマイクロピペットの先端部から排出させて基板表面に堆積させることからなる基板上に微小物質を堆積させる方法。   An electrode is inserted inside, and a micropipette filled with a dispersion containing a charged fine substance obtained by dispersing a fine substance in an aqueous liquid is placed so that its tip is close to the substrate surface. Then, by applying an electric field between the electrode and the substrate, the charged fine substance in the dispersion is electrophoresed toward the substrate surface, and then discharged from the tip of the micropipette and deposited on the substrate surface. Depositing a micromaterial on a substrate comprising: マイクロピペットの先端部と基板との間の距離が、マイクロピペットに装着された振動子によりシェアーフォース制御される請求項1に記載の方法。   The method according to claim 1, wherein the distance between the tip of the micropipette and the substrate is shear force controlled by a vibrator attached to the micropipette. マイクロピペットと基板の少なくともいずれか一方を移動可能にして、マイクロピペットと基板の少なくともいずれか一方の移動により、基板とマイクロピペットの相対位置を任意に変えながら、マイクロピペットの先端部から基板表面の所定位置に微小物質を堆積させる請求項1に記載の方法。   Make at least one of the micropipette and the substrate movable, and move the micropipette from the tip of the micropipette to the substrate surface while changing the relative position of the substrate and micropipette arbitrarily by moving the micropipette and the substrate. The method according to claim 1, wherein a minute substance is deposited at a predetermined position. 請求項1に記載の方法を実施するための内部に電極を備えたマイクロピペット。   A micropipette provided with an electrode inside for carrying out the method according to claim 1. 請求項2に記載の方法を実施するための外部に振動子を備え、かつ内部に電極を備えたマイクロピペット。
A micropipette provided with a vibrator outside and an electrode inside for carrying out the method according to claim 2.
JP2004170125A 2004-06-08 2004-06-08 Method of depositing micro-substance on substrate Pending JP2005349496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004170125A JP2005349496A (en) 2004-06-08 2004-06-08 Method of depositing micro-substance on substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004170125A JP2005349496A (en) 2004-06-08 2004-06-08 Method of depositing micro-substance on substrate

Publications (1)

Publication Number Publication Date
JP2005349496A true JP2005349496A (en) 2005-12-22

Family

ID=35584370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004170125A Pending JP2005349496A (en) 2004-06-08 2004-06-08 Method of depositing micro-substance on substrate

Country Status (1)

Country Link
JP (1) JP2005349496A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008055349A (en) * 2006-08-31 2008-03-13 National Univ Corp Shizuoka Univ Micro substance fixation apparatus and micro substance fixation method
JP2008057011A (en) * 2006-08-31 2008-03-13 National Univ Corp Shizuoka Univ Apparatus and method for depositing film
US7955486B2 (en) 2007-02-20 2011-06-07 The Board Of Trustees Of The University Of Illinois Electrochemical deposition platform for nanostructure fabrication
KR20200090560A (en) * 2019-01-21 2020-07-29 서울대학교산학협력단 Raman analysis apparatus using nanoscale printing apparatus
CN114367319A (en) * 2021-12-30 2022-04-19 江苏大学 Particle control device and method based on low-frequency vibration probe
US11874203B2 (en) 2019-01-21 2024-01-16 Seoul National University R&Db Foundation Nano printing device and Raman analysis apparatus using same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002102504A2 (en) * 2001-06-14 2002-12-27 Imperial College Innovations Ltd. The production of molecular arrays

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002102504A2 (en) * 2001-06-14 2002-12-27 Imperial College Innovations Ltd. The production of molecular arrays

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008055349A (en) * 2006-08-31 2008-03-13 National Univ Corp Shizuoka Univ Micro substance fixation apparatus and micro substance fixation method
JP2008057011A (en) * 2006-08-31 2008-03-13 National Univ Corp Shizuoka Univ Apparatus and method for depositing film
JP4714877B2 (en) * 2006-08-31 2011-06-29 国立大学法人静岡大学 Minute substance fixing device and minute substance fixing method
US7955486B2 (en) 2007-02-20 2011-06-07 The Board Of Trustees Of The University Of Illinois Electrochemical deposition platform for nanostructure fabrication
KR20200090560A (en) * 2019-01-21 2020-07-29 서울대학교산학협력단 Raman analysis apparatus using nanoscale printing apparatus
KR102202437B1 (en) 2019-01-21 2021-01-12 서울대학교산학협력단 Raman analysis apparatus using nanoscale printing apparatus
US11874203B2 (en) 2019-01-21 2024-01-16 Seoul National University R&Db Foundation Nano printing device and Raman analysis apparatus using same
CN114367319A (en) * 2021-12-30 2022-04-19 江苏大学 Particle control device and method based on low-frequency vibration probe
CN114367319B (en) * 2021-12-30 2023-10-10 江苏大学 Particle control device and method based on low-frequency vibration probe

Similar Documents

Publication Publication Date Title
Tseng Advancements and challenges in development of atomic force microscopy for nanofabrication
JP4452278B2 (en) Probe device
US9128078B2 (en) Manufacturable sub-3 nanometer palladium gap devices for fixed electrode tunneling recognition
JP2005069851A (en) Scanning probe microscope and scanning method
JP2008012656A (en) Microfabrication powder removing device, microfabrication device, and microfabrication powder removing method
WO2013128933A1 (en) Ionization method, mass spectrometry method, extraction method, and purification method
JPH0642953A (en) Interatomic force microscope
JP2005349496A (en) Method of depositing micro-substance on substrate
WO2007079411A2 (en) Alignment, transportation and integration of nanowires using optical trapping
JP3190623B2 (en) How to sharpen the probe
JP4714877B2 (en) Minute substance fixing device and minute substance fixing method
JP4660772B2 (en) Specimen motion control apparatus, specimen motion parameter acquisition method, and specimen motion control method
JP2008111735A (en) Sample operation apparatus
JP4645912B2 (en) Biological sample manipulation method
An et al. Position-resolved surface characterization and nanofabrication using an optical microscope combined with a nanopipette/quartz tuning fork atomic force microscope
JP4601000B2 (en) Specific substance observation device and specific substance observation method
JPWO2006087890A1 (en) Electrode pair type non-contact manipulation device and manipulation method
JP4942181B2 (en) Substance supply probe device and scanning probe microscope
JP2004085443A (en) Photometric analyzer, its operation method, and microscope
JP2009019943A (en) Scanning probe microscope
JPH07113634A (en) Probe for scanning probe microscope, manufacture thereof, recording reproducer using probe and fine machining device
JP2000186993A (en) Probe-sharpening method, and probe
KR102202437B1 (en) Raman analysis apparatus using nanoscale printing apparatus
JP2004034277A (en) Micro-machining device and method for manufacturing cantilever using the same
KR101263367B1 (en) Scanning probe microscopy using with electroporation and near-field acoustic wave

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100409

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100803