JP2005348706A - Gelatin, method for producing the same and frozen dessert or dessert confectionery - Google Patents

Gelatin, method for producing the same and frozen dessert or dessert confectionery Download PDF

Info

Publication number
JP2005348706A
JP2005348706A JP2004198655A JP2004198655A JP2005348706A JP 2005348706 A JP2005348706 A JP 2005348706A JP 2004198655 A JP2004198655 A JP 2004198655A JP 2004198655 A JP2004198655 A JP 2004198655A JP 2005348706 A JP2005348706 A JP 2005348706A
Authority
JP
Japan
Prior art keywords
gelatin
water
oxidation
producing
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004198655A
Other languages
Japanese (ja)
Inventor
Daigo Matsuoka
大悟 松岡
Yoshiko Fujiwara
由子 藤原
Akimasa Nogami
晃正 野上
Yoshiharu Kurotobi
吉晴 黒飛
Toshinori Harada
利典 原田
Kyuichi Matsui
久一 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima Kasei Ltd
Original Assignee
Hiroshima Kasei Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima Kasei Ltd filed Critical Hiroshima Kasei Ltd
Priority to JP2004198655A priority Critical patent/JP2005348706A/en
Publication of JP2005348706A publication Critical patent/JP2005348706A/en
Pending legal-status Critical Current

Links

Landscapes

  • Confectionery (AREA)
  • Jellies, Jams, And Syrups (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide frozen dessert or dessert confectionery made from gelatin sustaining oxidation-reduction potential at -400 mV for ≥60 days in a storage condition at 2-5°C. <P>SOLUTION: The subject method for producing the gelatin comprises producing hydrogenation water having oxidation-reduction potential of -615mV, pH7.23, dissolved hydrogen quantity of 1.20 ppm and water temperature of 10.3°C by blowing hydrogen gas (purity 99.97%) into 20 L of purified water for 2.5 min at hydrogen injection pressure of 0.9 Mpa and ejection pressure of 0.02 Mpa, pouring 490 mL of the hydrogenation water into 10g of gelatin which is previously poured in an aluminum pouch, shaking the product followed by plugging, sealing the aluminum pouch and heating the product as it is in a sealed condition in a hot water bath at 85°C for 30 min to completely dissolve the gelatin. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、酸化還元電位が少なくとも−400mVである水を構成成分として含有する、ゼラチン、その製造方法、及び冷菓或いはデザート菓子に関する。  The present invention relates to gelatin containing water having a redox potential of at least −400 mV as a constituent, a method for producing the same, and a frozen confectionery or a dessert confectionery.

従来技術の説明Description of prior art

本発明者は、酸化還元電位が−400mV以下の水を製造する方法、およびその酸化還元電位を維持する方法を開発し、一連の技術を特許出願した。さらに、食物繊維を含有する炭水化物の高次分子構造の空隙に、酸化還元電位が低い水を包摂したゲル状の機能性食品を開発し特許出願した。本発明は、本発明者が出願した前記技術のさらなる展開である。
これらの技術を開発した背景は、最近飲用水に対する関心が頓に高まってきているからである。この理由は、殺菌だけを第一義的に考えて処理されている水道水がまずいということと、人々の健康に対する志向が高くなっていることである。
The present inventor has developed a method for producing water having a redox potential of −400 mV or less, and a method for maintaining the redox potential, and has applied for a series of techniques. Furthermore, a gel-like functional food in which water with a low redox potential is included in the voids of the higher molecular structure of carbohydrates containing dietary fiber was developed and patented. The present invention is a further development of the technology applied by the inventor.
The reason behind the development of these technologies is that interest in drinking water has recently increased. The reason for this is that tap water treated with only sterilization as the primary consideration is poor and people's health consciousness is high.

それと共に水に関する科学的な研究も盛んになってきた。従来、水は、分子式HOで表される無色、無味、無臭、中性で、安定した物質であると考えられ、且つ、取り扱われてきた。然しながら、近年研究が深まるにつれて、水は単なるHOで表される単純な物質ではなく、水分子が幾つか集まった(HO)nのような塊(クラスター)を形成しているのではないかと考えられるようになってきた。At the same time, scientific research on water has become popular. Conventionally, water has been considered and handled as a colorless, tasteless, odorless, neutral, and stable substance represented by the molecular formula H 2 O. However, as research has deepened in recent years, water is not a simple substance represented by mere H 2 O, but forms a cluster such as (H 2 O) n in which several water molecules are gathered. It has come to be thought that.

そして、多種多様な手段で水を活性化してクラスターを小さくすることが考えられてきた。また、水の活性化の1つとして、水の酸化還元電位と、生体内反応も研究されるようになってきた。  And it has been considered to activate the water by various means to reduce the cluster. In addition, as one of the activations of water, the redox potential of water and in vivo reactions have been studied.

生体内には種々の酸化還元系が存在し、またその中の多くは相互に共役して生体内酸化還元反応に関与している。生体内酸化還元系の酸化還元電位は、反応の自由エネルギー変化および平衡定数と直接に関係しており、これらの反応の方向を予言するのに役立つものである。  There are various redox systems in the living body, and many of them are conjugated to each other and involved in the in vivo redox reaction. The redox potential of the in vivo redox system is directly related to the free energy change of the reaction and the equilibrium constant, and is useful for predicting the direction of these reactions.

人体の臓器、或いは生体内反応の酸化還元反応は電位が低く、通常−100mV〜−400mVの範囲であり、そのpHは、3〜7の範囲である。体液の酸化還元電位が高くなると活性酸素が滞留し易く、器官に障害が出てくると云われている。とくに、腸内微生物が活発に活動して栄養成分を消化吸収する腸内は、嫌気性の還元雰囲気に維持されている必要がある。  The redox reaction of human organs or in vivo reactions has a low potential, usually in the range of −100 mV to −400 mV, and the pH is in the range of 3 to 7. It is said that when the oxidation-reduction potential of the body fluid increases, active oxygen tends to stay and damage the organ. In particular, the intestines where the intestinal microorganisms actively act to digest and absorb nutrients must be maintained in an anaerobic reducing atmosphere.

たとえば、生体内における、(酢酸+CO+2H/α− ケトグルタル酸反応)の酸化還元電位は−673mV、(酢酸+CO/ピルビンル酸反応)の酸化還元電位は−699mV、(酢酸+2H/アセトアルデヒド酸反応)の酸化還元電位は−581mV、フェレドキシンの酸化還元電位は−413mV、(キサンチン+H/ヒポキサンチン+HO)の酸化還元電位は−371mV、(尿酸+H/キサンチン+HO)の酸化還元電位は−360mV、(アセト酢酸+2H/β−ヒドロキシ酪酸反応)の酸化還元電位は−346mV(シスチン+2H/2システイン反応)の酸化還元電位は−340mVである。For example, in vivo, the redox potential of (acetic acid + CO 2 + 2H + / α-ketoglutaric acid reaction) is −673 mV, the redox potential of (acetic acid + CO 2 / pyruvic acid reaction) is −699 mV, and (acetic acid + 2H + / acetaldehyde) The redox potential of (acid reaction) is −581 mV, the redox potential of ferredoxin is −413 mV, the redox potential of (xanthine + H + / hypoxanthine + H 2 O) is −371 mV, and (uric acid + H + / xanthine + H 2 O). The oxidation-reduction potential is −360 mV, and the oxidation-reduction potential of (acetoacetic acid + 2H + / β-hydroxybutyric acid reaction) is −346 mV (cystine + 2H + / 2 cysteine reaction) is −340 mV.

このように生体内における酵素、補酵素、代謝関連物質の反応は、酸化還元電位が低い環境下にある。また、酸化還元電位が低い水、または食品は、身体を酸化させる活性酸素や、1個又はそれ以上の不対電子を有する分子或いは原子、即ち、フリーラジカルを分離、消去する作用があって、SOD(スーパーオキシドジムスターゼ)という活性酸素消去酵素の反応を促進させると云われている。  Thus, the reactions of enzymes, coenzymes, and metabolism-related substances in the living body are in an environment where the redox potential is low. In addition, water or food having a low redox potential has an action of separating and eliminating active oxygen that oxidizes the body and molecules or atoms having one or more unpaired electrons, that is, free radicals, It is said to promote the reaction of an active oxygen scavenging enzyme called SOD (superoxide dismutase).

酸化還元反応を始めとする体内の代謝反応の場を提供しているのが、体液である。体液は生体のほぼ60%を占めている。体液は、水を中心として、電解質、タンパク質等を重要な構成要素としている。これが、酸化還元電位が低い水が生体内にとって有効な理由である。  Body fluids provide a place for metabolic reactions in the body, including redox reactions. Body fluids occupy almost 60% of the living body. Body fluids are composed mainly of water, and electrolytes, proteins, and the like as important components. This is the reason why water having a low redox potential is effective in vivo.

ところで、水道水の酸化還元電位は+400〜+800mV、天然のミネラルウオーターや環境庁名水百撰に選定されているような湧水の酸化還元電位は+200mV〜0の範囲、pHが6.5〜8の範囲である。これらの水が、酸化還元電位において、酸化還元電位が−100mV〜−400mVの範囲の生体臓器とバランスがとれないと考えられる。  By the way, the redox potential of tap water is +400 to +800 mV, the redox potential of spring water selected as natural mineral water or the name of the water agency of the Environment Agency is +200 mV to 0, and the pH is 6.5 to 8. Range. It is considered that these waters cannot be balanced with a living organ having a redox potential in the range of −100 mV to −400 mV at the redox potential.

現在、酸化体と還元体の混合状態にある水、たとえば水道水の酸化還元電位をマイナスにする方法として、たとえば電気分解法、高周波電流印加法等幾つか提案されている。然しながら、いずれも酸化還元電位の値とpHのバランスが、生体内酸化還元反応の観点から、理想的な方法ではなかった。  At present, several methods have been proposed for reducing the redox potential of water in a mixed state of an oxidant and a reductant, such as tap water, such as an electrolysis method and a high-frequency current application method. However, in any case, the balance between the value of the redox potential and the pH is not an ideal method from the viewpoint of the in vivo redox reaction.

本発明者が開発し、すでに特許出願した基本的な方法は、酸化体と還元体の混合状態にある水、たとえば水道水の酸化還元電位を、生体の臓器のそれ、すなわち、−400mV以下にする方法として、原料水を、シリカ系石英斑岩に金属を担持させた還元触媒と接触させながら、水素を吹き込む方法である。さらに、このような方法で製造した水をアルミパウチに充填することにより、酸化還元電位を少なくとも−400mV以下に、ほぼ30日間維持することができるとするものである。  The basic method developed by the present inventor and already applied for a patent is that the redox potential of water in a mixed state of an oxidant and a reductant, for example tap water, is reduced to that of a living organ, that is, −400 mV or less. As a method of doing this, hydrogen is blown in while bringing the raw material water into contact with a reduction catalyst in which a metal is supported on silica-based quartz porphyry. Furthermore, by filling the aluminum pouch with water produced by such a method, the oxidation-reduction potential can be maintained at least at −400 mV or less for approximately 30 days.

しかしながら、本発明者が開発した製品の形態は水であるので、価格設定、流通、品質、酸化還元電位の長期間の維持等商品経済学、あるいはマーチャンダイジングの観点からは商品としての形態を改良する余地があった。  However, since the form of the product developed by the present inventor is water, the form as a product from the viewpoint of product economics such as pricing, distribution, quality, long-term maintenance of oxidation-reduction potential, or merchandising. There was room for improvement.

特願平2003−436591Japanese Patent Application No. 2003-436591 特願平2003−198747Japanese Patent Application No. 2003-198747 特願平2004−64745Japanese Patent Application No. 2004-64745 特願平2004−147017Japanese Patent Application No. 2004-147017

本発明が解決しようとする課題は、本発明者が開発した酸化還元電位が低い水を有効利用して、価格設定、流通、品質、酸化還元電位の長期間の維持等商品経済学、あるいはマーチャンダイジングの観点から商品として有利な食品の形態にすることである。  The problem to be solved by the present invention is to make effective use of water with low oxidation-reduction potential developed by the present inventor, such as pricing, distribution, quality, product economics such as long-term maintenance of oxidation-reduction potential, or merchandise. It is to make the food form advantageous as a product from the viewpoint of dicing.

本発明が解決しようとするより具体的な課題は、本発明者が開発した水の酸化還元電位を低く維持した状態で、高次分子構造の空隙に大量に包摂し、栄養や機能を備え、且つ価格設定、流通、品質等商品経済学、あるいはマーチャンダイジングの観点から有利な商品として商品の形態にすることである。  More specific problem to be solved by the present invention is a state in which the redox potential of water developed by the present inventor is kept low, it is included in a large amount in voids of higher molecular structure, and has nutrition and functions. In addition, it is to make a product form as an advantageous product from the viewpoint of product economics such as pricing, distribution, quality, or merchandising.

本発明者は、課題を解決する手段を策定するに当たって、以下のことを重点的に検討した。(1)開発すべき食品が、本発明者が開発した水の酸化還元電位を長期間低電位に維持するものであること。(2)外部加熱や、電子レンジにより加熱調理せずに、開封後直ちに食用に供することができるものであること。即ち、冷たいままで食べられること。同じく、(3)食品として何らかの機能をもつものであること。及び(4)新規に開発した食品にではなく、食品として各種法令を満足し、且つ日常常用されていて評価が定まった食品に応用すること。  The present inventor has focused on the following in formulating means for solving the problems. (1) The food to be developed should maintain the redox potential of water developed by the present inventor at a low potential for a long time. (2) It can be used for food immediately after opening without external heating or cooking with a microwave oven. In other words, it can be eaten cold. Similarly, (3) have some function as food. And (4) Apply to foods that satisfy various laws and regulations, and are used regularly and evaluated, not to newly developed foods.

本発明者が種々の観点から検討した結果、上記(1)を満足させるものとしては、食品が水溶液、即ち、分散媒としての水に分散質としての食品を均一に分散したジュースや清涼飲料水ではなく、巨大分子構造の中にできるだけ大量の水を包摂したものでなければならないこと。同じく、上記(2)を満足させるには、いわゆる冷菓あるいはデザートでなけらばならないこと。同じく、上記(3)を満足させるには、栄養はなくても、機能として食物繊維を豊富に含有する食品でなけらばならないこと。そして上記(4)を満足させるには、食材として煩雑な調理を必要とするものではなく、必要に応じて簡単な食味付け、香味付け、着色をしただけで、ほぼそのまま食べられるものでなけらばならないことが解明された。  As a result of studying the present invention from various viewpoints, the present invention satisfies the above (1). The food is an aqueous solution, that is, a juice or a soft drink in which food as a dispersoid is uniformly dispersed in water as a dispersion medium. Rather, it must contain as much water as possible in the macromolecular structure. Similarly, in order to satisfy (2) above, it must be a so-called frozen dessert or dessert. Similarly, in order to satisfy the above (3), the food must be rich in dietary fiber as a function, even if it is not nutritious. In order to satisfy the above (4), it does not require complicated cooking as an ingredient, but can be eaten almost as it is simply by seasoning, flavoring and coloring as required. It was clarified that it was necessary.

そこで、本発明者は、上記(1)〜(4)のすべての要件を満足させる食品として、ゼラチンを検討した。  Therefore, the present inventor studied gelatin as a food satisfying all the requirements (1) to (4).

従って、課題を解決する手段である本発明は、水を構成成分として含有し、酸化還元電位が少なくとも−400mVであるゼラチンである。  Therefore, the present invention, which is a means for solving the problems, is a gelatin containing water as a component and having an oxidation-reduction potential of at least −400 mV.

さらに、課題を解決する手段である本発明は、還元体と酸化体とから成る原料水を所定の方法で処理して浄化水とし、所定量の水素ガスを吹き込んで酸化還元電位が約−600mV以下の加水素水を予め製造する工程と、前記工程で製造した加水素水とゼラチンを混合してゲル状生成物を製造する工程と、前記工程で製造したゲル状生成物をアルミパウチに充填する工程とを含むゼラチンを製造する方法である。  Furthermore, the present invention, which is a means for solving the problem, treats raw water consisting of a reductant and an oxidant by a predetermined method to produce purified water, and blows a predetermined amount of hydrogen gas so that the redox potential is about -600 mV. The following steps for producing hydrogenated water in advance, steps for producing a gel-like product by mixing the hydrogenated water produced in the previous step and gelatin, and filling the aluminum product with the gel-like product produced in the previous step A process for producing gelatin.

さらに、課題を解決する手段である本発明は、所定の方法で処理した浄化水に、ゼラチンを混合してゲル状生成物を製造する工程と、前記工程で製造したゲル状生成物に、所定量の水素ガスを吹き込んで酸化還元電位を約−600mV以下のゲル状生成物を製造する工程と、前記工程で製造した酸化還元電位が約−600mV以下のゲル状生成物をアルミパウチに充填する工程とを含むゼラチンを製造する方法である。  Furthermore, the present invention, which is a means for solving the problem, includes a step of producing a gel product by mixing gelatin with purified water treated by a predetermined method, and a gel product produced in the above step. A step of producing a gel-like product having a redox potential of about −600 mV or less by blowing a certain amount of hydrogen gas, and filling the aluminum pouch with a gel-like product having a redox potential of about −600 mV or less produced in the above step. A process comprising the steps of:

ゼラチンは、コラーゲンの類縁物質である。コラーゲンは高タンパク質の一種である。コラーゲンの立体構造は三重螺旋分子構造であるが、これが壊れた状態、すなわち変成コラーゲンのことをゼラチンという。  Gelatin is a related substance of collagen. Collagen is a kind of high protein. The three-dimensional structure of collagen is a triple helix molecular structure, but the broken state, that is, denatured collagen is called gelatin.

市販のゼラチンは変成したコラーゲンのほかに他の物質や色素も含むうえ、グルタミン、アスパラギンのアミド基のNHがとんでいたり、共有結合が切断されたものの混合物である。溶液論的には典型的なランダムコイルとしての挙動を示すが変性を起こしている条件、たとえば、加熱、変性剤の添加、pHを上げる等をもとに戻すと、少なくとも部分的にもとのコラーゲン構造を取る。他のタンパク質と異なり、ゼラチンは非常によく水に溶ける。これはコラーゲンのアミノ酸組成をみると疎水性アミノ酸残基が著しく少ないうえ、プロリンは水と接することを好むからと考えられている。濃厚なゼラチン溶液は冷却するとゲル状になる。In addition to the modified collagen, commercially available gelatin contains other substances and pigments, as well as a mixture of glutamine, asparagine amide group NH 2 , or a covalent bond cleaved. In solution theory, it shows the behavior of a typical random coil, but when it is restored to its original condition such as heating, addition of a denaturant, raising pH, etc. Take collagen structure. Unlike other proteins, gelatin is very well soluble in water. This is thought to be because the amino acid composition of collagen has significantly fewer hydrophobic amino acid residues and proline prefers to contact water. A thick gelatin solution becomes a gel when cooled.

コラーゲンは細胞の中でアミノ酸から作られる。細胞内で作られたコラーゲンは細胞外へ分泌されて必要な場所に定着し、繊維同士が縦横に繋がり合って立体構造をとり、細胞の増殖を促進し、細胞の機能の活性化を促す機能がある。  Collagen is made from amino acids in cells. Collagen produced inside the cell is secreted outside the cell and settles where it is needed, and the fibers are connected vertically and horizontally to form a three-dimensional structure that promotes cell growth and promotes cell function activation. There is.

多様な機能が期待されるコラーゲンは、現在その多くが牛皮、豚皮、牛軟骨などを原料として、腸管で消化吸収しやすいように酵素発酵によって低分子化が図られており、使用する酵素の種類や分解法によってさまざまな特性をもつ多種類の製品が供給され、健康食品のみならず一般食品への活用も進んでいる。  Collagen, which is expected to have a variety of functions, is currently made mainly from cow skin, pork skin, and cow cartilage, and its molecular weight is reduced by enzymatic fermentation so that it can be easily digested and absorbed in the intestinal tract. Many types of products with various characteristics are supplied depending on the type and decomposition method, and they are used not only for health foods but also for general foods.

そこで本発明者は、価格設定、流通、品質等商品経済学、あるいはマーチャンダイジングの観点から有利な商品形態にするために、水とゼラチンとから成り酸化還元電位が少なくとも−400mVであるゲル状機能性食品において、水素の注入方法、保管方法、粘度等の諸要因が酸化還元電位の維持に与える影響を検討した。  Accordingly, the present inventor has proposed a gel form having water-gelatin and an oxidation-reduction potential of at least −400 mV in order to make the product form advantageous from the viewpoint of product economics such as pricing, distribution, quality, or merchandising. In functional foods, the effects of various factors such as hydrogen injection, storage, and viscosity on the oxidation-reduction potential were investigated.

本発明により、次のような効果が奏功される。
(1)請求項1に記載した発明により、本発明者が開発した酸化還元電位が−400mV以下の水をゼラチンの分散媒として使用することにより、冷菓あるいはデザート用食品形態にすることができるので、本発明者が開発した酸化還元電位が低い水を、価格設定、流通、品質、長期間の維持等商品経済学、あるいはマーチャンダイジングの観点から商品として有利な食品の形態にすることができる。
The following effects are achieved by the present invention.
(1) According to the invention described in claim 1, the use of water having a redox potential of −400 mV or less developed by the present inventor as a gelatin dispersion medium enables a frozen dessert or dessert food form. The water with a low oxidation-reduction potential developed by the present inventor can be made into a food form that is advantageous as a product from the viewpoint of product economics such as pricing, distribution, quality, long-term maintenance, or merchandising. .

(2)請求項2に記載した発明により、ゼラチンの標準使用量である2%より、20%低くしても、所要の酸化還元電位を90日間以上維持することができる。(2) According to the second aspect of the present invention, the required oxidation-reduction potential can be maintained for 90 days or more even if it is 20% lower than 2%, which is the standard amount of gelatin used.

(3)請求項3に記載した発明により、ゼラチンの標準使用量である2%より、40%低くしても、所要の酸化還元電位を75日間以上維持することができる。(3) According to the invention described in claim 3, the required oxidation-reduction potential can be maintained for 75 days or more even if it is 40% lower than the standard amount of gelatin used of 2%.

(4)請求項4に記載した発明により、ゼラチンの標準使用量である2%より、50〜70%低くしても、所要の酸化還元電位を60日間以上維持することができる。(4) According to the invention described in claim 4, the required redox potential can be maintained for 60 days or more even if it is 50 to 70% lower than 2% which is the standard amount of gelatin.

(5)請求項5に記載した発明により、ゼラチンの標準使用量である2%より、20%高くしても、所要の酸化還元電位を90日間以上維持することができる。(5) According to the invention described in claim 5, the required oxidation-reduction potential can be maintained for 90 days or more even if it is 20% higher than 2% which is the standard amount of gelatin.

(6)請求項6に記載した発明により、健康食品としてのゼラチンと、人体の臓器、或いは生体内反応の酸化還元反応の範囲にある−100mV〜−400mVの水を一緒に冷菓或いはデザート菓子として摂食できる。(6) According to the invention described in claim 6, gelatin as a health food and water of −100 mV to −400 mV in the range of redox reaction of human organs or in vivo reaction together as frozen confectionery or dessert confectionery Can eat.

(7)請求項7に記載した発明により、本発明者が開発した酸化還元電位が−400mV以下の水をゼラチンの分散媒として使用することにより、2%のゼラチンの使用量で、2〜5℃の冷蔵庫で保管し、酸化還元電位を60日以上維持できる冷菓あるいはデザート用食品形態にすることができるので、本発明者が開発した酸化還元電位が低い水を、価格設定、流通、品質、長期間の維持等商品経済学、あるいはマーチャンダイジングの観点から商品として有利な食品の形態にすることができる。(7) By using water having a redox potential of −400 mV or less developed by the inventor according to the invention described in claim 7 as a gelatin dispersion medium, the amount of gelatin used is 2% to 2-5. Since it can be stored in a refrigerator at ℃ and can be made into a food form for frozen desserts or desserts that can maintain the oxidation-reduction potential for 60 days or more, water with a low oxidation-reduction potential developed by the present inventor is priced, distributed, quality, From the viewpoint of product economics such as long-term maintenance or merchandising, it can be made into a form of food that is advantageous as a product.

(8)請求項8に記載した発明により、水とゼラチンから成るエマルションの酸化還元電位を適度に維持できるので、商品の消費サイクルが短い冷菓あるいはデザート用食品形態にすることができる。(8) According to the invention described in claim 8, since the oxidation-reduction potential of the emulsion composed of water and gelatin can be appropriately maintained, it is possible to obtain a frozen confectionery or dessert food form having a short merchandise consumption cycle.

発明の好ましい実施の形態Preferred embodiments of the invention

以下、発明の好ましい実施の形態を実施例及び比較例により具体的に説明する。  Hereinafter, preferred embodiments of the present invention will be specifically described with reference to Examples and Comparative Examples.

水とゼラチンとから成り酸化還元電位が少なくとも−400mVであるゲル状機能性食品を製造する方法は2通りある。即ち、第1の方法は、本発明者が開発し特許出願した方法によって、酸化還元電位が−400mV以下の水を予め製造しておき、その水にゼラチンを溶解する方法である。(以下、この方法を「加水素水使用法」という)。第2の方法は、浄化水にゼラチンを溶解させておいてから所定の条件下で所定量の水素を吹き込む方法である(以下、この方法を「後水素注入法」という)。以下、加水素水使用法と、後水素注入法の利害得失を検証する。  There are two methods for producing a gel-like functional food comprising water and gelatin and having an oxidation-reduction potential of at least −400 mV. That is, the first method is a method in which water having an oxidation-reduction potential of −400 mV or less is produced in advance by a method developed by the present inventor and applied for a patent, and gelatin is dissolved in the water. (Hereafter, this method is referred to as “use of hydrogenated water”). The second method is a method in which gelatin is dissolved in purified water and then a predetermined amount of hydrogen is blown under predetermined conditions (hereinafter, this method is referred to as “post-hydrogen injection method”). In the following, we will examine the pros and cons of using hydrogenated water and post-hydrogen injection.

[実施例1]
1.使用した測定装置
酸化還元電位測定:東亜ディーケーケー工業(株)製「ポータブルORP計RM−2」(商品名)単位:mV
pH測定:東亜ディーケーケー工業(株)「ポータブルpH計HM−2OP」(商品名)
粘度測定:RION製粘度計「VT−04F」(商品名)単位:ps
溶存水素量測定:東亜ディーケーケー工業(株)「DHD1−1型溶存水素計」単位:ppm、ppb
2.使用したゼラチン:ゼライス株式会社製の「ゼライス」(商品名)標準分量:ゼライス5gに対して水250g。
3.使用した水素ガス:岩谷ガス株式会社製の水素ガス(純度99.97%)
4.使用したアルミパウチ:ポリエチレンテレフタレート/アルミニウム/ナイロン/ポリエチレン(PET/AL/NY/PE)ラミネート製、130(幅)×180mm(高さ)、容量500mL、センターに口栓付きのもの。
[Example 1]
1. Measurement equipment used Redox potential measurement: “Portable ORP meter RM-2” (trade name) manufactured by Toa DKK Industry Co., Ltd. Unit: mV
pH measurement: Toa DK Industrial Co., Ltd. “Portable pH meter HM-2OP” (trade name)
Viscosity measurement: RION viscometer "VT-04F" (trade name) Unit: ps
Measurement of dissolved hydrogen: Toa DKK Industry Co., Ltd. “DHD1-1 type dissolved hydrogen meter” Unit: ppm, ppb
2. Gelatin used: “Zerais” (trade name) manufactured by Zerais Co., Ltd. Standard amount: 250 g of water for 5 g of Zelice.
3. Hydrogen gas used: Hydrogen gas manufactured by Iwatani Gas Co., Ltd. (purity 99.97%)
4). Aluminum pouch used: polyethylene terephthalate / aluminum / nylon / polyethylene (PET / AL / NY / PE) laminate, 130 (width) × 180 mm (height), capacity 500 mL, with a stopper at the center.

加水素水の製造
水温10.2℃の水道水20リットルを殺菌、脱塩素処理を施し、さらに精密濾過処理を施して不純物を除去して無味、無臭の浄化水を製造した。この浄化水を測定した結果、酸化還元電位が+250mV、pHが7.12、溶存水素量が2.1ppbであった。この浄化水20リットルに、水素ガス(純度99.97%)を、水素注入圧0.9MPa、放出圧0.02Mpaで2.5分間吹き込んで、酸化還元電位が−615mV、pHが7.23、溶存水素量が1.20ppm、水温が10.3℃の加水素水を製造した。
Production of hydrogenated water 20 liters of tap water having a water temperature of 10.2 ° C. was sterilized and dechlorinated, and further subjected to a microfiltration treatment to remove impurities to produce tasteless and odorless purified water. As a result of measuring this purified water, the oxidation-reduction potential was +250 mV, pH was 7.12, and the amount of dissolved hydrogen was 2.1 ppb. Hydrogen gas (purity 99.97%) was blown into 20 liters of this purified water at a hydrogen injection pressure of 0.9 MPa and a discharge pressure of 0.02 Mpa for 2.5 minutes, with an oxidation-reduction potential of −615 mV and a pH of 7.23. Hydrogenated water having a dissolved hydrogen content of 1.20 ppm and a water temperature of 10.3 ° C. was produced.

この加水素水を500mLアルミパウチに充填後、パウチの上部全幅(130mm幅)を切断して、パウチを完全に開放状態にして、2〜5℃の冷蔵庫に保管した。開放直後から酸化還元電位、pH、及び温度の経時変化を測定した。得た結果を表−1に記載した。  After filling this hydrogenated water in a 500 mL aluminum pouch, the upper full width (130 mm width) of the pouch was cut, the pouch was completely opened, and stored in a refrigerator at 2 to 5 ° C. Immediately after opening, changes with time of the redox potential, pH, and temperature were measured. The obtained results are shown in Table 1.

Figure 2005348706
Figure 2005348706

表−1の結果から、加水素水だけの場合は、開放後1日で−400mV以上になり、6日後には原料水の酸化還元電位に戻ることが明らかである。  From the results of Table 1, it is clear that in the case of only hydrogenated water, it becomes −400 mV or more in 1 day after opening, and returns to the oxidation-reduction potential of raw material water after 6 days.

次いで、ゼラチン10gを秤量し、アルミパウチに注入し、次いで、加水素水490mLを注入し、口栓をして、軽く5回シェイクし、アルミパウチを密封した。密封状態のまま、85℃で30分間温浴加熱してゼラチンを完全に溶解させて、ゼラチンの2%溶液を製造した。次いで、15℃の水道水で30分間水冷した後、15℃の室温で24時間冷却して試料を製造した。同じ手法で3個の試料を作成した。  Next, 10 g of gelatin was weighed and poured into an aluminum pouch, then 490 mL of hydrogenated water was poured into it, capped, shaken lightly 5 times, and the aluminum pouch was sealed. In a sealed state, the gelatin was completely dissolved by heating in a warm bath at 85 ° C. for 30 minutes to prepare a 2% solution of gelatin. The sample was then cooled with tap water at 15 ° C. for 30 minutes and then cooled at room temperature of 15 ° C. for 24 hours to produce a sample. Three samples were prepared by the same method.

上述した方法によって製造した試料のパウチの上部全幅(130mm幅)を切断して、パウチを完全に開放状態にして、2〜5℃の冷蔵庫に保管した。開放直後の酸化還元電位は−565mV、pHは6.88、粘度は800ps、温度は15.3℃であった。  The upper full width (130 mm width) of the sample pouch produced by the method described above was cut, the pouch was completely opened, and stored in a refrigerator at 2 to 5 ° C. Immediately after opening, the redox potential was −565 mV, the pH was 6.88, the viscosity was 800 ps, and the temperature was 15.3 ° C.

この試料の酸化還元電位、pH及び温度の経時変化を測定した。得た結果を表−2に記載する。

Figure 2005348706
The oxidation-reduction potential, pH, and temperature change of this sample were measured. The results obtained are listed in Table-2.
Figure 2005348706

表−2の結果から、酸化還元電位が、製造直後は、−615mVで、アルミパウチに充填、口栓をして密封し、パウチの上部全幅(130mm幅)を切断して、パウチを完全に開放状態にして、2〜5℃の冷蔵庫に保管した開放直後は、−585mVで、24時間後には、−400mV以上に上昇した加水素水を媒体とした2%のゼラチン溶液の酸化還元電位が、90日経過後も−576mVを維持していることが理解される。  From the results in Table 2, the oxidation-reduction potential is -615 mV immediately after manufacture, and the pouch is completely cut by filling the aluminum pouch, sealing it with a cap, cutting the entire upper width (130 mm width) of the pouch. Immediately after being opened and stored in a refrigerator at 2 to 5 ° C., it is −585 mV, and after 24 hours, the redox potential of a 2% gelatin solution using hydrogenated water increased to −400 mV or more as a medium. It is understood that -576 mV is maintained after 90 days.

[実施例2〜9]
ゼラチンの濃度を、0.60%(実施例2)、0.70%(実施例3)、0.80%(実施例4)、0.90%(実施例5)、1.00%(実施例6)、1.20%(実施例7)、1.60%(実施例8)、2.40%(実施例9)に変化させた以外には、実施例1と同じ手法を繰り返し、2〜5℃の冷蔵庫内て、それぞれの酸化還元電位が−400mV以上になるまでの時間(日)を測定した。その結果を表−3に記載する。

Figure 2005348706
[Examples 2 to 9]
The gelatin concentration was 0.60% (Example 2), 0.70% (Example 3), 0.80% (Example 4), 0.90% (Example 5), 1.00% ( Example 6), 1.20% (Example 7), 1.60% (Example 8), and 2.40% (Example 9), except that the same procedure as in Example 1 was repeated. The time (day) until each oxidation-reduction potential became −400 mV or higher was measured in a refrigerator at 2 to 5 ° C. The results are shown in Table-3.
Figure 2005348706

表−3の結果から、ゼラチンの標準分量である2%より50〜70%低い場合は、所要の酸化還元電位を60日間以上維持すること、40%低い場合は、所要の酸化還元電位を75日間以上維持すること、また20%低い場合は、所要の酸化還元電位を90日間以上維持すること、逆に、20%高くしても、酸化還元電位を90日間以上維持することが理解される。  From the results shown in Table 3, when the standard amount of gelatin is 2 to 50% lower than 2%, the required redox potential is maintained for 60 days or more, and when it is 40% lower, the required redox potential is 75. It is understood that the required redox potential is maintained for 90 days or more when maintained for 20 days or more, and conversely, even if it is increased by 20%, the redox potential is maintained for 90 days or more. .

[比較例1〜5]
ゼラチンの濃度を、0.60%(比較例1)、0.70%(比較例2)、0.80%(比較例3)、0.90%(比較例4)、1.00%(比較例5)に変化させて、20℃の恒温室内で、実施例1と同じ手法を繰り返し、それぞれの酸化還元電位が−400mV以上になるまでの時間(日)を測定した。その結果を表−4に記載する。

Figure 2005348706
[Comparative Examples 1-5]
The gelatin concentration was 0.60% (Comparative Example 1), 0.70% (Comparative Example 2), 0.80% (Comparative Example 3), 0.90% (Comparative Example 4), 1.00% ( By changing to Comparative Example 5), the same procedure as in Example 1 was repeated in a constant temperature room at 20 ° C., and the time (day) until each oxidation-reduction potential became −400 mV or more was measured. The results are shown in Table-4.
Figure 2005348706

表−4の結果から、保管は2〜5℃における低温環境下での保管が好ましいことが理解される。  From the results of Table-4, it is understood that storage is preferably performed in a low temperature environment at 2 to 5 ° C.

[実施例10]
水温10.2℃の水道水20リットルを殺菌、脱塩素処理を施し、さらに精密濾過処理を施して不純物を除去して無味、無臭の浄化水を製造した。この浄化水を測定した結果、酸化還元電位が+250mV、pHが7.12、溶存水素量が2.1ppbであった。
次いで、この浄化水を500mLアルミパウチに注入した。
[Example 10]
Twenty liters of tap water having a water temperature of 10.2 ° C. was sterilized and dechlorinated, and further subjected to microfiltration to remove impurities to produce tasteless and odorless purified water. As a result of measuring this purified water, the oxidation-reduction potential was +250 mV, pH was 7.12, and the amount of dissolved hydrogen was 2.1 ppb.
Next, this purified water was poured into a 500 mL aluminum pouch.

ゼラチンの標準使用量は、常水250gに対しゼラチン5gである。従って、ゼラチン10gを秤量し、前記500mLの浄化水が充填されているアルミパウチに注入して、よく攪拌してゼラチンエマルションを製造した。口栓をして、アルミパウッチを5回シェイクし、アルミパウチを密封した。密封状態のまま、85℃で30分間温浴加熱してゼラチンを完全に溶解させて、ゼラチンの約2%溶液を製造した。次いで、15℃の水道水で30分間水冷した後開封し水素ガス(純度99.97%)を、水素注入圧0.9MPa、放出圧0.02MPaで2.5分間吹き込んだ。次いで、15℃の室温で24時間冷却して試料を製造した。同じ手法で3個の試料を作成した。  The standard amount of gelatin used is 5 g of gelatin for 250 g of normal water. Accordingly, 10 g of gelatin was weighed, poured into an aluminum pouch filled with 500 mL of purified water, and stirred well to prepare a gelatin emulsion. The mouth was plugged, the aluminum pouch was shaken 5 times, and the aluminum pouch was sealed. While sealed, the gelatin was completely dissolved by heating in a warm bath at 85 ° C. for 30 minutes to prepare an approximately 2% solution of gelatin. Next, the product was cooled with tap water at 15 ° C. for 30 minutes and then opened, and hydrogen gas (purity 99.97%) was blown in for 2.5 minutes at a hydrogen injection pressure of 0.9 MPa and a discharge pressure of 0.02 MPa. Subsequently, it cooled at room temperature of 15 degreeC for 24 hours, and the sample was manufactured. Three samples were prepared by the same method.

上述した方法によって製造した試料のパウチの上部全幅(130mm幅)を切断して、パウチを完全に開放状態にして、2〜5℃の冷蔵庫に保管した。開放直後の酸化還元電位は−565mV、pHは6.88、粘度は780ps、温度は9.3℃であった。  The upper full width (130 mm width) of the sample pouch produced by the method described above was cut, the pouch was completely opened, and stored in a refrigerator at 2 to 5 ° C. Immediately after opening, the redox potential was -565 mV, the pH was 6.88, the viscosity was 780 ps, and the temperature was 9.3 ° C.

次いで、この試料の酸化還元電位、pH及び温度の経時変化を測定したところ、表−2に記載したとほぼ同じ結果を得た。  Next, when the oxidation-reduction potential, pH, and temperature change of this sample were measured, almost the same results as described in Table 2 were obtained.

[実施例11〜18]
さらに、ゼラチンの濃度を、0.60%(実施例11)、0.70%(実施例12)、0.80%(実施例13)、0.90%(実施例14)、1.00%(実施例15)、1.20%(実施例16)、1.60%(実施例17)、2.40%(実施例18)に変化させた以外には、実施例2〜9と同じ手法を繰り返し、2〜5℃の冷蔵庫内て、それぞれの酸化還元電位が−400mV以上になるまでの時間(日)を測定したところ、表−3に記載したとほぼ同じ結果を得た。
[Examples 11 to 18]
Further, the gelatin concentration was 0.60% (Example 11), 0.70% (Example 12), 0.80% (Example 13), 0.90% (Example 14), 1.00. % (Example 15), 1.20% (Example 16), 1.60% (Example 17), and 2.40% (Example 18). The same procedure was repeated, and the time (day) until each oxidation-reduction potential became −400 mV or higher was measured in a refrigerator at 2 to 5 ° C., and almost the same results as described in Table 3 were obtained.

考察
以上の結果から、下記の事実が推断される。
1.製造した加水素水を2〜5℃の冷蔵庫に保管し開放した直後は1日で−400mVを切り、6日後には+200mV以上になる。
Discussion From the above results, the following facts can be inferred.
1. Immediately after the produced hydrogenated water is stored in a refrigerator at 2 to 5 ° C. and opened, −400 mV is cut in one day, and after 200 days, it becomes +200 mV or more.

2.ゼラチンの標準使用量は、常水250gに対しゼラチン5gを溶解して使用する。即ち、常水に対するゼラチンの標準使用量は約2%である。然しながら、常水に代え、酸化還元電位が約−600mV以下の加水素水を使用した場合、ゼラチンの標準分量である約2%より50〜70%低い場合は、所要の酸化還元電位を60日間以上維持し、40%低い場合は、所要の酸化還元電位を75日間以上維持し、また20%低い場合は、所要の酸化還元電位を90日間以上維持し、逆に、20%高くしても、酸化還元電位を90日間以上維持する。2. The standard amount of gelatin used is that 5 g of gelatin is dissolved in 250 g of normal water. That is, the standard amount of gelatin used for normal water is about 2%. However, when hydrogenated water having an oxidation-reduction potential of about −600 mV or less is used in place of normal water, the required oxidation-reduction potential is reduced to 60 days if it is 50 to 70% lower than the standard amount of gelatin of about 2%. If it is maintained above, if it is 40% lower, the required oxidation-reduction potential is maintained for 75 days or more. If it is 20% lower, the required oxidation-reduction potential is maintained for 90 days or more. The oxidation-reduction potential is maintained for 90 days or more.

3.酸化還元電位が−615mVの加水素水単独で、2〜5℃の冷蔵庫に保管した場合、−400mVを切るまでの時間は1日である。3. When hydrogenated water having an oxidation-reduction potential of −615 mV alone is stored in a refrigerator at 2 to 5 ° C., the time required to cut −400 mV is 1 day.

4.酸化還元電位が−615mVの加水素水250gにゼラチン5gを溶解させ、2〜5℃の冷蔵庫に保管した場合、−400mVを切るまでの時間は90日以上である。4). When 5 g of gelatin is dissolved in 250 g of hydrogenated water having an oxidation-reduction potential of −615 mV and stored in a refrigerator at 2 to 5 ° C., the time to cut −400 mV is 90 days or more.

5.加水素水単独、或いは加水素水に溶解させたゼラチンの場合でも、酸化還元電位を所要の値に維持するには、2〜5℃の冷蔵庫による保管が有利である。5). Even in the case of hydrogenated water alone or gelatin dissolved in hydrogenated water, storage in a refrigerator at 2 to 5 ° C. is advantageous in order to maintain the oxidation-reduction potential at a required value.

6.酸化還元電位が−400mV以下の水を予め製造しておき、その水にゼラチンを溶解する方法、即ち、「加水素水使用法」も、浄化水にゼラチンを溶解させておいてから所定の条件下で所定量の水素を吹き込む、いわゆる「後水素注入法」も、ほぼ同じ効果を得ることができる。従って、製造しようとする商品の種類、販売方法、貯蔵期間、消費サイクル等具体的なマーチャンダイジングによりいずれかを選択することが有利である。6). A method in which water having an oxidation-reduction potential of −400 mV or less is prepared in advance and gelatin is dissolved in the water, that is, “method of using hydrogenated water” is also applied to a predetermined condition after gelatin is dissolved in purified water. The so-called “post-hydrogen injection method”, in which a predetermined amount of hydrogen is blown below, can achieve substantially the same effect. Therefore, it is advantageous to select one according to specific merchandising such as the type of product to be manufactured, the sales method, the storage period, and the consumption cycle.

Claims (8)

水を構成成分として含有し、酸化還元電位が少なくとも−400mVであるゼラチン。Gelatin containing water as a component and having an oxidation-reduction potential of at least -400 mV. ゼラチンの使用量が、標準使用量である2%より20%低い請求項1に記載したゼラチン。The gelatin according to claim 1, wherein the amount of gelatin used is 20% lower than the standard amount used of 2%. ゼラチンの使用量が、標準使用量である2%より40%低い請求項1に記載したゼラチン。The gelatin according to claim 1, wherein the amount of gelatin used is 40% lower than the standard amount of 2%. ゼラチンの使用量が、標準使用量である2%より50〜70%低い請求項1に記載したゼラチン。The gelatin according to claim 1, wherein the amount of gelatin used is 50 to 70% lower than the standard amount of 2%. ゼラチンの使用量が、標準使用量である2%より20%高い請求項1に記載したゼラチン。The gelatin according to claim 1, wherein the amount of gelatin used is 20% higher than the standard amount used of 2%. 請求項1〜5のいずれか1項に記載したゼラチンに、食品衛生法で認可された香料、甘味料、着色料等食品添加物を添加した冷菓或いはデザート菓子。A frozen dessert or dessert confectionery obtained by adding a food additive such as a fragrance, sweetener, or colorant approved by the Food Sanitation Act to the gelatin according to any one of claims 1 to 5. (1)還元体と酸化体とから成る原料水を所定の方法で処理して浄化水とし、所定量の水素ガスを吹き込んで酸化還元電位が約−600mV以下の加水素水を予め製造する工程と、
(2)前記工程で製造した加水素水とゼラチンを混合してゲル状生成物を製造する工程と、
(3)前記工程で製造したゲル状生成物をアルミパウチに充填する工程とを含むゼラチンを製造する方法。
(1) A process of producing raw hydrogen water having a redox potential of about −600 mV or less by blowing raw material water comprising a reductant and an oxidant into a purified water by a predetermined method and blowing a predetermined amount of hydrogen gas. When,
(2) A step of producing a gel product by mixing the hydrogenated water produced in the step and gelatin.
(3) A method for producing gelatin, comprising the step of filling an aluminum pouch with the gel product produced in the above step.
(1)所定の方法で処理した浄化水に、ゼラチンを混合してゲル状生成物を製造する工程と、
(2)前記工程で製造したゲル状生成物に、所定量の水素ガスを吹き込んで酸化還元電位を約−600mV以下のゲル状生成物を製造する工程と、
(3)前記工程で製造した酸化還元電位が約−600mV以下のゲル状生成物をアルミパウチに充填する工程とを含むゼラチンを製造する方法。
(1) A step of producing a gel product by mixing gelatin with purified water treated by a predetermined method;
(2) A step of producing a gel-like product having a redox potential of about −600 mV or less by blowing a predetermined amount of hydrogen gas into the gel-like product produced in the above step;
(3) A method for producing gelatin comprising a step of filling an aluminum pouch with a gel-like product having an oxidation-reduction potential of about −600 mV or less produced in the above step.
JP2004198655A 2004-06-09 2004-06-09 Gelatin, method for producing the same and frozen dessert or dessert confectionery Pending JP2005348706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004198655A JP2005348706A (en) 2004-06-09 2004-06-09 Gelatin, method for producing the same and frozen dessert or dessert confectionery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004198655A JP2005348706A (en) 2004-06-09 2004-06-09 Gelatin, method for producing the same and frozen dessert or dessert confectionery

Publications (1)

Publication Number Publication Date
JP2005348706A true JP2005348706A (en) 2005-12-22

Family

ID=35583665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004198655A Pending JP2005348706A (en) 2004-06-09 2004-06-09 Gelatin, method for producing the same and frozen dessert or dessert confectionery

Country Status (1)

Country Link
JP (1) JP2005348706A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009165459A (en) * 2007-12-19 2009-07-30 Shinwa Kogyo Kk Method for dissolving mixture of hydrogen gas and nitrogen gas in food, apparatus therefor and food in which hydrogen gas and nitrogen gas are dissolved
JP2017121232A (en) * 2016-01-04 2017-07-13 ケイ・アンド・アイ有限会社 Production method of gelatinous food product holding hydrogen gas bubble
JP2019129729A (en) * 2018-01-29 2019-08-08 株式会社 伊藤園 Animal food material eat-texture modifier and ingredient elution promoter, and container-packed food/drink product

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009165459A (en) * 2007-12-19 2009-07-30 Shinwa Kogyo Kk Method for dissolving mixture of hydrogen gas and nitrogen gas in food, apparatus therefor and food in which hydrogen gas and nitrogen gas are dissolved
JP2017121232A (en) * 2016-01-04 2017-07-13 ケイ・アンド・アイ有限会社 Production method of gelatinous food product holding hydrogen gas bubble
JP2019129729A (en) * 2018-01-29 2019-08-08 株式会社 伊藤園 Animal food material eat-texture modifier and ingredient elution promoter, and container-packed food/drink product
JP7176845B2 (en) 2018-01-29 2022-11-22 株式会社 伊藤園 Texture modifiers and component elution promoters for animal ingredients, and packaged foods and beverages

Similar Documents

Publication Publication Date Title
Ployon et al. The role of saliva in aroma release and perception
JP3944786B2 (en) Gel-like functional food
JP2001314152A (en) Stable acidic milk beverage, method for producing the same, and additive to be used for producing the same
CN101715824B (en) Yoghurt containing physically denatured starch, and preparation method thereof
CN101703103A (en) Method for preparing fermented dairy products with unique flavor
JP6647832B2 (en) Non-alcoholic beer taste beverage
JP2567566B2 (en) Drink jelly manufacturing method
Jamaludin Fiqh Istihalah: integration of science and islamic law
CN106819856A (en) A kind of pudding and preparation method thereof
CN104322674B (en) A kind of yoghourt stabilizer and prepare the method for low-temperature yoghurt using it
US5587191A (en) Process for making highly oxygenated drinking water and drinking water made by the process
CN102907494A (en) Method for preparing needle mushroom lactic acid fermented beverage
DE60207525D1 (en) METHOD FOR PRODUCING STERILIZED MILK PRODUCTS CONTAINING GEL RUBBER
JP2005348706A (en) Gelatin, method for producing the same and frozen dessert or dessert confectionery
JPH1056983A (en) Improvement of gel food product
CN105558035A (en) Liquid milk product for protecting angiocarpy, maintaining beauty and keeping young
CN101731346B (en) Milk oligopeptide added liquid milk and preparation method thereof
JP2005348707A (en) Agar-agar, and method for producing the same
Yi et al. Hydrocolloids decrease the digestibility of corn starch, soy protein, and skim milk and the antioxidant capacity of grape juice
RU2357164C1 (en) Biologically active ice preparation method
JP2004000044A (en) Yeast-containing fermented malt beverage
JP6960257B2 (en) Non-alcoholic beer-taste beverage
CN110226632A (en) A kind of gelatinous food and preparation method thereof
JP2002335906A (en) Method for producing mayonnaise-flavored food in which jews-ear, devil&#39;s tongue, agar, gelatin, arrowroot, or the like, is used to take emulsifying effect, instead of using egg such as hen&#39;s egg or other&#39;s
CN107173517A (en) A kind of ice cream slurry and preparation method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080408