JP2009019943A - Scanning probe microscope - Google Patents

Scanning probe microscope Download PDF

Info

Publication number
JP2009019943A
JP2009019943A JP2007181736A JP2007181736A JP2009019943A JP 2009019943 A JP2009019943 A JP 2009019943A JP 2007181736 A JP2007181736 A JP 2007181736A JP 2007181736 A JP2007181736 A JP 2007181736A JP 2009019943 A JP2009019943 A JP 2009019943A
Authority
JP
Japan
Prior art keywords
probe
sample
cantilever
movement mechanism
amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007181736A
Other languages
Japanese (ja)
Other versions
JP5014000B2 (en
Inventor
Masato Iyogi
誠人 伊與木
Kazutoshi Watanabe
和俊 渡辺
Yoshiaki Shikakura
良晃 鹿倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Science Corp
Original Assignee
SII NanoTechnology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SII NanoTechnology Inc filed Critical SII NanoTechnology Inc
Priority to JP2007181736A priority Critical patent/JP5014000B2/en
Publication of JP2009019943A publication Critical patent/JP2009019943A/en
Application granted granted Critical
Publication of JP5014000B2 publication Critical patent/JP5014000B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an approaching method of a probe and a sample capable of certainly allowing the probe and the sample to approach each other without damaging the probe and the sample and capable of shortening the time required for approach. <P>SOLUTION: When a cantilever is excited by an exciting mechanism to allow the probe and the sample to approach by a coarse adjustment mechanism while detect the amplitude of the cantilever by a displacement detecting mechanism, the amplitude quantity increased by arbitrary quantity of the cantilever is set in a STEP 3, and the coarse adjustment mechanism is stopped at the point of time when the amplitude quantity set by the displacement detecting mechanism is detected in a STEP 5. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、大気中や真空中において先端に探針を有するカンチレバーとサンプル表面に働く相互作用を検出して距離制御を行いながら、探針とサンプルを微動機構により相対的にスキャンし、サンプルの表面の形状や物理特性の測定やサンプル表面の加工、あるいは、探針によりサンプル表面の物質の移動などを行うための走査型プローブ顕微鏡に関するものである。   The present invention detects the interaction between a cantilever having a probe at the tip and the sample surface in the atmosphere or in a vacuum and controls the distance while controlling the distance between the probe and the sample by a fine movement mechanism. The present invention relates to a scanning probe microscope for measuring a surface shape and physical characteristics, processing a sample surface, or moving a substance on a sample surface with a probe.

従来からある走査型プローブ顕微鏡の構成を図13および図14をもとに説明する(特許文献1参照)。   A configuration of a conventional scanning probe microscope will be described with reference to FIGS. 13 and 14 (see Patent Document 1).

図13は従来からある走査型プローブ顕微鏡の構成図である。従来の走査型プローブ顕微鏡は円筒型圧電素子により構成される3軸微動機構(スキャナ)102の先端にサンプル101が載置され、3軸微動機構はサンプル101と後述するカンチレバー106先端に設けられた探針を近接するために使用される粗動機構(モータ)103上に固定されている。一方、サンプル101の直上には先端に探針を有するカンチレバー106が配置され、該カンチレバー106の基部にはカンチレバー加振用の圧電素子105が配置されている。カンチレバー106の変位はレーザダイオード(LD)104とフォトディテクタ(PD)107から構成される変位検出機構により検出される。この変位検出機構は一般に光てこ法と呼ばれる方法が用いられており、LD104からのレーザ光をカンチレバー背面で反射させてPD107面上に入射させる。カンチレバー106がたわむと、PD107上でのレーザスポットが移動する。PDの検出面は4分割または2分割されており、スポットの移動による各ディテクタ面の出力差によりカンチレバー106の変位検出を行うことが可能となる。   FIG. 13 is a configuration diagram of a conventional scanning probe microscope. In a conventional scanning probe microscope, a sample 101 is placed at the tip of a three-axis fine movement mechanism (scanner) 102 constituted by a cylindrical piezoelectric element, and the three-axis fine movement mechanism is provided at the tip of a sample 101 and a cantilever 106 described later. It is fixed on a coarse movement mechanism (motor) 103 used to bring the probe close. On the other hand, a cantilever 106 having a probe at the tip is disposed immediately above the sample 101, and a piezoelectric element 105 for cantilever excitation is disposed at the base of the cantilever 106. The displacement of the cantilever 106 is detected by a displacement detection mechanism including a laser diode (LD) 104 and a photodetector (PD) 107. This displacement detection mechanism generally uses a method called an optical lever method, and reflects the laser light from the LD 104 on the back surface of the cantilever and makes it incident on the surface of the PD 107. When the cantilever 106 bends, the laser spot on the PD 107 moves. The detection surface of the PD is divided into four or two, and the displacement of the cantilever 106 can be detected by the output difference of each detector surface due to the movement of the spot.

以上のように構成された装置により走査型プローブ顕微鏡の一種である原子間力顕微鏡の測定を行う場合について説明する。圧電素子105によりカンチレバー106を共振周波数近傍で加振しながら変位検出機構によりカンチレバーの振幅や位相を計測し、粗動機構103によりカンチレバー106の探針にサンプル101近接させた後、さらに3軸微動機構102によりカンチレバー106先端の探針とサンプル101間を充分に接近させていく。そうするとサンプルと探針間には、原子間力などの物理的な力が作用し、さらに近接していくとサンプルと探針がカンチレバーの振動に対応して間欠的に接触し、両者に接触力が作用する。この原子間力や接触力により、カンチレバーの振幅や位相が変化する。これらの変化量は、探針とサンプル間の距離に依存するため、カンチレバーの振幅や位相の変化量が常に一定になるように、探針とサンプル間の距離を3軸微動機構102で制御することにより高さ方向の距離制御が行われる。さらに3軸微動機構102によりサンプル101面内で探針106をスキャンすることでサンプル表面の形状像を測定することが出来る。このようにカンチレバーを振動させながら測定する方式は振動方式の原子間力顕微鏡と呼ばれる。   A case where an atomic force microscope, which is a kind of scanning probe microscope, is measured with the apparatus configured as described above will be described. While the cantilever 106 is vibrated in the vicinity of the resonance frequency by the piezoelectric element 105, the amplitude and phase of the cantilever are measured by the displacement detection mechanism, and after the sample 101 is brought close to the probe 101 of the cantilever 106 by the coarse movement mechanism 103, three-axis fine movement is further performed. The mechanism 102 causes the probe at the tip of the cantilever 106 and the sample 101 to approach sufficiently. Then, physical force such as interatomic force acts between the sample and the probe, and when closer, the sample and the probe come into intermittent contact in response to the vibration of the cantilever, and the contact force Act. The atomic force and contact force change the cantilever amplitude and phase. Since these changes depend on the distance between the probe and the sample, the distance between the probe and the sample is controlled by the triaxial fine movement mechanism 102 so that the change in the amplitude and phase of the cantilever is always constant. Thus, distance control in the height direction is performed. Further, the shape image of the sample surface can be measured by scanning the probe 106 within the surface of the sample 101 by the triaxial fine movement mechanism 102. Such a measurement method while vibrating the cantilever is called a vibration-type atomic force microscope.

原子間力顕微鏡では振動方式の他にも、コンタクト方式と呼ばれる方法もある。この方法ではカンチレバーは加振せず、変位検出機構により変位を検出しながら、初め粗動機構で探針とサンプルを近づけ、十分に近づいた後は3軸微動機構により高さ方向の距離制御を行っていく。このとき探針先端には原子間力などの物理的な力が作用し、探針は初め引力を受け、さらに近接させていくと探針は斥力を受ける。これらの引力や斥力によりカンチレバーにたわみが生ずる。この原子間力などの物理的な力は、探針とサンプル間の距離に依存し、探針とサンプルを原子間力が作用する領域内に近接させて、3軸微動機構により2次元平面内で走査させながら、カンチレバーのたわみ量が常に一定になるように、探針とサンプル間の距離を制御することにより、サンプル表面の形状像が画像化される。   An atomic force microscope has a method called a contact method in addition to a vibration method. In this method, the cantilever is not vibrated, and while the displacement is detected by the displacement detection mechanism, the probe and the sample are first brought close to each other by the coarse movement mechanism, and then the distance in the height direction is controlled by the three-axis fine movement mechanism after sufficiently approaching. Go. At this time, a physical force such as an interatomic force acts on the tip of the probe, the probe initially receives an attractive force, and the probe receives a repulsive force as it approaches further. These attractive and repulsive forces cause the cantilever to bend. The physical force such as the interatomic force depends on the distance between the probe and the sample, and the probe and the sample are brought close to the region in which the interatomic force acts, and the three-axis fine movement mechanism is used in a two-dimensional plane. The shape image of the sample surface is imaged by controlling the distance between the probe and the sample so that the deflection amount of the cantilever is always constant while scanning with.

振動方式の原子間力顕微鏡はコンタクト方式の原子間力顕微鏡に比べて、探針やサンプルに与えるダメージが少ないというメリットがある。   The vibration-type atomic force microscope has an advantage that it causes less damage to the probe and the sample than the contact-type atomic force microscope.

また、前記振動方式やコンタクト方式の原子間力顕微鏡の応用として、探針先端とサンプル表面での物理的な作用を検出することにより、電磁気的物性や光学的物性あるいはサンプルの機械的特性などの物理特性の測定も可能である。   In addition, as an application of the vibration type or contact type atomic force microscope, by detecting the physical action at the tip of the probe and the sample surface, electromagnetic properties, optical properties, sample mechanical properties, etc. Measurement of physical properties is also possible.

多くの走査型プローブ顕微鏡の測定は大気中で行われるが、サンプル表面の吸着水の影響を排除したい場合やサンプル表面の温度を可変したい場合、サンプル表面の変質を防ぎたい場合などではカンチレバーとサンプルを真空中に配置して測定が行われる。   Many scanning probe microscope measurements are performed in air, but the cantilever and sample can be used to eliminate the effects of adsorbed water on the sample surface, to change the sample surface temperature, or to prevent sample surface alteration. Are placed in a vacuum and measurements are taken.

また、高分子や細胞、染色体、DNA、たんぱく質などの有機系やバイオ系サンプルの場合には、大気下にさらすとサンプルが変質してしまうため、培養液などの溶液中にサンプルとカンチレバーを浸して測定を行う場合もあり、生体サンプルや有機高分子サンプルなどのin situ観察や、溶液中での電気化学反応を組み合わせた測定などに応用されている。   In addition, in the case of organic or bio-type samples such as macromolecules, cells, chromosomes, DNA, and proteins, the sample will be altered when exposed to the atmosphere. Soak the sample and the cantilever in a solution such as a culture solution. In some cases, it is applied to in-situ observation of a biological sample or an organic polymer sample, or measurement combining an electrochemical reaction in a solution.

ここで、振動方式の原子間力顕微鏡について、図13と図14により探針とサンプルの距離制御方法について説明する。カンチレバー106の振動に対応してPD106で発生する電流信号はプリアンプ108にて増幅されて電圧信号に変換される。プリアンプ108からの出力はRMS-DCコンバータ109に送られて、交流信号が実効値に相当する直流信号に変換される。   Here, regarding the vibration type atomic force microscope, a method for controlling the distance between the probe and the sample will be described with reference to FIGS. 13 and 14. FIG. A current signal generated in the PD 106 in response to the vibration of the cantilever 106 is amplified by the preamplifier 108 and converted into a voltage signal. The output from the preamplifier 108 is sent to the RMS-DC converter 109, where the AC signal is converted into a DC signal corresponding to the effective value.

図14は探針106とサンプル101を近づけていった場合の、距離とカンチレバーの振幅量の関係を表すグラフである。図14で横軸は粗動機構103により探針106とサンプル101を接近させていく時間であり、粗動機構の速度を乗じることで探針とサンプル間の距離に換算される。また縦軸は、RMS-DC変換された電圧信号であり、カンチレバーの振幅量に換算される。縦軸の信号はプラス側に変化した場合、カンチレバーの振幅が減少する方向である。走査型プローブ顕微鏡では、あらかじめ基準値発生部111にて動作点が設定される。探針106とサンプル101を近づける場合には、従来は光学顕微鏡などである程度まで粗動機構103をマニュアル調整で接近させ、その後、振幅量は探針106とサンプル101の距離に依存するため、RMS-DC変換された信号が基準電圧に減少するまで粗動機構103で探針とサンプルを接近させていた。なお、探針とサンプルを接近させる場合には粗動機構103だけではなくて3軸微動機構102の垂直方向微動機構を併用する場合もある。またRMS-DC変換後の電圧を基準信号にする場合の他に、FM復調器115でカンチレバーを加振するための圧電素子105に印加する電圧と、PD107での検出信号の位相差信号を基準信号に設定する場合もある。   FIG. 14 is a graph showing the relationship between the distance and the amplitude of the cantilever when the probe 106 and the sample 101 are brought close to each other. In FIG. 14, the horizontal axis is the time taken for the probe 106 and the sample 101 to approach each other by the coarse movement mechanism 103 and is converted into the distance between the probe and the sample by multiplying the speed of the coarse movement mechanism. The vertical axis represents a voltage signal that has undergone RMS-DC conversion, and is converted into an amplitude amount of the cantilever. When the signal on the vertical axis changes to the plus side, the amplitude of the cantilever decreases. In the scanning probe microscope, the operating point is set in advance by the reference value generator 111. When the probe 106 and the sample 101 are brought close to each other, conventionally, the coarse movement mechanism 103 is manually approached to some extent with an optical microscope or the like, and then the amplitude amount depends on the distance between the probe 106 and the sample 101. -The probe and the sample were brought close to each other by the coarse movement mechanism 103 until the DC-converted signal decreased to the reference voltage. When the probe and the sample are brought close to each other, not only the coarse movement mechanism 103 but also the vertical fine movement mechanism of the three-axis fine movement mechanism 102 may be used in combination. In addition to the case where the voltage after RMS-DC conversion is used as a reference signal, the voltage applied to the piezoelectric element 105 for exciting the cantilever by the FM demodulator 115 and the phase difference signal of the detection signal from the PD 107 are used as a reference. It may be set to a signal.

探針とサンプルを測定エリアまで接近させた後は、カンチレバー106の振幅量が基準値発生部111で設定された動作点になるように探針とサンプル間の距離をフィードバックすることで両者の距離が一定に制御される。したがって、RMS-DCコンバータ109からの信号と基準値発生部111の信号を、誤差アンプ110で比較して、誤差分に相当する信号をフィードバック回路112で発生させて、高圧アンプ117を経由して3軸微動機構102の垂直方向微動機構に誤差に相当する高さ分だけ電圧が印加される。またフィードバック回路112からの出力はA/D変換器113によりアナログ信号からデジタル信号に変換されて制御用のパソコン114に送られて高さ情報として画像化される。また、3軸微動機構102はスキャンジェネレータ118で発生されるラスタスキャン信号を高圧アンプ119で増幅して3軸微動機構102の水平方向微動機構に印加される。これらのラスタスキャン信号と、高さ情報をパソコン114で画像化することでサンプル101の形状像を得ることが出来る。
特開2007−33321号公報
After the probe and the sample are brought close to the measurement area, the distance between the probe and the sample is fed back by feeding back the distance between the probe and the sample so that the amplitude of the cantilever 106 becomes the operating point set by the reference value generator 111. Is controlled to be constant. Therefore, the signal from the RMS-DC converter 109 and the signal of the reference value generator 111 are compared by the error amplifier 110, and a signal corresponding to the error is generated by the feedback circuit 112, via the high-voltage amplifier 117. A voltage is applied to the vertical fine movement mechanism of the three-axis fine movement mechanism 102 by a height corresponding to the error. The output from the feedback circuit 112 is converted from an analog signal to a digital signal by the A / D converter 113 and sent to the control personal computer 114 to be imaged as height information. The triaxial fine movement mechanism 102 amplifies a raster scan signal generated by the scan generator 118 by a high-voltage amplifier 119 and applies the amplified signal to the horizontal fine movement mechanism of the triaxial fine movement mechanism 102. A shape image of the sample 101 can be obtained by imaging these raster scan signals and height information with the personal computer 114.
JP 2007-33321 A

このように構成された走査型プローブ顕微鏡では、探針とサンプルを近接させる技術が非常に重要である。すなわち、探針とサンプルを近接させるときに両者が衝突すると探針先端やサンプル表面が破損し、形状像測定時の分解能の低下や、サンプルの損傷が発生してしまう。また、粗動機構のスピードを遅くして、より慎重に探針とサンプルを近接させる場合には、両者の近接のために多くの時間を費やしてしまい測定効率が悪化する。   In the scanning probe microscope configured as described above, a technique for bringing a probe and a sample close to each other is very important. That is, if the probe and the sample collide when they are brought close to each other, the tip of the probe and the sample surface are damaged, resulting in a decrease in resolution during shape image measurement and damage to the sample. In addition, when the speed of the coarse movement mechanism is reduced and the probe and the sample are brought closer to each other more carefully, a lot of time is consumed for the proximity of the two and the measurement efficiency is deteriorated.

また、探針とサンプルを接近させる場合には、数10μm程度まで近づくと、サンプル表面とカンチレバー間に挟まれた領域での空気による減衰のためにカンチレバーの振幅が徐々に減少するが、特に真空中で測定を行う場合には、この空気による減衰が起きず、サンプルと探針が数10nmの領域まで近づいた後、振幅が急激に変化するため粗動機構を止めることが難しく、探針とサンプルを衝突させずに近接させることがより困難である。
探針やサンプルの近接の際のダメージを低減させ、しかも近接に要する時間を短くするためには探針とサンプルが衝突しない領域内で直前まで粗動機構により高速で近接させて、その後探針とサンプルが接触するときには垂直方向微動機構により低速で動作させることが望ましい。
Further, when the probe and the sample are brought close to each other, when approaching to several tens of μm, the amplitude of the cantilever gradually decreases due to attenuation by air in the region sandwiched between the sample surface and the cantilever. When measuring in the air, this air attenuation does not occur, and after the sample and the probe approach to the region of several tens of nm, the amplitude changes abruptly, so it is difficult to stop the coarse movement mechanism. It is more difficult to bring the samples close together without colliding.
In order to reduce the damage when the probe and the sample are close to each other and reduce the time required for the proximity, the probe and the sample are brought close to each other at high speed in the area where the probe and the sample do not collide with each other at a high speed. When the sample and the sample come into contact with each other, it is desirable to operate at a low speed by a vertical fine movement mechanism.

したがって、本発明の目的は、探針がサンプルに接触してダメージを受け探針先端の破損による分解能の低下や、サンプルの損傷の発生がなく、さらに、短時間でアプローチ動作が完了するように粗動機構により探針とサンプルを高速に動作させて両者が接触する直前で確実に粗動機構を停止させるような探針とサンプルの近接方法を提供することである。   Therefore, the object of the present invention is that the probe is damaged by contact with the sample, the resolution is not lowered due to breakage of the probe tip, the sample is not damaged, and the approach operation is completed in a short time. It is an object to provide a method for bringing a probe and a sample close together such that the probe and the sample are moved at a high speed by the coarse movement mechanism and the coarse movement mechanism is surely stopped immediately before the probe and the sample come into contact with each other.

本発明は、前記課題を解決するために以下の手段を提供する。   The present invention provides the following means in order to solve the above problems.

本発明では、先端に探針を有するカンチレバーと、前記カンチレバーの変位を検出するための変位検出機構と、前記探針に対向した位置に配置されたサンプルと前記探針との距離を調整するための垂直方向微動機構と、前記探針と前記サンプルを近接させるための粗動機構から構成される走査型プローブ顕微鏡において、前記変位検出機構によりカンチレバーの変位を検出しながら、前記粗動機構により探針とサンプルを近接させるときに、前記カンチレバーがサンプル表面に引き寄せられる方向に生じる任意のたわみ量を設定し、前記変位検出機構により設定されたたわみ量を検出した時点で、前記粗動機構を停止させ探針とサンプルを近接させるようにした。   In the present invention, a cantilever having a probe at the tip, a displacement detection mechanism for detecting the displacement of the cantilever, and a distance between a sample disposed at a position facing the probe and the probe are adjusted. A scanning probe microscope comprising a vertical fine movement mechanism and a coarse movement mechanism for bringing the probe and the sample close to each other, while detecting the displacement of the cantilever by the displacement detection mechanism, When the needle and sample are brought close to each other, the amount of deflection that occurs in the direction in which the cantilever is pulled toward the sample surface is set, and when the amount of deflection set by the displacement detection mechanism is detected, the coarse movement mechanism is stopped. The probe and the sample were brought close to each other.

さらに、前記カンチレバーがサンプル表面に引き寄せられる方向に生じる任意のたわみ量と、前記方向とは逆方向に生じる任意のたわみ量をそれぞれ設定し、前記変位検出機構によりカンチレバーの変位を検出しながら、前記粗動機構により探針とサンプルを近接させるときに、前記2つの設定されたたわみ量のうちどちらか一方のたわみ量が前記変位検出機構で最初に検出された時点で、前記粗動機構を停止させるようにした。   Further, an arbitrary deflection amount generated in the direction in which the cantilever is attracted to the surface of the sample and an arbitrary deflection amount generated in a direction opposite to the direction are set, and the displacement detection mechanism detects the displacement of the cantilever, When the probe and the sample are brought close to each other by the coarse movement mechanism, the coarse movement mechanism is stopped when one of the two set deflection amounts is first detected by the displacement detection mechanism. I tried to make it.

さらに、粗動機構により探針とサンプルを接近させる前に粗動機構を停止させるための前記カンチレバーの任意のたわみ量を設定し、前記設定されたたわみ量で粗動機構による近接動作が停止した後に、走査型プローブ顕微鏡の測定のための任意のたわみ量を再設定するようにした。   Furthermore, an arbitrary deflection amount of the cantilever for stopping the coarse movement mechanism is set before the probe and the sample are brought close to each other by the coarse movement mechanism, and the proximity operation by the coarse movement mechanism is stopped at the set deflection amount. Later, an arbitrary amount of deflection for the measurement with the scanning probe microscope was reset.

また、本発明では先端に探針を有するカンチレバーと、前記カンチレバーを加振するための加振機構と、前記カンチレバーの変位を検出するための変位検出機構と、前記探針に対向した位置に配置されたサンプルと前記探針との距離を調整するための垂直方向微動機構と、前記探針と前記サンプルを近接させるための粗動機構から構成される走査型プローブ顕微鏡において、前記加振機構により前記カンチレバーを加振し、前記変位検出機構によりカンチレバーの振幅を検出しながら、前記粗動機構により探針とサンプルを近接させるときに、前記カンチレバーの振幅が任意の量だけ増加した振幅量を設定し、前記変位検出機構により設定された振幅量を検出した時点で、前記粗動機構を停止させ探針とサンプルを近接させるようにした。   In the present invention, a cantilever having a probe at the tip, an excitation mechanism for exciting the cantilever, a displacement detection mechanism for detecting displacement of the cantilever, and a position facing the probe In a scanning probe microscope comprising a vertical fine movement mechanism for adjusting the distance between the prepared sample and the probe, and a coarse movement mechanism for bringing the probe and the sample close to each other, the excitation mechanism When the cantilever is vibrated and the amplitude of the cantilever is detected by the displacement detection mechanism, the amplitude of the cantilever is increased by an arbitrary amount when the probe and sample are brought close to each other by the coarse movement mechanism. Then, when the amplitude amount set by the displacement detection mechanism is detected, the coarse movement mechanism is stopped and the probe and the sample are brought close to each other.

さらに、前記カンチレバーの振幅が任意の量だけ増加した振幅量と、任意の量だけ減少した振幅量とをそれぞれ設定し、前記変位検出機構によりカンチレバーの振幅を検出しながら、前記粗動機構により探針とサンプルを近接させ、前記2つの設定された振幅量のうちどちらか一方の振幅量が前記変位検出機構で最初に検出された時点で、前記粗動機構を停止させるようにした。   Further, an amplitude amount in which the amplitude of the cantilever is increased by an arbitrary amount and an amplitude amount in which the amplitude of the cantilever is decreased by an arbitrary amount are set, respectively, and the coarse detection mechanism detects the amplitude of the cantilever while detecting the amplitude of the cantilever. The needle and the sample are brought close to each other, and the coarse movement mechanism is stopped when one of the two set amplitude quantities is first detected by the displacement detection mechanism.

以上のように粗動機構の停止位置をコンタクト方式のときにカンチレバーがサンプル表面に引き寄せられる領域や、振動方式で振幅が増加する領域に設定することで、従来よりも確実に探針とサンプルが接触する手前で粗動機構を停止させることが出来る。また、手前で停止できるために停止位置までの粗動機構のスピードを従来よりも高速に動作させることが可能となり、近接させるスピードを早くすることが可能となる。   As described above, by setting the stop position of the coarse mechanism to the area where the cantilever is attracted to the sample surface when the contact method is used, or the area where the amplitude is increased using the vibration method, the probe and sample are more reliably attached than before. The coarse movement mechanism can be stopped before the contact. In addition, since it can be stopped before this, the speed of the coarse movement mechanism up to the stop position can be operated faster than before, and the speed of approaching can be increased.

また、コンタクト方式での前記カンチレバーがサンプル表面に引き寄せられる領域や、振動方式での振幅が増加する領域は非常に狭く、測定時の条件や環境によってはこれらの領域内に設定した停止位置が存在しない場合があるが、この場合でもカンチレバーが引き寄せられる場合とは逆方向の任意のたわみ量や振幅が減少する量を粗動機構の停止点に設定することで、万一、初めに設定した停止位置で粗動機構が止まらなかった場合でも次の停止位置で確実に停止させることができるため、カンチレバーがサンプルに強く衝突することを防止することが可能となる。   In addition, the area where the cantilever is attracted to the sample surface by the contact method and the area where the amplitude increases by the vibration method are very narrow, and there are stop positions set in these areas depending on the measurement conditions and environment. Even in this case, by setting the amount of deflection or the amount of amplitude that decreases in the opposite direction to the case where the cantilever is attracted as the stopping point of the coarse motion mechanism, it is possible to stop at the initial setting. Even if the coarse movement mechanism does not stop at the position, it can be surely stopped at the next stop position, so that the cantilever can be prevented from colliding strongly with the sample.

また、粗動機構を停止させるためのたわみ量と、測定の際に設定するたわみ量を別々に設定することで、探針を確実にサンプルに衝突しない位置で停止でき、さらに最適な条件で測定を行うことが可能となる。   In addition, by setting the amount of deflection to stop the coarse movement mechanism and the amount of deflection set at the time of measurement separately, the probe can be stopped at a position where it does not collide with the sample reliably, and measurement is performed under optimal conditions. Can be performed.

また、本発明では、カンチレバーの加振周波数に対する振幅量の特性を測定した際に測定されるカンチレバーの1次の共振周波数を示す共振スペクトル上で、共振周波数よりも低周波数側の任意の位置の周波数でカンチレバーを加振するようにした。
このように設定することで、サンプル表面直前で振幅の増加する領域が広くなり、より確実に探針とサンプルが接触する前に粗動機構を停止することが可能となる。
さらに、カンチレバーの周波数特性を測定した際に測定される共振スペクトルのQ値が制御されるようにした。
Further, in the present invention, on the resonance spectrum indicating the primary resonance frequency of the cantilever that is measured when the characteristics of the amplitude amount with respect to the excitation frequency of the cantilever are measured, an arbitrary position on the lower frequency side than the resonance frequency is measured. The cantilever was vibrated at a frequency.
By setting in this way, the region where the amplitude increases immediately before the sample surface is widened, and the coarse motion mechanism can be stopped more reliably before the probe and the sample come into contact with each other.
Furthermore, the Q value of the resonance spectrum measured when the frequency characteristic of the cantilever is measured is controlled.

また、粗動機構により探針とサンプル接近させる前に前記カンチレバーの周波数特性を測定し動作条件を設定するとともに粗動機構を停止させるための振幅量を設定し、粗動機構による近接動作が終了した後に、探針とサンプルが接触しない位置で、もう一度周波数特性を測定し動作条件を設定するとともに走査型プローブ顕微鏡で測定を行う際の振幅量を設定するようにした。   In addition, the frequency characteristics of the cantilever are measured and the operating conditions are set before the probe is brought close to the sample by the coarse mechanism, and the amplitude amount for stopping the coarse mechanism is set, and the proximity operation by the coarse mechanism is completed. After that, at a position where the probe and the sample do not contact each other, the frequency characteristic is measured once again to set the operating condition, and the amplitude amount when performing the measurement with the scanning probe microscope is set.

一般にQ値が大きいほうが、探針とサンプル間に働く力の検出感度が高くなり、近接させる際にカンチレバーの振幅や位相の変化を感度よく捉えることが可能であるが、Q値が大きすぎると、探針とサンプル間の距離制御を行う場合の追従性が低下し、制御系が発振しやすくなって形状像を測定する際にスキャンスピードを下げる必要がある。したがってアプローチを行う場合のQ値とスキャンを行う場合のQ値は最適な条件が異なる。このようにそれぞれのQ値と駆動周波数、初期振幅量、目標振幅量などの動作条件を別々に設定することで、最適な条件で近接動作と形状像の測定を行うことが可能となる。   In general, the larger the Q value, the higher the detection sensitivity of the force acting between the probe and the sample, and it is possible to capture changes in the amplitude and phase of the cantilever with good sensitivity, but if the Q value is too large When the distance between the probe and the sample is controlled, the followability is lowered, and the control system tends to oscillate, so that it is necessary to reduce the scan speed when measuring the shape image. Therefore, the optimum condition differs between the Q value for the approach and the Q value for the scan. As described above, by separately setting the operating conditions such as the Q value, the driving frequency, the initial amplitude amount, and the target amplitude amount, it is possible to perform the proximity operation and the shape image measurement under the optimum conditions.

また、本発明では、前記たわみ量または振幅の変化に起因する力を探針とサンプル間に働く原子間に加え、静電気力や、磁気力などを活用するようにした。また、静電気力や磁気力などは形状像の測定に必要のない場合には測定時には除去するようにした。このように外力を探針とサンプル間に与えることで、振幅や変位を外部から変化させることができ、より確実に探針とサンプルが接触する前に粗動機構を停止することが可能となる。   In the present invention, the force resulting from the change in the amount of deflection or the amplitude is applied between atoms acting between the probe and the sample, and electrostatic force or magnetic force is utilized. In addition, electrostatic force and magnetic force are removed during measurement when they are not necessary for shape image measurement. By applying an external force between the probe and the sample in this way, the amplitude and displacement can be changed from the outside, and the coarse movement mechanism can be stopped more reliably before the probe and the sample come into contact with each other. .

また、本発明では、前記探針と前記サンプルを真空環境下に配置して、上記の各種の方法で探針とサンプルを近接させるようにした。このようにすることで真空中のように振幅が急激に変化し、探針とサンプルが接触する前に粗動機構を停止することが困難な状況下でもより確実に、接触前に粗動機構を停止することができる。   In the present invention, the probe and the sample are arranged in a vacuum environment, and the probe and the sample are brought close to each other by the various methods described above. In this way, the amplitude of the abrupt changes as in vacuum, and even in situations where it is difficult to stop the coarse adjustment mechanism before the probe and the sample contact, the coarse adjustment mechanism is more reliable before contact. Can be stopped.

なお、本発明では、前記カンチレバーの代わりに先端に探針を有するプローブを用いて、サンプル表面に対して平行な方向に前記探針を加振させて探針とサンプルを近接させてもよい。   In the present invention, instead of the cantilever, a probe having a probe at the tip may be used to vibrate the probe in a direction parallel to the sample surface to bring the probe and the sample close to each other.

また、本発明では、前記探針と前記サンプルを上記のいずれかの近接方法により両者が接触する直前まで近接させた後、更に前記粗動機構または/および前記垂直微動機構により接近または接触させるようにした。このように接近させることで、探針やサンプルにダメージを与えることなくより確実に動作点まで探針をサンプルに近接させることが可能となり、粗動機構のスピードも速くすることができる。   In the present invention, the probe and the sample are brought close to each other just before they come into contact with each other by the approach method described above, and then further approached or brought into contact with the coarse movement mechanism and / or the vertical fine movement mechanism. I made it. By approaching in this way, the probe can be brought closer to the sample to the operating point more reliably without damaging the probe and the sample, and the speed of the coarse movement mechanism can be increased.

また、本発明では上記のいずれかの近接方法を走査型プローブ顕微鏡に適用した。この場合、探針やサンプルへのダメージがない状態で測定が行われるので、走査型プローブ顕微鏡が高分解能での測定が可能となり、さらに近接動作の時間も短縮でき、測定にかかる時間を短縮できる。   In the present invention, any of the proximity methods described above is applied to a scanning probe microscope. In this case, the measurement is performed without damaging the probe and the sample, so that the scanning probe microscope can measure with high resolution, and the time for the proximity operation can be shortened, and the time required for the measurement can be shortened. .

以上のように、本発明の走査型プローブ顕微鏡における探針とサンプルの近接方法では、探針がサンプルに接触する直前で確実に停止できるようにしたため、探針とサンプルを破損することなしに確実に近接させることが可能となる。さらに、近接にかかる時間も短縮することが可能となる。
その結果、走査型プローブ顕微鏡の分解能の低下を防ぐことができ、測定時間の短縮も可能となる。
特に、本発明を真空環境下で使用した場合、本発明の効果はより有効に作用する。
As described above, in the method of approaching the probe and the sample in the scanning probe microscope of the present invention, since the probe can be surely stopped immediately before coming into contact with the sample, the probe and the sample can be reliably damaged without being damaged. It becomes possible to make it close to. Furthermore, the time required for proximity can be shortened.
As a result, the resolution of the scanning probe microscope can be prevented from being lowered, and the measurement time can be shortened.
In particular, when the present invention is used in a vacuum environment, the effects of the present invention are more effective.

以下、本発明を実施するための最良の形態について、図面を参照して詳細に説明する。   Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the drawings.

図1は大気中で用いられる走査型プローブ顕微鏡の概観図である。本実施例では、先端に探針1を有するシリコン製のカンチレバー2がカンチレバーホルダ3に固定されている。カンチレバーホルダ3にはカンチレバー2を加振するための圧電素子よりなる振動子4が取り付けられている。振動方式の走査型プローブ顕微鏡として用いる場合には、振動子4を構成する圧電素子に交流電圧を印加して振動子4を振動させることで、カンチレバー2を振動させる。また、コンタクト方式の走査型プローブ顕微鏡として用いる場合には振動子4には電圧を印加せずにカンチレバー2の加振は行わない。   FIG. 1 is a schematic view of a scanning probe microscope used in the atmosphere. In this embodiment, a silicon cantilever 2 having a probe 1 at the tip is fixed to a cantilever holder 3. The cantilever holder 3 is attached with a vibrator 4 made of a piezoelectric element for exciting the cantilever 2. When used as a vibration type scanning probe microscope, the cantilever 2 is vibrated by applying an alternating voltage to a piezoelectric element constituting the vibrator 4 to vibrate the vibrator 4. Further, when used as a contact-type scanning probe microscope, no voltage is applied to the vibrator 4 and the cantilever 2 is not excited.

前記カンチレバー2の変位を検出するための変位検出機構5は、半導体レーザ6と表面が2分割されたフォトディテクタ7から構成され、一般に光てこ法と呼ばれる方式でカンチレバー2の変位検出が行われる。まず、半導体レーザ6の光を集光しカンチレバー2の背面に照射する。カンチレバー2の背面で反射した光は、フォトディテクタ7の検出面に入射する。カンチレバー2がたわんだ場合にはフォトディテクタ7面内でスポットが上下に移動する。このとき分割された検出面の信号強度差を検出することで変位の検出が行われる。なお、探針1とサンプル8間の摩擦力測定などを行う場合にカンチレバー2のねじれ角の検出を行ったり、後述する振動方式でねじり振動による測定を行う場合には4分割のフォトディテクタを用いる場合もある。   The displacement detection mechanism 5 for detecting the displacement of the cantilever 2 includes a semiconductor laser 6 and a photodetector 7 whose surface is divided into two, and the displacement detection of the cantilever 2 is performed by a method generally called an optical lever method. First, the light of the semiconductor laser 6 is collected and irradiated on the back surface of the cantilever 2. The light reflected from the back surface of the cantilever 2 enters the detection surface of the photodetector 7. When the cantilever 2 is bent, the spot moves up and down within the surface of the photodetector 7. At this time, the displacement is detected by detecting the signal intensity difference between the divided detection surfaces. When detecting the torsion angle of the cantilever 2 when measuring the frictional force between the probe 1 and the sample 8, or when using a quadrant photodetector when measuring by the torsional vibration by the vibration method described later There is also.

サンプル8は、円筒型圧電素子からなる3軸微動機構9の先端に設けられたサンプルホルダ12上に載置される。このときサンプルホルダ12は探針1と対向するように設置されている。   The sample 8 is placed on a sample holder 12 provided at the tip of a triaxial fine movement mechanism 9 made of a cylindrical piezoelectric element. At this time, the sample holder 12 is installed so as to face the probe 1.

3軸微動機構9は、サンプルホルダ12上に置かれたサンプル8をサンプル面内(XY平面)方向に走査する水平方向微動機構(XY微動機構)10と、サンプル面内と垂直な方向(Z方向)に微動する垂直方向微動機構(Z微動機構)11を有している。
3軸微動機構9の末端は、粗動機構13に取り付けられる。粗動機構13は、ステッピングモータと送りネジにより構成され、サンプル8を探針1の方向(Z方向)に移動させることが可能である。
The triaxial fine movement mechanism 9 includes a horizontal fine movement mechanism (XY fine movement mechanism) 10 that scans the sample 8 placed on the sample holder 12 in the sample plane (XY plane) direction, and a direction perpendicular to the sample plane (Z A vertical fine movement mechanism (Z fine movement mechanism) 11 that finely moves in the direction).
The end of the triaxial fine movement mechanism 9 is attached to the coarse movement mechanism 13. The coarse movement mechanism 13 is composed of a stepping motor and a feed screw, and can move the sample 8 in the direction of the probe 1 (Z direction).

また、カンチレバー2の上方にはカンチレバー2やサンプル8表面を観察するために光学顕微鏡14が設けられている。この光学顕微鏡14は変位検出機構5のレーザスポットをカンチレバー2背面に位置合わせする際や、サンプル8の測定箇所に探針1を位置決めする場合などに用いられる。   An optical microscope 14 is provided above the cantilever 2 to observe the cantilever 2 and the surface of the sample 8. The optical microscope 14 is used when the laser spot of the displacement detection mechanism 5 is aligned with the back surface of the cantilever 2 or when the probe 1 is positioned at the measurement location of the sample 8.

次に、本実施例の装置によりコンタクト方式で走査型プローブ顕微鏡の測定を行う場合の動作について説明する。
まず、変位検出機構5の半導体レーザ6をLDドライバ16により発振させて、レーザスポットを光学顕微鏡14の像を見ながらカンチレバー2の背面に位置合わせする。カンチレバー2背面で反射したレーザ光はフォトディテクタ7に入射し、フォトディテクタ7の信号はプリアンプ15を経由してコントローラ20に送られカンチレバー2の変位が検出される。
Next, the operation when the scanning probe microscope is measured by the contact method using the apparatus of this embodiment will be described.
First, the semiconductor laser 6 of the displacement detection mechanism 5 is oscillated by the LD driver 16 and the laser spot is aligned with the back surface of the cantilever 2 while viewing the image of the optical microscope 14. The laser beam reflected from the back surface of the cantilever 2 is incident on the photo detector 7, and a signal from the photo detector 7 is sent to the controller 20 via the preamplifier 15 to detect the displacement of the cantilever 2.

次に、探針1とサンプル8を粗動機構13や垂直方向微動機構11により測定点まで近接させる。この近接させる方法の詳細は後述する。
コントローラ20では動作点が任意のカンチレバー2のたわみ量として設定される。探針1とサンプル8間距離が変わった場合にはカンチレバー2のたわみ量が変化する。このとき、たわみ量が一定となるように、コントローラ20からピエゾドライバ18を経由して垂直方向微動機構11に電圧が印加されてフィードバック制御が行われ探針1とサンプル8間距離が一定に保たれる。
Next, the probe 1 and the sample 8 are brought close to the measurement point by the coarse movement mechanism 13 and the vertical fine movement mechanism 11. Details of the approaching method will be described later.
In the controller 20, the operating point is set as an arbitrary deflection amount of the cantilever 2. When the distance between the probe 1 and the sample 8 changes, the deflection amount of the cantilever 2 changes. At this time, a voltage is applied from the controller 20 to the vertical fine movement mechanism 11 via the piezoelectric driver 18 so that the amount of deflection is constant, and feedback control is performed to keep the distance between the probe 1 and the sample 8 constant. Be drunk.

このときコントローラ20から水平方向微動機構10にピエゾドライバ18を介して電圧を印加しラスタスキャンを行うことで、サンプル8表面の形状像の測定が行われる。
ここで、探針1とサンプル8を近接させる方法について図1および図2のフローチャートと図3の探針1とサンプル8間距離とカンチレバー2のたわみ量の関係(一般にフォースカーブと呼ばれる)を用いて詳細に説明する。
At this time, the shape image of the surface of the sample 8 is measured by applying a voltage from the controller 20 to the horizontal fine movement mechanism 10 via the piezo driver 18 and performing a raster scan.
Here, regarding the method of bringing the probe 1 and the sample 8 close to each other, the flowcharts of FIGS. 1 and 2 and the relationship between the distance between the probe 1 and the sample 8 and the deflection amount of the cantilever 2 (generally called a force curve) are used. Will be described in detail.

STEP1:光学顕微鏡14の直上からの像や、正面から目視あるいは正面からの光学顕微鏡(図示せず)などでの観察により、探針1とサンプル8を大まかに接近させる。   STEP 1: The probe 1 and the sample 8 are roughly brought close to each other by an image from directly above the optical microscope 14, a visual observation from the front, or an observation with an optical microscope (not shown) from the front.

STEP2:粗動機構13の動作停止点(SP+)を設定する。動作停止点は変位検出機構5で検出される任意の変位量である。ここで、動作停止点の設定方法を図3のフォースカーブにより説明する。探針1とサンプル8間距離が十分離れている状態(A)から、探針1とサンプル8を接近させていくとまず探針1に引力が作用してカンチレバー2がサンプル8側に引き寄せられる方向にたわむ(B)。このときの変位検出機構5で出力される電圧の符号を仮にプラス側と定義する。さらに接近させていくと、探針1には斥力が作用し、カンチレバー2はサンプル8側と逆方向にたわむ(C)。このときの変位検出機構5からの出力を仮にマイナスと定義する。通常、走査型プローブ顕微鏡の測定を行う際の動作点はこの斥力領域(マイナス電圧側)に設定される。図3では、この測定時の動作点の探針1とサンプル8間距離を0としている。さらに探針1とサンプル8間距離を近づけた後、今度は探針1とサンプル8間距離を離していくと、探針1に働く斥力が減少し、たわみ量は0近づく。そのあとサンプル8表面の吸着層などの影響で探針1に引力が働くため、逆方向にたわみ(D)、そのあと探針1とサンプル8間の相互作用力が働かなくなり、カンチレバーのたわみは0となり、元の状態に戻る(E)。本発明では粗動の動作停止点を引力領域であるプラスの電圧を表示する(SP)の位置に設定した。 STEP 2: Set the operation stop point (SP +) of the coarse movement mechanism 13. The operation stop point is an arbitrary amount of displacement detected by the displacement detection mechanism 5. Here, a method of setting the operation stop point will be described with reference to the force curve of FIG. From the state (A) where the distance between the probe 1 and the sample 8 is sufficiently large, when the probe 1 and the sample 8 are brought closer, first, an attractive force acts on the probe 1 and the cantilever 2 is pulled toward the sample 8 side. Bend in the direction (B). The sign of the voltage output by the displacement detection mechanism 5 at this time is defined as the plus side. When further approaching, repulsive force acts on the probe 1, and the cantilever 2 bends in the direction opposite to the sample 8 side (C). The output from the displacement detection mechanism 5 at this time is defined as minus. Usually, the operating point when measuring with a scanning probe microscope is set in this repulsive region (minus voltage side). In FIG. 3, the distance between the probe 1 and the sample 8 at the operating point at the time of measurement is set to zero. If the distance between the probe 1 and the sample 8 is further reduced and then the distance between the probe 1 and the sample 8 is increased, the repulsive force acting on the probe 1 decreases and the deflection amount approaches zero. After that, because the attractive force acts on the probe 1 due to the adsorption layer on the surface of the sample 8, the deflection in the reverse direction (D), and then the interaction force between the probe 1 and the sample 8 does not work, and the deflection of the cantilever is It becomes 0 and returns to the original state (E). In the present invention, the coarse motion stop point is set at a position (SP + ) that displays a positive voltage that is an attractive region.

STEP3:垂直方向微動機構11を縮めた状態に固定し、粗動機構13により探針1とサンプル8間を近づけ、動作停止点(SP+)に到達した時点で、粗動機構13を停止させる。このとき引力領域で停止させることができるため探針1とサンプル8は衝突しておらず衝突直前で止められている。   STEP 3: The vertical fine movement mechanism 11 is fixed in a contracted state, the probe 1 and the sample 8 are brought close to each other by the coarse movement mechanism 13, and the coarse movement mechanism 13 is stopped when the operation stop point (SP +) is reached. At this time, since it can be stopped in the attractive region, the probe 1 and the sample 8 do not collide and are stopped immediately before the collision.

STEP4:測定のための動作点(SP)を設定する。この動作点は通常は斥力領域に設定される。 STEP 4: Set an operating point (SP 0 ) for measurement. This operating point is normally set in the repulsive force region.

STEP5:垂直方向微動機構11のサーボをONにする。そうすると探針1とサンプル8が離れているため、垂直方向微動機構11が伸びる。このとき、垂直方向微動機構11のストロークの範囲に動作点(SP)が入れば近接動作は完了である。もし垂直方向微動機構11がストロークいっぱいまで伸びきってしまった場合には、STEP6に進む。 STEP 5: The servo of the vertical fine movement mechanism 11 is turned ON. Then, since the probe 1 and the sample 8 are separated from each other, the vertical fine movement mechanism 11 extends. At this time, if the operating point (SP 0 ) falls within the stroke range of the vertical fine movement mechanism 11, the proximity operation is completed. If the vertical fine movement mechanism 11 has been fully extended, the process proceeds to STEP6.

STEP6:垂直方向微動機構11と粗動機構13を協調させながら動作点(SP)まで探針1とサンプル8を接近させる。このとき重要なのは探針1とサンプル8が接触した状態で粗動機構13を動作させると探針1が破損してしまうため、粗動機構13を動かす場合には必ず探針1とサンプル8を離した状態で実施する。本実施例では、垂直方向微動機構11を縮め、サーボをロックして、縮めた距離を越えない範囲内で粗動機構13により探針1とサンプル8を接近させて再びサーボをONにする。この動作を繰り返しながら、測定時の動作点に入るようにアプローチ動作を行う。 STEP 6: The probe 1 and the sample 8 are brought close to the operating point (SP 0 ) while coordinating the vertical fine movement mechanism 11 and the coarse movement mechanism 13. At this time, it is important that the probe 1 is damaged if the coarse movement mechanism 13 is operated while the probe 1 and the sample 8 are in contact with each other. Therefore, when the coarse movement mechanism 13 is moved, the probe 1 and the sample 8 are always attached. Carry out in a separated state. In this embodiment, the vertical fine movement mechanism 11 is contracted, the servo is locked, the probe 1 and the sample 8 are brought close to each other by the coarse movement mechanism 13 within a range not exceeding the contracted distance, and the servo is turned on again. While repeating this operation, the approach operation is performed so as to enter the operation point at the time of measurement.

従来は、粗動機構13の動作停止位置(SP)が、測定の際の動作点とほぼ同じ斥力領域に設定されていたため、粗動機構13を停止させるときに探針1とサンプル8が衝突し、探針1先端が破損して形状像測定時の分解能が低下していた。これを防止するために、粗動機構13のスピードを遅くしたり、遠方からSTEP6に記載したような垂直方向微動機構11と粗動機構13の協調動作を繰り返す必要があり、近接に時間がかかっていた。本実施例ではでは粗動機構13の動作点を引力側に設定することで粗動機構13の停止位置が、探針1とサンプル8が衝突しないぎりぎりの位置で確実に停止させることが可能となった。また、探針1とサンプル8が接触状態になる際には粗動機構13は動かさず垂直方向微動機構11の動作で衝撃のないように動作させるようにした。このため、探針1の破損を防止でき形状像の分解能の低下がない。さらに、粗動機構13の速度を早くすることが可能となりアプローチに要する時間を短縮することが可能となった。本実施例では、粗動機構13を停止する位置を測定時の動作点から100nm以下にすることができ、粗動のスピードは従来よりも10倍以上速くすることができた。 Conventionally, since the operation stop position (SP + ) of the coarse movement mechanism 13 is set in the repulsive force region almost the same as the operation point at the time of measurement, the probe 1 and the sample 8 are moved when the coarse movement mechanism 13 is stopped. As a result of collision, the tip of the probe 1 was damaged and the resolution at the time of measuring the shape image was lowered. In order to prevent this, it is necessary to reduce the speed of the coarse movement mechanism 13 or to repeat the cooperative operation of the vertical fine movement mechanism 11 and the coarse movement mechanism 13 as described in STEP 6 from a distance, and it takes a long time to approach. It was. In this embodiment, by setting the operating point of the coarse movement mechanism 13 to the attractive side, the stop position of the coarse movement mechanism 13 can be surely stopped at a position where the probe 1 and the sample 8 do not collide. became. In addition, when the probe 1 and the sample 8 are in contact with each other, the coarse movement mechanism 13 is not moved, and the vertical fine movement mechanism 11 is operated so that there is no impact. For this reason, breakage of the probe 1 can be prevented and the resolution of the shape image is not lowered. Further, the speed of the coarse movement mechanism 13 can be increased, and the time required for the approach can be shortened. In this embodiment, the position at which the coarse movement mechanism 13 is stopped can be set to 100 nm or less from the operating point at the time of measurement, and the coarse movement speed can be increased 10 times or more than the conventional speed.

なお、本実施例では粗動機構13の停止位置(SP)を引力側すなわち、変位検出機構の出力がプラス側になるように設定したが、測定条件や測定環境によっては引力が小さかったり引力領域が存在しない場合もある。このとき粗動機構13が停止できずに探針とサンプルが激しく衝突し、探針1のみにとどまらず、カンチレバー2やサンプル8あるいは装置を破損してしまう恐れがある。これを防止するために、本実施例では粗動機構13の停止位置を引力領域に加えて斥力領域(変位検出機構5の出力がマイナス側)にも設定した(SP)。斥力領域の設定値は探針1の破損をできるだけ軽減するために、測定時の動作点(SP)よりも弱めに設定することが望ましい。 In this embodiment, the stop position (SP + ) of the coarse movement mechanism 13 is set so as to be on the attractive side, that is, the output of the displacement detection mechanism is on the positive side. However, depending on the measurement conditions and measurement environment, the attractive force may be small or The area may not exist. At this time, the coarse movement mechanism 13 cannot be stopped, and the probe and the sample collide violently, and there is a possibility that the cantilever 2, the sample 8, or the apparatus may be damaged. In order to prevent this, in the present embodiment, the stop position of the coarse movement mechanism 13 is set in the repulsive force region (the output of the displacement detection mechanism 5 is on the negative side) in addition to the attractive force region (SP ). In order to reduce damage to the probe 1 as much as possible, it is desirable to set the repulsive force region to be weaker than the operating point (SP 0 ) at the time of measurement.

本発明の第2の実施例として振動方式の走査型プローブ顕微鏡で測定を行う場合の探針とサンプルの近接方法を図1の走査型プローブ顕微鏡の概観図を参照して説明する。振動方式の走査型プローブ顕微鏡の装置構成は実施例1の図1と同じなので重複する部分は説明を省略する。振動方式の場合には振動子4の圧電素子に電圧が印加されて、カンチレバー2を振動させて、変位検出機構5が検出される。   As a second embodiment of the present invention, a method of approaching a probe and a sample when measurement is performed with a vibration type scanning probe microscope will be described with reference to an overview of the scanning probe microscope of FIG. The apparatus configuration of the vibration type scanning probe microscope is the same as that of FIG. In the case of the vibration system, a voltage is applied to the piezoelectric element of the vibrator 4 to vibrate the cantilever 2 and the displacement detection mechanism 5 is detected.

振動方式の走査型プローブ顕微鏡ではまず、図4に示した、Qカーブと呼ばれるカンチレバー2の周波数特性が測定される。図4で横軸は加振周波数、縦軸は振幅量である。最も一般的な振動方式の走査型プローブ顕微鏡では、通常カンチレバー2の1次の共振周波数付近に駆動周波数が設定される。図4は1次の共振周波数付近の共振スペクトルであり、共振点に対して共振スペクトル上で低周波側または高周波側に駆動周波数が設定される。走査型プローブ顕微鏡で測定を行う場合には駆動周波数での振幅量をモニターする。   In the vibration type scanning probe microscope, first, the frequency characteristic of the cantilever 2 called a Q curve shown in FIG. 4 is measured. In FIG. 4, the horizontal axis represents the excitation frequency, and the vertical axis represents the amplitude. In the most general vibration type scanning probe microscope, the drive frequency is usually set near the primary resonance frequency of the cantilever 2. FIG. 4 shows a resonance spectrum near the primary resonance frequency, and the drive frequency is set on the low frequency side or the high frequency side on the resonance spectrum with respect to the resonance point. When measuring with a scanning probe microscope, the amount of amplitude at the drive frequency is monitored.

図5に振動方式の場合の探針サンプル間距離と振幅量の関係(一般にフォースカーブと呼ばれる)を示す。探針1とサンプル8間の距離が近づくと初め、カンチレバー2とサンプル8表面間に存在する空気の抵抗が増加して徐々に振幅が減少する。さらに探針1とサンプル8を接近させるとコンタクト方式の場合と同様に初め探針1は引力を受け、そのあと斥力を受けて、ついには探針1がサンプル8に間欠的に接触するようになり変曲点付近(B、B)を境に、急激に振幅が減少する。この振幅の減衰量は探針1とサンプル8間の距離に依存するため形状像測定時には動作点を設定し、垂直方向微動機構11によりこの動作点の振幅になるように探針1とサンプル8間の距離がフィードバック制御され、水平方向移動機構10でラスタスキャンを行うことで形状像が測定される。 FIG. 5 shows the relationship between the distance between the probe samples and the amplitude amount (generally called a force curve) in the case of the vibration method. As the distance between the probe 1 and the sample 8 approaches, the resistance of air existing between the cantilever 2 and the surface of the sample 8 increases, and the amplitude gradually decreases. Further, when the probe 1 and the sample 8 are brought closer to each other, the probe 1 first receives an attractive force and then receives a repulsive force, and finally the probe 1 comes into intermittent contact with the sample 8 as in the contact method. The amplitude suddenly decreases at the boundary of the inflection point (B 1 , B 2 ). Since the amount of attenuation of this amplitude depends on the distance between the probe 1 and the sample 8, an operating point is set when measuring the shape image, and the probe 1 and the sample 8 are adjusted to have an amplitude at this operating point by the vertical fine movement mechanism 11. The distance between them is feedback-controlled, and the shape image is measured by performing a raster scan with the horizontal movement mechanism 10.

このとき図5に示した低周波側でのフォースカーブを見ると振幅が単調に減少した後、変曲点(B)付近では一瞬振幅が増加する領域が存在する。 At this time, when the force curve on the low frequency side shown in FIG. 5 is seen, there is a region where the amplitude increases momentarily near the inflection point (B 1 ) after the amplitude monotonously decreases.

本発明では、この振幅が増加する領域に粗動機構13の停止位置を設定することで、探針1とサンプル8を衝突直前に確実に止めるようにした。   In the present invention, the stop position of the coarse movement mechanism 13 is set in a region where the amplitude increases, so that the probe 1 and the sample 8 are surely stopped immediately before the collision.

以下に振動方式での走査型プローブ顕微鏡で探針1とサンプル8を近接する手順を図1と図6のフローチャートをもとに説明する。   The procedure for bringing the probe 1 and the sample 8 close to each other with a scanning probe microscope using the vibration method will be described below with reference to the flowcharts of FIGS.

STEP1:光学顕微鏡14の直上からの像や、正面から目視あるいは正面からの光学顕微鏡(図示せず)などでの観察により、探針1とサンプル8を大まかに接近させる。   STEP 1: The probe 1 and the sample 8 are roughly brought close to each other by an image from directly above the optical microscope 14, a visual observation from the front, or an observation with an optical microscope (not shown) from the front.

STEP2:カンチレバー2の振動スペクトルを測定し、1次の共振スペクトル上で共振周波数よりも少し低周波側に駆動周波数を設定し、初期振幅量を定めて駆動周波数でカンチレバーを加振する。   STEP 2: The vibration spectrum of the cantilever 2 is measured, the drive frequency is set slightly lower than the resonance frequency on the primary resonance spectrum, the initial amplitude is determined, and the cantilever is vibrated at the drive frequency.

STEP3:粗動機構13の動作停止点(SP)を設定する。動作停止点(SP)は初期の振幅量よりも振幅が増加した地点を設定する。このとき、低周波側に駆動周波数を設定したときのフォースカーブでの振幅が増加する領域(B)のピークよりも小さい値に動作点を設定する必要がある。この値は実験によりあらかじめ目安をつけておく。本実施例では、(A)点で設定した初期振幅量に対して、1.03倍増加した点を動作停止点に設定した。 STEP 3: Set the operation stop point (SP + ) of the coarse movement mechanism 13. The operation stop point (SP + ) is set to a point where the amplitude has increased from the initial amplitude amount. At this time, it is necessary to set the operating point to a value smaller than the peak of the region (B 1 ) where the amplitude in the force curve increases when the drive frequency is set on the low frequency side. Estimate this value beforehand by experiment. In this embodiment, the point at which the initial amplitude amount set at point (A) is increased 1.03 times is set as the operation stop point.

STEP4:垂直方向微動機構11を縮めた状態に固定した状態で粗動機構13により探針2とサンプル8間を近づけ、動作停止点に到達した時点で、粗動機構13を停止させる。このとき探針1とサンプル8は間欠的に接触をはじめる前の状態であり、探針1とサンプル8は衝突しておらず衝突直前で止められている。   STEP 4: The probe 2 and the sample 8 are brought close to each other by the coarse movement mechanism 13 while the vertical fine movement mechanism 11 is fixed in the contracted state, and when the operation stop point is reached, the coarse movement mechanism 13 is stopped. At this time, the probe 1 and the sample 8 are in a state before intermittent contact is started, and the probe 1 and the sample 8 do not collide and are stopped immediately before the collision.

STEP5:次に測定のための動作点(SP)を設定するため、共振スペクトルを再び測定し、駆動周波数と初期振幅を再設定する。このとき、探針1とサンプル8が近接しすぎていると共振スペクトルを再測定する場合、探針1とサンプル8が衝突してしまう可能性があるため、STEP4のときに、垂直方向圧電素子11を伸ばした状態で固定して粗動を行い、粗動機構13が止まったあと、垂直方向微動機構11を縮めて共振スペクトル測定を行うことで探針1の衝突を防ぐことができる。このあと、測定の状況に応じて任意の動作点(SP)を設定する。 STEP 5: Next, in order to set an operating point (SP 0 ) for measurement, the resonance spectrum is measured again, and the drive frequency and the initial amplitude are reset. At this time, if the resonance spectrum is measured again if the probe 1 and the sample 8 are too close, the probe 1 and the sample 8 may collide with each other. 11 is fixed in the extended state, coarse movement is performed, and after the coarse movement mechanism 13 stops, the vertical fine movement mechanism 11 is contracted to perform resonance spectrum measurement, thereby preventing the probe 1 from colliding. Thereafter, an arbitrary operating point (SP 0 ) is set according to the measurement situation.

STEP6:垂直方向微動機構11のサーボをONにする。そうすると探針1とサンプル8が離れているため、垂直方向微動機構11が伸びる。このとき、垂直方向微動機構11のストロークの範囲に動作点(SP)が入れば近接動作は完了である。もし垂直方向微動機構11がストロークいっぱいまで伸びきってしまった場合には、STEP7に進む。 STEP 6: The servo of the vertical fine movement mechanism 11 is turned on. Then, since the probe 1 and the sample 8 are separated from each other, the vertical fine movement mechanism 11 extends. At this time, if the operating point (SP 0 ) falls within the stroke range of the vertical fine movement mechanism 11, the proximity operation is completed. If the vertical fine movement mechanism 11 has been fully extended, the process proceeds to STEP7.

STEP7:垂直方向微動機構11と粗動機構13を協調させながら動作点(SP)まで探針1とサンプル8を接近させる。このとき重要なのは探針1とサンプル8が接触した状態で粗動機構13を動作させると探針1が破損してしまうため、粗動機構13を動かす場合には必ず探針1とサンプル8を離した状態で実施する。本実施例では、垂直方向微動機構11を縮め、サーボをロックして、縮めた距離を越えない範囲内で粗動機構13により探針1とサンプル8を接近させて再びサーボをONにする。この動作を繰り返しながら、測定時の動作点に入るようにアプローチ動作を行う。 STEP 7: The probe 1 and the sample 8 are brought close to the operating point (SP 0 ) while coordinating the vertical fine movement mechanism 11 and the coarse movement mechanism 13. At this time, it is important that the probe 1 is damaged if the coarse movement mechanism 13 is operated while the probe 1 and the sample 8 are in contact with each other. Therefore, when the coarse movement mechanism 13 is moved, the probe 1 and the sample 8 are always attached. Carry out in a separated state. In this embodiment, the vertical fine movement mechanism 11 is contracted, the servo is locked, the probe 1 and the sample 8 are brought close to each other by the coarse movement mechanism 13 within a range not exceeding the contracted distance, and the servo is turned on again. While repeating this operation, the approach operation is performed so as to enter the operation point at the time of measurement.

従来は、粗動機構13の動作停止位置を、測定の際の動作点とほぼ同じ振幅が減少する領域に設定していたため、粗動機構13を停止させるときに探針1とサンプル8が衝突し、探針1先端が破損して形状像測定時の分解能が低下していた。これを防止するために、粗動機構13のスピードを遅くしたり、遠方からSTEP7に記載したような垂直方向微動機構11と粗動機構13の協調動作を繰り返す必要があり、近接に時間がかかっていた。本実施例では粗動機構13の動作点を振幅が増加する側に設定することで粗動機構13の停止位置が、探針1とサンプル8が衝突しないぎりぎりの位置で確実に停止させることが可能となった。また、探針1とサンプル8が接触状態になる際には粗動機構13は動かさず垂直方向微動機構11の動作で衝撃のないように動作させるようにした。このため、探針1の破損を防止でき形状像の分解能の低下がない。さらに、粗動機構13の速度を早くすることが可能となりアプローチに要する時間を短縮することが可能となった。本実施例では、粗動機構13を停止する位置を測定時の動作点から100nm以下にすることができ、粗動のスピードは従来よりも10倍速くすることができた。   Conventionally, the operation stop position of the coarse movement mechanism 13 has been set in a region where the amplitude is substantially the same as the operation point at the time of measurement, so the probe 1 and the sample 8 collide when the coarse movement mechanism 13 is stopped. However, the tip of the probe 1 was damaged, and the resolution at the time of measuring the shape image was lowered. In order to prevent this, it is necessary to slow down the speed of the coarse movement mechanism 13 or to repeat the cooperative operation of the vertical fine movement mechanism 11 and the coarse movement mechanism 13 as described in STEP 7 from a distance. It was. In the present embodiment, by setting the operating point of the coarse movement mechanism 13 on the side where the amplitude increases, the stop position of the coarse movement mechanism 13 can be surely stopped at a position where the probe 1 and the sample 8 do not collide. It has become possible. In addition, when the probe 1 and the sample 8 are in contact with each other, the coarse movement mechanism 13 is not moved, and the vertical fine movement mechanism 11 is operated so that there is no impact. For this reason, breakage of the probe 1 can be prevented and the resolution of the shape image is not lowered. Further, the speed of the coarse movement mechanism 13 can be increased, and the time required for the approach can be shortened. In the present embodiment, the position at which the coarse movement mechanism 13 is stopped can be set to 100 nm or less from the operating point at the time of measurement, and the coarse movement speed can be increased 10 times faster than the conventional one.

なお、本実施例では粗動機構13の停止位置(SP)を振幅が増加する側に設定したが、測定条件や測定環境によっては振幅の増加分が小さい場合や、振幅が増加しない場合もある。例えば図5のフォースカーブで共振周波数に対して高周波側で駆動した場合、変曲点(B)付近で急激に振幅が減少し振幅が増加する領域は存在しない。このとき粗動機構13が停止できずに探針1とサンプル8が激しく衝突し、探針1のみにとどまらず、カンチレバー2やサンプル8あるいは装置を破損してしまう恐れがある。これを防止するために、本実施例では粗動機構13の停止位置を振幅が増加する領域に加えて振幅が減少する領域にも設定した(SP)。振幅が減少する領域での動作点(SP)は探針1のダメージを少なくするために測定の際の動作点(SP)よりも小さくするほうが望ましい。 In this embodiment, the stop position (SP + ) of the coarse movement mechanism 13 is set on the side where the amplitude increases. However, depending on the measurement conditions and the measurement environment, the increase in amplitude may be small or the amplitude may not increase. is there. For example, when the force curve shown in FIG. 5 is driven on the high frequency side with respect to the resonance frequency, there is no region where the amplitude suddenly decreases and the amplitude increases near the inflection point (B 2 ). At this time, the coarse movement mechanism 13 cannot be stopped, and the probe 1 and the sample 8 collide violently, and the cantilever 2, the sample 8 or the apparatus may be damaged in addition to the probe 1 alone. In order to prevent this, in this embodiment, the stop position of the coarse movement mechanism 13 is set in a region where the amplitude decreases in addition to the region where the amplitude increases (SP ). The operating point (SP ) in the region where the amplitude decreases is preferably smaller than the operating point (SP 0 ) at the time of measurement in order to reduce damage to the probe 1.

また、例えば、空気による振幅の減少分が大きい場合には、変曲点(B)での振幅が増加してもピークの振幅量が初期の(A)点での振幅量を超えない場合もある。このような場合には、振幅の増加した停止位置と減少した停止位置の両方を設定することで、いったん減少した停止位置で停止させ、その地点で共振スペクトルを測定し直して駆動周波数を設定し、再びアプローチを繰り返していくことで、振幅増加した部分で粗動機構13を止めることが可能となる。 Also, for example, when the decrease in amplitude due to air is large, even if the amplitude at the inflection point (B 1 ) increases, the peak amplitude does not exceed the amplitude at the initial point (A). There is also. In such a case, set both the stop position where the amplitude increased and the stop position where the amplitude decreased, and stop at the stop position once decreased, and measure the resonance spectrum again at that point to set the drive frequency. By repeating the approach again, the coarse movement mechanism 13 can be stopped at the portion where the amplitude has increased.

また大気中では、高周波側に設定すると、振幅が増加する部分は発生しないが低周波側に比べて、空気による減衰量が大きいため、探針1とサンプル8が接触しない部分での停止位置の設定が容易である。このためあらかじめ高周波側で探針1とサンプル8が接触しない条件を求めておき、その停止位置で粗動機構13を停止させ、その後、その位置で共振スペクトルを測定し直して低周波側に動作点を設定しアプローチ動作を行うことで振幅が増加した領域で粗動機構13を停止させることもできる。   In the atmosphere, when the frequency is set to the high frequency side, the portion where the amplitude increases does not occur. However, since the amount of attenuation by air is large compared to the low frequency side, the stop position at the portion where the probe 1 and the sample 8 do not contact each other. Easy to set up. For this reason, a condition in which the probe 1 and the sample 8 do not come into contact with each other on the high frequency side is obtained in advance, the coarse movement mechanism 13 is stopped at the stop position, and then the resonance spectrum is measured again at that position to operate on the low frequency side. The coarse movement mechanism 13 can be stopped in a region where the amplitude has increased by setting a point and performing an approach operation.

図7は本発明の第3実施例にかかる走査型プローブ顕微鏡の概観図である。本実施例では図1の装置に真空チャンバー21を装着し、探針1とサンプル8を真空環境下に配置して振動方式の走査型プローブ顕微鏡測定を行う装置である。本実施例では真空ポンプ(図示せず)により10−6Pa真空状態にして測定を実施した。その他の構成は図1と同じなので説明は省略する。 FIG. 7 is a schematic view of a scanning probe microscope according to the third embodiment of the present invention. In this embodiment, the apparatus shown in FIG. 1 is equipped with a vacuum chamber 21 and the probe 1 and the sample 8 are placed in a vacuum environment to perform vibration-type scanning probe microscope measurement. In this example, the measurement was carried out with a vacuum of 10 −6 Pa by a vacuum pump (not shown). Other configurations are the same as those in FIG.

真空環境下では、図8のフォースカーブに示すように空気による振幅の減衰がほとんど起きないため、探針1とサンプル8はサンプル表面直前まで振幅が変化することなしに、急激に振幅が減少する。   Under the vacuum environment, as shown in the force curve in FIG. 8, the amplitude is hardly attenuated by air, so that the amplitude of the probe 1 and the sample 8 rapidly decreases without changing the amplitude until just before the sample surface. .

そのため、従来のように振幅の減少した部分で粗動機構13の動作停止点を設定するといきなり測定動作点に入り探針1とサンプル8が激しく衝突する。   Therefore, when the operation stop point of the coarse movement mechanism 13 is set at a portion where the amplitude is reduced as in the prior art, the probe 1 and the sample 8 collide violently at the measurement operation point.

そのため本発明では1次の共振スペクトル上の低周波側に動作点を設定し、探針1とサンプル8が衝突する直前の振幅が増加する領域に粗動機構13の動作停止点(SP)を設定し、粗動機構13を止めるようにした。また、振幅が減少する地点にも動作停止点(SP)を設定し、万一、振幅が増加する領域で粗動機構13が止まらなかった場合でも探針1の破損がほとんど起こらないようにした。粗動機構13が停止した後は実施例1,2と同様に垂直方向微動機構11と粗動機構13を協調させてアプローチを行うことで探針 1やサンプル8を破損することなしに探針1とサンプル8間距離を動作点まで設定させることが可能である。なお、真空中ではフォースカーブの変曲点(B)の手前でも除々に振幅が増加する場合があり、粗動機構13の停止点をここに設定してもよい。 Therefore, in the present invention, an operating point is set on the low frequency side of the primary resonance spectrum, and the operating stop point (SP + ) of the coarse moving mechanism 13 is in a region where the amplitude immediately before the probe 1 and the sample 8 collide increases. Was set to stop the coarse movement mechanism 13. An operation stop point (SP ) is also set at a point where the amplitude decreases, so that the probe 1 is hardly damaged even if the coarse movement mechanism 13 does not stop in a region where the amplitude increases. did. After the coarse movement mechanism 13 is stopped, the probe 1 and the sample 8 are not damaged by performing the approach in cooperation with the vertical fine movement mechanism 11 and the coarse movement mechanism 13 in the same manner as in the first and second embodiments. It is possible to set the distance between 1 and the sample 8 to the operating point. In the vacuum, the amplitude may gradually increase even before the inflection point (B) of the force curve, and the stop point of the coarse movement mechanism 13 may be set here.

ここで、真空中では、空気による減衰が少ないため、共振スペクトルが急峻になり、Q値が大きくなる。Q値は共振周波数を共振スペクトルのピークの半値幅で割った値である。このようにQ値が高い状態では力の検出感度は高くなるが、探針1とサンプル8間距離のフィードバックを行う場合の追従性が悪くなり、発振が起こったり、形状像測定時の走査スピードを遅くする必要がある。これを防止するために、形状像測定を行う際にはQ値制御が行われる場合がある。Q値制御はカンチレバー2の振動の信号から速度を求め加振信号に加えることで見かけ上、Q値をコントロールする手法である。Q値制御を行ったQカーブの例を図9に示す。図9では実線に示したQカーブをQ値制御によりQ値を下げ破線で示したようなQカーブにした。本実施例ではカンチレバーの共振周波数を120kHzとし、もとのQ値が1500に対して、400までQ値を下げた。   Here, since there is little attenuation by air in a vacuum, the resonance spectrum becomes steep and the Q value increases. The Q value is a value obtained by dividing the resonance frequency by the half width of the peak of the resonance spectrum. In this way, when the Q value is high, the force detection sensitivity is high, but the follow-up property when feedback of the distance between the probe 1 and the sample 8 is deteriorated, oscillation occurs, and the scanning speed at the time of shape image measurement Need to slow down. In order to prevent this, Q value control may be performed when performing shape image measurement. Q value control is a method of apparently controlling the Q value by obtaining the speed from the vibration signal of the cantilever 2 and adding it to the vibration signal. An example of the Q curve subjected to the Q value control is shown in FIG. In FIG. 9, the Q curve indicated by the solid line is changed to the Q curve indicated by the broken line by lowering the Q value by Q value control. In this example, the resonance frequency of the cantilever was set to 120 kHz, and the Q value was lowered to 400 with respect to the original Q value of 1500.

本実施例では、真空中での測定であるため測定時にはQ値制御によりQ値を下げて測定を行うことが有効である。ただし、探針1とサンプル8を近接させる場合には、Q値が高いほうが力に対する感度が高く、より遠方から感度よく力を検出させることができる。したがって本実施例では、まず図9の実線で示したQ値制御なしの高いQ値のまま共振スペクトルを測定し、低周波側に駆動周波数を設定し、粗動機構13を停止させる振幅量(SP)を設定した後、探針1とサンプル8を近接させるようにした。このときQ値が低いときよりもより遠方から振幅の増加が初まり、しかも図8のフォースカーブでの領域(B)でのピークの振幅の増加量も多くなる。したがって、より確実に探針1とサンプル8が接触しない位置で粗動機構13を止めることが可能となる。 In this embodiment, since measurement is performed in a vacuum, it is effective to lower the Q value by Q value control during measurement. However, when the probe 1 and the sample 8 are brought close to each other, the higher the Q value, the higher the sensitivity to the force, and the force can be detected with higher sensitivity from a distance. Therefore, in this embodiment, first, the resonance spectrum is measured with the high Q value without Q value control shown by the solid line in FIG. 9, the drive frequency is set to the low frequency side, and the amplitude amount ( After setting SP + ), the probe 1 and the sample 8 were brought close to each other. At this time, the amplitude starts increasing from a distance farther than when the Q value is low, and the amount of increase in the peak amplitude in the region (B) in the force curve of FIG. 8 also increases. Therefore, it is possible to stop the coarse movement mechanism 13 more reliably at a position where the probe 1 and the sample 8 do not contact each other.

次に粗動機構13が止まった後、探針1とサンプル8が衝突しないように垂直方向微動機構11を縮めてQカーブを再測定し、測定に適した振動スペクトルと動作条件を設定する。このときにはQ値制御により図9の破線で示したようなQカーブになるようにQ値を下げ、駆動周波数と初期振幅を設定し、振幅が減少する動作点(SP)を設定して近接動作を行った。このようにQ値を粗動の開始前と粗動の停止後に測定し直すことで、近接動作に適した条件と測定に適した条件を任意に設定でき、探針1の破損による分解能の低下なしに形状像の測定が可能となる。また、粗動機構13のスピードもアップすることができるとともにQ値制御により走査スピードも向上するため全体の測定時間も短縮することが可能となった。 Next, after the coarse movement mechanism 13 stops, the vertical fine movement mechanism 11 is contracted so that the probe 1 and the sample 8 do not collide, and the Q curve is measured again, and a vibration spectrum and operating conditions suitable for the measurement are set. At this time, the Q value is lowered by the Q value control so that the Q curve as shown by the broken line in FIG. 9 is set, the drive frequency and the initial amplitude are set, and the operating point (SP 0 ) at which the amplitude is reduced is set. Did the operation. In this way, by re-measuring the Q value before the start of coarse movement and after the stop of coarse movement, conditions suitable for proximity movement and conditions suitable for measurement can be arbitrarily set, and the resolution is reduced due to breakage of the probe 1 It is possible to measure a shape image without using any of them. In addition, the speed of the coarse movement mechanism 13 can be increased, and the scanning speed is improved by the Q value control, so that the entire measurement time can be shortened.

なお、真空度は、本実施例での圧力に限定されず、真空ポンプの使用など任意の方法で大気圧以下に圧力を設定した場合は本発明に含まれる。また、振動方式のほかコンタクト方式も適用できる。   The degree of vacuum is not limited to the pressure in the present embodiment, and the case where the pressure is set below the atmospheric pressure by any method such as use of a vacuum pump is included in the present invention. In addition to the vibration method, a contact method can also be applied.

図10は本発明の第4実施例にかかる真空測定対応の走査型プローブ顕微鏡の概観図である。本実施例では図7の装置に加え、探針1とサンプル8間に電圧を印加できる電圧印加装置22を設けた。また、サンプルステージ12の下側にコイル28を配置しコイル28に電流を流すことで磁力を発生させる磁気力発生装置25も設けた。この他の構成は図7と同一であるため詳細な説明は省略する。   FIG. 10 is a schematic view of a scanning probe microscope for vacuum measurement according to the fourth embodiment of the present invention. In this embodiment, in addition to the apparatus shown in FIG. 7, a voltage applying device 22 capable of applying a voltage between the probe 1 and the sample 8 is provided. A magnetic force generator 25 is also provided that generates a magnetic force by arranging a coil 28 below the sample stage 12 and causing a current to flow through the coil 28. Since other configurations are the same as those in FIG. 7, detailed description thereof is omitted.

探針1とサンプル8間に電源23により電圧を印加した場合、両者には静電気力が発生する。また、探針1に磁性膜や着磁性の金属膜をコートし、磁気力発生装置25のコイル28に電源26により電流を流して磁気を発生させた場合には探針1は磁気力によりサンプル8方向に引っ張られる。このように静電気力や磁気力を発生させた状態で探針1とサンプル8を近接させていくと、コンタクト方式の場合には探針1とサンプル8間に働く引力が大きくなりしかも静電気力や磁力を掛けていない状態よりも探針とサンプルが離れている状態で引力が発生する。   When a voltage is applied between the probe 1 and the sample 8 by the power source 23, an electrostatic force is generated between them. When the probe 1 is coated with a magnetic film or a magnetized metal film and magnetism is generated by applying a current to the coil 28 of the magnetic force generator 25 by the power supply 26, the probe 1 is sampled by the magnetic force. Pulled in 8 directions. When the probe 1 and the sample 8 are brought close to each other with the electrostatic force or magnetic force generated in this way, in the case of the contact method, the attractive force acting between the probe 1 and the sample 8 increases, and the electrostatic force or The attractive force is generated when the probe and the sample are separated from each other than when no magnetic force is applied.

図11は静電気力や磁気力をかけた場合のコンタクト方式のフォースカーブの一例である。実線は、静電気力や磁気力をかけない場合で破線がかけた場合である。このフォースカーブから探針1とサンプル8が接触する直前の引力領域(B)が広がっていることがわかる。   FIG. 11 shows an example of a contact type force curve when an electrostatic force or a magnetic force is applied. A solid line is a case where a broken line is applied when no electrostatic force or magnetic force is applied. It can be seen from this force curve that the attractive region (B) immediately before the probe 1 and the sample 8 come into contact with each other is widened.

また、振動方式の場合には振幅の増加量が大きくなりしかも静電気力や磁力を掛けていない状態よりも探針1とサンプル8が離れている状態で振幅が増加する。図12は静電気力や磁気力をかけた場合の振動方式のフォースカーブの一例である。実線は、静電気力や磁気力をかけない場合で破線がかけた場合である。このフォースカーブから探針1とサンプル8が接触する直前の振幅が増加する領域(B)が広がっていることがわかる。   Further, in the case of the vibration method, the amount of increase in the amplitude is large, and the amplitude increases when the probe 1 and the sample 8 are separated from each other as compared with a state where no electrostatic force or magnetic force is applied. FIG. 12 is an example of a vibration type force curve when an electrostatic force or a magnetic force is applied. A solid line is a case where a broken line is applied when no electrostatic force or magnetic force is applied. From this force curve, it can be seen that the region (B) in which the amplitude immediately before the probe 1 and the sample 8 come into contact increases.

このように外部から力をかけることで、より確実に探針1とサンプル8が衝突する直前で粗動機構13を停止することができる。また、粗動機構13のスピードもより高速に行うことができる。   By applying force from the outside in this way, the coarse movement mechanism 13 can be stopped more reliably immediately before the probe 1 and the sample 8 collide. In addition, the coarse movement mechanism 13 can be performed at a higher speed.

本実施例では、電圧印加装置22と磁気力発生装置25の双方を持つ構成としたが、サンプル8やカンチレバー2の種類や測定モードによって、どちらか一方を選択して使用することができる。また、どちらか一方の構成のみを持つ装置も本発明に含まれる。   In the present embodiment, the voltage application device 22 and the magnetic force generation device 25 are both provided, but either one can be selected and used depending on the type of the sample 8 and the cantilever 2 and the measurement mode. An apparatus having only one of the configurations is also included in the present invention.

測定の際に静電気力や磁気力が不要な場合には、粗動機構13が停止した後で電圧印加装置22や磁気力発生装置25のスイッチ24、27をOFFにして、動作点を再設定して、垂直方向微動機構11と粗動機構13の協調動作により測定エリアまで近接させて測定を行う。   If electrostatic force or magnetic force is not required for measurement, the operating point is reset by turning off the switches 24 and 27 of the voltage application device 22 and the magnetic force generation device 25 after the coarse movement mechanism 13 is stopped. Then, the measurement is performed close to the measurement area by the cooperative operation of the vertical fine movement mechanism 11 and the coarse movement mechanism 13.

また、本実施例の電圧印加装置や磁気力発生装置に交流電圧を印加することで、振動方式の走査型プローブ顕微鏡のカンチレバーを加振させるための機構を兼用させたり、あるいは電気的、磁気的特性を測定する際の外部電圧、磁気力印加装置として用いることも可能である。   In addition, by applying an AC voltage to the voltage application device or magnetic force generation device of the present embodiment, a mechanism for vibrating the cantilever of a vibration type scanning probe microscope can also be used, or an electrical or magnetic It can also be used as an external voltage or magnetic force application device for measuring characteristics.

以上、本発明の実施例を紹介したが、本発明はこれらの実施例に限定されない。例えば走査型プローブ顕微鏡の構造は本発明の形状像測定に限らず探針をサンプルに近接させて探針で機械的特性や電磁気的特性や光学的特性などを測定する各種モードに適用できる。   As mentioned above, although the Example of this invention was introduced, this invention is not limited to these Examples. For example, the structure of the scanning probe microscope is not limited to the shape image measurement of the present invention, and can be applied to various modes in which a probe is brought close to a sample and mechanical characteristics, electromagnetic characteristics, optical characteristics, and the like are measured with the probe.

また、微動機構や変位検出機構や粗動機構の機構は本発明に限定されず目的が同じであれば他の機構も適用可能である。   Further, the fine movement mechanism, the displacement detection mechanism, and the coarse movement mechanism are not limited to the present invention, and other mechanisms can be applied as long as they have the same purpose.

また、カンチレバーに限らず、光ファイバーの先端を先鋭化した走査型近接場顕微鏡用のプローブなどにも適用できる。   Further, the present invention can be applied not only to a cantilever but also to a probe for a scanning near-field microscope in which the tip of an optical fiber is sharpened.

また振動方向はサンプルに対して垂直方向だけでなく平行に振動させる場合やカンチレバーをねじり振動させる場合も本発明に含まれる。   In addition, the present invention includes the case where the vibration direction is not only perpendicular to the sample but also in parallel, and the cantilever is torsionally vibrated.

さらに、本発明での駆動周波数は1次の共振周波数に限定されず、探針とサンプルを近づけた時に振幅量が増加する駆動周波数であれば任意の駆動周波数で動作可能である。   Furthermore, the drive frequency in the present invention is not limited to the primary resonance frequency, and can be operated at any drive frequency as long as the amplitude increases when the probe and the sample are brought close to each other.

溶液中など抵抗が大きくカンチレバーのQ値が小さい場合などは粗動の段階からQ値制御によりQ値を上げて感度を高くすることが有効である。   When the resistance is large and the Q value of the cantilever is small, such as in a solution, it is effective to increase the sensitivity by increasing the Q value by Q value control from the coarse movement stage.

また変位や振幅量は変位や振幅の変化に起因する信号であれば任意の信号が使用でき符号も任意に設定してよい。さらに変位ではなくカンチレバーにかかる力の信号でもよい。   As the displacement and the amplitude amount, any signal can be used as long as it is a signal caused by the displacement or amplitude change, and the code may be arbitrarily set. Further, it may be a signal of force applied to the cantilever instead of displacement.

さらに、絶対振幅量を設定するだけではなく、振幅の変化量を初期振幅で除した無次元量を用いてもよい。   Furthermore, in addition to setting the absolute amplitude amount, a dimensionless amount obtained by dividing the amplitude change amount by the initial amplitude may be used.

また、粗動機構停止後の動作点までのアプローチ方法は実施例に限定されず他の手法を用いてもよい。   Further, the approach method up to the operating point after stopping the coarse movement mechanism is not limited to the embodiment, and other methods may be used.

また粗動機構は探針とサンプルが衝突する直前で止めるのが理想であるが、粗動機構を停止させる場合に、探針とサンプルが衝突してしまう場合も本発明に含まれる。万一、衝突した場合でも本発明を適用することで従来技術よりは探針ダメージが軽減される。   The coarse movement mechanism is ideally stopped immediately before the probe and the sample collide, but the present invention includes a case where the probe and the sample collide when the coarse movement mechanism is stopped. Even in the event of a collision, the application of the present invention reduces probe damage as compared with the prior art.

本発明の第一実施例および第二実施例の大気中で用いられる走査型プローブ顕微鏡の概観図である。It is a general-view figure of the scanning probe microscope used in air | atmosphere of the 1st Example and 2nd Example of this invention. 本発明の第一実施例のコンタクト方式の原子間力顕微鏡の探針とサンプルの近接方法のフローチャートである。It is a flowchart of the probe and sample proximity | contact method of the contact type atomic force microscope of 1st Example of this invention. 本発明の第一実施例のコンタクト方式の原子間力顕微鏡のフォースカーブである。It is a force curve of the contact-type atomic force microscope of the first embodiment of the present invention. 本発明の第二実施例の大気中での振動方式の原子間力顕微鏡のQカーブである。It is a Q curve of the atomic force microscope of the vibration system in the air | atmosphere of 2nd Example of this invention. 本発明の第二実施例の大気中での振動方式の原子間力顕微鏡のフォースカーブである。It is a force curve of the atomic force microscope of the vibration system in the air | atmosphere of 2nd Example of this invention. 本発明の第二実施例の振動方式の原子間力顕微鏡の探針とサンプルの近接方法のフローチャートである。It is a flowchart of the probe and sample proximity | contact method of the vibration type atomic force microscope of 2nd Example of this invention. 本発明の第三実施例の真空中で用いられる走査型プローブ顕微鏡の概観図である。It is a general-view figure of the scanning probe microscope used in the vacuum of the 3rd Example of this invention. 本発明の第三実施例の真空中での振動方式の原子間力顕微鏡のフォースカーブである。It is a force curve of the vibration type atomic force microscope in the vacuum of the 3rd example of the present invention. 本発明の第三実施例の真空中での振動方式の原子間力顕微鏡のQカーブである。It is a Q curve of the atomic force microscope of the vibration system in the vacuum of the 3rd Example of this invention. 本発明の第四実施例の真空中で用いられる電圧印加装置と磁気力発生装置をゆする走査型プローブ顕微鏡の概観図である。It is a general-view figure of the scanning probe microscope which shakes the voltage application apparatus and magnetic force generator which are used in the vacuum of 4th Example of this invention. 本発明の第四実施例のコンタクト方式の原子間力顕微鏡のフォースカーブである。It is a force curve of the contact-type atomic force microscope of 4th Example of this invention. 本発明の第四実施例の大気中での振動方式の原子間力顕微鏡のフォースカーブである。It is a force curve of the atomic force microscope of the vibration system in the atmosphere of 4th Example of this invention. 従来の走査型プローブ顕微鏡の構成図である。It is a block diagram of the conventional scanning probe microscope. 従来の探針とサンプルを近づけていった場合の距離とカンチレバーの振幅量の関係を表すグラフである。It is a graph showing the relationship between the distance when the conventional probe and the sample are brought close to each other and the amplitude of the cantilever.

符号の説明Explanation of symbols

1 探針
2 カンチレバー
3 カンチレバーホルダ
4 振動子
5 変位検出機構
6 半導体レーザ
7 フォトディテクタ
8 サンプル
9 3軸微動機構
10 水平方向微動機構
11 垂直方向微動機構
12 サンプルホルダ
13 粗動機構
14 光学顕微鏡
15 プリアンプ
16 LDドライバ
17 発信器
18 ピエゾドライバ
19 モータドライバ
20 コントローラ
21 真空チャンバ
22 電圧印加装置
23、26 電源
24、27 スイッチ
25 磁気力発生装置
28 コイル
101 サンプル
102 3軸微動機構(スキャナ)
103 粗動機構(モータ)
104 半導体レーザ(LD)
105 フォトディテクタ(PD)
DESCRIPTION OF SYMBOLS 1 Probe 2 Cantilever 3 Cantilever holder 4 Oscillator 5 Displacement detection mechanism 6 Semiconductor laser 7 Photo detector 8 Sample 9 Triaxial fine movement mechanism 10 Horizontal fine movement mechanism 11 Vertical fine movement mechanism 12 Sample holder 13 Coarse movement mechanism 14 Optical microscope 15 Preamplifier 16 LD driver 17 Transmitter 18 Piezo driver 19 Motor driver 20 Controller 21 Vacuum chamber 22 Voltage application device 23, 26 Power supply 24, 27 Switch 25 Magnetic force generator 28 Coil 101 Sample 102 Three-axis fine movement mechanism (scanner)
103 Coarse motion mechanism (motor)
104 Semiconductor laser (LD)
105 Photodetector (PD)

Claims (14)

先端に探針を有するカンチレバーと、前記カンチレバーの変位を検出するための変位検出機構と、前記探針に対向した位置に配置されたサンプルと前記探針との距離を調整するための垂直方向微動機構と、前記探針と前記サンプルを近接させるための粗動機構から構成される走査型プローブ顕微鏡において、
前記変位検出機構によりカンチレバーの変位を検出しながら、前記粗動機構により探針とサンプルを近接させるときに、前記カンチレバーがサンプル表面に引き寄せられる方向に生じる任意のたわみ量を設定し、前記変位検出機構により設定されたたわみ量を検出した時点で、前記粗動機構を停止させることを特徴とする走査型プローブ顕微鏡。
A cantilever having a probe at the tip, a displacement detection mechanism for detecting the displacement of the cantilever, and vertical fine movement for adjusting the distance between the sample and the probe disposed at a position facing the probe In a scanning probe microscope comprising a mechanism and a coarse movement mechanism for bringing the probe and the sample close to each other,
While detecting the displacement of the cantilever by the displacement detection mechanism, when the probe and the sample are brought close to each other by the coarse movement mechanism, an arbitrary amount of deflection that occurs in the direction in which the cantilever is attracted to the sample surface is set, and the displacement detection A scanning probe microscope characterized in that the coarse motion mechanism is stopped when a deflection amount set by the mechanism is detected.
前記カンチレバーがサンプル表面に引き寄せられる方向に生じる任意のたわみ量と、前記方向とは逆方向に生じる任意のたわみ量をそれぞれ設定し、前記変位検出機構によりカンチレバーの変位を検出しながら、前記粗動機構により探針とサンプルを近接させるときに、前記2つの設定されたたわみ量のうちどちらか一方のたわみ量が前記変位検出機構で最初に検出された時点で、前記粗動機構を停止させることを特徴とする請求項1に記載の走査型プローブ顕微鏡。   An arbitrary amount of deflection generated in the direction in which the cantilever is attracted to the sample surface and an arbitrary amount of deflection generated in a direction opposite to the direction are set, and the coarse motion is detected while detecting the displacement of the cantilever by the displacement detection mechanism. When the probe and the sample are brought close to each other by the mechanism, the coarse movement mechanism is stopped when one of the two set deflection amounts is first detected by the displacement detection mechanism. The scanning probe microscope according to claim 1. 粗動機構により探針とサンプルを接近させる前に粗動機構を停止させるための前記カンチレバーの任意のたわみ量を設定し、前記設定されたたわみ量で粗動機構による近接動作が停止した後に、走査型プローブ顕微鏡の測定のための任意のたわみ量を再設定することを特徴とする請求項1乃至請求項2に記載の走査型プローブ顕微鏡。 Before setting the probe and sample close to each other by the coarse movement mechanism, set an arbitrary deflection amount of the cantilever to stop the coarse movement mechanism, and after the proximity movement by the coarse movement mechanism is stopped at the set deflection amount, The scanning probe microscope according to claim 1, wherein an arbitrary deflection amount for measurement by the scanning probe microscope is reset. 先端に探針を有するカンチレバーと、前記カンチレバーを加振するための加振機構と、前記カンチレバーの変位を検出するための変位検出機構と、前記探針に対向した位置に配置されたサンプルと前記探針との距離を調整するための垂直方向微動機構と、前記探針と前記サンプルを近接させるための粗動機構から構成される走査型プローブ顕微鏡において、前記加振機構により前記カンチレバーを加振し、前記変位検出機構によりカンチレバーの振幅を検出しながら、前記粗動機構により探針とサンプルを近接させるときに、前記カンチレバーの振幅が任意の量だけ増加した振幅量を設定し、前記変位検出機構により設定された振幅量を検出した時点で、前記粗動機構を停止させることを特徴とする走査型プローブ顕微鏡。   A cantilever having a probe at the tip, an excitation mechanism for exciting the cantilever, a displacement detection mechanism for detecting displacement of the cantilever, a sample disposed at a position facing the probe, and the In a scanning probe microscope comprising a vertical fine movement mechanism for adjusting a distance from a probe and a coarse movement mechanism for bringing the probe and the sample close to each other, the cantilever is vibrated by the vibration mechanism. Then, while detecting the amplitude of the cantilever by the displacement detection mechanism, when the probe and the sample are brought close to each other by the coarse movement mechanism, an amplitude amount in which the amplitude of the cantilever is increased by an arbitrary amount is set, and the displacement detection is performed. A scanning probe microscope characterized in that the coarse motion mechanism is stopped when an amplitude amount set by the mechanism is detected. 前記カンチレバーの振幅が任意の量だけ増加した振幅量と、任意の量だけ減少した振幅量とをそれぞれ設定し、前記変位検出機構によりカンチレバーの振幅を検出しながら、前記粗動機構により探針とサンプルを近接させ、前記2つの設定された振幅量のうちどちらか一方の振幅量が前記変位検出機構で最初に検出された時点で、前記粗動機構を停止させることを特徴とする請求項4に記載の走査型プローブ顕微鏡。   An amplitude amount in which the amplitude of the cantilever is increased by an arbitrary amount and an amplitude amount in which the amplitude of the cantilever is decreased by an arbitrary amount are set, respectively, while detecting the amplitude of the cantilever by the displacement detection mechanism, 5. The coarse movement mechanism is stopped when a sample is brought close to and one of the two set amplitude quantities is first detected by the displacement detection mechanism. A scanning probe microscope as described in 1. above. 前記カンチレバーの加振周波数に対する振幅量の特性を測定した際に測定されるカンチレバーの1次の共振周波数を示す共振スペクトル上で、共振周波数よりも低周波数側の任意の位置の周波数でカンチレバーが加振されることを特徴とする請求項4、請求項5に記載の走査型プローブ顕微鏡。   On the resonance spectrum indicating the primary resonance frequency of the cantilever measured when the characteristics of the amplitude amount with respect to the excitation frequency of the cantilever are measured, the cantilever is applied at a frequency at a lower frequency side than the resonance frequency. 6. The scanning probe microscope according to claim 4, wherein the scanning probe microscope is shaken. 前記カンチレバーの周波数特性を測定した際に測定される共振スペクトルのQ値が制御されることを特徴とする請求項4乃至請求項6に記載の走査型プローブ顕微鏡。   The scanning probe microscope according to any one of claims 4 to 6, wherein a Q value of a resonance spectrum measured when the frequency characteristic of the cantilever is measured is controlled. 粗動機構により探針とサンプル接近させる前に前記カンチレバーの周波数特性を測定し動作条件を設定するとともに粗動機構を停止させるための振幅量を設定し、粗動機構による近接動作が終了した後に、探針とサンプルが接触しない位置で、もう一度周波数特性を測定し動作条件を設定するとともに走査型プローブ顕微鏡で測定を行う際の振幅量を設定することを特徴とする請求項4乃至請求項7に記載の走査型プローブ顕微鏡。   Before the probe is moved closer to the sample by the coarse movement mechanism, the frequency characteristics of the cantilever are measured to set the operating conditions and the amplitude amount for stopping the coarse movement mechanism is set, and after the proximity movement by the coarse movement mechanism is completed. 8. The frequency characteristic is measured once again at a position where the probe and the sample do not contact to set the operating condition, and the amplitude amount when measuring with the scanning probe microscope is set. A scanning probe microscope as described in 1. above. 前記たわみ量または振幅量の変化が探針とサンプル間の静電気力に起因することを特徴とする請求項1または請求項8に記載の走査型プローブ顕微鏡。   9. The scanning probe microscope according to claim 1, wherein the change in the amount of deflection or the amount of amplitude is caused by an electrostatic force between the probe and the sample. 前記たわみ量または振幅量の変化が探針とサンプル間の磁気力に起因することを特徴とする請求項1または請求項9に記載の走査型プローブ顕微鏡。   The scanning probe microscope according to claim 1 or 9, wherein the change in the deflection amount or the amplitude amount is caused by a magnetic force between the probe and the sample. 粗動機構により探針とサンプルを接近させる前に前記静電気力または/および磁気力を与え、粗動機構による近接動作が終了した後は、前記静電気力または/および磁気力を排除することを特徴とする請求項9、請求項10に記載の走査型プローブ顕微鏡。   The electrostatic force and / or magnetic force is applied before the probe and the sample are brought close to each other by the coarse movement mechanism, and the electrostatic force and / or magnetic force is eliminated after the proximity movement by the coarse movement mechanism is completed. The scanning probe microscope according to claim 9 or 10. 前記探針と前記サンプルが真空環境下に配置された請求項1乃至請求項11に記載の走査型プローブ顕微鏡。   The scanning probe microscope according to claim 1, wherein the probe and the sample are arranged in a vacuum environment. 前記カンチレバーの代わりに先端に探針を有するプローブを用いて、サンプル表面に対して平行な方向に前記探針を加振させて探針とサンプルを近接させるようにした請求項4乃至請求項12に記載の走査型プローブ顕微鏡。   13. A probe having a probe at the tip instead of the cantilever, and the probe is vibrated in a direction parallel to the sample surface to bring the probe and the sample close to each other. A scanning probe microscope as described in 1. above. 前記探針と前記サンプルを請求項1乃至請求項13に記載の近接方法により近接させた後、更に前記粗動機構または/および前記垂直微動機構により接近または接触させることを特徴とする走査型プローブ顕微鏡。   14. The scanning probe according to claim 1, wherein the probe and the sample are brought close to each other by the proximity method according to claim 1 and then further approached or contacted by the coarse movement mechanism and / or the vertical fine movement mechanism. microscope.
JP2007181736A 2007-07-11 2007-07-11 Scanning probe microscope Active JP5014000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007181736A JP5014000B2 (en) 2007-07-11 2007-07-11 Scanning probe microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007181736A JP5014000B2 (en) 2007-07-11 2007-07-11 Scanning probe microscope

Publications (2)

Publication Number Publication Date
JP2009019943A true JP2009019943A (en) 2009-01-29
JP5014000B2 JP5014000B2 (en) 2012-08-29

Family

ID=40359719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007181736A Active JP5014000B2 (en) 2007-07-11 2007-07-11 Scanning probe microscope

Country Status (1)

Country Link
JP (1) JP5014000B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010210609A (en) * 2009-02-10 2010-09-24 Sii Nanotechnology Inc Approach method for probe and sample in scanning probe microscope
JP2011033482A (en) * 2009-07-31 2011-02-17 Kyoto Univ Control device, atomic force microscope, control method, and program
JP2013178287A (en) * 2009-02-10 2013-09-09 Hitachi High-Tech Science Corp Method for proximity between probe and sample in scanning probe microscope

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09101317A (en) * 1995-10-05 1997-04-15 Olympus Optical Co Ltd Approach apparatus for scan type probe microscope
JPH10239328A (en) * 1997-02-25 1998-09-11 Seiko Instr Inc Method of and apparatus for roughly moving probe in scanning probe microscope
JPH11248723A (en) * 1998-02-27 1999-09-17 Nikon Corp Atomic force microscope and method for bringing probe close in the microscope
JP2000009742A (en) * 1998-06-26 2000-01-14 Olympus Optical Co Ltd Approach method for scanning probe microscope
JP2007033321A (en) * 2005-07-28 2007-02-08 Jeol Ltd Method for measuring distance between probe of scanning probe microscope and sample surface, and scanning probe microscope

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09101317A (en) * 1995-10-05 1997-04-15 Olympus Optical Co Ltd Approach apparatus for scan type probe microscope
JPH10239328A (en) * 1997-02-25 1998-09-11 Seiko Instr Inc Method of and apparatus for roughly moving probe in scanning probe microscope
JPH11248723A (en) * 1998-02-27 1999-09-17 Nikon Corp Atomic force microscope and method for bringing probe close in the microscope
JP2000009742A (en) * 1998-06-26 2000-01-14 Olympus Optical Co Ltd Approach method for scanning probe microscope
JP2007033321A (en) * 2005-07-28 2007-02-08 Jeol Ltd Method for measuring distance between probe of scanning probe microscope and sample surface, and scanning probe microscope

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010210609A (en) * 2009-02-10 2010-09-24 Sii Nanotechnology Inc Approach method for probe and sample in scanning probe microscope
JP2013178287A (en) * 2009-02-10 2013-09-09 Hitachi High-Tech Science Corp Method for proximity between probe and sample in scanning probe microscope
JP2011033482A (en) * 2009-07-31 2011-02-17 Kyoto Univ Control device, atomic force microscope, control method, and program

Also Published As

Publication number Publication date
JP5014000B2 (en) 2012-08-29

Similar Documents

Publication Publication Date Title
US9995765B2 (en) Method and apparatus of using peak force tapping mode to measure physical properties of a sample
JP5695902B2 (en) Wafer-scale non-destructive subsurface ultrasonic microscopy using near-field AFM detection
US6945099B1 (en) Torsional resonance mode probe-based instrument and method
KR100961571B1 (en) Scanning probe microscope
US7478552B2 (en) Optical detection alignment/tracking method and apparatus
JP5340119B2 (en) Proximity method of probe and sample in scanning probe microscope
RU2571446C2 (en) Method to use semi-contact mode with fixed peak of force for measurement of physical properties of sample
US8341760B2 (en) Scanning probe microscope
US20090070904A1 (en) Oscillating scanning probe microscope
JP4446929B2 (en) Cantilever holder for scanning probe microscope and scanning probe microscope using the same
JP2005069851A (en) Scanning probe microscope and scanning method
JP5014000B2 (en) Scanning probe microscope
JP4474556B2 (en) Scanning probe microscope
JP2006153589A (en) Scanning-probe microscope and scanning method
JP2006215004A (en) Near-field optical microscope and method for measuring sample by using near-field light
US10837981B2 (en) Method of operating an AFM
JP2007017388A (en) Scanned probe microscope
JP5553926B2 (en) Proximity method of probe and sample in scanning probe microscope
WO2015012200A1 (en) Magnetic head inspection device and magnetic head inspection method
JP2004156958A (en) Scanning probe microscope
JP5283038B2 (en) Control device, atomic force microscope, control method and program
JP2006267027A (en) Scanning probe microscope
JP4931640B2 (en) Scanning probe microscope
JP2005338002A (en) Near-field optical probe unit, its producing system and method, near-field optical microscope and method for measuring sample using near-field light
JP2006220599A (en) Scanning probe microscope

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091105

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091113

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120605

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5014000

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250