JP2005347633A - Method and apparatus for manufacturing laminated solid electrolytic capacitor and press means for the apparatus - Google Patents

Method and apparatus for manufacturing laminated solid electrolytic capacitor and press means for the apparatus Download PDF

Info

Publication number
JP2005347633A
JP2005347633A JP2004167374A JP2004167374A JP2005347633A JP 2005347633 A JP2005347633 A JP 2005347633A JP 2004167374 A JP2004167374 A JP 2004167374A JP 2004167374 A JP2004167374 A JP 2004167374A JP 2005347633 A JP2005347633 A JP 2005347633A
Authority
JP
Japan
Prior art keywords
solid electrolytic
metal foil
lead frame
stacked
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004167374A
Other languages
Japanese (ja)
Inventor
Wakao Sato
和賀夫 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HI MECHA CORP
HI-MECHA CORP
Original Assignee
HI MECHA CORP
HI-MECHA CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HI MECHA CORP, HI-MECHA CORP filed Critical HI MECHA CORP
Priority to JP2004167374A priority Critical patent/JP2005347633A/en
Publication of JP2005347633A publication Critical patent/JP2005347633A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem wherein it is difficult to make a welding strength uniform and application of a welding current causes a melted metal foil to scatter, since the metal foil has a fragile and nonuniform structure due to etching. <P>SOLUTION: Prior to resistance welding of an anode member 22, a metal foil 19 of the anode member is pressed by a press means 31 to increase its adhesion and to make the foil uniform. When a pressing surface 131a of a press member 131 as the press means is shaped to a nearly arc, the metal foil 19 is uniformly pressed while not forming a step surface weak in terms of a strength. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、単体の固体電解コンデンサを所定枚数積み重ねてなる積層型固体電解コンデンサの製造方法、製造装置、および、積層型固体電解コンデンサのプレス手段に関する。   The present invention relates to a method for manufacturing a laminated solid electrolytic capacitor in which a predetermined number of solid electrolytic capacitors are stacked, a manufacturing apparatus, and a pressing means for the laminated solid electrolytic capacitor.

積層型固体電解コンデンサ(以下、「積層コンデンサ」という)は、単体の固体電解コンデンサ(以下、「単体コンデンサ」という)を所定枚数積み重ねて製造され、単体コンデンサ20は、図7(A)に示すように、エッチング処理したアルミニウム、タンタルなどの弁作用を有する金属箔19の表面に誘電体酸化皮膜層24を被覆して陽極部材22とし、誘電体酸化皮膜層の表面に、導電性高分子層(固体電解質層)26、カ−ボンペ−スト層(導電体層)27、銀ペ−スト層(導電体層)28からなる陰極部材29を形成して構成されている。なお、絶縁性レジスト25が、陽極部材22、陰極部材29を分離して絶縁するために、陽極部材、陰極部材の間に配置されている。   A multilayer solid electrolytic capacitor (hereinafter referred to as “multilayer capacitor”) is manufactured by stacking a predetermined number of single solid electrolytic capacitors (hereinafter referred to as “single capacitors”), and the single capacitor 20 is shown in FIG. Thus, the surface of a metal foil 19 having a valve action such as etched aluminum or tantalum is coated with a dielectric oxide film layer 24 to form an anode member 22, and a conductive polymer layer is formed on the surface of the dielectric oxide film layer. A cathode member 29 comprising a (solid electrolyte layer) 26, a carbon paste layer (conductor layer) 27, and a silver paste layer (conductor layer) 28 is formed. An insulating resist 25 is disposed between the anode member and the cathode member in order to separate and insulate the anode member 22 and the cathode member 29 from each other.

そして、図7(B)に示すように、積層コンデンサ21は、所定枚数の単体コンデンサ20を積み重ねて高容量化し、全体をエポキシ樹脂のような絶縁性樹脂で被覆して成形される。ここで、単体コンデンサの陽極部材22は、陽極部材どうしを重ねて抵抗溶接で(陽極)リ−ドフレ−ム15に一体的に固着され、陰極部材29は、陰極部材どうしを重ねて銀ペ−ストのような導電性の接着剤で(陰極)リ−ドフレ−ム15に一体化に固着される。陽極および陰極のリ−ドフレ−ムの自由端は樹脂被覆72から突出し、折曲されて樹脂被覆下面に収納される。   Then, as shown in FIG. 7B, the multilayer capacitor 21 is formed by stacking a predetermined number of single capacitors 20 to increase the capacity, and covering the whole with an insulating resin such as an epoxy resin. Here, the anode member 22 of the single capacitor is integrally fixed to the (anode) lead frame 15 by resistance welding with the anode members overlapped, and the cathode member 29 is laminated with the silver members by overlapping the cathode members. It is integrally fixed to the (cathode) lead frame 15 with a conductive adhesive such as a strike. The free ends of the anode and cathode lead frames protrude from the resin coating 72 and are bent and stored on the lower surface of the resin coating.

銀ペ−スト層(導電体層)28をその表面に持つため、陰極部材29どうしの固着や、陰極部材とリ−ドフレ−ム15の固着は、導電性の接着剤などで容易に行なえる。これに対して、陽極部材22どうしの固着や、陽極部材とリ−ドフレ−ム15の固着は、抵抗溶接で行っているため容易といえない。   Since the silver paste layer (conductor layer) 28 is provided on the surface, the cathode members 29 can be fixed to each other and the cathode member and the lead frame 15 can be easily fixed with a conductive adhesive or the like. . On the other hand, it is difficult to fix the anode members 22 to each other and to fix the anode member and the lead frame 15 by resistance welding.

すなわち、アルミニウム、タンタルなどの弁作用を有する金属箔19の表面はエッチング処理され、図7(C)に示すように、エッチング処理によって表面に成形された無数のピット(エッチングピット)19aが内部深くまで侵食して、金属箔を非常にもろい構造としている。そして、エッチングによって金属箔19の表面は粗面化され、粗面に誘電体酸化皮膜層24が形成されているため、誘電体酸化皮膜層は、非粗面の場合に比較して、きわめて広範囲に存在する。   That is, the surface of the metal foil 19 having a valve action such as aluminum or tantalum is etched, and as shown in FIG. 7C, countless pits (etching pits) 19a formed on the surface by the etching process are deep inside. The metal foil has a very fragile structure. Since the surface of the metal foil 19 is roughened by etching and the dielectric oxide film layer 24 is formed on the rough surface, the dielectric oxide film layer has a very wide range compared to the case of the non-rough surface. Exists.

陽極部材22どうしの接着や、陽極部材とリ−ドフレ−ム15の接着という陽極部材の抵抗溶接において、誘電体酸化皮膜層24は電気絶縁性を有するため溶接電流の抵抗となり、溶接電流が陽極部材を流れ難い。そのため、陽極部材の一部だけ溶接されて溶接強度が不足したり、最悪の場合には、溶接電流の流れない無通電状態となって全く溶接されないこともある。このように溶接電流の抵抗となる誘電体酸化皮膜層24の影響によって、均一な溶接品質、つまりは、均一な溶接強度が得られ難い。   In resistance welding of the anode member such as adhesion between the anode members 22 and adhesion between the anode member and the lead frame 15, the dielectric oxide film layer 24 has resistance to welding current because the dielectric oxide film layer 24 has electrical insulation properties. Difficult to flow through members. Therefore, only a part of the anode member is welded so that the welding strength is insufficient, or in the worst case, no welding current flows, and no welding is performed. Thus, it is difficult to obtain uniform welding quality, that is, uniform welding strength, due to the influence of the dielectric oxide film layer 24 serving as resistance of the welding current.

また、エッチングピット19aが金属箔19の内部深くまで侵食し、エッチングピットの分布が不規則であるため、侵食の状態が不均一で、金属箔の密度が不均一となる。そして、密度の相違による金属箔19の不均質は、溶接電流に対する抵抗の不均一を招いて、溶接強度の均一化を困難としている。   Further, since the etching pits 19a erode deep inside the metal foil 19 and the distribution of the etching pits is irregular, the erosion state is nonuniform and the density of the metal foil is nonuniform. And the non-uniformity of the metal foil 19 due to the difference in density leads to non-uniform resistance to the welding current, making it difficult to make the welding strength uniform.

エッチングによる侵食で金属箔19が非常にもろい構造となっていることによる不都合は、密度の相違による金属箔の不均質を生じて溶接強度の均一化を困難とするだけでなく、溶融した金属箔の飛散という問題も生じている。すなわち、金属箔19がエッチング処理により不均質になっているため、個々の溶接ごとに抵抗値が変化し、かつ、電極の当たる面において抵抗の一番少ない部分に電流が集中し、この局部的な電流集中による発熱によって金属箔19が一気に溶融しやすく、溶融した金属箔が飛散して、周囲を汚し、外観を損なうとともに短絡の原因ともなる。また、個々の溶接時の抵抗値が変化するため、溶接のたびに流れる電流が変化し、溶接による発熱量が変化して安定した溶接が行なわれず、溶接強度のばらつきの原因となる。   The disadvantage of the metal foil 19 having a very fragile structure due to erosion due to etching not only causes the metal foil to be inhomogeneous due to the difference in density, making it difficult to make the welding strength uniform, but also the molten metal foil. There is also a problem of scattering. That is, since the metal foil 19 has become inhomogeneous due to the etching process, the resistance value changes for each welding, and the current concentrates on the portion with the smallest resistance on the contact surface of the electrode. The metal foil 19 is easily melted at a time by heat generation due to the current concentration, and the molten metal foil is scattered, contaminating the surroundings, deteriorating the appearance and causing a short circuit. In addition, since the resistance value at the time of individual welding changes, the current flowing at each welding changes, the amount of heat generated by welding changes, and stable welding is not performed, which causes variations in welding strength.

従来においては、溶接電流の抵抗となる誘電体酸化皮膜層の影響を排除または削減することにより、溶接強度の均一化を図っており、公知の構成として以下があげられる。
(1)陽極部材や陽極リ−ドフレ−ムに貫通孔を形成し、貫通孔を介して溶接電流を流すことによって、誘電体酸化皮膜層の影響を排除するもの。
特開平11−67603号公報 特開2004−087893号公報
Conventionally, the welding strength is made uniform by eliminating or reducing the influence of the dielectric oxide film layer that becomes the resistance of the welding current. The following are known configurations.
(1) A through hole is formed in an anode member or an anode lead frame, and the influence of the dielectric oxide film layer is eliminated by flowing a welding current through the through hole.
Japanese Patent Laid-Open No. 11-67603 JP 2004-078993 A

(2)陽極リ−ド線のタブを陽極部材にのせ、パタ−ン板を通してレ−ザ−光を照射し、パタ−ン板の孔形状に陽極リ−ド線のタブと陽極部材とを溶融、溶接するもの。
この構成では、陽極部材表面の誘電体酸化皮膜層を剥離しながら溶接され、溶接抵抗が低減される。
特開平07−211598号公報
(2) Place the anode lead wire tab on the anode member, irradiate laser light through the pattern plate, and place the anode lead wire tab and anode member into the hole shape of the pattern plate. What to melt and weld.
In this configuration, welding is performed while peeling the dielectric oxide film layer on the surface of the anode member, so that the welding resistance is reduced.
Japanese Patent Laid-Open No. 07-211598

(3)薄い誘電体酸化皮膜層を形成してからエッチングし、かつ、面積比20〜60%の非エッチング部分を設けるもの。
この構成では、金属箔の非エッチング部が占める割合が多くなり,リ−ド線を金属箔に接合する場合に、金属箔とリ−ド線のタブとの接続面積が広くなり、良好な接合強度と接触抵抗が得られる。
特開平10−070045号公報
(3) Etching after forming a thin dielectric oxide film layer, and providing a non-etched portion with an area ratio of 20 to 60%.
In this configuration, the ratio of the non-etched portion of the metal foil increases, and when the lead wire is joined to the metal foil, the connection area between the metal foil and the tab of the lead wire is widened, and a good joining is achieved. Strength and contact resistance are obtained.
Japanese Patent Laid-Open No. 10-070045

しかしながら、貫通孔を設ける(1)の構成では、貫通孔の径が小さいため、小径の穿孔用ポンチを使用せざるを得ず、ポンチが磨耗しやすくだけでなく破損も生じやすく、ポンチの交換が必要となり、さらに、穿孔時の切屑の除去、切削油の供給も配慮しなければならない。
レ−ザ−光を照射する(2)の構成では、レ−ザ−光照射装置の設置、維持に費用を要し、コストアップが避けられない。
(3)の構成では、エッチング前に金属箔の表面に薄い誘電体酸化皮膜層を形成する工程が余計に必要であるために、コストアップが避けられない。
However, in the configuration of (1) in which the through hole is provided, since the diameter of the through hole is small, it is necessary to use a punch having a small diameter, and the punch is not only easily worn but also easily damaged. In addition, removal of chips during drilling and supply of cutting oil must be considered.
In the configuration (2) for irradiating laser light, installation and maintenance of the laser light irradiation device is expensive, and an increase in cost is inevitable.
In the configuration of (3), since an extra step of forming a thin dielectric oxide film layer on the surface of the metal foil before etching is necessary, an increase in cost is inevitable.

さらに、(1)〜(3)のいずれにおいても、エッチングによって侵食された金属箔のもろい構造自体には何ら手を加えておらず、金属箔の密度が不均質であるため、溶接強度の均一化を困難とするとともに、溶接電流の印加によって溶融した金属箔が飛散する問題を何ら解決していない。   Furthermore, in any of (1) to (3), the fragile structure of the metal foil eroded by etching is not modified at all, and the density of the metal foil is inhomogeneous, so that the welding strength is uniform. However, it does not solve the problem that the molten metal foil is scattered by the application of the welding current.

さらに、公知の構成として以下がある。
(4)金属酸化物であって電気絶縁性の無機質の粒子を塗布、噴霧などで金属箔に付着させた構成。
この構成では、溶接時に金属酸化物が発熱溶解して密着性がよくなり、必要な溶接強度が得られる。
特開2003−151859号公報
Furthermore, the following is a known configuration.
(4) A configuration in which electrically insulating inorganic particles, which are metal oxides, are attached to a metal foil by coating, spraying, or the like.
In this configuration, the metal oxide is heated and melted during welding to improve the adhesion, and the necessary welding strength can be obtained.
JP 2003-151859 A

(4)の構成では、金属酸化物を塗布あるいは噴霧後に乾燥時間を必要とし、タイムロスが生じる。また、金属酸化物の供給を配慮しなければならない。さらに、エッチングピットは、小径で深い孔で、エッチングピットの底まで溶解した金属酸化物が入り込むことは考えられず、金属箔の隙間を金属箔とは異質の金属酸化物で埋めているにすぎない。そのため、エッチングによって侵食された金属箔のもろい構造自体にさほど改善は加えられず、金属箔の密度自体は不均一なままで残され、金属箔がなおも不均質であるため、溶接強度の不均一や溶融した金属箔の飛散による問題を何ら解決していない。   In the configuration of (4), a drying time is required after applying or spraying the metal oxide, resulting in time loss. In addition, supply of metal oxides must be considered. Furthermore, the etching pit is a small hole with a small diameter, and it is unlikely that the dissolved metal oxide will enter the bottom of the etching pit, and the gap between the metal foil is only filled with a metal oxide that is different from the metal foil. Absent. Therefore, the fragile structure of the metal foil eroded by etching is not improved so much, the density of the metal foil itself remains non-uniform, and the metal foil is still inhomogeneous, resulting in poor weld strength. It does not solve any problems caused by scattering of uniform or molten metal foil.

解決しようとする問題点は、金属箔がエッチングによってもろい構造であるため、金属箔の密度が不均一で金属箔を不均質とし、溶接強度の均一化を困難とするとともに、溶接電流の印加によって溶融した金属箔が飛散して溶接強度不足を招き、外観を損ね、短絡の原因となる点にある。   The problem to be solved is that the metal foil has a fragile structure by etching, so that the density of the metal foil is non-uniform and the metal foil is non-homogeneous, making it difficult to make the welding strength uniform, and by applying a welding current. The molten metal foil scatters, causing insufficient welding strength, deteriorating the appearance, and causing a short circuit.

本発明は、エッチングによってもろい構造となって密度の不均質な金属箔を均質化することを目的とし、そのために、抵抗溶接前に金属箔をプレスして高密度化することを最も主要な特徴としている。   The object of the present invention is to homogenize a metal foil having a non-uniform density by forming a fragile structure by etching. For this purpose, the most important feature is that the metal foil is pressed and densified before resistance welding. It is said.

請求項1記載の本発明によれば、陽極部材の抵抗溶接前に、陽極部材の金属箔をプレスして密着性を高め、金属箔の密度を均一化して金属箔を均質化しているため、溶接電流に対する抵抗が均一となり、均一な溶接強度で溶接が行なえる。
また、プレスして密着性を高め、金属箔を均質化しているため、溶接電流に対する抵抗が均一となり、電極の当たる面での局部的な電流集中による発熱を防止でき、金属箔が一気に溶融することもなく、溶融した金属箔の飛散が防止されるため、肉厚不足によって溶接強度が不足することもない。そして、溶融した金属箔が飛散しないため、外観を損ねたり、短絡を招くこともない。
さらに、金属箔をプレスすることにより、金属箔表面の誘電体酸化皮膜層が分断されて、溶接電流が流れやすくなり、溶接電流に対する抵抗が均一化され、この点からも均一な溶接強度が確保される。
According to the first aspect of the present invention, before the resistance welding of the anode member, the metal foil of the anode member is pressed to improve adhesion, and the density of the metal foil is made uniform to homogenize the metal foil. Resistance to welding current is uniform, and welding can be performed with uniform welding strength.
In addition, because the metal foil is homogenized by pressing to improve adhesion, the resistance to welding current is uniform, heat generation due to local current concentration on the electrode contact surface can be prevented, and the metal foil melts at once. Moreover, since the molten metal foil is prevented from being scattered, the welding strength is not insufficient due to insufficient thickness. And since the molten metal foil does not scatter, an external appearance is not spoiled and a short circuit is not caused.
Furthermore, by pressing the metal foil, the dielectric oxide film layer on the surface of the metal foil is divided, making it easy for the welding current to flow, making the resistance to the welding current uniform, and also ensuring uniform welding strength from this point. Is done.

請求項2記載の本発明によれば、略円弧形状の押圧面で金属箔をプレスしているため、強度的に弱い段部を形成することなく、金属箔を均質にプレスできる。   According to the second aspect of the present invention, since the metal foil is pressed with the substantially arc-shaped pressing surface, the metal foil can be pressed uniformly without forming a step portion weak in strength.

請求項3記載の本発明によれば、プレスの押圧面よりも大きな曲率の略円弧形状を電極面とする電極によって最大の密着性が得られ、金属箔の均質化したプレス押圧面の中心部を抵抗溶接しているため、溶接不良を生じることなく溶接が行なえる。   According to the third aspect of the present invention, the maximum adhesiveness is obtained by the electrode having the substantially arc shape having a larger curvature than that of the pressing surface of the press as the electrode surface, and the central portion of the metal foil homogenized press pressing surface. Since resistance welding is performed, welding can be performed without causing poor welding.

請求項4記載の本発明によれば、積層型固体電解コンデンサ製造装置は、陽極部材の抵抗溶接前に陽極部材の金属箔をプレスして密着性を高めるプレス手段を備えており、プレスで密着性を高めることにより、エッチングによって侵食された金属箔のもろい構造が密着性の高い構造に変えられ、金属箔の密度を均一化して金属箔を均質化しているため、溶接電流に対する抵抗が均一となり、均一な溶接強度で溶接が行なえる。
また、プレスして密着性を高め、金属箔を均質化しているため、溶接電流に対する抵抗が均一となり、電極の当たる面での局部的な電流集中による発熱を防止でき、金属箔が一気に溶融することもなく、溶融した金属箔の飛散が防止されるため、肉厚不足によって溶接強度が不足することもない。そして、溶融した金属箔が飛散しないため、外観を損ねたり、短絡を招くこともない。
さらに、金属箔をプレスすることにより、金属箔表面の誘電体酸化皮膜層が分断されて、溶接電流が流れやすくなり、溶接電流に対する抵抗が均一化され、この点からも均一な溶接強度が確保される。
According to the fourth aspect of the present invention, the multilayer solid electrolytic capacitor manufacturing apparatus includes pressing means for pressing the metal foil of the anode member to improve adhesion before resistance welding of the anode member. By improving the properties, the fragile structure of the metal foil eroded by etching is changed to a structure with high adhesion, and the metal foil density is made uniform by homogenizing the density of the metal foil, so the resistance to welding current becomes uniform. It is possible to perform welding with uniform welding strength.
In addition, because the metal foil is homogenized by pressing to improve adhesion, the resistance to welding current is uniform, heat generation due to local current concentration on the electrode contact surface can be prevented, and the metal foil melts at once. In addition, since the molten metal foil is prevented from being scattered, the welding strength is not insufficient due to insufficient thickness. And since the molten metal foil does not scatter, an external appearance is not spoiled and a short circuit is not caused.
Furthermore, by pressing the metal foil, the dielectric oxide film layer on the surface of the metal foil is divided, making it easy for the welding current to flow, making the resistance to the welding current uniform, and also ensuring uniform welding strength from this point. Is done.

請求項5記載の本発明によれば、積層型固体電解コンデンサ製造装置は、略円弧形状の押圧面を持ち、陽極部材の抵抗溶接前に、陽極部材の金属箔をプレスして密着性を高めるプレス手段を備え、抵抗溶接用電極はプレスの押圧面よりも大きな曲率の略円弧形状の電極面を持っている。そのため、プレスで密着性を高めることにより、エッチングによって侵食された金属箔のもろい構造が密着性の高い構造に変えられ、金属箔の密度を均一化して金属箔が均質化されて、溶接電流に対する抵抗が均一となり、均一な溶接強度で溶接が行なえる。特に、略円弧形状の押圧面で金属箔をプレスしているため、段部を形成することなく、金属箔を均質にプレスできる。そして、プレスの押圧面よりも大きな曲率の略円弧形状を電極面とする電極によって最大の密着性が得られ、金属箔の均質化したプレス押圧面の中心部を抵抗溶接しているため、溶接不良を生じることなく溶接が行なえる。
また、プレスして密着性を高め、金属箔を均質化しているため、溶接電流に対する抵抗が均一となり、電極の当たる面での局部的な電流集中による発熱を防止でき、金属箔が一気に溶融することもなく、溶融した金属箔の飛散が防止されるため、肉厚不足によって溶接強度が不足することもない。そして、溶融した金属箔が飛散しないため、外観を損ねたり、短絡を招くこともない。
さらに、金属箔をプレスすることにより、金属箔表面の誘電体酸化皮膜層が分断されて、溶接電流が流れやすくなり、溶接電流に対する抵抗が均一化され、この点からも均一な溶接強度が確保される。
According to the fifth aspect of the present invention, the multilayer solid electrolytic capacitor manufacturing apparatus has a substantially arc-shaped pressing surface, and presses the metal foil of the anode member before resistance welding of the anode member to improve the adhesion. The resistance welding electrode has a substantially arc-shaped electrode surface having a larger curvature than the pressing surface of the press. Therefore, by increasing the adhesion with a press, the fragile structure of the metal foil eroded by etching is changed to a structure with high adhesion, the metal foil is homogenized by homogenizing the density of the metal foil, Resistance becomes uniform and welding can be performed with uniform welding strength. In particular, since the metal foil is pressed with a substantially arc-shaped pressing surface, the metal foil can be pressed uniformly without forming a stepped portion. And, since the maximum adhesion is obtained by the electrode having an approximately arc shape with a larger curvature than the pressing surface of the press, and the central portion of the press pressing surface homogenized of the metal foil is resistance-welded, welding Welding can be performed without causing defects.
In addition, because the metal foil is homogenized by pressing to improve adhesion, the resistance to welding current is uniform, heat generation due to local current concentration on the electrode contact surface can be prevented, and the metal foil melts at once. In addition, since the molten metal foil is prevented from being scattered, the welding strength is not insufficient due to insufficient thickness. And since the molten metal foil does not scatter, an external appearance is not spoiled and a short circuit is not caused.
Furthermore, by pressing the metal foil, the dielectric oxide film layer on the surface of the metal foil is divided, making it easy for the welding current to flow, making the resistance to the welding current uniform, and also ensuring uniform welding strength from this point. Is done.

請求項6記載の本発明によれば、積層型固体電解コンデンサ製造装置のプレス手段は、単体固体電解コンデンサを所定枚数積み重ね、陽極部材、陽極リ−ドフレ−ムを抵抗溶接によって陽極リ−ドフレ−ムに一体的に固着するとともに、陰極部材どうしを重ねて陰極リ−ドフレ−ムに一体的に固着して積層型固体電解コンデンサを製造する積層型固体電解コンデンサ製造装置に組込まれ、陽極部材の抵抗溶接前に陽極部材の金属箔をプレスして密着性を高めている。そして、プレスで密着性を高めることにより、エッチングによって侵食された金属箔のもろい構造が密着性の高い構造に変えられ、金属箔の密度を均一化して金属箔が均質化されるため、溶接電流に対する抵抗が均一となり、均一な溶接強度で溶接が行なえる。
また、プレスして密着性を高め、金属箔を均質化しているため、溶接電流に対する抵抗が均一となり、電極の当たる面での局部的な電流集中による発熱を防止でき、金属箔が一気に溶融することもなく、溶融した金属箔の飛散が防止されるため、肉厚不足によって溶接強度が不足することもない。そして、溶融した金属箔が飛散しないため、外観を損ねたり、短絡を招くこともない。
さらに、金属箔をプレスすることにより、金属箔表面の誘電体酸化皮膜層が分断されて、溶接電流が流れやすくなり、溶接電流に対する抵抗が均一化され、この点からも均一な溶接強度が確保される。
According to the sixth aspect of the present invention, the pressing means of the multilayer solid electrolytic capacitor manufacturing apparatus stacks a predetermined number of single solid electrolytic capacitors, and the anode member and the anode lead frame by resistance welding. In addition, the negative electrode members are stacked together and fixed to the negative electrode lead frame so as to manufacture a multilayer solid electrolytic capacitor. Prior to resistance welding, the metal foil of the anode member is pressed to enhance adhesion. And by increasing the adhesion with the press, the brittle structure of the metal foil eroded by etching is changed to a structure with high adhesion, and the density of the metal foil is made uniform and the metal foil is homogenized. The resistance against is uniform, and welding can be performed with uniform welding strength.
In addition, because the metal foil is homogenized by pressing to improve adhesion, the resistance to welding current is uniform, heat generation due to local current concentration on the electrode contact surface can be prevented, and the metal foil melts at once. In addition, since the molten metal foil is prevented from being scattered, the welding strength is not insufficient due to insufficient thickness. And since the molten metal foil does not scatter, an external appearance is not spoiled and a short circuit is not caused.
Furthermore, by pressing the metal foil, the dielectric oxide film layer on the surface of the metal foil is divided, making it easy for the welding current to flow, making the resistance to the welding current uniform, and also ensuring uniform welding strength from this point. Is done.

エッチングによってもろい構造となって密度の不均質な金属箔を均質化するという目的を、抵抗溶接前でのプレスによる金属箔の高密度化によって実現した。   The purpose of homogenizing the metal foil with non-uniform density by forming a fragile structure by etching was realized by densifying the metal foil by pressing before resistance welding.

以下に本発明の実施例を詳細に説明する。積層型固体電解コンデンサ製造装置10の基本的な構成は、特開2003−332177号公報記載の通りであり、本発明においては、陽極部材の抵抗溶接前に金属箔をプレスする構成を備えている点で相違し、それ以外の構成は特開2003−332177号公報記載のものとほぼ一致する。したがって、実施例においては、本発明に特有な構成および関係のある電極の構成についてのみ詳細に説明し、積層型固体電解コンデンサ製造装置の基本的な構成の説明は簡単に述べる。   Examples of the present invention will be described in detail below. The basic configuration of the multilayer solid electrolytic capacitor manufacturing apparatus 10 is as described in Japanese Patent Application Laid-Open No. 2003-332177. In the present invention, a configuration is provided in which a metal foil is pressed before resistance welding of the anode member. The other differences are substantially the same as those described in JP-A-2003-332177. Therefore, in the examples, only the configuration unique to the present invention and the configuration of the related electrodes will be described in detail, and the basic configuration of the multilayer solid electrolytic capacitor manufacturing apparatus will be described briefly.

単体コンデンサ、積層コンデンサの構成は、図7(A)、(B)に示すとおりであり、実施例においても、単体コンデンサを重ねてリ−ドフレ−ムに一体に固着する場合での陽極部材の急激な折り曲げを避けてコンデンサ特性の低下を防止するために、導電性スペ−サ52を介在させている。   The configurations of the single capacitor and the multilayer capacitor are as shown in FIGS. 7A and 7B, and also in the embodiment, the anode member in the case where the single capacitor is stacked and fixed integrally to the lead frame. In order to avoid sudden bending and prevent deterioration of the capacitor characteristics, a conductive spacer 52 is interposed.

本発明の積層型固体電解コンデンサ製造装置10の概略を図1に示す。本発明では、陽極部材の抵抗溶接前に金属箔をプレスして高密度化することに最大の特徴がある。また、抵抗溶接での電極の形状にも工夫を加えている。それ以外に構成は、特開2003−332177号公報記載の積層型固体電解コンデンサ製造装置に等しい。実施例では、導電性スペ−サ52を介在させており、陽極部材の抵抗溶接として、スペ−サを単体コンデンサの陽極部材22に固着するスペ−サ溶接と、スペ−サ付単体コンデンサをリ−ドフレ−ム15に積み重ねる本溶接とがあり、スペ−サ溶接の前に陽極部材の金属箔19をプレスしている。   An outline of the multilayer solid electrolytic capacitor manufacturing apparatus 10 of the present invention is shown in FIG. The greatest feature of the present invention is that the metal foil is pressed and densified before resistance welding of the anode member. In addition, the shape of the electrode in resistance welding is also devised. Other than that, the configuration is the same as that of the multilayer solid electrolytic capacitor manufacturing apparatus described in JP-A-2003-332177. In the embodiment, the conductive spacer 52 is interposed, and as the resistance welding of the anode member, the spacer welding for fixing the spacer to the anode member 22 of the single capacitor and the single capacitor with the spacer are removed. There is a main welding to be stacked on the frame 15, and the metal foil 19 of the anode member is pressed before the spacer welding.

まず、特開2003−332177号公報記載の製造装置と共通する製造装置10の構成を簡単に述べると、図1に示すように、製造装置10は、水平に配置されたインデックステ−ブル(ロ−タリ−テ−ブル)12を備え、キャリアバ−の搬送路14とリ−ドフレ−ムの搬送路16とがインデックステ−ブル12の接線方向でインデックステ−ブルを挟んで平行に設けられている。   First, the configuration of the manufacturing apparatus 10 common to the manufacturing apparatus described in Japanese Patent Application Laid-Open No. 2003-332177 will be briefly described. As shown in FIG. 1, the manufacturing apparatus 10 includes an index table (robot) arranged horizontally. -Tally table) 12, and the carrier bar transport path 14 and the lead frame transport path 16 are provided in parallel with the index table in the tangential direction of the index table 12. ing.

図2(A)、図7(A)に示すように、単体コンデンサ20は、その陽極部材22をキャリアバ−13に固着させてキャリアバ−に保持されており、たとえば、30枚の単体コンデンサがキャリアバ−に保持される。そして、単体コンデンサ20をリ−ドフレ−ム15に所定枚数積み重ねてリ−ドフレ−ムに固着し、所定枚数の単体コンデンサ20をリ−ドフレ−ム15に積み重ねて固着した、図7(B)に実線で示す半製品の積層コンデンサ21が製造装置10で成形される。そして、半製品の積層コンデンサ21を次工程に移送し、次工程で、リ−ドフレ−ム15を陽極リ−ドフレ−ム15−1、陰極リ−ドフレ−ム15−2に切断し、陽極リ−ドフレ−ム、陰極リ−ドフレ−ムを所定形状に折り曲げ、全体をエポキシ樹脂のような絶縁性樹脂72で被覆して、図7(B)に一点差線で示す完成品としての積層コンデンサ121が成形される。   As shown in FIGS. 2A and 7A, the single capacitor 20 has its anode member 22 fixed to the carrier bar 13 and is held by the carrier bar. For example, 30 single capacitors are used. Is held by the carrier bar. Then, a predetermined number of single capacitors 20 are stacked on the lead frame 15 and fixed to the lead frame, and a predetermined number of single capacitors 20 are stacked and fixed on the lead frame 15 as shown in FIG. A semi-finished multilayer capacitor 21 indicated by a solid line in FIG. Then, the semi-finished multilayer capacitor 21 is transferred to the next step, and in the next step, the lead frame 15 is cut into the anode lead frame 15-1 and the cathode lead frame 15-2, and the anode The lead frame and the cathode lead frame are bent into a predetermined shape, and the whole is covered with an insulating resin 72 such as an epoxy resin, and a laminated product as a finished product indicated by a one-dotted line in FIG. A capacitor 121 is formed.

キャリアバ−13のためのガイドレ−ルがキャリアバ−の搬送路に沿って伸びており、単体コンデンサ20を保持するキャリアバ−はガイドレ−ル上を図1の左から右に送られ、キャリアバ−の供給手段30、プレス手段31、スペ−サの溶接手段34、導電性接着剤の付着手段36、単体コンデンサの切断手段38、キャリアバ−の格納手段39が左から順にキャリアバ−の搬送路14に沿って配置されている。また、スペ−サの切断手段32がスペ−サの溶接手段34に隣接して配置されている。   A guide rail for the carrier bar 13 extends along the carrier bar conveyance path, and the carrier bar holding the single capacitor 20 is fed from the left to the right in FIG. The bar supply means 30, the press means 31, the spacer welding means 34, the conductive adhesive attaching means 36, the single capacitor cutting means 38, and the carrier bar storage means 39 are arranged in order from the left of the carrier bar. Arranged along the conveyance path 14. Also, a spacer cutting means 32 is arranged adjacent to the spacer welding means 34.

スペ−サの溶接手段34の前に位置するプレス手段31は、本発明に特有のものであり、プレス手段で陽極部材の金属箔19をプレスして密着性を高めており、その構成は後述する。   The pressing means 31 located in front of the spacer welding means 34 is unique to the present invention, and presses the metal foil 19 of the anode member with the pressing means to enhance the adhesion, and the configuration thereof will be described later. To do.

キャリアバ−供給手段30から供給されたキャリアバ−13と、スペ−サの切断手段32によって長尺体から切断されたスペ−サ52とが、スペ−サの溶接手段34に順次送り込まれ、スペ−サの溶接手段によってキャリアバ−上の陽極部材にスペ−サが抵抗溶接される。   The carrier bar 13 supplied from the carrier bar supply means 30 and the spacer 52 cut from the elongated body by the spacer cutting means 32 are sequentially fed to the welding means 34 of the spacer. The spacer is resistance-welded to the anode member on the carrier bar by the spacer welding means.

実施例では、単体コンデンサの切断は、キャリアバ−から単体コンデンサを切断する一次切断と、単体コンデンサを所定長に切断する二次切断とに分割して行なわれている。切断手段38は一次切断手段38−1と二次切断手段31−2とから構成され、一次切断手段38−1はキャリアバ−の搬送路14に沿って配置され、二次切断手段31−2はキャリアバ−の搬送路から離反した位置に配置されている。   In the embodiment, cutting of the single capacitor is performed by dividing into primary cutting for cutting the single capacitor from the carrier bar and secondary cutting for cutting the single capacitor to a predetermined length. The cutting means 38 includes a primary cutting means 38-1 and a secondary cutting means 31-2. The primary cutting means 38-1 is disposed along the carrier path 14 of the carrier bar, and the secondary cutting means 31-2. Is disposed at a position away from the carrier path of the carrier bar.

また、リ−ドフレ−ム15のためのガイドレ−ルがリ−ドフレ−ムの搬送路16に沿って伸びており、リ−ドフレ−ムは搬送路を図1の右から左に送られ、リ−ドフレ−ムの供給手段40、単体コンデンサを積み重ねる手段(積み重ね手段)42、整形手段44、不良品排出手段46、リ−ドフレ−ムの格納手段48が右から順にリ−ドフレ−ムの搬送路16に沿って配置されている。インデックステ−ブル12、プレス手段31、溶接手段34などの動作や搬送路14、16でのキャリアバ−13、リ−ドフレ−ム15の送りなどはCPU(図示しない)で制御されている。   Further, a guide rail for the lead frame 15 extends along the lead frame conveyance path 16, and the lead frame is fed along the conveyance path from right to left in FIG. The lead frame supply means 40, the means for stacking single capacitors (stack means) 42, the shaping means 44, the defective product discharge means 46, and the lead frame storage means 48 are arranged in order from the right. Arranged along the conveyance path 16. The operations of the index table 12, the press means 31, the welding means 34, and the like, the feed of the carrier bar 13 and the lead frame 15 in the transport paths 14, 16 are controlled by a CPU (not shown).

インデックステ−ブル12は、切断直後の単体コンデンサを吸着、保持すると上昇して初期位置に戻り、再び間欠回転する。つまり、インデックステ−ブル12は、間欠回転、下降(吸着、保持)、上昇を繰り返す。   The index table 12 rises when it sucks and holds the single capacitor immediately after cutting, returns to the initial position, and rotates intermittently again. That is, the index table 12 repeats intermittent rotation, lowering (adsorption, holding), and rising.

ステ−ションAで単体コンデンサは一次切断手段38−1によってキャリアバ−13から切断、分離され、インデックステ−ブル12の間欠回転によってステ−ションBに至ると、単体コンデンサは二次切断手段31−2によって所定長に切断される。   In the station A, the single capacitor is cut and separated from the carrier bar 13 by the primary cutting means 38-1, and when the index table 12 reaches the station B by the intermittent rotation of the index table 12, the single capacitor is the secondary cutting means 31. -2 is cut to a predetermined length.

所定長に切断された単体コンデンサは、インデックステ−ブル12に吸着、保持されて次のステ−ションCに搬送される。ステ−ションCには、単体コンデンサの積み重ね手段42が待機しており、積み重ね手段によって単体コンデンサが搬送路16上のリ−ドフレ−ム15に積み重ねられ、リ−ドフレ−ムの切断、絶縁性樹脂による被覆処理を待つばかりの積層コンデンサ21が成形される。   The single capacitor cut to a predetermined length is attracted and held by the index table 12 and conveyed to the next station C. At the station C, the single capacitor stacking means 42 is waiting, and the single capacitors are stacked on the lead frame 15 on the conveying path 16 by the stacking means, and the lead frame is cut and insulated. The multilayer capacitor 21 just waiting for the coating process with the resin is formed.

リ−ドフレ−ムの搬送路16は、図1に示すように、インデックステ−ブル12の接線方向に沿ってキャリアバ−の搬送路14と平行に伸びており、搬送路16に沿って伸びるガイドレ−ル上をリ−ドフレ−ムは搬送路16の右から左にリ−ドフレ−ムの供給手段40から収納手段48に送られている。なお、リ−ドフレ−ムの長手方向は搬送路16と一致する。   As shown in FIG. 1, the lead frame transport path 16 extends in parallel with the carrier bar transport path 14 along the tangential direction of the index table 12, and extends along the transport path 16. On the guide rail, the lead frame is sent from the supply means 40 of the lead frame to the storage means 48 from the right to the left of the conveyance path 16. The longitudinal direction of the lead frame coincides with the conveyance path 16.

積み重ね手段42は、所定枚数の単体コンデンサ20をリ−ドフレ−ムに積み重ねてリ−ドフレ−ムに一体的に固着しており、陽極部材どうし、陽極部材とリ−ドフレ−ムとの固着には抵抗溶接が、陰極部材どうし、陰極部材とリ−ドフレ−ムとの固着には導電性の接着剤が使用されている。   The stacking means 42 stacks a predetermined number of the single capacitors 20 on the lead frame and is fixed to the lead frame integrally. The anode members are connected to each other and the anode member and the lead frame are fixed to each other. In the case of resistance welding, a conductive adhesive is used for fixing the cathode member and the lead frame between the cathode members.

リ−ドフレ−ムが、搬送路16に沿ってガイドレ−ル上を積み重ねステ−ションC1に搬送されて、たとえば、先端のリ−ドフレ−ムが積み重ねステ−ションC1でインデックステ−ブル12の下方の所定位置(インデックステ−ブル12のステ−ションCに対応する)に至ると、リ−ドフレ−ムの送りが停止される。リ−ドフレ−ムの上には、インデックステ−ブル12が単体コンデンサを吸着、保持して待機しており、リ−ドフレ−ムが単体コンデンサの直下に至ると、インデックステ−ブル12は下降して単体コンデンサをリ−ドフレ−ム上に載せる。インデックステ−ブル12の下降の直後に、インデックステ−ブルと同期して、上の電極が下降し、下の電極が上昇して、リ−ドフレ−ムを介して上下の電極間に単体コンデンサのスペ−サ付陽極部材を挟持する。   The lead frame is conveyed on the guide rail along the conveyance path 16 to the stacked station C1, and for example, the leading frame is stacked on the index table 12 at the stacked station C1. When reaching a predetermined position below (corresponding to the station C of the index table 12), the sending of the lead frame is stopped. On the lead frame, the index table 12 attracts and holds the single capacitor and stands by. When the lead frame reaches directly below the single capacitor, the index table 12 descends. Then put the single capacitor on the lead frame. Immediately after the index table 12 is lowered, in synchronization with the index table, the upper electrode is lowered, the lower electrode is raised, and a single capacitor is interposed between the upper and lower electrodes via the lead frame. The spacer-attached anode member is sandwiched.

そして、上下の電極間に溶接電源から溶接電流が流され、単体コンデンサのスペ−サ付陽極部材22がリ−ドフレ−ム15に抵抗溶接されて固着され、陽極部材の溶接、いわゆる本溶接がなされる。ここで、インデックステ−ブル12が下降し、単体コンデンサ20をリ−ドフレ−ム上に押し付けることにより、単体コンデンサの導電性接着剤がリ−ドフレ−ムに押圧され、陰極部材がリ−ドフレ−ムに固着される。このように、スペ−サ付の陽極部材22が抵抗溶接によってリ−ドフレ−ム15に固着されるとともに、導電性接着剤がリ−ドフレ−ムに固着されることにより、単体コンデンサ20がインデックステ−ブル12からリ−ドフレ−ムに移される。   Then, a welding current flows from the welding power source between the upper and lower electrodes, the spacer-attached anode member 22 with a spacer is resistance-welded and fixed to the lead frame 15, and welding of the anode member, so-called main welding is performed. Made. Here, the index table 12 is lowered, and the single capacitor 20 is pressed onto the lead frame, whereby the conductive adhesive of the single capacitor is pressed against the lead frame, and the cathode member becomes the lead frame. -It is fixed to the mud. In this way, the spacer-attached anode member 22 is fixed to the lead frame 15 by resistance welding, and the conductive adhesive is fixed to the lead frame, whereby the single capacitor 20 is indexed. It is moved from the table 12 to the lead frame.

インデックステ−ブル12が間欠送りされることによって、単体コンデンサ20がステ−ションC1に送られて、単体コンデンサの積み重ねが繰り返される。下方電極は、2枚目以降の積み重ねにおいては、単体コンデンサの厚さ相当分だけ順次下降し、下降した位置で2枚目以降の積み重ねが行なわれる。   When the index table 12 is intermittently fed, the single capacitor 20 is sent to the station C1, and the stacking of the single capacitors is repeated. In stacking the second and subsequent sheets, the lower electrode is sequentially lowered by an amount corresponding to the thickness of the single capacitor, and the second and subsequent sheets are stacked at the lowered position.

リ−ドフレ−ム15の一面(上面)の30枚のリ−ドフレ−ムについて、所定枚数、たとえば、3枚の単体コンデンサが積載されてリ−ドフレ−ムの一面(上面)での積み重ね工程が終わると、搬送方向の反転ステ−ションC2にリ−ドフレ−ムが送られ、次のリ−ドフレ−ムが積み重ねステ−ションC1に送り込まれ、このリ−ドフレ−ムにおける最先のリ−ドフレ−ム151(図2(B)参照)がインデックステ−ブル12の下方の所定位置に至る。   A process of stacking a predetermined number of, for example, three, single capacitors on one side (upper surface) of one surface (upper surface) of the lead frame 15 and stacking on one surface (upper surface) of the lead frame 15 When the process is completed, the lead frame is sent to the reversing station C2 in the transport direction, the next lead frame is sent to the stacked station C1, and the earliest read frame in this lead frame is sent. -The frame 151 (see FIG. 2B) reaches a predetermined position below the index table 12.

先行するリ−ドフレ−ム(第1のリ−ドフレ−ム)と同様にして、次のリ−ドフレ−ム(第2のリ−ドフレ−ム)の一面(上面)に所定枚数、たとえば3枚の単体コンデンサ20が積み重ねられる。そして、積み重ねステ−ションC1において、第2のリ−ドフレ−ムの一面(上面)への積み重ねが行なわれている間に、第1のリ−ドフレ−ムは反転ステ−ションC2において上下左右に反転される。   In the same manner as the preceding lead frame (first lead frame), a predetermined number, for example, 3 on one surface (upper surface) of the next lead frame (second lead frame). A single capacitor 20 is stacked. Then, while the second lead frame is being stacked on one surface (upper surface) at the stacking station C1, the first lead frame is moved up, down, left and right at the inverted station C2. Is inverted.

全てのリ−ドフレ−ムについて、その一面(上面)に3枚の単体コンデンサが積み重ねられて第2のリ−ドフレ−ムの一面(上面)での積み重ね工程が終わると、第1、第2のリ−ドフレ−ムは搬送路16と逆方向に戻され、第1のリ−ドフレ−ムは積み重ねステ−ションC1に、第2のリ−ドフレ−ムは反転ステ−ションC3に送り込まれる。   For all the lead frames, when three single capacitors are stacked on one surface (upper surface) and the stacking process on one surface (upper surface) of the second lead frame is finished, the first and second The first lead frame is sent back to the stacking station C1, and the second lead frame is sent to the reversing station C3. .

そして、第1のリ−ドフレ−ムは積み重ねステ−ションC1において、他の面(従来の下面であり、反転により上面となった面)に、上記と同様にして3枚の単体コンデンサが順次積み重ねられる。反転されているため、以前とは逆に、従来の後端のリ−ドフレ−ムから単体コンデンサが積み重ねられ、次に、後端に隣接するリ−ドフレ−ムに単体コンデンサが積み重ねられる。第1のリ−ドフレ−ムの他の面への単体コンデンサの積層が行なわれている間に、第2のリ−ドフレ−ム15は反転ステ−ションC3で反転される。   In the first lead frame, three single capacitors are sequentially placed on the other surface (the conventional lower surface and the upper surface by reversal) in the same manner as above in the stacked station C1. Stacked. Since it is inverted, the single capacitors are stacked from the conventional rear end lead frame, and then the single capacitors are stacked on the lead frame adjacent to the rear end. While the single capacitor is stacked on the other surface of the first lead frame, the second lead frame 15 is inverted at the inversion station C3.

第1のリ−ドフレ−ムの他の面に単体コンデンサが積み重ねられると、第1のリ−ドフレ−ムは搬送路16に沿って送られ、第1のリ−ドフレ−ムは反転ステ−ションC2に、第2のリ−ドフレ−ムは積み重ねステ−ションC1に送り込まれる。   When the single capacitors are stacked on the other side of the first lead frame, the first lead frame is sent along the transport path 16 and the first lead frame is reversed. In section C2, the second lead frame is fed into the stacked station C1.

ここで、第1のリ−ドフレ−ムの両面に3枚ずつの単体コンデンサが積み重ねられ、第1のリ−ドフレ−ムへの積み重ねが全て終了しているため、第1のリ−ドフレ−ムは反転することなく反転ステ−ションC2で待機する。他方、第2のリ−ドフレ−ムについては、積み重ねステ−ションC1において、他の面(従来の下面であり、反転により上面となった面)に、上記と同様にして3枚の単体コンデンサが順次積み重ねられて積層コンデンサが第2のリ−ドフレ−ムの他の面にも成形される。   Here, three single capacitors are stacked on both sides of the first lead frame, and all the stacking on the first lead frame is completed, so that the first lead frame is completed. The system waits at the inversion station C2 without inversion. On the other hand, with respect to the second lead frame, three single capacitors are provided on the other surface (the conventional lower surface and the upper surface by inversion) in the stacked station C1 in the same manner as described above. Are stacked in sequence to form a multilayer capacitor on the other surface of the second lead frame.

第2のリ−ドフレ−ムの他の面に単体コンデンサが積み重ねられ、リ−ドフレ−ムの両面に所定枚数の単体コンデンサが積み重ねられて積層コンデンサが成形されると、第1、第2のリ−ドフレ−ムは搬送路16に沿って送られ、反転ステ−ションC3に位置した後続の第3のリ−ドフレ−ムが積み重ねステ−ションC1に送り込まれて、このリ−ドフレ−ムに単体コンデンサが積み重ねられる。   When single capacitors are stacked on the other surface of the second lead frame, and a predetermined number of single capacitors are stacked on both surfaces of the lead frame, a multilayer capacitor is formed. The lead frame is sent along the conveying path 16, and the succeeding third lead frame located at the reversing station C3 is sent to the stacked station C1, and this lead frame is sent. Single capacitors are stacked on top of each other.

両面に3枚ずつの単体コンデンサ20を積み重ねたリ−ドフレ−ム15、つまり、積層コンデンサを両面に持つリ−ドフレ−ムは搬送路16に沿って次の整形手段44に送られる。   A lead frame 15 in which three single capacitors 20 are stacked on both sides, that is, a lead frame having multilayer capacitors on both sides is sent along the transport path 16 to the next shaping means 44.

スペ−サ付の陽極部材は抵抗溶接によってリ−ドフレ−ムに強固に固着されるのに対して、陰極部材は導電性接着剤を介してリ−ドフレ−ムに固着されており、接着剤は流動性を有するため、均一な層になり難く、陽極部材から遠い端で陰極部材が拡がり、陰極部材の形状が崩れる傾向にある。   The spacer-attached anode member is firmly fixed to the lead frame by resistance welding, whereas the cathode member is fixed to the lead frame via a conductive adhesive. Since it has fluidity, it is difficult to form a uniform layer, the cathode member expands at the end far from the anode member, and the shape of the cathode member tends to collapse.

整形手段44は、陰極部材の拡がりを防止し、積層コンデンサ21の形状を整形して型崩れを修正する。不良品排出手段46は、溶接不良の積層コンデンサ21をリ−ドフレ−ム15から分離、排出するために設けられている。つまり、積み重ね手段42において上下の電極に溶接電流を供給する溶接電源に生じた溶接時の異常をCPUが検出し、異常を生じた溶接を不良と判定し、CPUはどのリ−ドフレ−ムの溶接時に溶接電源に異常電流が流れたかを記憶する。不良品排出手段46は、CPUの記憶に基づいて不良と判定されたリ−ドフレ−ムを切断してリ−ドフレ−ムとともに積層コンデンサを排除する。   The shaping means 44 prevents the cathode member from expanding, shapes the shape of the multilayer capacitor 21 and corrects the deformation. The defective product discharging means 46 is provided for separating and discharging the poorly welded multilayer capacitor 21 from the lead frame 15. In other words, the CPU detects a welding abnormality that has occurred in the welding power source that supplies the welding current to the upper and lower electrodes in the stacking means 42, determines that the welding in which the abnormality has occurred is defective, and the CPU determines which lead frame. Stores whether an abnormal current has flowed to the welding power source during welding. The defective product discharging means 46 cuts the lead frame determined to be defective based on the memory of the CPU, and eliminates the multilayer capacitor together with the lead frame.

溶接不良の積層コンデンサ21の排除されたリ−ドフレ−ム15は、搬送路16の最後に位置するリ−ドフレ−ム収納手段48に図2(B)に示す形態で収納される。そして、リ−ドフレ−ム15に保持したリ−ドフレ−ム収納手段48が次工程に搬送され、次工程でのリ−ドフレ−ムの切断、絶縁性樹脂の被覆をへて、完成品としての積層コンデンサ121が得られる(図7(B)参照)。   The lead frame 15 from which the poorly welded multilayer capacitor 21 is removed is stored in the form shown in FIG. 2B in the lead frame storage means 48 located at the end of the transport path 16. Then, the lead frame storage means 48 held in the lead frame 15 is transported to the next process, and the lead frame is cut in the next process and covered with an insulating resin to complete the finished product. Multilayer capacitor 121 is obtained (see FIG. 7B).

次に、本発明に特有な構成について述べる。図1に示すように、本発明では、プレス手段31がスペ−サの溶接手段34の前に配置されている。そして、図3からわかるように、プレス手段31は、上下に離反して位置する昇降可能な一対のプレス部材131を備えている。   Next, a configuration unique to the present invention will be described. As shown in FIG. 1, in the present invention, the press means 31 is arranged in front of the welding means 34 of the spacer. As can be seen from FIG. 3, the press means 31 includes a pair of press members 131 that can be moved up and down and are spaced apart from each other.

図2(A)に示すように、単体コンデンサ20はキャリアバ−13に保持され、キャリアバ−はガイドレ−ル上を間欠送りされており、単体コンデンサがプレス手段31のプレス部材131の間に至ると、プレス部材によって陽極部材22、つまりは金属箔19がプレスされる。すなわち、上のプレス部材131の下降に同期して下のプレス部材が上昇し、上下のプレス部材で挟持して陽極部材の金属箔19がプレスされる。ただし、図3に示すように、下のプレス部材131は陽極部材の下面に接した位置で停止し、継続して下降する上のプレス部材によって、陽極部材の金属箔19がプレスされる。たとえば、金属箔19の密度がプレス前の少なくとも2倍以上になるまでプレスされる。   As shown in FIG. 2A, the single capacitor 20 is held by the carrier bar 13, and the carrier bar is intermittently fed on the guide rail, and the single capacitor is interposed between the press members 131 of the press means 31. As a result, the anode member 22, that is, the metal foil 19 is pressed by the pressing member. That is, the lower press member rises in synchronization with the lowering of the upper press member 131, and is sandwiched between the upper and lower press members to press the metal foil 19 of the anode member. However, as shown in FIG. 3, the lower pressing member 131 stops at a position in contact with the lower surface of the anode member, and the metal foil 19 of the anode member is pressed by the upper pressing member that continues to descend. For example, the metal foil 19 is pressed until the density is at least twice that before pressing.

エッチングによる侵食で非常にもろい構造となっていた金属箔19は、プレスによって密着性を高められる。そして、金属箔19の密度が均一化され、金属箔が均質化されることによって、溶接電流に対する抵抗が均一となり、均一な溶接強度で溶接が行なえる。   The metal foil 19 having a very brittle structure due to erosion by etching can be improved in adhesion by pressing. And since the density of the metal foil 19 is made uniform and the metal foil is homogenized, the resistance to the welding current becomes uniform, and welding can be performed with uniform welding strength.

エッチングによって侵食された金属箔19のもろい構造がプレスによって密着性の高い構造に変えられるため、金属箔が均質化し、溶接電流に対する抵抗が均一となり、電極が当たる面での局部的な電流集中による発熱を防止でき、金属箔が一気に溶融することもない。従って、溶融した金属箔19の飛散が防止され、肉厚不足によって溶接強度が不足することもない。また、溶融した金属箔19が飛散しないため、外観を損ねたり、短絡を招くこともない。   Since the fragile structure of the metal foil 19 eroded by etching is changed to a structure with high adhesion by pressing, the metal foil is homogenized, the resistance to the welding current becomes uniform, and due to local current concentration on the surface where the electrode hits Heat generation can be prevented and the metal foil does not melt at once. Therefore, scattering of the molten metal foil 19 is prevented, and the welding strength is not insufficient due to insufficient thickness. Further, since the molten metal foil 19 does not scatter, the appearance is not impaired and a short circuit is not caused.

さらに、金属箔19をプレスすることにより、金属箔表面の誘電体酸化皮膜層24が分断されて、溶接電流が流れやすくなり、溶接電流に対する抵抗が均一化されて、均一な溶接強度で溶接が行なえる。金属箔19に貫通孔を形成する場合には、貫通孔の数が限定されるのに対して、プレスによる誘電体酸化皮膜層24の分断は無数の孔を形成するに等しく、溶接電流の抵抗となる誘電体酸化皮膜層の影響を十分に排除でき、溶接強度の均一化に大きく貢献する。   Furthermore, by pressing the metal foil 19, the dielectric oxide film layer 24 on the surface of the metal foil is divided so that the welding current can easily flow, the resistance against the welding current is made uniform, and welding can be performed with uniform welding strength. Yes. In the case where through holes are formed in the metal foil 19, the number of through holes is limited, whereas the division of the dielectric oxide film layer 24 by pressing is equivalent to forming an infinite number of holes, and the resistance of the welding current is reduced. The effect of the dielectric oxide film layer can be sufficiently eliminated, greatly contributing to uniform welding strength.

このように、本発明では、陽極部材22の金属箔19をプレスすることによって、金属箔が高密度化され、金属箔が均質化される。そのため、金属箔の不均質による影響や、溶融した金属箔の飛散による影響がいずれも排除される。さらに、プレスによって金属箔表面の誘電体酸化皮膜層24が分断されて、溶接電流の抵抗となる誘電体酸化皮膜層の影響も排除される。溶接電流に対する抵抗が、金属箔19の均質化と、誘電体酸化皮膜層24の分断という2つ面から均一化されるため、均一な溶接強度で溶接が行なえる。さらに、溶融した金属箔19の飛散が防止されるため、肉厚不足で溶接強度不足を生じたり、外観を損ねたり、短絡を招くこともない。   Thus, in this invention, by pressing the metal foil 19 of the anode member 22, the metal foil is densified and the metal foil is homogenized. Therefore, both the influence by the heterogeneity of the metal foil and the influence by the scattering of the molten metal foil are eliminated. Furthermore, the dielectric oxide film layer 24 on the surface of the metal foil is divided by pressing, and the influence of the dielectric oxide film layer that becomes a resistance of the welding current is also eliminated. Since the resistance to the welding current is made uniform from the two surfaces of homogenization of the metal foil 19 and division of the dielectric oxide film layer 24, welding can be performed with uniform welding strength. In addition, since the molten metal foil 19 is prevented from being scattered, there is no shortage of thickness, resulting in insufficient welding strength, loss of appearance, or short circuit.

そして、プレスであるため、切屑などは発生せず、切削油、金属酸化物などの消耗品を供給したり、ポンチを交換する必要もなく、プレス手段31を設けるだけで足り、設置、維持がきわめて容易であり、コストアップを招くこともない。   And since it is a press, there is no generation of chips, supply of consumables such as cutting oil and metal oxide, and no need to replace punches. It is very easy and does not increase the cost.

ここで、押圧距離を大きくして深くプレスすれば、密着性が高められ、プレスして肉厚が薄くなっても、プレスで強化されているため、適度なプレスであれば強度の低下はない。ここで、もし陽極部材22の上下面に段部が形成されれば、段部付近で折れやすい。そして、スペ−サ52を介在させて陽極部材22の折り曲げを少なくしているとはいえ、ステ−ションCにおける単体コンデンサ20を重ねてリ−ドフレ−ム15に溶接するとき(本溶接のとき)、陽極部材のある程度の折り曲げは避けられず、本溶接の際、段部付近で陽極部材が破損するおそれがある。   Here, if the pressing distance is increased and deeply pressed, the adhesion is improved, and even if the thickness is reduced by pressing, the strength is increased by the press. . Here, if step portions are formed on the upper and lower surfaces of the anode member 22, the anode members 22 are easily broken in the vicinity of the step portion. Even though the spacer 52 is interposed to reduce the bending of the anode member 22, when the single capacitors 20 in the station C are overlapped and welded to the lead frame 15 (in the main welding). ), Bending of the anode member to some extent is unavoidable, and the anode member may be damaged in the vicinity of the step portion during the main welding.

しかし、図3に示すように、スペ−サ52に面しないプレス部材の押圧面131a(上のプレス部材の下面)を略円弧形状としている。上のプレス部材の押圧面131aを略円弧形状とすることによって、図4からよくわかるように、プレスの中心0において最大の密着性が得られ、中心から離反するにつれて密着性が減少し、密着性の変化に反比例して、金属箔19の肉厚、つまりは、陽極部材22の肉厚がプレスの中心から離反するにつれて大きくなる。なお、抵抗溶接は密着性の高いプレスの中心0付近でなされるため、中心から離反した部分での密着性が低くても支障ない。   However, as shown in FIG. 3, the pressing surface 131a of the pressing member that does not face the spacer 52 (the lower surface of the upper pressing member) has a substantially arc shape. By making the pressing surface 131a of the upper press member substantially arc-shaped, as can be seen from FIG. 4, the maximum adhesion is obtained at the center 0 of the press, and the adhesion decreases with increasing distance from the center. Inversely proportional to the change in property, the thickness of the metal foil 19, that is, the thickness of the anode member 22, increases as the distance from the center of the press increases. In addition, since resistance welding is performed near the center 0 of the press having high adhesiveness, there is no problem even if the adhesiveness at a portion away from the center is low.

また、スペ−サの溶接手段34でスペ−サ52の溶接される陽極部材22の下面に面する下のプレス部材131の押圧面131a'を平坦形状、上のプレス部材の押圧面131aを略円弧形状とし、下のプレス部材131が陽極部材22を支え、上のプレス部材のみで陽極部材を実質的にプレスしている。この構成では、押圧面131a'を平坦形状とした下のプレス部材131は陽極部材22をプレスしておらず、しかも、陽極部材22をプレスする上のプレス部材は、その押圧面131aを略円弧形状としたため、プレスの中心0から十分に離れた位置では陽極部材をプレスしていない。そのため、略円弧形状の押圧面131aに接する陽極部材22の上面はもちろん、平坦形状の押圧面131a'に接する陽極部材の下面にも段部は成形されない。   Further, the pressing surface 131a 'of the lower press member 131 facing the lower surface of the anode member 22 to which the spacer 52 is welded by the spacer welding means 34 has a flat shape, and the pressing surface 131a of the upper press member is substantially omitted. The lower pressing member 131 supports the anode member 22, and the anode member is substantially pressed only by the upper pressing member. In this configuration, the lower pressing member 131 having a flat pressing surface 131a ′ does not press the anode member 22, and the upper pressing member that presses the anode member 22 has a substantially circular arc on the pressing surface 131a. Because of the shape, the anode member is not pressed at a position sufficiently away from the center 0 of the press. Therefore, a step portion is not formed on the lower surface of the anode member in contact with the flat pressing surface 131a ′ as well as the upper surface of the anode member 22 in contact with the substantially arc-shaped pressing surface 131a.

このように、上のプレス部材の押圧面131aを略円弧形状とすることによって、プレスの中心0で肉厚が薄くても中心から離反するにつれて厚くなって十分な肉厚が確保され、さらに、陽極部材22の上面、下面のいずれにも段部が成形されないため、陽極部材の折り曲げに対して必要な強度が確保され、積み重ね手段での抵抗溶接(本溶接)における陽極部材の破損が防止される。   Thus, by making the pressing surface 131a of the upper press member into a substantially arc shape, even if the thickness is thin at the center 0 of the press, it becomes thicker as it gets away from the center, and a sufficient thickness is secured. Since the step portion is not formed on either the upper surface or the lower surface of the anode member 22, the strength required for bending the anode member is ensured, and damage to the anode member in resistance welding (main welding) by the stacking means is prevented. The

押圧面131aは、プレスの中心0において最大の密着性が得られ、中心から離反するにつれて密着性が減少するとともに、陽極部材22に段部を成形しない面形状であれば足り、略円弧形状は図示のような純粋な円弧形状に限定されない。たとえば、図5に略円弧形状の変形例を示す。図5では、上のプレス部材の押圧面131aは、直線を連結した多角形の面形状となっており、この面形状も略円弧形状に含まれる。なお、多角形の面形状からなる略円弧形状においては、その連結部に円弧として、角部のない形状を極力なくすとよい。特に、一点鎖線で示すように、押圧面131aの端を円弧面131a1として端部に角部を残さない形状とするとよい。   The pressing surface 131a has a maximum adhesion at the center 0 of the press, the adhesion decreases as the distance from the center decreases, and a surface shape that does not form a stepped portion on the anode member 22 is sufficient. It is not limited to a pure arc shape as shown. For example, FIG. 5 shows a modification of a substantially arc shape. In FIG. 5, the pressing surface 131a of the upper pressing member has a polygonal surface shape connecting straight lines, and this surface shape is also included in the substantially arc shape. In addition, in the substantially circular arc shape which consists of polygonal surface shape, it is good to eliminate the shape without a corner | angular part as much as possible as a circular arc in the connection part. In particular, as indicated by the alternate long and short dash line, the end of the pressing surface 131a may be an arcuate surface 131a1 and may have a shape that does not leave a corner at the end.

プレス手段31でプレスされた単体コンデンサは、スペ−サの溶接手段34に送られ、切断手段32で切断されたスペ−サ52が単体コンデンサの陽極部材22にスペ−サの溶接手段34で溶接される。   The single capacitor pressed by the pressing means 31 is sent to the spacer welding means 34, and the spacer 52 cut by the cutting means 32 is welded to the anode member 22 of the single capacitor by the spacer welding means 34. Is done.

図6に示すように、スペ−サの切断手段32は、リ−ル形状または短冊形状などの長尺体50から所定長のスペ−サ52を上刃322、下刃324で切断するものであり、たとえば、上刃322を固定刃、下刃324を昇降する可動刃とし、長尺体50の送りに同期して下刃を上昇させて、所定長のスペ−サ52が長尺体から連続的に切断される。   As shown in FIG. 6, the spacer cutting means 32 cuts a spacer 52 of a predetermined length from an elongated body 50 such as a reel shape or a strip shape with an upper blade 322 and a lower blade 324. For example, the upper blade 322 is a fixed blade, and the lower blade 324 is a movable blade that moves up and down, and the lower blade is raised in synchronization with the feed of the long body 50, so that the spacer 52 of a predetermined length is removed from the long body. It is cut continuously.

スペ−サの溶接手段34は、長尺体50から切断されたスペ−サ52を保持して間欠回転(間欠送り)かつ昇降可能なロ−タリ−テ−ブル342と、スペ−サを抵抗溶接によって単体コンデンサ20の陽極部材22に固着する昇降可能な電極344とを備えている。ロ−タリ−テ−ブル342は、その回転軸O1を水平面に位置して立設され、間欠回転のピッチに対応する数の空気路342aを端面に持ち、この空気路に作用する負圧によってスペ−サ52を吸着、保持するように構成されている。空気路342aの形成された端面を、スペ−サ切断手段32の上刃322と略同一高さに設定すれば、スペ−サは切断直後にロ−タリ−テ−ブル342に吸着、保持される。なお、スペ−サ切断手段の下刃324の上昇に伴ってロ−タリ−テ−ブル342が上昇して、切断に必要な隙間を確保する。   The spacer welding means 34 holds a spacer 52 cut from the long body 50, and can rotate intermittently (intermittently feed) and move up and down, and resists the spacer. An electrode 344 that can be raised and lowered is fixed to the anode member 22 of the single capacitor 20 by welding. The rotary table 342 is erected with its rotational axis O1 positioned on the horizontal plane, and has air passages 342a corresponding to the intermittent rotation pitch on the end face, and is caused by negative pressure acting on the air passages. The spacer 52 is configured to adsorb and hold. If the end surface on which the air passage 342a is formed is set at substantially the same height as the upper blade 322 of the spacer cutting means 32, the spacer is adsorbed and held by the rotary table 342 immediately after cutting. The Note that the rotary table 342 rises as the lower blade 324 of the spacer cutting means rises to secure a gap necessary for cutting.

ロ−タリ−テ−ブル342は、2枚以上の、たとえば3枚の円板342b〜342dを重ねて構成され、中間の円板342cの端面に空気路342aが形成されている。いずれかの円板、たとえば、円板342bを電極から構成することにより、ロ−タリ−テ−ブル342は電極を兼ねている。   The rotary table 342 is formed by stacking two or more, for example, three disks 342b to 342d, and an air passage 342a is formed on an end surface of the intermediate disk 342c. By forming any one of the disks, for example, the disk 342b, from the electrodes, the rotary table 342 also serves as the electrodes.

電極344は、ロ−タリ−テ−ブル342と同期して間欠回転する回転円板とされ、回転軸O2を水平面に位置し、端面を対向させてロ−タリ−テ−ブル342の上方に並置されている。そして、並置された回転円板状の電極344とロ−タリ−テ−ブル342との間に、単体コンデンサ付キャリアバ−13が送り込まれる。キャリアバ−13のためのガイドレ−ル(図示しない)は図5のZ軸方向(キャリアバ−13の搬送路14の方向)に伸び、キャリアバ−はガイドレ−ル上を搬送されている。ガイドレ−ル上でのキャリアバ−13の搬送の障害とならないように、ロ−タリ−テ−ブル342、電極344はいずれも昇降可能となっている。   The electrode 344 is a rotating disk that rotates intermittently in synchronism with the rotary table 342. The rotation axis O2 is positioned on a horizontal plane, and the end surfaces thereof are opposed to each other above the rotary table 342. It is juxtaposed. The carrier bar 13 with a single capacitor is fed between the rotating disk-shaped electrode 344 and the rotary table 342 arranged side by side. A guide rail (not shown) for the carrier bar 13 extends in the Z-axis direction of FIG. 5 (in the direction of the conveyance path 14 of the carrier bar 13), and the carrier bar is conveyed on the guide rail. The rotary table 342 and the electrode 344 can both be raised and lowered so as not to obstruct the conveyance of the carrier bar 13 on the guide rail.

ロ−タリ−テ−ブル342、回転円板状の電極344を同期して間欠回転させるとともに、キャリアバ−13上の単体コンデンサ20に対してロ−タリ−テ−ブルを上昇させ、回転円板状の電極を下降させてから、ロ−タリ−テ−ブル、回転円板状の電極の間に高電流を流せば、ロ−タリ−テ−ブル上のスペ−サ52が単体コンデンサの陽極部材22に抵抗溶接によって固着される。ロ−タリ−テ−ブル342を2枚以上の部材を重ねて構成し、その一部(1枚の部材)を溶接の電極として、ロ−タリ−テ−ブルが電極を兼ねているため、独立部材としての電極の数が減少し、電極を兼ねたロ−タリ−テ−ブルが得られる。また、ロ−タリ−テ−ブル342、電極344を間欠的に回転するとともに昇降可能な構成としたため、キャリアバ−13のガイドレ−ルとの接触を避けてスペ−サを効率よく溶接できる。さらに、ロ−タリ−テ−ブル342を構成する2枚以上の部材のうち、電極でない部材に空気路を設けているため、電極を兼ねながらスペ−サを吸着、保持するロ−タリ−テ−ブル342が得られる。   The rotary table 342 and the rotating disk-shaped electrode 344 are intermittently rotated synchronously and the rotary table is raised with respect to the single capacitor 20 on the carrier bar 13 to rotate the rotating circle. If the plate-shaped electrode is lowered and then a high current is passed between the rotary table and the rotating disk-shaped electrode, the spacer 52 on the rotary table becomes a single capacitor. It is fixed to the anode member 22 by resistance welding. Since the rotary table 342 is formed by stacking two or more members, and a part of the rotary table 342 (one member) serves as a welding electrode, the rotary table also serves as an electrode. The number of electrodes as independent members is reduced, and a rotary table that also serves as an electrode is obtained. Further, since the rotary table 342 and the electrode 344 rotate intermittently and can be raised and lowered, the spacer can be efficiently welded while avoiding contact with the guide rail of the carrier bar 13. Further, among the two or more members constituting the rotary table 342, an air passage is provided in a member that is not an electrode, so that the rotary table that adsorbs and holds a spacer while also serving as an electrode. -Bull 342 is obtained.

電極であるロ−タリ−テ−ブル342、電極344を間欠回転させて電極部位を変えているため、局所的な磨耗が防止でき、電極が交換なしで長期間連続して使用できる。さらに、ロ−タリ−テ−ブル342、回転円板状の電極344を回転可能かつ昇降可能としたため、キャリアバ−13のガイドレ−ルを昇降させる場合に比較してスペ−サの溶接手段34の構成が簡単となる。実施例のように、回転と昇降を同時に行なえば、スペ−サの溶接が極めて短時間で行なえる。   Since the rotary table 342 and the electrode 344, which are electrodes, are intermittently rotated to change the electrode part, local wear can be prevented and the electrode can be used continuously for a long time without replacement. Further, since the rotary table 342 and the rotating disk-shaped electrode 344 are rotatable and can be raised and lowered, the welding means 34 for the spacer is compared with the case where the guide rail of the carrier bar 13 is raised and lowered. The configuration of is simplified. If the rotation and elevation are performed simultaneously as in the embodiment, welding of the spacer can be performed in a very short time.

キャリアバ−13が、ロ−タリ−テ−ブル342、電極344の間欠回転と同期して、ガイドレ−ル上をZ軸方向に間欠的に送られることにより、キャリアバ−13上の一連の単体コンデンサ20にスペ−サ52が連続的に溶接、固着されることはいうまでもない。   The carrier bar 13 is intermittently fed in the Z-axis direction on the guide rail in synchronism with the intermittent rotation of the rotary table 342 and the electrode 344, so that a series of on the carrier bar 13 Needless to say, the spacer 52 is continuously welded and fixed to the single capacitor 20.

ここで、図4に示すように、スペ−サの溶接手段34の電極344は、プレス手段31の上のプレス部材の押圧面131aに対応した略円弧形状の電極面344aを持ち、プレス部材の押圧面131aよりも大きな曲率の略円弧面となっている。電極面344aがプレス部材の押圧面131aよりも大きな曲率の略円弧形状であるため、プレスした陽極部材22のプレスの中心0に等しい電極の中心0で、最大の密着性が得られ、金属箔19の均質化したプレス押圧面の中心部に電極344が接触する。そのため、電極の当たる面での局部的な電流集中による発熱を防止でき、溶接不良を生じることなく溶接できる。   Here, as shown in FIG. 4, the electrode 344 of the spacer welding means 34 has a substantially arc-shaped electrode surface 344 a corresponding to the pressing surface 131 a of the pressing member on the pressing means 31. It is a substantially circular arc surface having a larger curvature than the pressing surface 131a. Since the electrode surface 344a has a substantially arc shape with a larger curvature than the pressing surface 131a of the press member, the maximum adhesion is obtained at the center 0 of the electrode equal to the center 0 of the pressed anode member 22, and the metal foil The electrode 344 contacts the central portion of the 19 homogenized press pressing surfaces. For this reason, heat generation due to local current concentration on the contact surface of the electrode can be prevented, and welding can be performed without causing poor welding.

もちろん、図6に示すプレス部材の押圧面131aと同様に、電極の電極面344aを直線の連結した多角形の面形状(略円弧形状)としてもよく、多角形の面形状からなる略円弧形状の連結部を円弧として、角部のない形状を極力なくすことが好ましく、陽極部材22での段部の成形を避けるために、電極面344aの端を円弧形状とするとよい。   Of course, similarly to the pressing surface 131a of the pressing member shown in FIG. 6, the electrode surface 344a of the electrode may be formed into a polygonal surface shape (substantially arc shape) in a straight line, or a substantially arc shape consisting of a polygonal surface shape. It is preferable that the connecting portion is an arc, and the shape having no corners is preferably eliminated as much as possible. In order to avoid forming the step portion on the anode member 22, the end of the electrode surface 344a is preferably an arc shape.

実施例では、陽極部材22がスペ−サ52を介在して積み重ねられるため、プレス手段31はスペ−サの溶接手段34の前に配置され、陽極部材へのスペ−サの溶接に先立って陽極部材の金属箔19をプレスしている。しかしながら、スペ−サ52を介在しない場合には、図1において、スペ−サの切断手段32、溶接手段34はいずれも不要となる。そして、切断ステ−ションBと積み重ねステ−ションCの間にプレスステ−ションXが設定され、プレス手段31はスペ−サの溶接手段34の前からプレスステ−ションXに移され、積み重ね手段42による本溶接前に、プレスステ−ションXにおいて、陽極部材の金属箔19をプレス手段31でプレスすることとなる。   In the preferred embodiment, the anode member 22 is stacked with the spacer 52 interposed therebetween, so that the pressing means 31 is disposed in front of the spacer welding means 34 and prior to welding the spacer to the anode member. The metal foil 19 of the member is pressed. However, if the spacer 52 is not interposed, neither the spacer cutting means 32 nor the welding means 34 is required in FIG. Then, a press station X is set between the cutting station B and the stacking station C, and the press means 31 is transferred to the press station X from before the welding means 34 of the spacer, and is stacked by the stacking means 42. Before the main welding, in the press station X, the metal foil 19 of the anode member is pressed by the pressing means 31.

積み重ね手段42での本溶接の電極423も、スペ−サ溶接手段34の電極344と同様に、プレス部材の押圧面131aよりも大きな曲率の略円弧面とされる(図4参照)。そのため、本溶接においても、電極423の中心0で最大の密着性が得られ、金属箔19の均質化したプレス押圧面の中心部に電極423が接触し、電極の当たる面での局部的な電流集中による発熱が防止され、溶接不良を生じることなく溶接できる。   Similarly to the electrode 344 of the spacer welding means 34, the main welding electrode 423 in the stacking means 42 is also a substantially arc surface having a larger curvature than the pressing surface 131a of the press member (see FIG. 4). Therefore, also in the main welding, the maximum adhesion is obtained at the center 0 of the electrode 423, the electrode 423 is in contact with the center of the homogenized press-pressing surface of the metal foil 19, and the local contact surface of the electrode is contacted. Heat generation due to current concentration is prevented and welding can be performed without causing poor welding.

もちろん、図5に示すプレス部材の押圧面131aと同様に、電極42の電極面423を直線の連結した多角形の面形状(略円弧形状)としてもよく、多角形の面形状からなる略円弧形状の連結部を円弧として、角部のない形状を極力なくすことが好ましく、陽極部材22での段部の成形を避けるために、電極面の端を円弧形状とするとよい。   Of course, like the pressing surface 131a of the pressing member shown in FIG. 5, the electrode surface 423 of the electrode 42 may have a polygonal surface shape (substantially arc shape) in which the electrodes 42 are connected in a straight line, or a substantially arc shape having a polygonal surface shape. It is preferable that the connecting portion of the shape is a circular arc, and the shape having no corner portion is preferably eliminated as much as possible. In order to avoid forming the stepped portion in the anode member 22, the end of the electrode surface is preferably an arc shape.

上述した実施の形態は、この発明を説明するためのものであり、この発明を何等限定するものでなく、この発明の技術範囲内で変形、改造等の施されたものも全てこの発明に包含されることはいうまでもない。   The above-described embodiments are for explaining the present invention, and do not limit the present invention. All modifications, alterations, and the like within the technical scope of the present invention are included in the present invention. It goes without saying that it is done.

所定枚数の単体コンデンサを重ねる積層コンデンサの製造に適するとはいえ、溶接電流の抵抗となる誘電体酸化皮膜層を持つ金属の抵抗溶接にも本発明が広範囲に応用できる。   Although the present invention is suitable for manufacturing a multilayer capacitor in which a predetermined number of single capacitors are stacked, the present invention can be applied to a wide range of resistance welding of a metal having a dielectric oxide film layer serving as a resistance of a welding current.

本発明の一実施例に係る積層型固体電解コンデンサ(積層コンデンサ)製造装置の概略図である。1 is a schematic view of a multilayer solid electrolytic capacitor (multilayer capacitor) manufacturing apparatus according to an embodiment of the present invention. (A)は単体固体電解コンデンサ(単体コンデンサ)を保持するキャリアバ−の平面図、(B)は積層コンデンサを保持するリ−ドフレ−ムの平面図である。(A) is a plan view of a carrier bar holding a single solid electrolytic capacitor (single capacitor), and (B) is a plan view of a lead frame holding a multilayer capacitor. プレス手段の一例を示す図である。It is a figure which shows an example of a press means. プレス手段によるプレスと、電極による抵抗溶接とを示す拡大図である。It is an enlarged view which shows the press by a press means and the resistance welding by an electrode. プレス手段の変形例を示す図である。It is a figure which shows the modification of a press means. スペ−サの切断手段によるスペ−サの切断およびスペ−サの溶接手段によるスペ−サの溶接を示す図である。It is a figure which shows the welding of the spacer by the space | interval cutting by the space | interval cutting means and the space welding means. (A)は単体コンデンサの縦断面図、(B)は単体コンデンサを積み重ねて成形された積層コンデンサの縦断面図、(C)はエッチング処理された陽極部材の破断拡大図である。(A) is a longitudinal cross-sectional view of a single capacitor, (B) is a vertical cross-sectional view of a multilayer capacitor formed by stacking single capacitors, and (C) is an enlarged fragmentary view of an etched anode member.

符号の説明Explanation of symbols

10 積層型固体電解コンデンサ製造装置
12 インデックステ−ブル(ロ−タリ−テ−ブル)
13 キャリアバ−
14 キャリアバ−の搬送路
15 リ−ドフレ−ム
15−1 陽極リ−ドフレ−ム
15−2 陰極リ−ドフレ−ム
16 リ−ドフレ−ムの搬送路
19 陽極部材の金属箔
19a エッチングピット
20 単体コンデンサ(単体固体電解コンデンサ)
21 (半製品の)積層コンデンサ(積層型固体電解コンデンサ)
121 (完成品の)積層コンデンサ(積層型固体電解コンデンサ
22 単体コンデンサの陽極部材
24 陽極部材の誘電体酸化皮膜層
29 単体コンデンサの陰極部材
31 プレス手段
131 プレス部材
131a、131a' プレス部材の押圧面
34 スペ−サの溶接手段
344 スペ−サの溶接手段の電極
344a 電極面
42 単体コンデンサの積み重ね手段
52 スペ−サ
72 絶縁性樹脂被覆
10 Multilayer Solid Electrolytic Capacitor Manufacturing Equipment 12 Index Table (Rotary Table)
13 Carrier bar
DESCRIPTION OF SYMBOLS 14 Carrier-bar conveyance path 15 Lead frame 15-1 Anode lead frame 15-2 Cathode lead frame 16 Lead frame conveyance path 19 Metal foil of anode member 19a Etching pit 20 Single capacitor (single solid electrolytic capacitor)
21 (Semi-finished product) multilayer capacitor (multilayer solid electrolytic capacitor)
121 (Completed Product) Multilayer Capacitor (Multilayer Solid Electrolytic Capacitor 22 Anode Member of Single Capacitor 24 Dielectric Oxide Film Layer of Anode Member 29 Cathode Member of Single Capacitor 31 Press Means 131 Press Member 131a, 131a ′ Press Surface of Press Member
34 Spacer welding means 344 Spacer welding means electrodes 344a Electrode surface 42 Unit capacitor stacking means 52 Spacer 72 Insulating resin coating

Claims (6)

エッチング処理した弁作用を有する金属箔の表面に誘電体酸化皮膜層を被覆して陽極部材とし、誘電体酸化皮膜層の表面に導電性高分子層、導電体層を積層して陰極部材として単体固体電解コンデンサを成形し、所定枚数の単体固体電解コンデンサを積み重ね、陽極部材どうしを重ねて陽極リ−ドフレ−ムに抵抗溶接によって一体的に固着するとともに、陰極部材どうしを重ねて陰極リ−ドフレ−ムに一体的に固着し、全体を絶縁性樹脂で被覆して積層型固体電解コンデンサを製造する積層型固体電解コンデンサ製造方法において、
陽極部材の抵抗溶接前に、陽極部材の金属箔をプレスして密着性を高めたことを特徴とする積層型固体電解コンデンサ製造方法。
A metal oxide film having a valve action that has been etched is coated with a dielectric oxide film layer to form an anode member, and a conductive polymer layer and a conductor layer are laminated on the surface of the dielectric oxide film layer to form a single cathode member. A solid electrolytic capacitor is formed, a predetermined number of single solid electrolytic capacitors are stacked, the anode members are stacked and fixed to the anode lead frame integrally by resistance welding, and the cathode members are stacked and the cathode lead frame is stacked. In a multilayer solid electrolytic capacitor manufacturing method in which a multilayer solid electrolytic capacitor is manufactured by integrally fixing to a film and covering the whole with an insulating resin.
A method for producing a multilayer solid electrolytic capacitor, wherein the metal foil of an anode member is pressed to improve adhesion before resistance welding of the anode member.
略円弧形状の押圧面で金属箔をプレスする請求項1記載の積層型固体電解コンデンサ製造方法。 The method for producing a multilayer solid electrolytic capacitor according to claim 1, wherein the metal foil is pressed with a substantially arc-shaped pressing surface. プレスの押圧面よりも大きな曲率の略円弧形状を電極面とする電極で抵抗溶接する請求項2記載の積層型固体電解コンデンサ製造方法。 3. The method for producing a multilayer solid electrolytic capacitor according to claim 2, wherein resistance welding is performed with an electrode having a substantially arc shape having a larger curvature than the pressing surface of the press as an electrode surface. エッチング処理した弁作用を有する金属箔の表面に誘電体酸化皮膜層を被覆して陽極部材とし、誘電体酸化皮膜層の表面に導電性高分子層、導電体層を積層して陰極部材として単体固体電解コンデンサを成形し、所定枚数の単体固体電解コンデンサを積み重ね、陽極部材どうしを重ねて陽極リ−ドフレ−ムに抵抗溶接によって一体的に固着するとともに、陰極部材どうしを重ねて陰極リ−ドフレ−ムに一体的に固着し、全体を絶縁性樹脂で被覆して積層型固体電解コンデンサを製造する積層型固体電解コンデンサ製造装置において、
陽極部材の抵抗溶接前に陽極部材の金属箔をプレスして密着性を高めるプレス手段を備えていることを特徴とする積層型固体電解コンデンサ製造装置。
A metal oxide film having a valve action that has been etched is coated with a dielectric oxide film layer to form an anode member, and a conductive polymer layer and a conductor layer are laminated on the surface of the dielectric oxide film layer to form a single cathode member. A solid electrolytic capacitor is formed, a predetermined number of single solid electrolytic capacitors are stacked, the anode members are stacked and fixed to the anode lead frame integrally by resistance welding, and the cathode members are stacked and the cathode lead frame is stacked. In a multilayer solid electrolytic capacitor manufacturing apparatus that manufactures a multilayer solid electrolytic capacitor by integrally fixing to a film and covering the whole with an insulating resin,
An apparatus for manufacturing a multilayer solid electrolytic capacitor, comprising press means for pressing a metal foil of an anode member to improve adhesion before resistance welding of the anode member.
エッチング処理した弁作用を有する金属箔の表面に誘電体酸化皮膜層を被覆して陽極部材とし、誘電体酸化皮膜層の表面に導電性高分子層、導電体層を積層して陰極部材として単体固体電解コンデンサを成形し、所定枚数の単体固体電解コンデンサを積み重ね、陽極部材どうしを重ねて陽極リ−ドフレ−ムに電極を利用した抵抗溶接で一体的に固着するとともに、陰極部材どうしを重ねて陰極リ−ドフレ−ムに一体的に固着し、全体を絶縁性樹脂で被覆して積層型固体電解コンデンサを製造する積層型固体電解コンデンサ製造装置において、
略円弧形状の押圧面を持ち、陽極部材の抵抗溶接前に、陽極部材の金属箔をプレスして密着性を高めるプレス手段を備え、
抵抗溶接用電極はプレスの押圧面よりも大きな曲率の略円弧形状の電極面を持っている積層型固体電解コンデンサ製造装置。
A metal oxide film having a valve action that has been etched is coated with a dielectric oxide film layer to form an anode member, and a conductive polymer layer and a conductor layer are laminated on the surface of the dielectric oxide film layer to form a single cathode member. A solid electrolytic capacitor is formed, a predetermined number of single solid electrolytic capacitors are stacked, the anode members are stacked, and the anode lead frame is integrally fixed by resistance welding using electrodes, and the cathode members are stacked. In a multilayer solid electrolytic capacitor manufacturing apparatus for manufacturing a multilayer solid electrolytic capacitor, which is integrally fixed to a cathode lead frame and covered entirely with an insulating resin,
A pressing means having a substantially arc-shaped pressing surface, and before the resistance welding of the anode member, presses the metal foil of the anode member to increase adhesion,
The resistance welding electrode has a substantially arc-shaped electrode surface having a larger curvature than the pressing surface of the press.
単体固体電解コンデンサを所定枚数積み重ね、陽極部材どうしを重ねて陽極リ−ドフレ−ムに抵抗溶接によって一体的に固着するとともに、陰極部材どうしを重ねて陰極リ−ドフレ−ムに一体的に固着して積層型固体電解コンデンサを製造する積層型固体電解コンデンサ製造装置に組込まれ、陽極部材の抵抗溶接前に陽極部材の金属箔をプレスして密着性を高める積層型固体電解コンデンサ製造装置のプレス手段。
A predetermined number of solid electrolytic capacitors are stacked, the anode members are stacked and fixed to the anode lead frame by resistance welding, and the cathode members are stacked and fixed to the cathode lead frame. Pressing means for a multilayer solid electrolytic capacitor manufacturing apparatus that is incorporated in a multilayer solid electrolytic capacitor manufacturing apparatus for manufacturing a multilayer solid electrolytic capacitor and improves adhesion by pressing a metal foil of the anode member before resistance welding of the anode member .
JP2004167374A 2004-06-04 2004-06-04 Method and apparatus for manufacturing laminated solid electrolytic capacitor and press means for the apparatus Pending JP2005347633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004167374A JP2005347633A (en) 2004-06-04 2004-06-04 Method and apparatus for manufacturing laminated solid electrolytic capacitor and press means for the apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004167374A JP2005347633A (en) 2004-06-04 2004-06-04 Method and apparatus for manufacturing laminated solid electrolytic capacitor and press means for the apparatus

Publications (1)

Publication Number Publication Date
JP2005347633A true JP2005347633A (en) 2005-12-15

Family

ID=35499694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004167374A Pending JP2005347633A (en) 2004-06-04 2004-06-04 Method and apparatus for manufacturing laminated solid electrolytic capacitor and press means for the apparatus

Country Status (1)

Country Link
JP (1) JP2005347633A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011198907A (en) * 2010-03-18 2011-10-06 Nichicon Corp Multilayer solid electrolytic capacitor and method of manufacturing the same
CN116259486A (en) * 2023-03-14 2023-06-13 东莞士格电子集团有限公司 Integrated assembly equipment for processing capacitor core package

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011198907A (en) * 2010-03-18 2011-10-06 Nichicon Corp Multilayer solid electrolytic capacitor and method of manufacturing the same
CN116259486A (en) * 2023-03-14 2023-06-13 东莞士格电子集团有限公司 Integrated assembly equipment for processing capacitor core package
CN116259486B (en) * 2023-03-14 2024-05-14 东莞士格电子集团有限公司 Integrated assembly equipment for processing capacitor core package

Similar Documents

Publication Publication Date Title
US11324121B2 (en) Chip resistor, method of producing chip resistor and chip resistor packaging structure
KR960006711B1 (en) Semiconductor leadframe and its production and plastic encapsulated semiconductor device
CN102598360A (en) Electrical energy storage device
CN104347267A (en) Method of producing electronic components and method of producing substrate-type terminals
JP2007095927A (en) Wiring board and its production method
JP6038439B2 (en) Chip resistor, chip resistor mounting structure
US7352561B2 (en) Surface-mount solid electrolytic capacitor and process for manufacturing the same
JP7398561B2 (en) Integrated small welded plate structure and its manufacturing method
JP2019029534A (en) Composite flexible printed wiring board and manufacturing method of composite flexible printed wiring board
KR20150106913A (en) Method for manufacturing stacked metal foil, method for manufacturing sealed cell including said method, and sealed cell
JP2005347633A (en) Method and apparatus for manufacturing laminated solid electrolytic capacitor and press means for the apparatus
JP2007234749A (en) Manufacturing method of chip-shape solid electrolytic capacitor
CN102254885A (en) Passive device, passive device-embedded circuit board and manufacturing method
JP4270539B2 (en) Manufacturing method and manufacturing apparatus for multilayer solid electrolytic capacitor, and spacer welding machine therefor
JP2009010069A (en) Lead wire connection device for electrode foil for capacitor
TW200305176A (en) Solid electrolytic capacitor and method for producing the same
JPH1126913A (en) Manufacture of wiring substrate
JP2014007196A (en) Manufacturing method of electronic component and manufacturing apparatus of electronic component
JP7283349B2 (en) Manufacturing method of electrode foil
JP7180936B1 (en) Lead terminal for electrolytic capacitor, apparatus for manufacturing rolled part, and method for manufacturing rolled part
JP2008142722A (en) Resistance welding method of metal thin sheet and metal foil, and method for producing nonaqueous secondary battery using the same
JP2006179740A (en) Sealing method for package
JP5854510B2 (en) Manufacturing method of multilayer solid electrolytic capacitor
CN220629656U (en) Patch jumper wire for circuit board
JP2010097968A (en) Multilayer solid electrolytic capacitor