JP2011198907A - Multilayer solid electrolytic capacitor and method of manufacturing the same - Google Patents

Multilayer solid electrolytic capacitor and method of manufacturing the same Download PDF

Info

Publication number
JP2011198907A
JP2011198907A JP2010062314A JP2010062314A JP2011198907A JP 2011198907 A JP2011198907 A JP 2011198907A JP 2010062314 A JP2010062314 A JP 2010062314A JP 2010062314 A JP2010062314 A JP 2010062314A JP 2011198907 A JP2011198907 A JP 2011198907A
Authority
JP
Japan
Prior art keywords
anode
width direction
electrolytic capacitor
solid electrolytic
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010062314A
Other languages
Japanese (ja)
Other versions
JP5376599B2 (en
Inventor
Yoshiyuki Yamazoe
伊亨 山添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Corp filed Critical Nichicon Corp
Priority to JP2010062314A priority Critical patent/JP5376599B2/en
Publication of JP2011198907A publication Critical patent/JP2011198907A/en
Application granted granted Critical
Publication of JP5376599B2 publication Critical patent/JP5376599B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a multilayer solid electrolytic capacitor, capable of preventing the leakage of a molten metal generated when welding an anode, and to provide a method of manufacturing the multilayer solid electrolytic capacitor.SOLUTION: In the multilayer solid electrolytic capacitor, a laminate 8 is configured by laminating capacitor elements (C1, C2 and C3) forming the anodes 6 on one side of a plate-shaped anode element and a cathode consisting of a dielectric film 2, a solid-state electrolytic layer 3 and cathode leading-out layers 4 and 5 on the other side, and the anodes 6 are superposed mutually and welded on a lead terminal 9. In the multilayer solid electrolytic capacitor, when the direction perpendicular in the direction from the anodes 6 to the cathode is used as the cross direction, the two anodes 6 vertically adjoined and superposed in the superposed anodes 6 are welded mutually at centers in the cross direction. In the multilayer solid electrolytic capacitor, the anodes 6 on the upper side are lifted from the anodes 6 on the lower side at both ends in the cross direction and form a storage space in this case, and the molten metals 13 generated from the two anodes 6 in a welding case are stored in the storage space.

Description

本発明は、積層型固体電解コンデンサおよびその製造方法に関する。   The present invention relates to a multilayer solid electrolytic capacitor and a method for manufacturing the same.

従来から、固体電解コンデンサにおけるコンデンサ素子は、アルミニウム、タンタル等の弁作用金属からなる陽極素子の一方側を陽極部とし、他方側の表面に形成した酸化皮膜層を誘電体膜とし、さらに、誘電体膜の表面に固体電解質層、カーボン層、銀層を順次形成して陰極部としたものが知られている(例えば、特許文献1参照)。なお、固体電解質層としては一般的に二酸化マンガン、TCNQ錯体、導電性高分子等が用いられる。   Conventionally, a capacitor element in a solid electrolytic capacitor has an anode portion made of a valve metal such as aluminum or tantalum as an anode portion, an oxide film layer formed on the other surface as a dielectric film, and a dielectric film. It is known that a cathode part is formed by sequentially forming a solid electrolyte layer, a carbon layer, and a silver layer on the surface of a body membrane (see, for example, Patent Document 1). In general, manganese dioxide, a TCNQ complex, a conductive polymer, or the like is used as the solid electrolyte layer.

また、近年では、固体電解コンデンサの大容量化を実現するために、平板状のコンデンサ素子を所定の容量となるように複数個積層した積層型固体電解コンデンサが実用化されている(例えば、特許文献2参照)。この積層型固体電解コンデンサでは、コンデンサ素子の陽極部およびリード端子を抵抗溶接用の上部回転電極および下部回転電極で挟みこみ、陽極部およびリード端子に電流を流してコンデンサ素子の陽極部同士およびコンデンサ素子の陽極部とリード端子とを溶接している。   In recent years, in order to realize a large capacity of the solid electrolytic capacitor, a multilayer solid electrolytic capacitor in which a plurality of flat capacitor elements are laminated so as to have a predetermined capacity has been put into practical use (for example, patents). Reference 2). In this multilayer solid electrolytic capacitor, the anode part and the lead terminal of the capacitor element are sandwiched between the upper rotating electrode and the lower rotating electrode for resistance welding, and a current is passed through the anode part and the lead terminal so that the anode parts of the capacitor element and the capacitor The anode part of the element and the lead terminal are welded.

特許第2969692号公報Japanese Patent No. 2996992 特開2000−68158号公報JP 2000-68158 A

しかしながら、一般に上記のような積層型固体電解コンデンサでは、陽極部同士および陽極部とリード端子とが陽極部の幅方向全体にわたって溶接され、各陽極部同士が互いに隙間なく密着していた。このため、従来の積層型固体電解コンデンサでは、溶接の際に陽極部から生じた溶融金属が、陽極部の周辺に漏れ出してコンデンサ素子やリード端子の溶接部分以外の所に付着してしまい、外装樹脂形成時にモールド金型の損傷を引き起こすことがあった。また、それに起因して完成品の外観不良を引き起こすこともあった。そして、これを防ぐためには、漏れ出した溶融金属を除去するための特別な工程を抵抗溶接後に設ける必要があり、製造コスト増加の要因となっていた。   However, in general, in the multilayer solid electrolytic capacitor as described above, the anode portions and the anode portions and the lead terminals are welded over the entire width direction of the anode portions, and the anode portions are in close contact with each other without any gap. For this reason, in the conventional multilayer solid electrolytic capacitor, the molten metal generated from the anode part during welding leaks around the anode part and adheres to places other than the welded part of the capacitor element and the lead terminal, When forming the exterior resin, the mold may be damaged. In addition, this may cause a defective appearance of the finished product. And in order to prevent this, it was necessary to provide the special process for removing the leaked molten metal after resistance welding, and had become a factor of manufacturing cost increase.

上記の問題に鑑みて、本発明は、陽極部の溶接の際に生じる溶融金属の漏れ出しを防ぐことができる積層型固体電解コンデンサおよびその製造方法を提供することを課題とする。   In view of the above problems, an object of the present invention is to provide a multilayer solid electrolytic capacitor capable of preventing leakage of molten metal that occurs during welding of an anode part, and a method for manufacturing the same.

上記の課題を解決するために、本発明に係る積層型固体電解コンデンサは、弁作用金属からなる平板状陽極素子の一方側に陽極部、他方側に誘電体膜、固体電解質層および陰極引出層からなる陰極部が形成されたコンデンサ素子をm個(ただし、mは2以上の整数)積層して積層体を構成し、積層体の陽極部同士を重ね合わせてリード端子上に溶接した積層型固体電解コンデンサであって、陽極部から陰極部にわたる方向を長手方向とし、該長手方向に直交する方向を幅方向としたとき、重ね合わされたn個(ただし、nは2以上、かつm以下の整数)の陽極部のうち、上下に隣接して重ね合わされた2つの陽極部は互いに幅方向中央部において溶接され、上側の陽極部は幅方向両端部において下側の陽極部から浮き上がって収容空間を形成し、上記2つの陽極部を溶接する際に該2つの陽極部から生じた溶融金属が収容空間に収容されていることを特徴とする。   In order to solve the above-described problems, a multilayer solid electrolytic capacitor according to the present invention includes an anode portion on one side of a flat anode element made of a valve metal, a dielectric film, a solid electrolyte layer, and a cathode lead layer on the other side. A laminate type in which m capacitor elements (where m is an integer of 2 or more) are laminated to form a laminate, and the anode portions of the laminate are overlapped and welded onto a lead terminal. A solid electrolytic capacitor in which the direction extending from the anode portion to the cathode portion is a longitudinal direction, and the direction orthogonal to the longitudinal direction is a width direction, n superimposed (where n is 2 or more and m or less) (The integer number) of the anode parts that are stacked adjacent to each other in the vertical direction are welded to each other in the center part in the width direction, and the upper anode part floats up from the lower anode part at both ends in the width direction. Forming Characterized in that the molten metal resulting from the two anode portions in welding the two anode portion is received in the receiving space.

この構成によれば、上側の陽極部がその幅方向両端部において下側の陽極部から浮き上がることによって下側の陽極部との間に収容空間が形成されるため、溶接の際に生じる溶融金属を陽極部の周辺に漏れ出させることなく該収容空間に留めておくことができる。また、この構成によれば、上側の陽極部と下側の陽極部との間の収容空間が溶融金属で埋められているため、高い溶接強度を得ることもできる。   According to this configuration, since the upper anode part floats from the lower anode part at both ends in the width direction, an accommodation space is formed between the upper anode part and the lower anode part. Can be kept in the accommodating space without leaking out around the anode part. Further, according to this configuration, since the accommodation space between the upper anode part and the lower anode part is filled with the molten metal, high welding strength can be obtained.

また、上記積層型固体電解コンデンサは、n個の陽極部に含まれるすべての陽極部の間に、上記の収容空間が形成されていることが好ましい。   In the multilayer solid electrolytic capacitor, it is preferable that the accommodation space is formed between all anode parts included in the n anode parts.

この構成によれば、すべての陽極部の間に形成された収容空間に、溶接の際に生じる溶融金属を留めておくことができるため、確実に溶融金属の漏れ出しを防ぐことができる。   According to this configuration, since the molten metal generated during welding can be retained in the accommodation space formed between all the anode portions, leakage of the molten metal can be reliably prevented.

また、上記積層型固体電解コンデンサにおいて、n個は5個以下であり、上記2つの陽極部が溶接された幅方向中心と下側の陽極部の幅方向端を通る平面と、該幅方向中心と上側の陽極部の幅方向端を通る平面とがなす角は、5°以上、かつ40−{(n−2)×10}°(ただし、n≦5)以下であることが好ましく、さらに、上側の陽極部の幅方向における断面形状は、例えば、幅方向中央部から幅方向両端部に向かうにつれて下側の陽極部から離れるように屈曲したU字形状またはV字形状とすることができる。   In the multilayer solid electrolytic capacitor, n is 5 or less, a plane passing through the width direction center where the two anode parts are welded and a width direction end of the lower anode part, and the width direction center Is preferably 5 ° or more and 40 − {(n−2) × 10} ° (where n ≦ 5) or less, and The cross-sectional shape in the width direction of the upper anode portion can be, for example, a U-shape or a V-shape that is bent away from the lower anode portion as it goes from the center portion in the width direction to both ends in the width direction. .

この構成によれば、すべての陽極部の間に一定の範囲の大きさをもった収容空間を形成することができる。これにより、収容空間の大きさにばらつきが生じたとしても、2つの陽極部が溶接された幅方向中心と下側の陽極部の幅方向端を通る平面と、該幅方向中心と上側の陽極部の幅方向端を通る平面とのなす角が上記の範囲に含まれていれば、溶融金属を確実に収容空間に留めておくことができる。さらに、上側の陽極部の断面形状をU字形状またはV字形状にすることで、収容空間に留めておくことができる溶融金属の量を増やすことができる。   According to this configuration, an accommodation space having a certain range of sizes can be formed between all the anode portions. As a result, even if there is a variation in the size of the accommodation space, the width direction center where the two anode portions are welded, the plane passing through the width direction end of the lower anode portion, and the width direction center and the upper anode If the angle formed by the plane passing through the width direction end of the part is included in the above range, the molten metal can be reliably retained in the accommodation space. Furthermore, by making the cross-sectional shape of the upper anode part U-shaped or V-shaped, the amount of molten metal that can be retained in the accommodation space can be increased.

また、本発明に係る積層型固体電解コンデンサの製造方法は、弁作用金属からなる平板状陽極素子の一方側に陽極部、他方側に誘電体膜、固体電解質層および陰極引出層からなる陰極部が形成されたコンデンサ素子をm個(ただし、mは2以上の整数)積層して積層体を構成し、該積層体の陽極部同士を重ね合わせてリード端子上に溶接する積層型固体電解コンデンサの製造方法であって、陽極部から陰極部にわたる方向を長手方向とし、該長手方向に直交する方向を幅方向としたとき、重ね合わされたn個(ただし、nは2以上、かつm以下の整数)の陽極部のうち上下に隣接して重ね合わされた2つの陽極部を幅方向中央部において溶接することで、上側の陽極部を幅方向両端部において下側の陽極部から浮き上がらせて収容空間を形成し、上記2つの陽極部から生じる溶融金属を収容空間に収容させるようにしたことを特徴とする。   The method for producing a multilayer solid electrolytic capacitor according to the present invention includes an anode part on one side of a flat anode element made of a valve metal, and a cathode part comprising a dielectric film, a solid electrolyte layer and a cathode lead layer on the other side. A multilayer solid electrolytic capacitor in which m capacitor elements (where m is an integer of 2 or more) are laminated to form a laminate, and the anode portions of the laminate are overlapped and welded onto a lead terminal Wherein the direction extending from the anode portion to the cathode portion is the longitudinal direction, and the direction orthogonal to the longitudinal direction is the width direction, n superimposed (where n is 2 or more and m or less) The upper anode part is lifted from the lower anode part at both ends in the width direction, and is accommodated by welding two anode parts, which are superposed adjacent to each other in the vertical direction, among the anode parts of (integer) Forming a space , Characterized in that so as to be accommodated in the accommodating space molten metal resulting from the two anode section.

この構成によれば、上側の陽極部を浮き上がらせることによって下側の陽極部との間に形成した収容空間に、溶接の際に生じた溶融金属を留めておくことができるため、溶融金属が陽極部の周辺に漏れ出してコンデンサ素子やリード端子の溶接部分以外の所に付着するのを防ぐことができる。これにより、溶融金属を除去するための特別な工程を設けることなく、溶融金属の付着に起因する外装樹脂形成時のモールド金型の損傷や完成品の外観不良を防ぐことができる。   According to this configuration, the molten metal generated during welding can be retained in the accommodation space formed between the upper anode part and the lower anode part by raising the upper anode part. It is possible to prevent leakage to the vicinity of the anode portion and adhesion to places other than the welded portion of the capacitor element and the lead terminal. Thereby, it is possible to prevent damage to the mold during formation of the exterior resin and poor appearance of the finished product due to adhesion of the molten metal without providing a special process for removing the molten metal.

また、上記製造方法における溶接は、下部電極と、該下部電極に対向配置された円盤状の上部電極との間にn個の陽極部およびリード端子を挟み込んでリード端子上にn個の陽極部を溶接する方法であって、リード端子上にn個の陽極部を配置し、n個の陽極部のうち最上側に位置する陽極部の幅方向中央部に前記上部電極の外周曲面を接触させ、かつリード端子に下部電極を接触させた状態で、n個の陽極部およびリード端子に所定の圧力をかけるとともに電流を流すことで、リード端子上にn個の陽極部を溶接することが好ましい。   Further, the welding in the above manufacturing method is performed by sandwiching n anode parts and lead terminals between the lower electrode and a disk-like upper electrode disposed opposite to the lower electrode, and n anode parts on the lead terminal. N anode parts are arranged on the lead terminal, and the outer peripheral curved surface of the upper electrode is brought into contact with the center part in the width direction of the anode part located on the uppermost side among the n anode parts. In addition, with the lower electrode in contact with the lead terminal, it is preferable to weld the n anode parts on the lead terminal by applying a predetermined pressure to the n anode parts and the lead terminal and passing a current. .

この構成によれば、陽極部間に収容空間を形成するための特別な工程をわざわざ設けることなく、抵抗溶接の工程と同時に収容空間を形成することができる。また、この構成によれば、円盤状の上部電極の外周曲面と最上側の陽極部との接触幅を短くすることで、陽極部を幅方向中央部においてのみ溶接することができる。   According to this configuration, the housing space can be formed simultaneously with the resistance welding process without providing a special process for forming the housing space between the anode portions. Further, according to this configuration, the anode portion can be welded only at the center portion in the width direction by shortening the contact width between the outer peripheral curved surface of the disc-shaped upper electrode and the uppermost anode portion.

なお、本明細書における用語「幅方向中央部」は、幅方向両端部を除いた部分を意味しており、厳密な意味での「幅方向中心」からずれた位置も含むものとする。   The term “width direction center” in this specification means a portion excluding both ends in the width direction, and includes a position shifted from the “width direction center” in a strict sense.

本発明によれば、陽極部の溶接の際に生じる溶融金属の漏れ出しを防ぐことができる積層型固体電解コンデンサおよびその製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the lamination type solid electrolytic capacitor which can prevent the leakage of the molten metal which arises in the case of welding of an anode part, and its manufacturing method can be provided.

本発明の一実施形態におけるコンデンサ素子であって、(a)は上面図、(b)は長手方向断面図である。1A is a top view, and FIG. 2B is a longitudinal sectional view of a capacitor element according to an embodiment of the present invention. 本発明の一実施形態に係る積層型固体電解コンデンサの斜視図である。1 is a perspective view of a multilayer solid electrolytic capacitor according to an embodiment of the present invention. 本発明の一実施形態における陽極部の幅方向断面図である。It is sectional drawing of the width direction of the anode part in one Embodiment of this invention. 本発明の一実施形態における積層体をリード端子上に配置した状態を示す側面図である。It is a side view which shows the state which has arrange | positioned the laminated body in one Embodiment of this invention on a lead terminal. 本発明の一実施形態における陽極部とリード端子との溶接直前の状態を示す図であって、(a)は側面図、(b)は陽極部の幅方向断面図である。It is a figure which shows the state just before welding of the anode part and lead terminal in one Embodiment of this invention, Comprising: (a) is a side view, (b) is a width direction sectional drawing of an anode part. 本発明の一実施形態における陽極部とリード端子との溶接直後の状態を示す、陽極部の幅方向断面図である。It is width direction sectional drawing of an anode part which shows the state immediately after welding of the anode part and lead terminal in one Embodiment of this invention.

本発明の好ましい実施形態の一例について、図面を参照して具体的に説明する。なお、以下の説明では、コンデンサ素子の陽極部から陰極部にいたる方向を長手方向とし、該長手方向に直交する方向を幅方向とする。   An example of a preferred embodiment of the present invention will be specifically described with reference to the drawings. In the following description, the direction from the anode part to the cathode part of the capacitor element is defined as the longitudinal direction, and the direction orthogonal to the longitudinal direction is defined as the width direction.

図1(a)は本実施形態に係る積層型固体電解コンデンサで使用するコンデンサ素子の上面図、(b)は長手方向断面図である。同図に示すように、本実施形態におけるコンデンサ素子Cは、陽極素子1、誘電体膜2、固体電解質層3、カーボン層4、銀層5、および這い上がり防止材7から構成されている。   FIG. 1A is a top view of a capacitor element used in the multilayer solid electrolytic capacitor according to this embodiment, and FIG. 1B is a longitudinal sectional view. As shown in the figure, the capacitor element C in this embodiment is composed of an anode element 1, a dielectric film 2, a solid electrolyte layer 3, a carbon layer 4, a silver layer 5, and a creeping prevention material 7.

陽極素子1は、弁作用金属であるアルミニウムを主成分とする幅(w)3mmの平板状の薄板であり、その一方側は陽極部6を構成している。誘電体膜2は、陽極素子1の他方側の表面に形成された酸化皮膜層である。固体電解質層3は、誘電体膜2の表面に形成された層であり、例えば、ポリエチレンジオキシチオフェン(PEDT)等の導電性高分子を含む電解質の化学重合、電解重合、または電解質の含浸によって形成された層である。カーボン層4および銀層5は、固体電解質層3の表面に順次形成された陰極引出層であり、固体電解質層3と併せて陰極部を構成している。這い上がり防止材7は、陽極部6と固体電解質層3との間に設けられ、陽極部6と陰極部とを絶縁隔離するリング状の膜である。   The anode element 1 is a flat thin plate having a width (w) of 3 mm whose main component is aluminum which is a valve action metal, and one side thereof constitutes an anode portion 6. Dielectric film 2 is an oxide film layer formed on the other surface of anode element 1. The solid electrolyte layer 3 is a layer formed on the surface of the dielectric film 2, for example, by chemical polymerization, electrolytic polymerization, or impregnation of an electrolyte containing a conductive polymer such as polyethylenedioxythiophene (PEDT). It is a formed layer. The carbon layer 4 and the silver layer 5 are cathode lead layers sequentially formed on the surface of the solid electrolyte layer 3, and together with the solid electrolyte layer 3 constitute a cathode portion. The creeping prevention material 7 is a ring-shaped film that is provided between the anode portion 6 and the solid electrolyte layer 3 and insulates and isolates the anode portion 6 and the cathode portion.

図2は本実施形態に係る積層型固体電解コンデンサの斜視図である。同図に示すように、本実施形態に係る積層型固体電解コンデンサは、m個(本実施形態においてはm=3)のコンデンサ素子を積層した積層体8と、陽極端子9および陰極端子10からなるリード端子と、外装樹脂11とから構成されている。   FIG. 2 is a perspective view of the multilayer solid electrolytic capacitor according to the present embodiment. As shown in the figure, the multilayer solid electrolytic capacitor according to this embodiment includes a laminate 8 in which m (m = 3 in this embodiment) capacitor elements are laminated, an anode terminal 9 and a cathode terminal 10. A lead terminal and an exterior resin 11.

積層体8は、各陽極部6が互いに重なり合うように、3個のコンデンサ素子C1、C2、C3を同一の向きに積層したものである。コンデンサ素子C1、C2、C3の陰極部同士およびコンデンサ素子C1の陰極部と陰極端子10とは、銀ペースト等の導電性ペースト12により接続されている。   The stacked body 8 is formed by stacking three capacitor elements C1, C2, and C3 in the same direction so that the anode portions 6 overlap each other. The cathode portions of the capacitor elements C1, C2, and C3 and the cathode portion of the capacitor element C1 and the cathode terminal 10 are connected by a conductive paste 12 such as a silver paste.

また、コンデンサ素子C1、C2、C3の陽極部6同士、および最下側にあるコンデンサ素子C1の陽極部6と陽極端子9とは幅方向中央部においてのみ溶接され、コンデンサ素子C2(C3)の陽極部6は、幅方向両端部においてコンデンサ素子C1(C2)の陽極部6から浮き上がっている。   Further, the anode parts 6 of the capacitor elements C1, C2, and C3 and the anode part 6 and the anode terminal 9 of the capacitor element C1 on the lowermost side are welded only at the center in the width direction, and the capacitor element C2 (C3) The anode portion 6 is lifted from the anode portion 6 of the capacitor element C1 (C2) at both ends in the width direction.

具体的には、図3に示すように、コンデンサ素子C2(C3)の陽極部6は、幅方向中央部から幅方向両端部に向かうにつれてコンデンサ素子C1(C2)の陽極部6から離れるように屈曲するU字状の断面形状を有する。したがって、コンデンサ素子C2の陽極部6とコンデンサ素子C1との陽極部6の間には、コンデンサ素子C2の陽極部6が浮き上がることにより形成された収容空間がある。そして、この収容空間は、溶接の際にコンデンサ素子C2、C1の陽極部6から溶け出した溶融金属13によって埋められている。同様に、コンデンサ素子C3の陽極部6とコンデンサ素子C2の陽極部6との間にも収容空間が形成され、この収容空間は、溶接の際にコンデンサ素子C3、C2の陽極部6から溶け出した溶融金属13によって埋められている。   Specifically, as shown in FIG. 3, the anode portion 6 of the capacitor element C2 (C3) is separated from the anode portion 6 of the capacitor element C1 (C2) from the center portion in the width direction toward both ends in the width direction. It has a U-shaped cross-sectional shape that bends. Therefore, between the anode part 6 of the capacitor element C2 and the anode part 6 of the capacitor element C1, there is an accommodation space formed by the anode part 6 of the capacitor element C2 being lifted. And this accommodation space is filled with the molten metal 13 which melted out from the anode part 6 of the capacitor elements C2 and C1 during welding. Similarly, an accommodation space is also formed between the anode portion 6 of the capacitor element C3 and the anode portion 6 of the capacitor element C2, and this accommodation space is melted from the anode portion 6 of the capacitor elements C3 and C2 during welding. The molten metal 13 is filled.

ここで、図3に示すように、コンデンサ素子C3(C2)の陽極部6の幅方向中心および幅方向一端部の先端を通る平面と、コンデンサ素子C2(C1)の陽極部6の幅方向中心および幅方向端を通る平面とのなす角をθとし、溶接された陽極部6の数をn(本実施形態においてはn=3)とすると、θは5°以上、かつ40−{(n−2)×10}°以下であることが好ましい。θが上記の範囲に含まれていれば、コンデンサ素子C1、C2、C3の陽極部6の間に形成された収容空間の大きさにばらつきが生じたとしても、溶融金属13を収容空間に確実に留めておくことができる。   Here, as shown in FIG. 3, the width direction center of the anode part 6 of the capacitor element C3 (C2) and the plane passing through the tip of the one end part in the width direction and the center of the anode part 6 of the capacitor element C2 (C1) in the width direction. If the angle formed with the plane passing through the width direction end is θ and the number of welded anode portions 6 is n (n = 3 in the present embodiment), θ is 5 ° or more and 40 − {(n -2) It is preferable that it is below x10} degree. If θ is included in the above range, the molten metal 13 is surely accommodated in the accommodation space even if the size of the accommodation space formed between the anode portions 6 of the capacitor elements C1, C2, and C3 varies. Can be kept on.

次に、本実施形態に係る積層型固体電解コンデンサの製造方法について説明する。   Next, a manufacturing method of the multilayer solid electrolytic capacitor according to this embodiment will be described.

まず、表面を電気化学的に粗面化したアルミニウムの薄板からなる陽極素子1を、アジピン酸アンモニウム水溶液中で所定の電圧を印加して陽極酸化を行い、表面に酸化皮膜層である誘電体膜2を形成する。次いで、誘電体膜2が形成された陽極素子1を平板状に裁断した後、適切な位置に絶縁性樹脂を周方向に巻きつけるように塗布して這い上がり防止材7を形成し、陽極部6になる領域と陰極部になる領域とに区分する。次いで、該裁断によって陽極素子1が露出した端面部を、再度アジピン酸アンモニウム水溶液中で所定の電圧を印加して陽極酸化処理を行い、裁断面にも誘電体膜2を形成する。その後、誘電体膜2の表面に固体電解質層3、カーボン層4、銀層5を順次形成して陰極部を構成することでコンデンサ素子C1、C2、C3は完成する。   First, an anode element 1 made of a thin aluminum plate whose surface is electrochemically roughened is anodized by applying a predetermined voltage in an aqueous solution of ammonium adipate, and a dielectric film which is an oxide film layer on the surface 2 is formed. Next, after the anode element 1 on which the dielectric film 2 is formed is cut into a flat plate shape, an insulating resin is applied around an appropriate position so as to be wound in the circumferential direction to form a scooping prevention material 7, and the anode portion It is divided into a region to be 6 and a region to be the cathode part. Next, the end face portion where the anode element 1 is exposed by the cutting is again subjected to anodizing treatment by applying a predetermined voltage in an aqueous solution of ammonium adipate to form the dielectric film 2 on the cut surface. Thereafter, the solid electrolyte layer 3, the carbon layer 4, and the silver layer 5 are sequentially formed on the surface of the dielectric film 2 to constitute the cathode portion, thereby completing the capacitor elements C1, C2, and C3.

続いて、図4に示すように、上記方法により作製したコンデンサ素子C1、C2、C3の陰極部同士を導電性ペースト12により接続するとともに、各陽極部6が重なり合うようにコンデンサ素子C1、C2、C3を積層して積層体8を作製する。そして、作製した積層体8を陽極端子9および陰極端子10上に配置する。   Subsequently, as shown in FIG. 4, the cathode parts of the capacitor elements C1, C2, and C3 produced by the above method are connected with the conductive paste 12, and the capacitor elements C1, C2, C3 is laminated to produce a laminate 8. And the produced laminated body 8 is arrange | positioned on the anode terminal 9 and the cathode terminal 10. FIG.

その後、コンデンサ素子C1、C2、C3の陽極部6同士およびコンデンサ素子C1の陽極部6と陽極端子9とを抵抗溶接するために、コンデンサ素子C1、C2、C3の各陽極部6および陽極端子9を抵抗溶接用の円盤状の上部回転電極14および円盤状の下部回転電極15で挟みこみ、図5に示すようにコンデンサ素子C1、C2、C3の各陽極部6と陽極端子9とを互いに密着させる。このとき、上部回転電極14の外周曲面は最上側のコンデンサ素子C3の陽極部6の幅方向中央部にのみ接触している(図5(b)参照)。なお、上部回転電極14とコンデンサ素子C3の陽極部6との接触幅(w2)は、上部回転電極14の径が小さいほど短くなる。   Thereafter, in order to resistance-weld the anode parts 6 of the capacitor elements C1, C2, and C3 and the anode part 6 and the anode terminal 9 of the capacitor element C1, each anode part 6 and anode terminal 9 of the capacitor elements C1, C2, and C3. Is sandwiched between a disk-shaped upper rotating electrode 14 and a disk-shaped lower rotating electrode 15 for resistance welding, and as shown in FIG. 5, the anode portions 6 and the anode terminals 9 of the capacitor elements C1, C2, and C3 are in close contact with each other. Let At this time, the outer peripheral curved surface of the upper rotating electrode 14 is in contact only with the central portion in the width direction of the anode portion 6 of the uppermost capacitor element C3 (see FIG. 5B). The contact width (w2) between the upper rotary electrode 14 and the anode portion 6 of the capacitor element C3 is shorter as the diameter of the upper rotary electrode 14 is smaller.

続いて、図5に示す状態で、コンデンサ素子C1、C2、C3の各陽極部6および陽極端子9に所定の圧力をかけるとともに電流を流す。これにより、図6に示すようにコンデンサ素子C1、C2、C3の各陽極部6の幅方向中央部が軟化して、押し潰される。一方、コンデンサ素子C2(C3)の陽極部6の幅方向両端部は、同図に示すようにコンデンサ素子C1(C2)の陽極部6から浮き上がる。このため、コンデンサ素子C2の陽極部6とコンデンサ素子C1の陽極部6との間、およびコンデンサ素子C3の陽極部6とコンデンサ素子C2の陽極部6との間には収容空間が形成される。さらに電流を流し続けると、コンデンサ素子C1、C2、C3の各陽極部6の幅方向中央部は溶けはじめる。この溶けた金属を凝固させることでコンデンサ素子C1、C2、C3の陽極部6同士およびコンデンサ素子C1の陽極部6と陽極端子9とが接合される。なお、接合に直接寄与していない溶けた金属(溶融金属13)は収容空間に留まるため、陽極部6の周辺に漏れ出してコンデンサ素子C1、C2、C3や陽極端子9の溶接部分以外の所に付着することはない。   Subsequently, in the state shown in FIG. 5, a predetermined pressure is applied to each anode part 6 and anode terminal 9 of the capacitor elements C1, C2, and C3, and a current is allowed to flow. Thereby, as shown in FIG. 6, the center part in the width direction of each anode part 6 of the capacitor elements C1, C2, and C3 is softened and crushed. On the other hand, both end portions in the width direction of the anode portion 6 of the capacitor element C2 (C3) are lifted from the anode portion 6 of the capacitor element C1 (C2) as shown in FIG. Therefore, an accommodation space is formed between the anode portion 6 of the capacitor element C2 and the anode portion 6 of the capacitor element C1, and between the anode portion 6 of the capacitor element C3 and the anode portion 6 of the capacitor element C2. As the current continues to flow, the central portion in the width direction of each anode portion 6 of the capacitor elements C1, C2, and C3 starts to melt. By solidifying the molten metal, the anode portions 6 of the capacitor elements C1, C2, and C3 and the anode portion 6 of the capacitor element C1 and the anode terminal 9 are joined. In addition, since the molten metal (molten metal 13) that does not directly contribute to the bonding remains in the accommodation space, it leaks out to the periphery of the anode portion 6 and places other than the welded portions of the capacitor elements C1, C2, C3 and the anode terminal 9 It will not adhere to.

最終的に、陽極端子9および陰極端子10の下面(外部回路との接続面)を除いて積層体8を外装樹脂11により封止することで、図2に示すような積層型固体電解コンデンサが完成する。   Finally, the laminated body 8 is sealed with the exterior resin 11 except for the lower surfaces (connection surfaces with external circuits) of the anode terminal 9 and the cathode terminal 10, so that the laminated solid electrolytic capacitor as shown in FIG. Complete.

表1は、上記方法により作製した本実施形態に係る積層型固体電解コンデンサ(実施例1〜32)、および径の大きな上部回転電極を利用することにより各陽極部6の間に収容空間が形成されないようにした従来の積層型固体電解コンデンサ(従来例)の不良品数を比較評価した表である。該評価においては、各実施例および従来例に係る積層型固体電解コンデンサをそれぞれ1000個作製し、溶接後の外観検査においてそれぞれの積層型固体電解コンデンサの不良品数を測定した。なお、不良品数とは、溶融金属13が陽極部6の周辺に漏れ出してコンデンサ素子や陽極端子9の溶接部分以外の所に付着した積層型固体電解コンデンサの数である。   Table 1 shows that a storage space is formed between the anode portions 6 by using the multilayer solid electrolytic capacitor (Examples 1 to 32) according to the present embodiment manufactured by the above method and the upper rotating electrode having a large diameter. It is the table | surface which compared and evaluated the number of inferior goods of the conventional multilayer solid electrolytic capacitor (conventional example) which was made not to be performed. In the evaluation, 1000 multilayer solid electrolytic capacitors according to each of the examples and the conventional examples were manufactured, and the number of defective defective solid electrolytic capacitors was measured in the appearance inspection after welding. The number of defective products is the number of stacked solid electrolytic capacitors in which the molten metal 13 leaks out around the anode portion 6 and adheres to places other than the welded portion of the capacitor element and the anode terminal 9.

表1において、「径」は上部回転電極14の径であり、「接触幅」は上部回転電極14と最上側の陽極部6とが接触している幅(図5(b)のw2)である。また、表1の「θ」は、最上側の陽極部6の幅方向中心および幅方向一端部の先端を通る平面と、陽極端子9と平行な平面とのなす角である。そして、表1の「重ね合わせ数」は、溶接された陽極部の数nである。各実施例および従来例では、コンデンサ素子を同一の向きに積層しているため、溶接された陽極部の数nはコンデンサ素子の積層数mと同じである。 In Table 1, “diameter” is the diameter of the upper rotating electrode 14, and “contact width” is the width (w 2 in FIG. 5B) where the upper rotating electrode 14 and the uppermost anode portion 6 are in contact with each other. is there. “Θ T ” in Table 1 is an angle formed by a plane passing through the center of the uppermost anode portion 6 in the width direction and the tip of one end in the width direction and a plane parallel to the anode terminal 9. The “overlapping number” in Table 1 is the number n of the welded anode portions. In each of the embodiments and the conventional example, the capacitor elements are laminated in the same direction, and therefore the number n of the welded anode portions is the same as the number m of the capacitor elements laminated.

Figure 2011198907
Figure 2011198907

表1から明らかなように、実施例1〜32では不良品が発生していないことが分かる。これは、上部回転電極14の径を小さくして上部回転電極14と最上側の陽極部6との接触幅(w2)を短くし、陽極部6を幅方向中央部においてのみ溶接したことにより、各陽極部6の間に収容空間が形成され、そこに溶接の際に生じた溶融金属13が留まったためと考えられる。すなわち、θが、5°以上、かつ70°以下の範囲に含まれていれば、溶融金属13が陽極部6の周辺に漏れ出してコンデンサ素子や陽極端子9の溶接部分以外の所に付着するのを確実に防ぐことができる。一方、従来例では、陽極部6の間に収容空間が形成されていないため、行き場のない溶融金属13が陽極部6の周辺に漏れ出してコンデンサ素子や陽極端子9の溶接部分以外の所に付着したと考えられる。 As is clear from Table 1, it can be seen that no defective product was generated in Examples 1 to 32. This is because the diameter of the upper rotating electrode 14 is reduced to shorten the contact width (w2) between the upper rotating electrode 14 and the uppermost anode portion 6, and the anode portion 6 is welded only at the center in the width direction. It is considered that a housing space was formed between the anode parts 6 and the molten metal 13 generated during welding remained there. That, theta T is attached to the 5 ° or more and 70 ° if included in the scope of the following, where the non-welded portions of the capacitor element and the anode terminal 9 by the molten metal 13 leaks around the anode part 6 Can be surely prevented. On the other hand, in the conventional example, since the accommodation space is not formed between the anode portions 6, the molten metal 13 having nowhere to leak leaks out around the anode portions 6 and is located in places other than the welded portions of the capacitor elements and the anode terminals 9. It is thought that it adhered.

なお、隣接して重ね合わされた2つの陽極部6のうち、上側の陽極部6の幅方向中心と幅方向端を通る平面と、下側の陽極部6の幅方向中心および幅方向端の先端を通る平面とのなす角θは、各陽極部6の間で必ずしも等しくする必要はないが、一定の範囲内に含まれていることが好ましい。すなわち、重ね合わせ数nが5以下の場合、θは、5°以上、かつ40−{(n−2)×10}°以下であることが好ましい。θが上記の範囲に含まれていれば、収容空間の大きさにばらつきが生じたとしても、溶融金属13を収容空間に留めておくことができる。よって、θは、重ね合わせ数nが2の場合は5°≦θ≦40°、重ね合わせ数nが3の場合は5°≦θ≦30°、重ね合わせ数nが4の場合は5°≦θ≦20°、重ね合わせ数nが5の場合は5°≦θ≦10°であることが好ましい。   Of the two anode parts 6 that are stacked adjacent to each other, a plane passing through the width direction center and the width direction end of the upper anode part 6, and the width direction center and the tip of the width direction end of the lower anode part 6 Is not necessarily equal between the anode portions 6 but is preferably within a certain range. That is, when the overlapping number n is 5 or less, θ is preferably 5 ° or more and 40 − {(n−2) × 10} ° or less. If θ is included in the above range, the molten metal 13 can be retained in the accommodation space even if the size of the accommodation space varies. Therefore, θ is 5 ° ≦ θ ≦ 40 ° when the number n of superpositions is 2, 5 ° ≦ θ ≦ 30 ° when the number n of superpositions is 3, and 5 ° when the number n of superpositions is 4. When ≦ θ ≦ 20 ° and the number of overlapping n is 5, it is preferable that 5 ° ≦ θ ≦ 10 °.

以上、本発明に係る積層型固体電解コンデンサおよびその製造方法の好ましい実施形態の一例ついて説明してきたが、本発明はこれらの構成に限定されるものではない。   As mentioned above, although the example of preferable embodiment of the multilayer type solid electrolytic capacitor and its manufacturing method which concern on this invention has been demonstrated, this invention is not limited to these structures.

例えば、上記実施形態では、コンデンサ素子を同一の向きに積層しているが、陽極部6の突出方向が交互に反対になるようにコンデンサ素子を積層してもよい。   For example, in the above embodiment, the capacitor elements are stacked in the same direction, but the capacitor elements may be stacked so that the protruding directions of the anode portions 6 are alternately reversed.

また、上記実施形態では、抵抗溶接により陽極部6同士および陽極部6と陽極端子9とを溶接しているが、レーザ溶接、超音波溶接等の抵抗溶接以外の溶接方法により溶接してもよい。   In the above embodiment, the anode parts 6 and the anode part 6 and the anode terminal 9 are welded by resistance welding, but may be welded by a welding method other than resistance welding such as laser welding or ultrasonic welding. .

また、上記実施形態では、下部電極に円盤状の回転電極を用いたが、平板状の電極を用いてもよい。   Moreover, in the said embodiment, although the disk shaped rotating electrode was used for the lower electrode, you may use a flat electrode.

さらに、上記実施形態では、陽極部6同士および陽極部6と陽極端子9とを溶接する際に、溶融金属13を留めておくことができる収容空間を形成しているが、例えば、最初から陽極部6が図3に示すようなU字状またはV字状等の断面形状を有するコンデンサ素子を用いることで、溶接する前に収容空間を形成しておいてもよい。   Furthermore, in the said embodiment, when welding the anode parts 6 and the anode parts 6 and the anode terminal 9, the accommodation space which can hold | maintain the molten metal 13 is formed. The housing space may be formed before welding by using a capacitor element having a U-shaped or V-shaped cross section as shown in FIG.

C、C1〜3 コンデンサ素子
1 陽極素子
2 誘電体膜
3 固体電解質層
4 カーボン層
5 銀層
6 陽極部
7 這い上がり防止材
8 積層体
9 陽極端子
10 陰極端子
11 外装樹脂
12 導電性ペースト
13 溶融金属
14 上部回転電極
15 下部回転電極
C, C1 to 3 Capacitor element 1 Anode element 2 Dielectric film 3 Solid electrolyte layer 4 Carbon layer 5 Silver layer 6 Anode portion 7 Scatter preventive material 8 Laminate 9 Anode terminal 10 Cathode terminal 11 Exterior resin 12 Conductive paste 13 Melting Metal 14 Upper rotating electrode 15 Lower rotating electrode

Claims (6)

弁作用金属からなる平板状陽極素子の一方側に陽極部、他方側に誘電体膜、固体電解質層および陰極引出層からなる陰極部が形成されたコンデンサ素子をm個(ただし、mは2以上の整数)積層して積層体を構成し、前記積層体の陽極部同士を重ね合わせてリード端子上に溶接した積層型固体電解コンデンサであって、
前記陽極部から前記陰極部にいたる方向を長手方向とし、該長手方向に直交する方向を幅方向としたとき、重ね合わされたn個(ただし、nは2以上、かつm以下の整数)の陽極部のうち、上下に隣接して重ね合わされた2つの陽極部は互いに前記幅方向中央部において溶接され、上側の陽極部は前記幅方向両端部において下側の陽極部から浮き上がって収容空間を形成し、
前記2つの陽極部を溶接する際に前記2つの陽極部から生じた溶融金属が前記収容空間に収容されていることを特徴とする積層型固体電解コンデンサ。
A plate-like anode element made of a valve metal has m capacitor elements each having an anode portion on one side and a cathode portion made of a dielectric film, a solid electrolyte layer and a cathode lead layer on the other side (where m is 2 or more) A laminated solid electrolytic capacitor in which a laminated body is formed by stacking, and the anode parts of the laminated body are overlapped and welded onto a lead terminal,
When the direction from the anode part to the cathode part is the longitudinal direction and the direction orthogonal to the longitudinal direction is the width direction, n superimposed anodes (where n is an integer of 2 or more and m or less) The two anode parts, which are superposed adjacent to each other in the vertical direction, are welded to each other at the center in the width direction, and the upper anode part is lifted from the lower anode part at both ends in the width direction to form an accommodation space. And
A multilayer solid electrolytic capacitor, wherein molten metal generated from the two anode parts when the two anode parts are welded is accommodated in the accommodation space.
前記n個の陽極部に含まれるすべての陽極部の間に、前記収容空間が形成されていることを特徴とする請求項1に記載の積層型固体電解コンデンサ。   2. The multilayer solid electrolytic capacitor according to claim 1, wherein the housing space is formed between all the anode portions included in the n anode portions. 前記n個は5個以下であり、
前記2つの陽極部が溶接された前記幅方向中心と前記下側の陽極部の前記幅方向端を通る平面と、該幅方向中心と前記上側の陽極部の前記幅方向端を通る平面とがなす角は、5°以上、かつ40−{(n−2)×10}°(ただし、n≦5)以下であることを特徴とする請求項1または2に記載の積層型固体電解コンデンサ。
N is 5 or less,
A plane passing through the widthwise center of the lower anode part and the widthwise end of the lower anode part, and a plane passing through the widthwise end of the upper anode part and the upper anode part where the two anode parts are welded. 3. The multilayer solid electrolytic capacitor according to claim 1, wherein the formed angle is 5 ° or more and 40 − {(n−2) × 10} ° (where n ≦ 5) or less.
前記上側の陽極部の前記幅方向における断面形状は、前記幅方向中央部から前記幅方向両端部に向かうにつれて前記下側の陽極部から離れるように屈曲したU字形状またはV字形状であることを特徴とする請求項1ないし3のいずれかに記載の積層型固体電解コンデンサ。   The cross-sectional shape in the width direction of the upper anode portion is a U-shape or V-shape bent away from the lower anode portion as it goes from the center portion in the width direction to both ends in the width direction. The multilayer solid electrolytic capacitor according to any one of claims 1 to 3, wherein: 弁作用金属からなる平板状陽極素子の一方側に陽極部、他方側に誘電体膜、固体電解質層および陰極引出層からなる陰極部が形成されたコンデンサ素子をm個(ただし、mは2以上の整数)積層して積層体を構成し、前記積層体の陽極部同士を重ね合わせてリード端子上に溶接する積層型固体電解コンデンサの製造方法であって、
前記陽極部から前記陰極部にいたる方向を長手方向とし、該長手方向に直交する方向を幅方向としたとき、重ね合わされたn個(ただし、nは2以上、かつm以下の整数)の陽極部のうち上下に隣接して重ね合わされた2つの陽極部を前記幅方向中央部において溶接することで、
上側の陽極部を前記幅方向両端部において下側の陽極部から浮き上がらせて収容空間を形成し、前記2つの陽極部から生じる溶融金属を前記収容空間に収容させることを特徴とする積層型固体電解コンデンサの製造方法。
A plate-like anode element made of a valve metal has m capacitor elements each having an anode portion on one side and a cathode portion made of a dielectric film, a solid electrolyte layer and a cathode lead layer on the other side (where m is 2 or more) An integral number of layers) to form a laminated body, and stack the anode parts of the laminated body to weld on the lead terminal,
When the direction from the anode part to the cathode part is the longitudinal direction and the direction orthogonal to the longitudinal direction is the width direction, n superimposed anodes (where n is an integer of 2 or more and m or less) Welding two anode parts stacked adjacent to each other vertically in the central part in the width direction,
A laminated solid characterized in that the upper anode part is lifted from the lower anode part at both ends in the width direction to form an accommodation space, and molten metal generated from the two anode parts is accommodated in the accommodation space. Manufacturing method of electrolytic capacitor.
下部電極と、該下部電極に対向配置された円盤状の上部電極との間に前記n個の陽極部および前記リード端子を挟み込んで前記リード端子上に前記n個の陽極部を溶接する請求項5に記載の積層型固体電解コンデンサの製造方法であって、
前記リード端子上に前記n個の陽極部を配置し、前記n個の陽極部のうち最上側に位置する陽極部の前記幅方向中央部に前記上部電極の外周曲面を接触させ、かつ前記リード端子に前記下部電極を接触させた状態で、前記n個の陽極部および前記リード端子に所定の圧力をかけるとともに電流を流すことで、前記リード端子上に前記n個の陽極部を溶接することを特徴とする積層型固体電解コンデンサの製造方法。
The n anode parts and the lead terminals are sandwiched between a lower electrode and a disk-shaped upper electrode disposed to face the lower electrode, and the n anode parts are welded on the lead terminals. A method for producing a multilayer solid electrolytic capacitor according to claim 5,
The n anode portions are arranged on the lead terminal, an outer peripheral curved surface of the upper electrode is brought into contact with the central portion in the width direction of the anode portion located on the uppermost side among the n anode portions, and the lead Welding the n anode parts on the lead terminals by applying a predetermined pressure and applying a current to the n anode parts and the lead terminals with the lower electrode in contact with the terminals. A method for producing a multilayer solid electrolytic capacitor, characterized in that:
JP2010062314A 2010-03-18 2010-03-18 Multilayer solid electrolytic capacitor and manufacturing method thereof Active JP5376599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010062314A JP5376599B2 (en) 2010-03-18 2010-03-18 Multilayer solid electrolytic capacitor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010062314A JP5376599B2 (en) 2010-03-18 2010-03-18 Multilayer solid electrolytic capacitor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011198907A true JP2011198907A (en) 2011-10-06
JP5376599B2 JP5376599B2 (en) 2013-12-25

Family

ID=44876770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010062314A Active JP5376599B2 (en) 2010-03-18 2010-03-18 Multilayer solid electrolytic capacitor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5376599B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020181841A (en) * 2019-04-23 2020-11-05 ハイメカ株式会社 Capacitor manufacturing device and power supply control method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005347633A (en) * 2004-06-04 2005-12-15 Hi-Mecha Corp Method and apparatus for manufacturing laminated solid electrolytic capacitor and press means for the apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005347633A (en) * 2004-06-04 2005-12-15 Hi-Mecha Corp Method and apparatus for manufacturing laminated solid electrolytic capacitor and press means for the apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020181841A (en) * 2019-04-23 2020-11-05 ハイメカ株式会社 Capacitor manufacturing device and power supply control method thereof
JP7055391B2 (en) 2019-04-23 2022-04-18 ハイメカ株式会社 Capacitor manufacturing equipment and its power supply control method

Also Published As

Publication number Publication date
JP5376599B2 (en) 2013-12-25

Similar Documents

Publication Publication Date Title
KR101619604B1 (en) Method of manufacturing electrode assembly and secondary battery
JP5528481B2 (en) High durability lithium ion battery
KR101280798B1 (en) Electrochemical device and process of manufacturing same
KR101434747B1 (en) Recessed tab for higher energy density and thinner batteries
JP2008243439A (en) Abnormality detecting device of battery and abnormality detecting method of battery
US20110086264A1 (en) Electro-chemical device and method for manufacturing the same
JP2020513148A (en) Electrode having improved electrode tab welding characteristics and secondary battery including the same
JP2010003803A (en) Electrochemical device and method for manufacturing therefor
CN111384426B (en) Secondary battery
JP2007180327A (en) Stacked solid electrolytic capacitor
JP5082264B2 (en) Film-clad electrical device and method for manufacturing the same
JP6095120B2 (en) Lithium ion secondary battery
JP5229440B2 (en) Electrochemical devices
KR102101010B1 (en) Electrode assembly and secondary battery comprising the same
WO2006114917A1 (en) Multilayer solid electrolytic capacitor and its manufacturing process
JP6477899B2 (en) Electric double layer capacitor and manufacturing method thereof
JP5376599B2 (en) Multilayer solid electrolytic capacitor and manufacturing method thereof
JP5146677B2 (en) Multilayer electrolytic capacitor
JP2013054998A (en) Square battery and manufacturing method therefor
JP2019003990A (en) Electrode element
US8179666B2 (en) Multilayer electrolytic capacitor and method for manufacturing the same
JP7299816B2 (en) Stacked battery manufacturing method, stacked battery manufacturing apparatus, and stacked battery
JP2008091268A (en) Low-profile battery
JP2014182970A (en) Abnormality detection device for battery and abnormality detection method
JP6793702B2 (en) Electrochemical cell and manufacturing method of electrochemical cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130919

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5376599

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250