JP4270539B2 - Manufacturing method and manufacturing apparatus for multilayer solid electrolytic capacitor, and spacer welding machine therefor - Google Patents

Manufacturing method and manufacturing apparatus for multilayer solid electrolytic capacitor, and spacer welding machine therefor Download PDF

Info

Publication number
JP4270539B2
JP4270539B2 JP2002134276A JP2002134276A JP4270539B2 JP 4270539 B2 JP4270539 B2 JP 4270539B2 JP 2002134276 A JP2002134276 A JP 2002134276A JP 2002134276 A JP2002134276 A JP 2002134276A JP 4270539 B2 JP4270539 B2 JP 4270539B2
Authority
JP
Japan
Prior art keywords
solid electrolytic
electrolytic capacitor
lead frame
carrier bar
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002134276A
Other languages
Japanese (ja)
Other versions
JP2003332177A5 (en
JP2003332177A (en
Inventor
千広 横山
照秀 渡部
謙一郎 鈴木
Original Assignee
ハイメカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ハイメカ株式会社 filed Critical ハイメカ株式会社
Priority to JP2002134276A priority Critical patent/JP4270539B2/en
Publication of JP2003332177A publication Critical patent/JP2003332177A/en
Publication of JP2003332177A5 publication Critical patent/JP2003332177A5/ja
Application granted granted Critical
Publication of JP4270539B2 publication Critical patent/JP4270539B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、単体の固体電解コンデンサを複数積み重ねてなる積層型固体電解コンデンサの製造方法、製造装置および単体の固体電解コンデンサにスペ−サを電気溶接するスペ−サ溶接機に関する。
【0002】
【従来の技術】
アルミニウム、タンタルなどの弁作用を有する金属箔からなる陽極部材の表面に、誘電性酸化皮膜、固体電解質皮膜からなる陰極部材を形成した単体の固体電解コンデンサ(以下、「単体コンデンサ」と適宜表示する)を、高容量化のために複数積み重ねた積層型固体電解コンデンサ(以下、「積層コンデンサ」と適宜表示する)が知られている。
【0003】
積層コンデンサでは、単体コンデンサの陽極部材どうし、陰極部材どうしを重ね、銀ペ−ストのような導電性の接着剤で陰極部材を固着するとともに、抵抗溶接などの電気溶接で陽極部材を溶接、固着して、単体コンデンサを複数積み重ねている。
【0004】
単体コンデンサにおいて、誘電性酸化皮膜、固体電解質皮膜からなる陰極部材は、弁作用を有する金属箔からなる陽極部材に比較して厚く、陰極部材、陽極部材の厚さに差異があるため、陰極部材、陽極部材間に段差が生じる。そして、積層する単体コンデンサの数に比例して陰極部材、陽極部材間の段差が増加する。
【0005】
陽極部材の固着は、陽極部材どうしを密着してから電気溶接されており、密着のために、陽極部材を折り曲げている。しかし、陽極部材を折り曲げると、金属箔からなる陽極部材に応力集中が生じて、コンデンサ特性が低下する。
【0006】
このように、陰極部材、陽極部材の厚さの違いからそれらの間に段差が生じ、密着、溶接のために陽極部材の折り曲げが避けられず、積み重ねる単体コンデンサの数に比例して陰極部材、陽極部材間の段差が増し、陽極部材の折り曲げ角度が大きくなる。そのため、高容量のために、積み重ねる単体コンデンサの数を増やすと、コンデンサ特性が低下するジレンマがある。
【0007】
コンデンサ特性の低下を防止しながら高容量化を図るために、例えば以下のような積層コンデンサが提案されている。
(1)陽極部材の数に等しく、陽極部材の高さレベルに対応した段差付の陽極端子片をリ−ドフレ−ムに形成したもの(特開平04−167417号公報)。
(2)陽極部材間に導電性スペ−サを挟むことにより、陰極部材、陽極部材間の段差をなくし陽極部材の折り曲げを不要とするもの(特開平05−205984号公報)。
【0008】
(3)陽極部材間に絶縁性樹脂のスペ−サを挟んで陰極部材、陽極部材間の段差をなくし、陽極部材から金属細線を伸ばし、金属細線を電気端子で接続するもの(特開平06−029163号公報)。
(4)陽極部材、陰極部材を絶縁性樹脂で覆って陰極部材、陽極部材間の段差を絶縁性樹脂で埋め、陽極部材どうしを導電層で接続し、導電層から陽極端子を伸ばして絶縁性樹脂、導電層を外装用絶縁樹脂でさらに覆ったもの(特開平06−084716号公報)。
(5)陰極部材基部よりも陰極部材端部が厚くなる形状の単体コンデンサを、陽極部材から陰極部材に向かって末広がりになるように積み重ねるとともに、リ−ドフレ−ムの上面及び下面に単体コンデンサを積み重ねたもの(特開2000−068158号公報、特開2001−230156号公報)
【0009】
(1)では陽極端子を段差付形状とすることにより、(2)〜(4)では金属性スペ−サまたは絶縁性樹脂で、陰極部材、陽極部材間の段差を埋めることにより、陽極部材の折り曲げを理論上不要としている。
(5)では末広がりに積層するとともに、リ−ドフレ−ムの上面及び下面に分散して配置することにより、陰極部材、陽極部材間の段差を少なくして陽極部材の折り曲げ角度を小さくしている。
【0010】
【発明が解決しようとする課題】
(1)〜(5)のいずれにおいても、コンデンサ特性の低下を防止しながら高容量の積層コンデンサが得られる。しかし、その生産性を考慮すると、いずれの積層コンデンサにおいても改良すべき点がある。たとえば、(1)ではリ−ドフレ−ムの成形が複雑化し、(2)〜(4)ではスペ−サの装着や陽極部材と電気端子との接続のために工程が複雑化する。(5)では単体コンデンサが末広がりに重ねられているため、固着のために加圧すると、単体コンデンサが位置ずれを生じやすい。
【0011】
本件発明者は、上記(1)〜(5)を含む公知の積層コンデンサについて鋭意研究した結果、(2)の積層コンデンサ(特開平05−205984号公報)が構造的に優れているとの結論を得た。しかしながら、特開平05−205984号公報に開示する積層コンデンサの具体的な製造方法、およびそのための製造装置は知られていない。また、単体の固体電解コンデンサにスペ−サを電気溶接する具体的なスペ−サ溶接機も知られていない。
【0012】
この発明の第1の目的は、コンデンサ特性の低下を防止しながら高容量の積層型固体電解コンデンサを効率よく製造する方法を提供することにある。
また、この発明の第2の目的は、コンデンサ特性の低下を防止しながら高容量の積層型固体電解コンデンサを効率よく製造する装置を提供することにある。
この発明の第3の目的は、コンデンサ特性の低下を防止しながら高容量の積層型固体電解コンデンサを製造するために、陽極部材に導電性スペ−サ−を効率よく装着、溶接するスペ−サ溶接機を提供することにある。
【0013】
【課題を解決する手段】
第1の目的を達成するために、この発明の積層型固体電解コンデンサの製造方法では、長尺体から導電性のスペ−サを所定長に切断し、キャリアバ−上の単体コンデンサの陽極部材にスペ−サを電気溶接で固着し、陰極部材に導電性接着剤を付着し、キャリアバ−から単体コンデンサを切断してから、インデックステ−ブルで単体コンデンサを保持し、インデックステ−ブルを間欠送りして、インデックステ−ブル上の単体コンデンサをリ−ドフレ−ムに溶接、積み重ね、単体コンデンサの溶接、積み重ねを同一基準面、同一条件で繰り返して積層型固体電解コンデンサを成形している。
【0014】
第2の目的を達成するために、この発明の積層型固体電解コンデンサの製造装置では、長尺体から導電性のスペ−サを所定長に切断する手段と、キャリアバ−上の単体コンデンサの陽極部材にスペ−サを電気溶接で溶接、固着する手段と、キャリアバ−上の単体コンデンサの陽極部材に導電性接着剤を付着する手段と、キャリアバ−から単体コンデンサを切断する手段と、キャリアバ−から切断された単体コンデンサを保持して間欠送りするインデックステ−ブルと、インデックステ−ブル上の単体コンデンサをリ−ドフレ−ムに溶接、積み重ね、単体コンデンサの溶接、積み重ねを同一基準面、同一条件で繰り返してリ−ドフレ−ムに単体コンデンサを積み重ねる手段とを備えて構成されている。
【0015】
第3の目的を達成するために、この発明の単体コンデンサのスペ−サ溶接機では、長尺体から切断されたスペ−サをその端面に保持して間欠回転するとともに、溶接電極を兼ねるロ−タリ−テ−ブルと、ロ−タリ−テ−ブルと端面どうしを対向して配置されロ−タリ−テ−ブルと同期して間欠回転することにより溶接電極を兼ねるロ−タリ−テ−ブルとの間で単体コンデンサの陽極部材にロ−タリ−テ−ブル上のスペ−サを電気溶接させる円板状の溶接電極とを備えて構成されている。
【0016】
【発明の実施の形態】
以下、図面を参照しながらこの発明の実施の形態について詳細に説明する。
【0017】
この発明の積層型固体電解コンデンサの製造装置10の概略を図1に示す。コンデンサ製造装置10は、水平に配置されたインデックステ−ブル(ロ−タリ−テ−ブル)12を備え、キャリアバ−の搬送路14とリ−ドフレ−ムの搬送路16とがインデックステ−ブル12の接線方向でインデックステ−ブルを挟んで平行に設けられている。
【0018】
図2(A)に示すように、単体コンデンサ(単体の固体電解コンデンサ)20は、その陽極部材22をキャリアバ−13に固着することによってキャリアバ−に保持されており、たとえば、30枚の単体コンデンサがキャリアバ−に保持される。そして、所定の処理の施された単体コンデンサ20をリ−ドフレ−ム15に所定数積み重ねて、積層コンデンサ(積層固体電解コンデンサ)21がリ−ドフレ−ム上に成形される(図2(B)参照)。
【0019】
キャリアバ−13のためのガイドレ−ル(図示しない)がキャリアバ−の搬送路14に沿って伸びており、単体コンデンサ20を保持するキャリアバ−はガイドレ−ル上を左から右に送られ、キャリアバ−の供給手段30、スペ−サの溶接手段(スペ−サ溶接機)34、導電性接着剤の付着手段36、単体コンデンサの切断手段38、キャリアバ−の格納手段39が左から順にキャリアバ−の搬送路14に沿って配置されている。また、スペ−サの切断手段32がスペ−サの溶接手段34に隣接して配置されている。
【0020】
実施例では、単体コンデンサの切断は、キャリアバ−13から単体コンデンサ20を切断する一次切断と、単体コンデンサ20を所定長に切断する二次切断とに分割して行なわれ、切断手段38は一次切断手段38−1と二次切断手段38−2とから構成されている。そして、一次切断手段38−1はキャリアバ−の搬送路14に沿って配置され、二次切断手段38−2はキャリアバ−の搬送路から離反した位置に配置されている。
【0021】
また、リ−ドフレ−ム15のためのガイドレ−ル(図示しない)がリ−ドフレ−ムの搬送路16に沿って伸びており、リ−ドフレ−ム15は搬送路を右から左に送られ、リ−ドフレ−ムの供給手段40、単体コンデンサを積み重ねる手段(積層手段)42、整形手段44、不良品排出手段46、リ−ドフレ−ムの格納手段48が右から順にリ−ドフレ−ムの搬送路に沿って配置されている。
インデックステ−ブル12、スペ−サの溶接手段(スペ−サ溶接機)34などの動作や、搬送路14、16でのキャリアバ−13、リ−ドフレ−ム15の送りなどはCPU(図示しない)によって制御されており、CPUのプログラム変更によって動作、送りなどが任意に設定できることはいうまでもない。
【0022】
単体コンデンサ20は公知のものであり、図3に示すように、たとえば、アルミニウム、タンタルなどの弁作用を有する金属箔21の表面に誘電性酸化皮膜24を被覆して陽極部材22とし、誘電性酸化皮膜の表面に、導電性高分子層(固体電解質層)26、カ−ボンペ−スト層(導電体層)27、銀ペ−スト層(導電体層)28からなる陰極部材29を形成して構成されている。そして、図3に加えて図2(A)を見るとよくわかるように、陽極部材22をキャリアバ−13に固着して、単体コンデンサ20がキャリアバ−13に保持されている。
【0023】
たとえば、キャリアバ−供給手段30は、単体コンデンサ20付キャリアバ−13を垂直方向に収納する上昇式多段棚ケ−スとされ、棚ケ−スが上昇し最上位の棚のキャリアバ−がガイドレ−ル上に供給されてキャリアバ−供給手段30からスペ−サ溶接手段34に順次送り込まれるように構成されている。もちろん、キャリアバ−供給手段30の構成は一例であり、これに限定されない。
【0024】
図4に示すように、スペ−サの切断手段32は、リ−ル形状または短冊形状などの長尺体50から所定長のスペ−サ52(スペ−サ片)を上刃322、下刃324で切断するものである。
たとえば、上刃322を固定刃、下刃324を昇降する可動刃とし、長尺体50の送りを所定長とし、長尺体の送りに同期して下刃324を上昇させれば、所定長のスペ−サ52が長尺体から連続的に切り取られる。
【0025】
スペ−サの溶接手段34は、長尺体50から切断されたスペ−サ52を保持して間欠回転(間欠送り)される溶接用のロ−タリ−テ−ブル342と、スペ−サを電気溶接によって単体コンデンサ20の陽極部材22に固着する溶接電極344とを備えている(図4参照)。
ロ−タリ−テ−ブル342は、その回転軸O1を水平面に位置して立設され、間欠回転のピッチに対応する数の空気路342aを端面に持ち、この空気路に作用する負圧によってスペ−サ52を吸着、保持するように構成されている。図4からわかるように、空気路342aの形成された端面を、スペ−サ切断手段32の上刃322と略同一高さに設定すれば、スペ−サは切断直後にロ−タリ−テ−ブル342に吸着、保持される。間欠回転のピッチを22.5°とすれば、16個の空気路342aが22.5°づつ離反して、たとえば穿設加工によって形成されている。
【0026】
ロ−タリ−テ−ブル342は、2枚以上の、たとえば3枚の円板342b〜342dを重ねて構成され、中間の円板342cの端面に空気路342aが形成されている。いずれかの円板、たとえば、円板342bを溶接電極から構成することにより、ロ−タリ−テ−ブル342は溶接電極を兼ねる。
【0027】
溶接電極344は、ロ−タリ−テ−ブル342と同期して間欠回転する回転円板とされ、回転軸O2を水平面に位置し、端面を対向させてロ−タリ−テ−ブル342の上方に並置されている。そして、並置された回転円板状の溶接電極344とロ−タリ−テ−ブル342との間に、単体コンデンサ付キャリアバ−13が送り込まれる。キャリアバ−13のためのガイドレ−ル(図示しない)が図4のZ軸方向(キャリアバ−13の搬送路14の方向)に伸び、キャリアバ−はガイドレ−ル上を搬送されている。ガイドレ−ル上でのキャリアバ−13の搬送の障害とならないように、ロ−タリ−テ−ブル342、溶接電極344はいずれも昇降可能となっている。
【0028】
ロ−タリ−テ−ブル342、回転円板状の溶接電極344を同期して間欠回転させるとともに、キャリアバ−13上の単体コンデンサ20に対してロ−タリ−テ−ブルを上昇させ、回転円板状の溶接電極を下降させてから、ロ−タリ−テ−ブル、回転円板状の溶接電極の間に高電流を流せば、ロ−タリ−テ−ブル上のスペ−サ52が単体コンデンサの陽極部材22に抵抗溶接によって固着される。
実施例では、ロ−タリ−テ−ブル342を2枚以上の部材を重ねて構成し、その一部(1枚の部材)を溶接電極として、ロ−タリ−テ−ブルが溶接電極を兼ねているため、独立部材としての溶接電極の数が減少し、溶接電極を兼ねたロ−タリ−テ−ブルが容易に得られる。また、ロ−タリ−テ−ブル342、溶接電極344を間欠的に回転するとともに昇降可能な構成としたため、キャリアバ−13のガイドレ−ルとの接触を避けてスペ−サを効率よく溶接できる。さらに、ロ−タリ−テ−ブル342を構成する2枚以上の部材のうち、溶接電極でない部材に空気路を設けているため、溶接電極を兼ねながらスペ−サを吸着、保持するロ−タリ−テ−ブル342が容易に得られる。
【0029】
溶接電極であるロ−タリ−テ−ブル342、溶接電極344を間欠回転させて電極部位を変えているため、局所的な磨耗が防止でき、溶接電極が交換なしで長期間連続して使用できる。さらに、ロ−タリ−テ−ブル342、回転円板状の溶接電極344を回転可能かつ昇降可能としたため、キャリアバ−13のガイドレ−ルを昇降させる場合に比較してスペ−サの溶接手段34の構成が簡単となる。実施例のように、回転と昇降を同時に行なえば、スペ−サの溶接が極めて短時間で行なえる。特に、ロ−タリ−テ−ブル342は、下刃324が上昇してスペ−サ52を切断した直後に、上刃322と略同一面までロ−タリ−テ−ブル342を降下させているため、スペ−サの切断を妨げることなく、ロ−タリ−テ−ブルはスペ−サを迅速、確実に吸着、保持できる。
【0030】
キャリアバ−13が、ロ−タリ−テ−ブル342、溶接電極344の間欠回転と同期して、ガイドレ−ル上をZ軸方向に間欠的に送られることにより、キャリアバ−13上の一連の単体コンデンサ20にスペ−サ52が連続的に溶接、固着されることはいうまでもない。
【0031】
スペ−サ52が陽極部材22の下面に溶接、固着された単体コンデンサ20を保持してキャリアバ−13は、スペ−サ溶接手段34から接着剤の付着手段36に送られ、図5(A)に示すように、付着手段によって銀ペ−ストのような導電性の接着剤54が陰極部材29に供給、付着される。実施例では、キャリアバ−13を反転して、スペ−サ52と同一面で陰極部材29に接着剤54を付着させている。たとえば、付着手段36は流路364を持つ昇降可能な円柱形状の注入部材366を有し、注入部材が陰極部材29のすぐ上に降下したとき、所定量の接着剤54が加圧されて流路364から流出して陰極部材29に付着するように構成されている。
【0032】
キャリアバ−13を反転させず、図5(B)に示すように、スペ−サ52と異なる面に接着剤54を付着させてもよい。また、接着剤54は粘着性に優れるから、接着剤の付着手段36をキャリアバ−13の下方に設けて陰極部材29の下面に導電性の接着剤を付着させてもよい。しかし、接着剤54の散布による汚れ防止の点から、陰極部材29の上面に付着させることが好ましい。図5(B)に示すようにスペ−サ52と異なる面に接着剤54を付着すると、スペ−サ52を上向きとした積層コンデンサ21が成形される(図9(H)参照)。
【0033】
陰極部材29への接着剤54の付着が繰り返されて、キャリアバ−13上の一連の単体コンデンサに接着剤が付着されると、単体コンデンサ付キャリアバ−13は接着剤の付着手段36からコンデンサ切断手段38に送られて、単体コンデンサがキャリアバ−から切断、分離される。なお、後述するように、コンデンサ切断手段38において、単体コンデンサ20の切断、分離のとき、陰極部材29を上から保持するために、キャリアバ−13を反転し、接着剤54の付着面を下にしてからキャリアバ−はコンデンサ切断手段38に送り込まれる。
【0034】
実施例では、単体コンデンサの切断は、キャリアバ−13から単体コンデンサ20を切断する一次切断と、単体コンデンサを所定長に切断する二次切断とに分割され、切断手段38は一次切断手段38−1と二次切断手段38−2とから構成されている(図1参照)。そして、一次切断手段38−1はキャリアバ−の搬送路14に沿って配置され、二次切断手段38−2はキャリアバ−の搬送路から離反した位置に配置されている。
【0035】
図6(A)に示すように、一次切断手段は38−1は、上刃382、下刃384を有してインデックステ−ブル12のステ−ションAに配置され、インデックステ−ブルはその回転軸O3を垂直面に位置させて水平に配置されている。ガイドレ−ル上でのキャリアバ−13の搬送の障害とならないように、インデックステ−ブル12、上刃382、下刃384はいずれも昇降可能となっている。
単体コンデンサ付キャリアバ−13は、搬送路14に沿ってガイドレ−ル上で上刃382、下刃384の間に送り込まれる。そして、上刃382、下刃384が昇降して、単体コンデンサの陽極部材22を切断しキャリアバ−13から分離する。
【0036】
ここで、下刃384と対向した押え部材383が上刃382に隣接して配置されており、この押え部材は上刃382と一体に下降し、下刃384との間で陽極部材22を挟持し、押え部材、下刃の間に陽極部材を挟持した直後に上刃、下刃によって陽極部材が切断される。
たとえば、上下方向のアリ溝を上刃382の側面に設けて押え部材383を上刃の側面で上下に僅かな距離だけスライド可能とし、圧縮コイルばねによって押え部材を突出させストッパに押し当てて押え部材の位置を規制する構成とすれば、下刃384との間で陽極部材を挟持して押力が作用すると、押え部材は圧縮コイルばねのばね力に抗して下刃との間に陽極部材を挟持する状態を維持し、切断後、上刃382は押え部材を伴って上昇する。
【0037】
インデックステ−ブル12は、スペ−サ溶接手段34のロ−タリ−テ−ブル342とほぼ同様に、間欠回転のピッチに対応する数の空気路12aを端面に持ち、間欠回転されるとともに、上刃382、下刃384の昇降と同期して下降することにより、空気路に作用する負圧によって、切断直後の単体コンデンサ20を吸着、保持する。
一次切断で単体コンデンサの陽極部材22を切断しキャリアバ−13から所定長より長い単体コンデンサ20を分離してから、二次切断で単体コンデンサを所定長に切断する。
【0038】
一次切断手段38−1がキャリアバ−の搬送路14に沿って配置されているのに対して、二次切断手段38−2は、キャリアバ−の搬送路から離反した位置、実施例では図1に示すように、一次切断のためのステ−ションAからインデックステ−ブル12の回転方向に90°離反したステ−ションBに配置されている。
図6(B)に示すように、二次切断手段38−2は、一次切断手段38−1の上刃382、下刃384、押え部材383と同じ組合わせを有するとともに、さらに、位置決め部材388を有している。位置決め部材388は単体コンデンサ20をその長手方向に押圧するように移動可能となっている。
【0039】
インデックステ−ブル12は、切断直後の単体コンデンサ20を吸着、保持すると上昇して初期位置に戻り、再び間欠回転する。つまり、インデックステ−ブル12は、間欠回転、下降(吸着、保持)、上昇を繰り返す。
【0040】
ステ−ションAでキャリアバ−13から切断、分離した単体コンデンサ20が、インデックステ−ブル12の間欠回転によってステ−ションBに至ると(図1参照)、図6(B)において、二次切断手段38−2の位置決め部材388が右方に移動し、インデックステ−ブル12の吸着力に抗して、単体コンデンサ20を押圧して位置決めする。ここで、位置決め部材388の押圧によって単体コンデンサ20の移動が許容されるように、インデックステ−ブル12の吸着力が設定されている。
【0041】
たとえば、位置決め部材388の動きはセンサで検出され、単体コンデンサ20の所定長をL1としたとき、図6(C)に示すように、位置決め部材388が距離L2右方に移動して下刃384から距離L1の位置に至ると、センサが検知し、上刃382、下刃384を昇降させて陽極部材22を切断すれば、所定長の単体コンデンサ20が得られる。
【0042】
単体コンデンサ20の成形において、長さのばらつきは避けられず、さらに、キャリアバ−13への単体コンデンサ20の固着位置にもばらつきが生じる。その結果、キャリアバ−13からの単体コンデンサ20の突出長さのばらつきは避けられない。そのため、突出長さの一定しないキャリアバ−13から単体コンデンサを所定の長さで切断することは容易でない。
搬送路14に沿ってガイドレ−ル上を搬送されるキャリアバ−13には、スペ−サの溶接、導電性接着剤の付着も行なわれており、単体コンデンサ20の切断のために長時間を要してガイドレ−ル上でのキャリアバ−の搬送速度を遅らせれば、生産性が低下する。
【0043】
しかし、実施例のように、切断を一次切断と二次切断とに分割し、搬送路14に沿ったステ−ションAで、単体コンデンサ20を所定長以上に切断(一次切断)してキャリアバ−13から分離し、それから、搬送路と離反したステ−ションBで所定長に切断(二次切断)する構成では、搬送路上での切断(一次切断)に要する時間は、搬送路上で所定長に切断する場合に比較して、当然ながら短縮化される。そのため、ガイドレ−ル上でのキャリアバ−13の搬送速度が、単体コンデンサ20の切断のために遅れることはなく、高い生産性が維持できる。
また、位置決め部材388がインデックステ−ブル12上の単体コンデンサ20を押圧して位置決めする構成では、単体コンデンサの位置決めが、簡単な構成のもとで迅速に行なえる。そして、位置決め部材388の動きをセンサで検出し、位置決め部材が下刃384から一定の距離に至った時点で上刃382、下刃384を駆動させて単体コンデンサ20を切断する構成では、単体コンデンサが所定長で正確に切断され、所定長の単体コンデンサが迅速、確実に得られる。
【0044】
所定長に切断された単体コンデンサ20は、インデックステ−ブル12に吸着、保持されて次のステ−ションCに搬送される。ステ−ションCには、積み重ね手段42が待機しており、積み重ね手段によって単体コンデンサが搬送路16上のリ−ドフレ−ム15に積み重ねられ、積層コンデンサ21が成形される。
【0045】
リ−ドフレ−ム15の搬送路16は、図1に示すように、インデックステ−ブル12の接線方向に沿ってガイドバ−の搬送路14と平行に伸びており、搬送路16に沿って伸びるガイドレ−ル(図示しない)上をリ−ドフレ−ム15は搬送路16の右から左にリ−ドフレ−ムの供給手段40から収納手段48に送られている。なお、リ−ドフレ−ム15の長手方向は搬送路16と一致している。
【0046】
たとえば、リ−ドフレ−ムの供給手段40、収納手段48は、多数のリ−ドフレ−ムを垂直方向に収納する上昇式多段棚ケ−スとされ、供給手段40においては棚ケ−スが上昇して最上位の棚のリ−ドフレ−ムがガイドレ−ル上に順次供給され、収納手段48においては棚ケ−スが最上位の棚にリ−ドフレ−ムを順次収納しながら上昇するように構成されている。もちろん、リ−ドフレ−ムの供給手段40、収納手段48の構成は一例であり、これに限定されない。
【0047】
図7(A)に示すように、積み重ね手段42は、リ−ドフレ−ム15の上下に配置された2つの円板状の溶接電極422、423を持ち、溶接電極は昇降可能および間欠回転可能とされ、インデックステ−ブル12に同期して昇降および間欠回転する。
【0048】
なお、実施例では、リ−ドフレ−ム15の一面(上面)だけでなく、リ−ドフレ−ムを反転させて他の面(下面)にも単体コンデンサ20を積み重ねることとし、そのために、ステ−ションCに対向する積み重ねステ−ションC1の左右に反転ステ−ションC2、C3を設けている。
【0049】
リ−ドフレ−ム15が、搬送路16に沿ってガイドレ−ル上を積み重ねステ−ションC1に搬送されて、たとえば、先端のリ−ド端子151(図2、図10(A)参照)が積み重ねステ−ションC1でインデックステ−ブル12の下方の所定位置(インデックステ−ブル12のステ−ションCに対応する)に至ると、リ−ドフレ−ムの送りが停止される。
リ−ドフレ−ム15の上には、インデックステ−ブル12が単体コンデンサ20を吸着、保持して待機しており、リ−ド端子151が単体コンデンサ20の直下に至ると、インデックステ−ブル12は下降して単体コンデンサをリ−ド端子151上に載せる。インデックステ−ブル12の下降の直後に、インデックステ−ブルと同期して、上の溶接電極422が下降し、下の溶接電極423が上昇して、リ−ド端子151を介して上下の溶接電極422、423間にスペ−サ52の固着された単体コンデンサの陽極部材22を挟持する(図7(B)参照)。
【0050】
そして、上下の溶接電極422、423間に溶接電源(図示しない)から高電流が流され、単体コンデンサのスペ−サ付陽極部材22がリ−ド端子151に抵抗溶接されて固着される。ここで、インデックステ−ブル12が下降し、単体コンデンサ20をリ−ド端子151上に押し付けることにより、単体コンデンサの導電性接着剤54がリ−ド端子に押圧され、陰極部材29がリ−ド端子に固着される。
このように、スペ−サ52付陽極部材22が抵抗溶接によってリ−ド端子151に固着されるとともに、導電性接着剤54がリ−ド端子に固着されることにより、単体コンデンサ20がインデックステ−ブル12からリ−ド端子に移される。
【0051】
ここで、リ−ド端子151に単体コンデンサ20を溶接し、積み重ねる時点のインデックステ−ブル12の吸着面121が基準面Xとなり(図7(A)(B)参照)、この基準面Xで常に積み重ねが行なわれる。そして、基準面Xに対する上の溶接電極422の位置(基準面Xからの距離a1)は一定とされる。これに対して、基準面Xに対するリ−ド端子151の位置(その距離は単体コンデンサの厚さtに等しい)、下方溶接電極423の位置(距離b1)は、2枚目以降の積み重ねのために、単体コンデンサの厚さt(図7(A)参照)に相当分だけ下方に移される。つまり、後述するように、リ−ドフレ−ム15(リ−ド端子151)、下方溶接電極423は、2枚目以降の積み重ねにおいては、厚さt相当分だけ下降し、下降した位置で2枚目以降の積み重ねが行なわれる。
【0052】
最初の単体コンデンサ20がリ−ド端子151上に移送されて、溶接、積み重ねられると、上下の溶接電極422、423が間欠回転しながら上昇または下降する。ここで、上の溶接電極422は、基準面Xからの距離a0離れたその初期位置に復帰する(図8(C)参照)。しかし、下の溶接電極423は初期位置から距離t下降した位置、つまり基準面Xからの距離b0+tの位置に下降する。上下の溶接電極422、423に同期して、インデックステ−ブルも間欠回転しながら上昇してその初期位置に復帰する。回転と上昇または下降とを同時に行なわず、回転と昇降とを順次行なってもよい。しかし、同時に行なえば、リ−ド端子151への単体コンデンサ20の移送が高速化される。
そして、ガイドレ−ルを距離t下降させることにより、リ−ドフレ−ム15(リ−ド端子151)も距離t下降され、2枚目の単体コンデンサ20−2の積み重ね直前においては、リ−ドフレ−ム15(リ−ド端子151)、下の溶接電極423は、単体コンデンサの厚さt相当分だけ下方に移動して待機している。
【0053】
図8(C)に示すように、インデックステ−ブル12が間欠回転することによって、次の(2枚目の)単体コンデンサ20−2がリ−ド端子151の単体コンデンサ20−1の上に位置している。また、上下の溶接電極422、423も間欠回転することにより、新しい電極部位が対向して位置している。
【0054】
それからインデックステ−ブル12が下降して単体コンデンサ20−2を基準面Xでリ−ド端子151上に載せ、上下の溶接電極422、423が上昇または下降してスペ−サ52付陽極部材22を挟持し、単体コンデンサ20−1のスペ−サとともに、スペ−サ付陽極部材をリ−ド端子に抵抗溶接すれば、図8(D)に示すように、2枚目の単体コンデンサ20−2は1枚目の単体コンデンサ20−1を介してリ−ド端子151に溶接、固着される。
【0055】
ここで、上の溶接電極422は、1枚目の単体コンデンサ20−1の積み重ね時と同じ距離a1の位置に下降する。他方、下の溶接電極423は、1枚目の単体コンデンサ20−1の積み重ね時の距離b1に単体コンデンサの厚さtを加えた距離の位置まで上昇している。このように、1枚目の積み重ねの場合に対して
、上下の溶接電極422、423の間隔はtだけ増加して、この増加した間隔に厚さtの単体コンデンサ20が位置する。このように、リードフレーム15(リード端子151)、下の溶接電極423の位置を調整することにより、1枚目の単体コンデンサ20−1と2枚目の単体コンデンサ20−2の電気溶接が常に同じ面(基準面X)、同じ条件でなされ、2枚目の単体コンデンサが1枚目の単体コンデンサの上に積み重ねられる。
【0056】
このような動作を繰り返して、たとえば、4枚の単体コンデンサ20−1〜20−4がリ−ド端子151の一面(上面)に順次積み重ねられる(図9(E)参照)。ここで、3枚目の単体コンデンサ、4枚目の単体コンデンサの積み重ねにおいては、基準面Xからリ−ドフレ−ム15(リ−ド端子151)は3tまたは4t下降した位置に移され、下の溶接電極423も基準面Xからb1+2t、または、b1+3t下降した位置で電気溶接することはいうまでもない。
【0057】
実施例では、積み重ね時(溶接時)でのインデックステ−ブル12、上の溶接電極422の位置を一定とし、リ−ドフレ−ム15(リ−ド端子151)、下の溶接電極423の位置を変えることによって、積み重ねられる単体コンデンサの厚さtに相当する距離を調整して同一の基準面X、同一条件での溶接、積み重ねを可能としている。しかし、積み重ねられる単体コンデンサの厚さに相当する距離を調整して、常に同一の基準面X、同一条件で溶接、積み重ねを行なえば足りる。つまり、インデックステ−ブル12、上の溶接電極422の組合せと、リ−ドフレ−ム15(リ−ド端子151)、下の溶接電極423の組合わせとの相対位置を変動させて、同一の基準面X、同一条件での溶接、積み重ねを確保すればよいから、たとえば、実施例とは逆に、リ−ドフレ−ム15(リ−ド端子151)、下の溶接電極423の位置を一定とし、インデックステ−ブル12、上の溶接電極422の位置を変えて、単体コンデンサの厚さに相当する距離を調整してもよい。
同一の基準面X、同一条件で溶接、積み重ねを行なっているため、単体コンデンサ20に応力集中などの発生がなく、コンデンサ特性の低下を防止できる。また、積み重ね手段42を構成的に複雑化することなく、溶接、積み重ねが効率的に行なえ、高い生産性が確保できる。
【0058】
リ−ド端子151に所定数の単体コンデンサ20が積み重ねられて積層コンデンサ21が成形されると、リ−ドフレ−ム15が図10の矢視方向に間欠送りされて、次のリ−ド端子152が積み重ねステ−ションC1でインデックステ−ブル12の下方の所定位置に送られる。
リ−ド端子152に対しても、図7(A)(B)、図8(C)(D)で示すようなリ−ド端子151におけると同じ動作が繰り返され、4枚の単体コンデンサ20−1〜20−4がリ−ド端子152の一面(上面)に積み重ねられ、積層コンデンサ21が成形される(図9(E)、図10(B)参照)。
【0059】
リ−ドフレ−ム15の一面(上面)の全てのリ−ド端子151〜1530(図11参照)について、4枚の単体コンデンサ20−1〜20−4が積載されてリ−ドフレ−ムの一面(上面)での積み重ね工程が終わると、搬送方向の反転ステ−ションC2にリ−ドフレ−ム15(15−1)が送られ、次のリ−ドフレ−ム15(15−2)が積み重ねステ−ションC1に送り込まれ、このリ−ドフレ−ム15−2における最先のリ−ド端子151がインデックステ−ブル12の下方の所定位置に至る。その一面に所定数(実施例では4枚)の単体フレ−ム20を積み重ねて積層型コンデンサ21を成形した先行するリ−ドフレ−ム15(15−1)と後続のリ−ドフレ−ム15(15−2)とインデックステ−ブル12との位置関係を図11に概略的に示す。
【0060】
先行するリ−ドフレ−ム15(15−1)と同様にして、後続のリ−ドフレ−ム15(15−2)の一面(上面)に4枚の単体コンデンサ20が積み重ねられる。そして、積み重ねステ−ションC1において、リ−ドフレ−ム15(15−2)の一面(上面)への積み重ねが行なわれている間に、リ−ドフレ−ム15(15−1)は反転ステ−ションC2において、たとえば回転軸O4の周りでX軸方向に(左右に)反転される。リ−ドフレ−ム15(15−1)の反転に要する時間は、リ−ドフレ−ム15(15−2)への単体コンデンサ20の積み重ねに要する時間よりはるかに短いから、リ−ドフレ−ム15(15−2)への積み重ねが終了した時点では、リ−ドフレ−ム15(15−1)の反転は当然に終了しており、反転が積み重ねの障害とならない。
【0061】
全てのリ−ド端子について、その一面(上面)に4枚の単体コンデンサ20−1〜20−4が積み重ねられてリ−ドフレ−ム15(15−2)の一面(上面)での積み重ね工程が終わると、リ−ドフレ−ム15(15−1、15−2)は搬送路16と逆方向に戻され、リ−ドフレ−ム15(15−1)は積み重ねステ−ションC1に、リ−ドフレ−ム15(15−2)は反転ステ−ションC3に送り込まれる(図12参照)。
【0062】
そして、リ−ドフレ−ム15(15−1)は積み重ねステ−ションC1において、他の面(従来の下面であり、反転により上面となった面)に、上記と同様にして4枚の単体コンデンサ20が順次積み重ねられる。反転されているため、従来の後端のリ−ド端子1530(リ−ド端子が30枚の場合)から単体コンデンサ20が積み重ねられ、次に、隣接するリ−ド端子1529に単体コンデンサ20が積み重ねられる。リ−ドフレ−ム15(15−1)の両面に、4枚ずつの単体コンデンサ20を積み重ねて積層コンデンサ21を成形した状態を図9(F)に示す。
リ−ドフレ−ム15(15−1)の他の面への単体コンデンサ20の積層が行なわれている間に、リ−ドフレ−ム15(15−2)は反転ステ−ションC3で左右に反転される。
【0063】
リ−ドフレ−ム15(15−1)の他の面に単体コンデンサ20が積み重ねられると、リ−ドフレ−ム15(15−1、15−2)は搬送路16に沿って送られ、リ−ドフレ−ム15(15−1)は反転ステ−ションC2に、リ−ドフレ−ム15(15−2)は積み重ねステ−ションC1に送り込まれる。なお、リ−ドフレ−ム15(15−1)の他の面への単体コンデンサ20の積み重ねが終了した時点では、リ−ドフレ−ム15(15−2)の反転は当然に終了している。
【0064】
ここで、リ−ドフレ−ム15(15−1)の両面に所定数の単体コンデンサ20が積み重ねられ、リ−ドフレ−ム15(15−1)への積み重ねが全て終了しているため、リ−ドフレ−ム15(15−1)は反転することなく反転ステ−ションC2で待機する。他方、リ−ドフレ−ム15(15−2)については、積み重ねステ−ションC1において、他の面(従来の下面であり、反転により上面となった面)に、上記と同様にして4枚の単体コンデンサ20が順次積み重ねられて積層コンデンサ21がリ−ドフレ−ム15(15−2)の他の面にも成形される。
【0065】
リ−ドフレ−ム15(15−2)の他の面に単体コンデンサ20が積み重ねられ、リ−ドフレ−ムの両面に所定数の単体コンデンサ20が積み重ねられて積層コンデンサ21が成形されると、リ−ドフレ−ム15(15−1、15−2)は搬送路16に沿って送られ、図11において反転ステ−ションC3に位置した次のリ−ドフレ−ム15(15−3)が積み重ねステ−ションC1に送り込まれて、このリ−ドフレ−ムに単体コンデンサ20が積み重ねられることはいうまでもない。
【0066】
このように、反転ステ−ションC2、C3を積み重ねステ−ションC1の両側に設けているため、リ−ドフレ−ム15の両面に単体コンデンサ20を積み重ねて両面に積層コンデンサ21を成形する場合でも、積み重ねステ−ションC1でのリ−ドフレ−ムの積み重ね中に反転ステ−ションC2、C3でリ−ドフレ−ムが余裕を持って反転でき、反転のために積み重ね工程を中断する必要がなく、リ−ドフレ−ムの両面への積層コンデンサ21の成形が効率的に行なえる。つまり、2つのリ−ドフレ−ム15を連続的に処理でき、高い生産性が確保される。
【0067】
なお、実施例ではリ−ドフレ−ム15の一面の最先のリ−ド端子151に4枚の単体コンデンサ20を積み重ねてから次のリ−ド端子152に4枚の単体コンデンサを積み重ねる所定数一括積層方式を採用している。しかし、1枚目の単体コンデンサ20(20−1)をリ−ド端子151〜1530に積み重ねてから、2枚目の単体コンデンサ20(20−2)をリ−ド端子151〜1530に積み重ねる1枚目ずつの順次積層方式を採用してもよい。順次積層方式でのリ−ドフレ−ム15の動きを図13(A)に示す。図13(B)は図13(A)の線B−Bに沿った断面図を示す。
実施例では、4枚の単体コンデンサ20を積み重ねて積層コンデンサ21を成形しているが、積み重ねる単体コンデンサの数はCPUのプログラム変更により任意に変更できることはいうまでもない。
【0068】
スペ−サ52を陽極部材22の間に挟持しない場合においては、図9(G)からわかるように、陽極部材22、陰極部材29の段差は大きく、陽極部材の折り曲げ角度は極めて大きい。しかし、図9(E)(F)に示すように、スペ−サ52を陽極部材22の間に挟持すれば、陽極部材、陰極部材29の段差をゼロとすることができ、陽極部材の折り曲げ角度が僅かなものとなり、陽極部材への応力集中が抑制できるから、コンデンサ特性の低下が極力防止できる。
【0069】
両面に4枚の単体コンデンサ20を積み重ねたリ−ドフレ−ム15、つまり、積層コンデンサ21を両面に持つリ−ドフレ−ムは搬送路16に沿って次の整形手段44に送られる(図1参照)。
【0070】
スペ−サ52を挟持する陽極部材22は抵抗溶接によってリ−ドフレ−ム15に固着されるのに対して、陰極部材29は導電性の接着剤54を介してリ−ドフレ−ムに固着されている。そして、接着剤54は流動性を有するため、均一な層になり難く、また、溶接による固着に比較すれば、接着剤による固着は固着力が弱いから、スペ−サ52付陽極部材22に抵抗溶接を繰り返すと、図14に示すように、陽極部材から遠い端で陰極部材29が拡がり、積み重ねられた4枚の単体コンデンサ20(積層型コンデンサ21)の上下面が斜面となり、形状が崩れる傾向にある。
【0071】
整形手段44は、陰極部材29の拡がりを防止し、積層コンデンサ21の形状を整形して型崩れを修正するものであり、図14に示すように、昇降する上下の押圧部材442、444を有して構成されている。押圧部材442、444は陰極部材29を挟持して押圧可能な形状とされ、上の押圧部材442が降下するとともに、下の押圧部材444が上昇してリ−ドフレ−ム15の上下で陰極部材を挟持、押圧して積層コンデンサ21の上下面を平行として型崩れを修正する。また、積層コンデンサ21の厚さを均一化する。
【0072】
整形された積層コンデンサ21を保持してリ−ドフレ−ム15は搬送路16に沿って不良品排出手段46に送られる(図1参照)。
不良品排出手段46は、溶接不良の積層コンデンサ21をリ−ドフレ−ム15から分離、排出するために設けられている。つまり、積み重ね手段42において電極部材422、424に高電流を供給する溶接電源に生じた溶接時の異常をCPUが検出し、異常を生じた溶接を不良と判定する。具体的には、CPUはどのリ−ドフレ−ムのどのリ−ド端子の溶接時に溶接電源に異常電流が流れたかを記憶する。
【0073】
不良品排出手段46は、上刃、下刃の組合わせを持ち、どのリ−ドフレ−ムのどのリ−ド端子の溶接時に溶接電源に異常電流が流れたかというCPUの記憶に基づいて、上刃、下刃を同時に昇降させて、不良と判定されたリ−ド端子をリ−ドフレ−ム15から切断し、リ−ド端子とともに積層コンデンサ21を排除する。
【0074】
溶接不良の積層コンデンサ21の排除されたリ−ドフレ−ム15は、搬送路16の最後に位置するリ−ドフレ−ム収納手段に48に収納される。そして、積層コンデンサ21はリ−ドフレ−ム15に保持された状態でリ−ドフレ−ム収納手段48から次工程に搬送される。リ−ドフレ−ム収納手段に48は、上述したように、多数のリ−ドフレ−ムを垂直方向に収納する上昇式多段棚ケ−スからなり、棚ケ−スが搬送路16のリ−ドフレ−ムを最上位の棚に順次収納しながら上昇するように構成されている。
【0075】
キャリアバ−の搬送路14とリ−ドフレ−ムの搬送路16とがインデックステ−ブル12の接線方向に設けられ、かつ、インデックステ−ブルを挟んで平行に設けた構成では、コンデンサ製造装置10が縦長形状とならざるを得ないとはいえ、コンパクトにまとめられ、小型化できる。
【0076】
上述した実施例は、この発明を説明するためのものであり、この発明を何ら限定するものでなく、この発明の技術範囲内で変形、改造などの施されたものも全てこの発明に包含されることはいうまでもない。
実施例ではインデックステーブル12が昇降するものとしているが、インデックステーブルに吸着アームを設け、この吸着アームが単体コンデンサ20を吸着、保持して昇降する構成としてもよく、インデックステーブル12の昇降は、インデックステーブル12の本体を昇降させずに、吸着アームを昇降させる場合も含むものとする。
【0077】
【発明の効果】
上記のように、この発明では、請求項1、2に記載のように、インデックステ−ブルがキャリアバ−から切断された単体の固体電解コンデンサを吸着、保持し、スペ−サを介して陽極部材をリ−ドフレ−ムに電気溶接することにより、インデックステ−ブル上の単体の固体電解コンデンサをリ−ドフレ−ムに積み重ね、インデックステ−ブルの間欠送りのもとで、インデックステ−ブルからリ−ドフレ−ムへの単体の固体電解コンデンサの溶接、積み重ねを同一基準面、同一条件で繰り返して、積層型固体電解コンデンサをリ−ドフレ−ム上に成形している。このように、インデックステ−ブルの間欠送りに同期して単体の固体電解コンデンサをリ−ドフレ−ムに溶接、積み重ねているため、積層型固体電解コンデンサが迅速に成形できる。また、単体の固体電解コンデンサの溶接、積み重ねを同一基準面、同一条件で繰り返しているため、単体コンデンサに応力集中などの発生がなく、コンデンサ特性の低下を防止できるとともに、溶接、積み重ねが効率的に行なえ、高い生産性が確保できる。もちろん、スペ−サを介して単体の固体電解コンデンサをリ−ドフレ−ムに固着しているため、陽極部材、陰極部材の厚さの違いによる段差がなくなり、陽極部材の折り曲げが抑えられるから、この点からも、コンデンサ特性の低下が防止できる。
【0078】
請求項3に記載のように、一対の溶接電極、インデックステ−ブル、リ−ドフレ−ムのためのガイドレ−ルの相対位置を、積み重ねられる単体コンデンサの数に応じて調整することにより、同一基準面、同一条件での溶接、積み重ねが容易に確保される。
【0079】
請求項4に記載のように、キャリアバ−の搬送路とリ−ドフレ−ムの搬送路とを、インデックステ−ブルの接線方向でインデックステ−ブルを挟んで平行に設ければ、作業スペ−スが限定され、無駄な動きをしないで効率的に作業ができる。
【0080】
請求項5に記載のように、整形工程を設けて、積層型固体電解コンデンサを押圧して整形すれば、積層コンデンサの型崩れを修正できるとともに、積層コンデンサの厚さを均一化できる。
【0081】
請求項6に記載のように、不良品排除工程を設けて、電気溶接の異常情報に基づいて不良の積層型固体電解コンデンサを予め排除すれば、次工程において良品についてのみ必要な作業が施されるから、無駄な作業が排除され、次工程の作業が効率的に行なえる。
【0082】
請求項7記載のように、リ−ドフレ−ムの反転位置を単体の固体電解コンデンサの積み重ね位置の両側に設ければ、積み重ねを中断することなく反転でき、2つのリ−ドフレ−ムを連続的に処理でき、高い生産性が確保される。
【0083】
請求項8に記載のように、キャリアバ−からの単体の固体電解コンデンサの切断を、所定長より長く切断する一次切断と所定長に切断する二次切断とに分割し、一次切断のみをキャリアバ−の搬送路に沿った位置で行なえば、搬送路上での切断(一次切断)に要する時間が短縮化されるから、単体コンデンサの切断を理由としてキャリアバ−の搬送速度が遅くなることはなく、高速で維持されるため、高い生産性が維持できる。
【0084】
請求項9に記載のように、位置決め手段によって単体の固体電解コンデンサを位置決めしてから二次切断を行なえば、単体コンデンサを所定長で正確に切断でき、所定長の単体コンデンサが迅速、確実に得られる。
【0085】
この発明によれば、請求項10に記載のように、インデックステ−ブルがキャリアバ−から切断された単体の固体電解コンデンサを吸着、保持し、積み重ね手段によって、スペ−サを介して陽極部材をリ−ドフレ−ムに電気溶接することにより、インデックステ−ブル上の単体の固体電解コンデンサをリ−ドフレ−ムに積み重ね、インデックステ−ブルの間欠送りのもとで、インデックステ−ブルからリ−ドフレ−ムへの単体の固体電解コンデンサの溶接、積み重ねを同一基準面、同一条件で繰り返して、積層型固体電解コンデンサをリ−ドフレ−ム上に成形している。
このように、インデックステ−ブルの間欠送りに同期して単体の固体電解コンデンサをリ−ドフレ−ムに溶接、積み重ねているため、積層型固体電解コンデンサが迅速に成形できる。また、単体の固体電解コンデンサの溶接、積み重ねを同一基準面、同一条件で繰り返しているため、単体コンデンサに応力集中などの発生がなく、コンデンサ特性の低下を防止できるとともに、積み重ね手段を構成的に複雑化することなく、溶接、積み重ねが効率的に行なえ、高い生産性が確保できる。もちろん、スペ−サを介して単体の固体電解コンデンサをリ−ドフレ−ムに固着しているため、陽極部材、陰極部材の厚さの違いによる段差がなくなり、陽極部材の折り曲げが抑えられるから、この点からも、コンデンサ特性の低下が防止できる。
【0086】
請求項11に記載のように、一対の溶接電極、インデックステ−ブル、リ−ドフレ−ムのためのガイドレ−ルの相対位置を、積み重ねられる単体コンデンサの数に応じて調整することにより、同一基準面、同一条件での溶接、積み重ねが、積み重ね手段を構成的に複雑化することなく、容易に確保される。
【0087】
請求項12に記載のように、キャリアバ−の搬送路とリ−ドフレ−ムの搬送路とをインデックステ−ブルの接線方向でインデックステ−ブルを挟んで平行に設ければ、作業スペ−スが限定され、無駄な動きをしないで効率的に作業できるコンデンサ製造装置が得られる。
【0088】
請求項13に記載のように、整形手段を設けて、積層型固体電解コンデンサを押圧して整形すれば、積層コンデンサの型崩れを修正できるとともに、積層コンデンサの厚さを均一化できる。
【0089】
請求項14に記載のように、不良品排除手段を設けて、電気溶接の異常情報に基づいて不良の積層型固体電解コンデンサを予め排除すれば、次工程において良品についてのみ必要な作業が施されるから、無駄な作業が排除され、次工程の作業が効率的に行なえる。
【0090】
請求項15記載のように、リ−ドフレ−ムの反転位置を単体の固体電解コンデンサの積み重ね位置の両側に設ければ、積み重ねを中断することなく反転でき、2つのリ−ドフレ−ムを連続的に処理でき、高い生産性が確保される。
【0091】
請求項16に記載のように、キャリアバ−からの単体の固体電解コンデンサの切断手段を、所定長より長く切断する一次切断手段と所定長に切断する二次切断手段とに分割し、一次切断手段のみをキャリアバ−の搬送路に沿った位置に設ければ、搬送路上での切断(一次切断)に要する時間が短縮化されるから、単体コンデンサの切断を理由としてキャリアバ−の搬送速度が遅くなることはなく、高速で維持されるため、高い生産性が維持できる。
【0092】
請求項17に記載のように、二次切断手段が位置決め手段を持ち、この位置決め手段によって単体の固体電解コンデンサを位置決めしてから二次切断を行なえば、単体コンデンサを所定長で正確に切断でき、所定長の単体コンデンサが迅速、確実に得られる。
【0093】
請求項18に記載のように、スペーサを保持し、スペーサを間欠回転のもとで搬送する搬送手段が、溶接電極を兼ね、負圧でスペーサを吸着し保持するロータリーテーブルからなり、溶接電極を兼ねるロータリーテーブルと他の溶接電極との間で、単体の固体電解コンデンサの陽極部材に、ロータリーテーブル上のスペーサを電気溶接すれば、独立部材としての溶接電極の数が減少し、スペーサを単体コンデンサの陽極部材に効率よく溶接できる。
【0094】
請求項19に記載のように、ロータリーテーブル、他の溶接電極を同期回転させるとともに、ロータリーテーブル、他の溶接電極の昇降のもとでスペーサを電気溶接すれば、スペーサを単体コンデンサの陽極部材に効率よく溶接できる。また、ロータリーテーブル、他の溶接電極を間欠回転させて電極部位を変えているため、電極の局部的な消耗が防止でき、電極を長期間連続して使用できる。
【0095】
請求項20に記載のように、スペーサを負圧で吸着、保持して間欠回転のもとで搬送するロータリーテーブルが溶接電極を兼ね、ロータリーテーブル、他の溶接電極を同期回転させるとともに、ロータリーテーブル、他の溶接電極の昇降のもとでスペーサを電気溶接すれば、ロータリーテーブルが溶接電極を兼ねているため、独立した部材としての溶接電極が減少し、スペーサを単体コンデンサの陽極部材に効率よく溶接できる。また、ロータリーテーブル、他の溶接電極の間欠回転、昇降のもとでスペーサを電気溶接しているため、キャリアバーのガイドレールとの接触を避けてスペーサを効率よく溶接できる。さらに、ロータリーテーブル、他の溶接電極を間欠回転させて電極部位を変えているため、電極の局部的な消耗が防止でき、電極を長期間連続して使用できる。
【0096】
請求項21に記載のように、スペーサを負圧で吸着、保持して間欠回転のもとで搬送するロータリーテーブルが溶接電極を兼ね、ロータリーテーブル、他の溶接電極を同期回転させるとともに、ロータリーテーブル、他の溶接電極の昇降のもとでスペーサを電気溶接すれば、ロータリーテーブルが溶接電極を兼ねているため、独立した部材としての溶接電極が減少し、簡単な構成のスペーサ溶接機によって、スペーサを単体コンデンサの陽極部材に効率よく溶接できる。また、ロータリーテーブル、他の溶接電極の間欠回転、昇降のもとでスペーサを電気溶接しているため、キャリアバーのガイドレールとの接触を避けてスペーサを効率よく溶接できる。さらに、ロータリーテーブル、他の溶接電極を間欠回転させて電極部位を変えているため、電極の局部的な消耗が防止でき、電極を長期間連続して使用できる。
【0097】
請求項22に記載のように、ロ−タリ−テ−ブルを2枚以上の部材を重ね、その1枚の部材を溶接電極とすれば、溶接電極を兼ねるロ−タリ−テ−ブルが容易に得られる。
【0098】
請求項23に記載のように、ロ−タリ−テ−ブルを2枚以上の部材を重ねて構成し、その1枚の部材を溶接電極とし、他の部材に空気路を設ければ、溶接電極を兼ね、スペ−サを吸着、保持するロ−タリ−テ−ブルが容易に得られる。
【図面の簡単な説明】
【図1】この発明の積層型固体電解コンデンサ(積層コンデンサ)の製造装置を示す概略図である。
【図2】(A)は単体コンデンサを保持するキャリアバーの平面図、(B)は積層コンデンサを保持するリードフレームの平面図である。
【図3】キャリアバーに保持された単体の積層型固体電解コンデンサ(単体コンデンサ)の縦断面図である。
【図4】スペーサ切断手段によるスペーサの切断およびスペーサ溶接手段によるスペーサの溶接を示す図である。
【図5】(A)(B)は導電性接着剤の付着手段による導電性接着剤の付着を示す図である。
【図6】(A)(B)(C)はコンデンサ切断手段によるキャリアバーからの単体コンデンサの切断を示す図である。
【図7】(A)(B)はコンデンサ積み重ね手段によるリードフレームへの単体コンデンサの積み重ねを示す図である。
【図8】(C)(D)はコンデンサ積み重ね手段によるリードフレームへの単体コンデンサの積み重ねを示す図である。
【図9】(E)(F)はリードフレームの片面または両面に単体コンデンサを積み重ねて積層コンデンサを成形した図、(G)は、スペーサを介在することなくリードフレームの両面に積層コンデンサを成形した図、(H)はスペーサと導電性接着剤とを異なる面に設けた場合に成形される積層コンデンサの図である。
【図10】(A)はリードフレームのリード端子に4枚の単体コンデンサを積み重ねた所定数一括積層方式でのリードフレームの一部破断の平面図、(B)は(A)の線BーBに沿ったリードフレームの一部破断の横断面図である。
【図11】リードフレームの搬送路における積み重ねステーションと反転ステーションとを示す図である。
【図12】リードフレームの搬送路における積み重ねステーションと反転ステーションとを示す図である。
【図13】(A)はリードフレームのリード端子に単体コンデンサを1枚ずつ繰り返し積み重ねる順次積層方式でのリードフレームの一部破断の平面図、(B)は(A)の線BーBに沿ったリードフレームの一部破断の横断面図である。
【図14】整形手段による積層コンデンサの整形を示す図である。
【符号の説明】
10 積層型固体電解コンデンサの製造装置
12 インデックステーブル(ロータリーテーブル)
13 キャリアバー
14 キャリアバーの搬送路
15 リードフレーム
16 リードフレームの搬送路
20 単体コンデンサ(単体の固体電解コンデンサ)
21 積層コンデンサ(積層型固体電解コンデンサ)
22 単体コンデンサの陽極部材
29 単体コンデンサの陰極部材
30 キャリアバーの供給手段
32 スペーサの切断手段
34 スペーサの溶接手段(スペーサ溶接機)
36 導電性接着剤の付着手段
38 コンデンサの切断手段
39 キャリアバーの格納手段
40 リードフレームの供給手段
42 コンデンサの積み重ね手段
44 積層コンデンサの整形手段
46 積層コンデンサの不良品排出手段成形体
48 リードフレームの格納手段
52 スペーサ
54 導電性接着剤
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a stacked solid electrolytic capacitor in which a plurality of single solid electrolytic capacitors are stacked, a manufacturing apparatus, and a spacer welding machine that electrically welds a spacer to a single solid electrolytic capacitor.
[0002]
[Prior art]
A single solid electrolytic capacitor (hereinafter referred to as a “single capacitor”) in which a cathode member made of a dielectric oxide film or a solid electrolyte film is formed on the surface of an anode member made of a metal foil having a valve action such as aluminum or tantalum. ) Are stacked in order to increase the capacity (hereinafter referred to as “multilayer capacitor” as appropriate).
[0003]
In a multilayer capacitor, the anode members and cathode members of a single capacitor are stacked, the cathode member is fixed with a conductive adhesive such as silver paste, and the anode member is welded and fixed by electric welding such as resistance welding. A plurality of single capacitors are stacked.
[0004]
In a single capacitor, a cathode member made of a dielectric oxide film and a solid electrolyte film is thicker than an anode member made of a metal foil having a valve action, and the cathode member and the anode member are different in thickness. A step is generated between the anode members. And the level | step difference between a cathode member and an anode member increases in proportion to the number of the single capacitors to laminate.
[0005]
The anode member is fixed by electrical welding after the anode members are brought into close contact with each other, and the anode member is bent for adhesion. However, when the anode member is bent, stress concentration occurs in the anode member made of metal foil, and the capacitor characteristics are deteriorated.
[0006]
In this way, a difference in thickness occurs between the cathode member and the anode member, a step is generated between them, and the anode member is unavoidably bent due to adhesion and welding, and the cathode member is proportional to the number of stacked single capacitors, The level difference between the anode members increases, and the bending angle of the anode members increases. Therefore, due to the high capacity, there is a dilemma in which the capacitor characteristics deteriorate when the number of stacked single capacitors is increased.
[0007]
In order to increase the capacity while preventing the deterioration of the capacitor characteristics, for example, the following multilayer capacitors have been proposed.
(1) A lead frame having stepped anode terminal pieces corresponding to the number of anode members and corresponding to the height level of the anode members is formed (Japanese Patent Laid-Open No. 04-167417).
(2) By sandwiching a conductive spacer between the anode members, the step between the cathode member and the anode member is eliminated, and the bending of the anode member becomes unnecessary (Japanese Patent Laid-Open No. 05-205984).
[0008]
(3) An insulating resin spacer is sandwiched between anode members to eliminate the step between the cathode member and the anode member, a thin metal wire is extended from the anode member, and the thin metal wire is connected by an electric terminal (Japanese Patent Laid-Open No. 06-2006). No. 029163).
(4) Cover the anode member and the cathode member with an insulating resin, fill the step between the cathode member and the anode member with an insulating resin, connect the anode members with a conductive layer, extend the anode terminal from the conductive layer, and insulate A resin and conductive layer further covered with an exterior insulating resin (Japanese Patent Laid-Open No. 06-084716).
(5) The single capacitors having a shape in which the end of the cathode member is thicker than the base of the cathode member are stacked so as to spread from the anode member toward the cathode member, and the single capacitors are placed on the upper and lower surfaces of the lead frame. Stacked ones (JP 2000-068158, JP 2001-230156)
[0009]
In (1), the anode terminal is formed into a stepped shape, and in (2) to (4), the step between the cathode member and the anode member is filled with a metallic spacer or an insulating resin. Bending is theoretically unnecessary.
In (5), while laminating at the end, and dispersively arranged on the upper and lower surfaces of the lead frame, the step between the cathode member and the anode member is reduced and the bending angle of the anode member is reduced. .
[0010]
[Problems to be solved by the invention]
In any of (1) to (5), a high-capacity multilayer capacitor can be obtained while preventing deterioration of capacitor characteristics. However, considering the productivity, there is a point to be improved in any multilayer capacitor. For example, in (1), the formation of the lead frame is complicated, and in (2) to (4), the process is complicated due to the mounting of the spacer and the connection between the anode member and the electric terminal. In (5), since the single capacitors are stacked in a divergent manner, when the pressure is applied for fixing, the single capacitors are likely to be displaced.
[0011]
As a result of intensive studies on the known multilayer capacitors including the above (1) to (5), the present inventors have concluded that the multilayer capacitor of (2) (Japanese Patent Laid-Open No. 05-205984) is structurally excellent. Got. However, a specific method for manufacturing a multilayer capacitor and a manufacturing apparatus therefor disclosed in Japanese Patent Laid-Open No. 05-205984 are not known. In addition, a specific spacer welding machine that electrically welds a spacer to a single solid electrolytic capacitor is not known.
[0012]
A first object of the present invention is to provide a method for efficiently producing a high-capacity multilayer solid electrolytic capacitor while preventing deterioration of capacitor characteristics.
A second object of the present invention is to provide an apparatus for efficiently producing a high-capacity multilayer solid electrolytic capacitor while preventing deterioration of capacitor characteristics.
A third object of the present invention is to provide a spacer in which a conductive spacer is efficiently mounted and welded to an anode member in order to manufacture a high-capacity laminated solid electrolytic capacitor while preventing deterioration of capacitor characteristics. It is to provide a welding machine.
[0013]
[Means for solving the problems]
In order to achieve the first object, in the method for manufacturing a multilayer solid electrolytic capacitor of the present invention, a conductive spacer is cut from a long body into a predetermined length, and an anode member of a single capacitor on a carrier bar is obtained. Spacer by electric welding Adhering to the cathode member After attaching the conductive adhesive and cutting the single capacitor from the carrier bar, hold the single capacitor with the index table and intermittently feed the index table to remove the single capacitor on the index table. A multilayer solid electrolytic capacitor is formed by repeating welding, stacking, welding of a single capacitor, and stacking on a lead frame under the same reference surface and the same conditions.
[0014]
In order to achieve the second object, the multilayer solid electrolytic capacitor manufacturing apparatus of the present invention comprises means for cutting a conductive spacer from a long body into a predetermined length, and a single capacitor on a carrier bar. Means for welding and fixing the spacer to the anode member by electric welding; means for attaching a conductive adhesive to the anode member of the single capacitor on the carrier bar; and means for cutting the single capacitor from the carrier bar; The index table that holds a single capacitor cut from the carrier bar and intermittently feeds it, and the single capacitor on the index table is welded and stacked on the lead frame, and the welding and stacking of the single capacitor are the same standard. And means for repeatedly stacking single capacitors on the lead frame under the same conditions.
[0015]
In order to achieve the third object, in the spacer welding machine for a single capacitor according to the present invention, a spacer cut from a long body is held on its end face and intermittently rotated, and also serves as a welding electrode. -Rotary table, rotary table and rotary table that are arranged facing each other and rotating intermittently in synchronism with the rotary table. And a disk-shaped welding electrode for electrically welding a spacer on the rotary table to the anode member of the single capacitor.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0017]
FIG. 1 shows an outline of a production apparatus 10 for a multilayer solid electrolytic capacitor according to the present invention. The capacitor manufacturing apparatus 10 includes an index table (rotary table) 12 arranged horizontally, and a carrier bar transport path 14 and a lead frame transport path 16 are provided as index tables. The tangential direction of the bull 12 is provided in parallel with the index table in between.
[0018]
As shown in FIG. 2A, the single capacitor (single solid electrolytic capacitor) 20 is held by the carrier bar by fixing its anode member 22 to the carrier bar 13, and, for example, 30 sheets A single capacitor is held on the carrier bar. Then, a predetermined number of unit capacitors 20 subjected to a predetermined process are stacked on the lead frame 15, and a multilayer capacitor (multilayer solid electrolytic capacitor) 21 is formed on the lead frame (FIG. 2B). )reference).
[0019]
A guide rail (not shown) for the carrier bar 13 extends along the carrier bar conveyance path 14, and the carrier bar holding the single capacitor 20 is fed from the left to the right on the guide rail. , Carrier bar supply means 30, spacer welding means (spacer welding machine) 34, conductive adhesive attaching means 36, single capacitor cutting means 38, carrier bar storage means 39 from the left. They are arranged along the carrier path 14 in order. Also, a spacer cutting means 32 is arranged adjacent to the spacer welding means 34.
[0020]
In the embodiment, the cutting of the single capacitor is performed by dividing into a primary cutting for cutting the single capacitor 20 from the carrier bar 13 and a secondary cutting for cutting the single capacitor 20 to a predetermined length. It comprises a cutting means 38-1 and a secondary cutting means 38-2. The primary cutting means 38-1 is arranged along the carrier bar conveying path 14, and the secondary cutting means 38-2 is arranged at a position away from the carrier bar conveying path.
[0021]
In addition, a guide rail (not shown) for the lead frame 15 extends along the lead frame transport path 16, and the lead frame 15 feeds the transport path from right to left. The lead frame supplying means 40, the means for stacking the single capacitors (stacking means) 42, the shaping means 44, the defective product discharging means 46, and the lead frame storing means 48 are arranged in this order from the right. It is arranged along the transport path of the system.
The operations of the index table 12 and the spacer welding means (spacer welding machine) 34, the feeding of the carrier bar 13 and the lead frame 15 in the conveying paths 14 and 16 and the like are shown in the CPU (illustrated). It is needless to say that operation, feed, etc. can be arbitrarily set by changing the program of the CPU.
[0022]
The single capacitor 20 is known, and as shown in FIG. 3, for example, the surface of a metal foil 21 having a valve action such as aluminum or tantalum is coated with a dielectric oxide film 24 to form an anode member 22, A cathode member 29 comprising a conductive polymer layer (solid electrolyte layer) 26, a carbon paste layer (conductor layer) 27, and a silver paste layer (conductor layer) 28 is formed on the surface of the oxide film. Configured. 2A, in addition to FIG. 3, the anode member 22 is fixed to the carrier bar 13, and the single capacitor 20 is held by the carrier bar 13. As shown in FIG.
[0023]
For example, the carrier bar supply means 30 is an ascending type multi-level shelf case that accommodates the carrier bar 13 with the single capacitor 20 in the vertical direction. It is configured to be supplied onto the guide rail and sequentially fed from the carrier bar supply means 30 to the spacer welding means 34. Of course, the configuration of the carrier bar supply means 30 is merely an example, and the present invention is not limited to this.
[0024]
As shown in FIG. 4, the spacer cutting means 32 includes a spacer 52 (spacer piece) of a predetermined length from an elongated body 50 such as a reel shape or a strip shape, and an upper blade 322 and a lower blade. Cut at 324.
For example, if the upper blade 322 is a fixed blade and the lower blade 324 is a movable blade that moves up and down, the feed of the long body 50 is set to a predetermined length, and the lower blade 324 is raised in synchronization with the feed of the long body, the predetermined length The spacers 52 are continuously cut from the elongated body.
[0025]
The welding means 34 of the spacer holds a spacer 52 cut from the long body 50 and intermittently rotates (intermittently feeds) a rotary table 342 for welding, and a spacer. And a welding electrode 344 fixed to the anode member 22 of the single capacitor 20 by electric welding (see FIG. 4).
The rotary table 342 is erected with its rotational axis O1 positioned on the horizontal plane, and has air passages 342a corresponding to the intermittent rotation pitch on the end face, and is caused by negative pressure acting on the air passages. The spacer 52 is configured to adsorb and hold. As can be seen from FIG. 4, if the end surface on which the air passage 342a is formed is set at substantially the same height as the upper blade 322 of the spacer cutting means 32, the spacer is rotated immediately after cutting. Is held by the bull 342. If the pitch of the intermittent rotation is 22.5 °, the 16 air passages 342a are separated by 22.5 ° and formed, for example, by drilling.
[0026]
The rotary table 342 is formed by stacking two or more, for example, three disks 342b to 342d, and an air passage 342a is formed on the end surface of the intermediate disk 342c. By configuring any one of the disks, for example, the disk 342b, from the welding electrode, the rotary table 342 also serves as the welding electrode.
[0027]
The welding electrode 344 is a rotating disk that rotates intermittently in synchronism with the rotary table 342. The rotating shaft O2 is positioned on a horizontal plane, and the end surfaces thereof are opposed to each other above the rotary table 342. Are juxtaposed. Then, the carrier bar 13 with a single capacitor is fed between the rotating disk-shaped welding electrode 344 and the rotary table 342 arranged side by side. A guide rail (not shown) for the carrier bar 13 extends in the Z-axis direction (the direction of the carrier path 14 of the carrier bar 13) in FIG. 4, and the carrier bar is carried on the guide rail. The rotary table 342 and the welding electrode 344 can both be moved up and down so as not to obstruct the conveyance of the carrier bar 13 on the guide rail.
[0028]
The rotary table 342 and the rotating disk-shaped welding electrode 344 are intermittently rotated synchronously, and the rotary table is raised relative to the single capacitor 20 on the carrier bar 13 to rotate. If a high current is passed between the rotary table and the rotating disk-shaped welding electrode after the disk-shaped welding electrode is lowered, the spacer 52 on the rotary table is It is fixed to the anode member 22 of the single capacitor by resistance welding.
In the embodiment, the rotary table 342 is formed by stacking two or more members, and a part (one member) is used as a welding electrode, and the rotary table also serves as a welding electrode. Therefore, the number of welding electrodes as independent members is reduced, and a rotary table that also serves as a welding electrode can be easily obtained. Further, since the rotary table 342 and the welding electrode 344 rotate intermittently and can be raised and lowered, the spacer can be efficiently welded while avoiding contact with the guide rail of the carrier bar 13. . Further, among the two or more members constituting the rotary table 342, an air passage is provided in a member that is not a welding electrode, and thus a rotary that adsorbs and holds a spacer while also serving as a welding electrode. -The table 342 is easily obtained.
[0029]
Since the rotary electrode 342 and the welding electrode 344, which are welding electrodes, are intermittently rotated to change the electrode part, local wear can be prevented and the welding electrode can be used continuously for a long time without replacement. . Further, since the rotary table 342 and the rotating disk-shaped welding electrode 344 are rotatable and can be raised and lowered, the welding means for the spacer is compared with the case where the guide rail of the carrier bar 13 is raised and lowered. The configuration of 34 is simplified. If the rotation and elevation are performed simultaneously as in the embodiment, welding of the spacer can be performed in a very short time. In particular, the rotary table 342 lowers the rotary table 342 to substantially the same plane as the upper blade 322 immediately after the lower blade 324 rises and cuts the spacer 52. Therefore, the rotary table can quickly and surely adsorb and hold the spacer without disturbing the cutting of the spacer.
[0030]
The carrier bar 13 is intermittently fed in the Z-axis direction on the guide rail in synchronization with the intermittent rotation of the rotary table 342 and the welding electrode 344, so that a series of on the carrier bar 13 is achieved. Needless to say, the spacer 52 is continuously welded and fixed to the single capacitor 20.
[0031]
The spacer 52 holds the single capacitor 20 welded and fixed to the lower surface of the anode member 22, and the carrier bar 13 is sent from the spacer welding means 34 to the adhesive attaching means 36, and is shown in FIG. ), A conductive adhesive 54 such as silver paste is supplied to and attached to the cathode member 29 by the attaching means. In the embodiment, the carrier bar 13 is inverted and the adhesive 54 is adhered to the cathode member 29 on the same surface as the spacer 52. For example, the adhering means 36 has a cylindrical injection member 366 that can move up and down with a flow path 364, and when the injection member descends just above the cathode member 29, a predetermined amount of adhesive 54 is pressurized and flows. It is configured to flow out from the path 364 and adhere to the cathode member 29.
[0032]
The adhesive 54 may be attached to a different surface from the spacer 52 as shown in FIG. 5B without inverting the carrier bar 13. Further, since the adhesive 54 is excellent in adhesiveness, an adhesive adhering means 36 may be provided below the carrier bar 13 to adhere the conductive adhesive to the lower surface of the cathode member 29. However, it is preferable to adhere to the upper surface of the cathode member 29 from the viewpoint of preventing contamination due to the dispersion of the adhesive 54. As shown in FIG. 5B, when the adhesive 54 is attached to a different surface from the spacer 52, the multilayer capacitor 21 with the spacer 52 facing upward is formed (see FIG. 9H).
[0033]
When the adhesion of the adhesive 54 to the cathode member 29 is repeated and the adhesive is adhered to a series of single capacitors on the carrier bar 13, the carrier bar 13 with a single capacitor is transferred from the adhesive attaching means 36 to the capacitor. It is sent to the cutting means 38, and the single capacitor is cut and separated from the carrier bar. As will be described later, in the capacitor cutting means 38, when the single capacitor 20 is cut or separated, in order to hold the cathode member 29 from above, the carrier bar 13 is reversed and the adhesive 54 is attached to the lower surface. Then, the carrier bar is sent to the capacitor cutting means 38.
[0034]
In the embodiment, the cutting of the single capacitor is divided into primary cutting for cutting the single capacitor 20 from the carrier bar 13 and secondary cutting for cutting the single capacitor to a predetermined length, and the cutting means 38 is the primary cutting means 38-. 1 and secondary cutting means 38-2 (see FIG. 1). The primary cutting means 38-1 is arranged along the carrier bar conveying path 14, and the secondary cutting means 38-2 is arranged at a position away from the carrier bar conveying path.
[0035]
As shown in FIG. 6 (A), the primary cutting means 38-1 has an upper blade 382 and a lower blade 384 and is arranged in the station A of the index table 12, and the index table is The rotary shaft O3 is positioned horizontally on the vertical plane and is arranged horizontally. The index table 12, the upper blade 382, and the lower blade 384 are all movable up and down so as not to obstruct the conveyance of the carrier bar 13 on the guide rail.
The carrier bar 13 with a single capacitor is fed along the transport path 14 between the upper blade 382 and the lower blade 384 on the guide rail. Then, the upper blade 382 and the lower blade 384 are moved up and down to cut the anode member 22 of the single capacitor and separate it from the carrier bar 13.
[0036]
Here, a pressing member 383 facing the lower blade 384 is disposed adjacent to the upper blade 382. The pressing member descends integrally with the upper blade 382, and sandwiches the anode member 22 between the lower blade 384 and the lower blade 384. The anode member is cut by the upper blade and the lower blade immediately after the anode member is sandwiched between the holding member and the lower blade.
For example, a vertical dovetail groove is provided on the side surface of the upper blade 382 so that the presser member 383 can be slid by a small distance up and down on the side surface of the upper blade, and the presser member is projected by a compression coil spring and pressed against the stopper. If the configuration is such that the position of the member is regulated, when the anode member is sandwiched between the lower blade 384 and a pressing force is applied, the holding member resists the spring force of the compression coil spring and the anode is interposed between the lower blade and the lower blade. The state which clamps a member is maintained and the upper blade 382 raises with a pressing member after a cutting | disconnection.
[0037]
The index table 12 has a number of air passages 12a corresponding to the pitch of the intermittent rotation on the end face in substantially the same manner as the rotary table 342 of the spacer welding means 34, and is intermittently rotated. By descending in synchronization with the raising and lowering of the upper blade 382 and the lower blade 384, the single capacitor 20 immediately after cutting is adsorbed and held by the negative pressure acting on the air passage.
The single capacitor 20 is cut by primary cutting to separate the single capacitor 20 longer than a predetermined length from the carrier bar 13, and then the single capacitor is cut to a predetermined length by secondary cutting.
[0038]
Whereas the primary cutting means 38-1 is arranged along the carrier path 14 of the carrier bar, the secondary cutting means 38-2 is located away from the carrier path of the carrier bar. As shown in FIG. 1, the station B is disposed at a station B that is separated from the station A for primary cutting by 90 ° in the rotation direction of the index table 12.
As shown in FIG. 6B, the secondary cutting means 38-2 has the same combination as the upper blade 382, the lower blade 384, and the pressing member 383 of the primary cutting means 38-1, and further includes a positioning member 388. have. The positioning member 388 is movable so as to press the single capacitor 20 in the longitudinal direction.
[0039]
The index table 12 rises when the single capacitor 20 immediately after cutting is sucked and held, returns to the initial position, and rotates intermittently again. That is, the index table 12 repeats intermittent rotation, lowering (adsorption, holding), and rising.
[0040]
When the single capacitor 20 cut and separated from the carrier bar 13 at the station A reaches the station B by the intermittent rotation of the index table 12 (see FIG. 1), in FIG. The positioning member 388 of the cutting means 38-2 moves to the right and presses and positions the single capacitor 20 against the attracting force of the index table 12. Here, the adsorption force of the index table 12 is set so that the movement of the single capacitor 20 is allowed by the pressing of the positioning member 388.
[0041]
For example, the movement of the positioning member 388 is detected by a sensor, and when the predetermined length of the single capacitor 20 is L1, the positioning member 388 moves to the right of the distance L2 as shown in FIG. When the distance L1 is reached, the sensor detects it, and the upper blade 382 and the lower blade 384 are moved up and down to cut the anode member 22, whereby the single capacitor 20 having a predetermined length is obtained.
[0042]
In the formation of the single capacitor 20, variations in length are unavoidable, and there are also variations in the position where the single capacitor 20 is fixed to the carrier bar 13. As a result, variation in the protruding length of the single capacitor 20 from the carrier bar 13 is inevitable. Therefore, it is not easy to cut the single capacitor with a predetermined length from the carrier bar 13 whose protruding length is not constant.
The carrier bar 13 transported on the guide rail along the transport path 14 is also welded with a spacer and attached with a conductive adhesive, so that it takes a long time to cut the single capacitor 20. In short, if the carrier bar transport speed on the guide rail is delayed, the productivity is lowered.
[0043]
However, as in the embodiment, the cutting is divided into a primary cutting and a secondary cutting, and the single capacitor 20 is cut to a predetermined length or more (primary cutting) at the station A along the transport path 14 (the primary cutting). In the configuration in which the sheet is separated from -13 and then cut to a predetermined length (secondary cutting) at a station B separated from the conveying path, the time required for cutting (primary cutting) on the conveying path is a predetermined length on the conveying path. Naturally, it is shortened as compared with the case of cutting into two. Therefore, the conveyance speed of the carrier bar 13 on the guide rail is not delayed due to the cutting of the single capacitor 20, and high productivity can be maintained.
In the configuration in which the positioning member 388 presses and positions the single capacitor 20 on the index table 12, the single capacitor can be positioned quickly with a simple configuration. In the configuration in which the movement of the positioning member 388 is detected by a sensor, and the single capacitor 20 is cut by driving the upper blade 382 and the lower blade 384 when the positioning member reaches a certain distance from the lower blade 384. Is accurately cut at a predetermined length, and a single capacitor of a predetermined length can be obtained quickly and reliably.
[0044]
The single capacitor 20 cut to a predetermined length is attracted and held by the index table 12 and is transported to the next station C. At the station C, the stacking means 42 is waiting, and the single capacitors are stacked on the lead frame 15 on the transport path 16 by the stacking means, and the multilayer capacitor 21 is formed.
[0045]
As shown in FIG. 1, the transport path 16 of the lead frame 15 extends in parallel with the transport path 14 of the guide bar along the tangential direction of the index table 12, and extends along the transport path 16. On the guide rail (not shown), the lead frame 15 is sent from the supply means 40 of the lead frame to the storage means 48 from the right to the left of the conveying path 16. The longitudinal direction of the lead frame 15 coincides with the transport path 16.
[0046]
For example, the supply means 40 and the storage means 48 of the lead frame are raised multi-stage shelf cases for storing a large number of lead frames in the vertical direction. As a result, the lead frame of the highest shelf is sequentially supplied onto the guide rail, and in the storage means 48, the shelf case rises while sequentially storing the lead frames on the highest shelf. It is configured as follows. Of course, the configurations of the lead frame supply means 40 and the storage means 48 are merely examples, and the present invention is not limited thereto.
[0047]
As shown in FIG. 7A, the stacking means 42 has two disc-shaped welding electrodes 422 and 423 arranged above and below the lead frame 15, and the welding electrodes can be raised and lowered and intermittently rotated. In synchronization with the index table 12, it moves up and down and rotates intermittently.
[0048]
In the embodiment, not only one surface (upper surface) of the lead frame 15 but also the single capacitor 20 is stacked on the other surface (lower surface) by reversing the lead frame. -Inverted stations C2 and C3 are provided on the left and right of the stacked station C1 facing the station C.
[0049]
The lead frame 15 is stacked on the guide rail along the conveyance path 16 and conveyed to the station C1, and, for example, the leading lead terminal 151 (see FIGS. 2 and 10A) is provided. When the stacked station C1 reaches a predetermined position below the index table 12 (corresponding to the station C of the index table 12), the feeding of the lead frame is stopped.
On the lead frame 15, the index table 12 attracts and holds the single capacitor 20 and stands by. When the lead terminal 151 reaches just below the single capacitor 20, the index table 12 12 descends and places a single capacitor on the lead terminal 151. Immediately after the index table 12 is lowered, in synchronization with the index table, the upper welding electrode 422 is lowered, the lower welding electrode 423 is raised, and the upper and lower welds are connected via the lead terminals 151. The anode member 22 of a single capacitor to which the spacer 52 is fixed is sandwiched between the electrodes 422 and 423 (see FIG. 7B).
[0050]
A high current is passed between the upper and lower welding electrodes 422 and 423 from a welding power source (not shown), and the spacer-attached anode member 22 with a spacer is resistance-welded and fixed to the lead terminal 151. Here, the index table 12 is lowered and the single capacitor 20 is pressed onto the lead terminal 151, whereby the conductive adhesive 54 of the single capacitor is pressed against the lead terminal, and the cathode member 29 is read. It is fixed to the terminal.
As described above, the anode member 22 with the spacer 52 is fixed to the lead terminal 151 by resistance welding, and the conductive adhesive 54 is fixed to the lead terminal, whereby the single capacitor 20 is indexed. -Moved from the bull 12 to the lead terminal.
[0051]
Here, the adsorption surface 121 of the index table 12 when the single capacitor 20 is welded to the lead terminal 151 and stacked is the reference surface X (see FIGS. 7A and 7B). Stacking is always done. The position of the upper welding electrode 422 with respect to the reference plane X (distance a1 from the reference plane X) is fixed. On the other hand, the position of the lead terminal 151 with respect to the reference plane X (the distance is equal to the thickness t of the single capacitor) and the position of the lower welding electrode 423 (distance b1) are for stacking the second and subsequent sheets. Then, it is moved downward by an amount corresponding to the thickness t of the single capacitor (see FIG. 7A). That is, as will be described later, the lead frame 15 (lead terminal 151) and the lower welding electrode 423 are lowered by an amount corresponding to the thickness t in the second and subsequent stacks, and are 2 at the lowered position. The first and subsequent sheets are stacked.
[0052]
When the first single capacitor 20 is transferred onto the lead terminal 151 and welded and stacked, the upper and lower welding electrodes 422 and 423 are raised or lowered while intermittently rotating. Here, the upper welding electrode 422 returns to its initial position at a distance a0 from the reference plane X (see FIG. 8C). However, the lower welding electrode 423 is lowered to a position where the distance t is lowered from the initial position, that is, a position where the distance from the reference plane X is b0 + t. In synchronization with the upper and lower welding electrodes 422 and 423, the index table also rises while intermittently rotating and returns to its initial position. You may perform rotation and raising / lowering sequentially, without rotating and raising / lowering simultaneously. However, if performed simultaneously, the transfer of the single capacitor 20 to the lead terminal 151 is speeded up.
When the guide rail is lowered by the distance t, the lead frame 15 (lead terminal 151) is also lowered by the distance t, and immediately before the second single capacitor 20-2 is stacked, the lead frame 15 is lowered. The lead 15 (lead terminal 151) and the lower welding electrode 423 are moved downward and are in a standby state corresponding to the thickness t of the single capacitor.
[0053]
As shown in FIG. 8C, when the index table 12 rotates intermittently, the next (second) single capacitor 20-2 is placed on the single capacitor 20-1 of the lead terminal 151. positioned. In addition, the upper and lower welding electrodes 422 and 423 are also intermittently rotated, so that new electrode portions are located facing each other.
[0054]
Then, the index table 12 is lowered, the single capacitor 20-2 is placed on the lead terminal 151 with the reference plane X, and the upper and lower welding electrodes 422, 423 are raised or lowered to raise the anode member 22 with the spacer 52. And the spacer-attached anode member together with the spacer of the single capacitor 20-1 is resistance-welded to the lead terminal, as shown in FIG. 8D, the second single capacitor 20- 2 is welded and fixed to the lead terminal 151 via the first single capacitor 20-1.
[0055]
Here, the upper welding electrode 422 is lowered to the position of the same distance a1 when the first single capacitor 20-1 is stacked. On the other hand, the lower welding electrode 423 is raised to a position of a distance obtained by adding the thickness t of the single capacitor to the distance b1 when the first single capacitor 20-1 is stacked. Thus, for the case of the first stack
The interval between the upper and lower welding electrodes 422 and 423 is increased by t, and the single capacitor 20 having the thickness t is positioned at the increased interval. Thus, by adjusting the positions of the lead frame 15 (lead terminal 151) and the lower welding electrode 423, the first single capacitor 20-1 and the second single capacitor 20-2 The electric welding is always performed on the same surface (reference surface X) under the same conditions, and the second single capacitor is stacked on the first single capacitor.
[0056]
By repeating such an operation, for example, four single capacitors 20-1 to 20-4 are sequentially stacked on one surface (upper surface) of the lead terminal 151 (see FIG. 9E). Here, in stacking the third single capacitor and the fourth single capacitor, the lead frame 15 (lead terminal 151) is moved to a position lowered by 3t or 4t from the reference plane X, It goes without saying that the welding electrode 423 is also electrically welded at a position lowered from the reference plane X by b1 + 2t or b1 + 3t.
[0057]
In the embodiment, the positions of the index table 12 and the upper welding electrode 422 at the time of stacking (welding) are fixed, and the positions of the lead frame 15 (lead terminal 151) and the lower welding electrode 423 are fixed. By changing the distance, the distance corresponding to the thickness t of the single capacitors to be stacked is adjusted to enable welding and stacking under the same reference plane X and the same conditions. However, it is only necessary to adjust the distance corresponding to the thickness of the single capacitors to be stacked and always perform welding and stacking under the same reference plane X and the same conditions. That is, the relative positions of the combination of the index table 12 and the upper welding electrode 422 and the combination of the lead frame 15 (lead terminal 151) and the lower welding electrode 423 are changed to be the same. Since it is sufficient to ensure welding and stacking on the reference plane X and under the same conditions, for example, the positions of the lead frame 15 (lead terminal 151) and the lower welding electrode 423 are constant, contrary to the embodiment. The distance corresponding to the thickness of the single capacitor may be adjusted by changing the position of the welding electrode 422 on the index table 12.
Since welding and stacking are performed under the same reference plane X and under the same conditions, stress concentration does not occur in the single capacitor 20, and deterioration of capacitor characteristics can be prevented. Further, welding and stacking can be performed efficiently without complicating the stacking means 42, and high productivity can be ensured.
[0058]
When a predetermined number of single capacitors 20 are stacked on the lead terminal 151 and the multilayer capacitor 21 is formed, the lead frame 15 is intermittently fed in the direction of the arrow in FIG. 152 is sent to a predetermined position below the index table 12 at the stacked station C1.
The same operation as that of the lead terminal 151 as shown in FIGS. 7A, 7B, 8C, and 8D is repeated with respect to the lead terminal 152, and four single capacitors 20 are provided. -1 to 20-4 are stacked on one surface (upper surface) of the lead terminal 152 to form the multilayer capacitor 21 (see FIGS. 9E and 10B).
[0059]
On all the lead terminals 151 to 1530 (see FIG. 11) on one surface (upper surface) of the lead frame 15, four single capacitors 20-1 to 20-4 are stacked, and the lead frame 15 When the stacking process on one surface (upper surface) is finished, the lead frame 15 (15-1) is sent to the reversing station C2 in the transport direction, and the next lead frame 15 (15-2) is sent. It is fed to the stacked station C1, and the lead terminal 151 of the lead frame 15-2 reaches a predetermined position below the index table 12. A preceding lead frame 15 (15-1) in which a multilayer capacitor 21 is formed by stacking a predetermined number (four in the embodiment) of single frames 20 on one surface thereof and the following lead frame 15 are formed. The positional relationship between (15-2) and the index table 12 is schematically shown in FIG.
[0060]
In the same manner as the preceding lead frame 15 (15-1), four single capacitors 20 are stacked on one surface (upper surface) of the following lead frame 15 (15-2). Then, in the stacking station C1, while the lead frame 15 (15-2) is being stacked on the one surface (upper surface), the lead frame 15 (15-1) is in the inversion state. -In the position C2, for example, it is reversed (left and right) in the X-axis direction around the rotation axis O4. Since the time required for reversing the lead frame 15 (15-1) is much shorter than the time required for stacking the single capacitors 20 on the lead frame 15 (15-2), the lead frame 15 (15-1) is much shorter. When the stacking to 15 (15-2) is completed, the reversal of the lead frame 15 (15-1) is naturally terminated, and the reversal does not become an obstacle to the stacking.
[0061]
For all the lead terminals, four single capacitors 20-1 to 20-4 are stacked on one surface (upper surface) and stacked on one surface (upper surface) of the lead frame 15 (15-2). When the process is completed, the lead frame 15 (15-1, 15-2) is returned in the direction opposite to the conveying path 16, and the lead frame 15 (15-1) is returned to the stacked station C1. The frame 15 (15-2) is sent to the inversion station C3 (see FIG. 12).
[0062]
Then, the lead frame 15 (15-1) is arranged on the other surface (the conventional lower surface and the upper surface by reversal) in the stacked station C1 in the same manner as above. Capacitors 20 are sequentially stacked. Therefore, the single capacitors 20 are stacked from the conventional rear end lead terminal 1530 (when 30 lead terminals are provided), and then the single capacitor 20 is connected to the adjacent lead terminal 1529. Stacked. FIG. 9 (F) shows a state in which four single capacitors 20 are stacked on both surfaces of the lead frame 15 (15-1) to form a multilayer capacitor 21. FIG.
While the single capacitor 20 is stacked on the other surface of the lead frame 15 (15-1), the lead frame 15 (15-2) is moved to the left and right at the inversion station C3. Inverted.
[0063]
When the single capacitors 20 are stacked on the other surface of the lead frame 15 (15-1), the lead frames 15 (15-1 and 15-2) are sent along the transport path 16 to be read. -The frame 15 (15-1) is fed to the reversing station C2, and the lead frame 15 (15-2) is fed to the stacked station C1. Note that when the stacking of the single capacitors 20 on the other surface of the lead frame 15 (15-1) is finished, the reversal of the lead frame 15 (15-2) is naturally finished. .
[0064]
Here, since a predetermined number of single capacitors 20 are stacked on both sides of the lead frame 15 (15-1) and the stacking on the lead frame 15 (15-1) is all finished, -The frame 15 (15-1) waits at the reversing station C2 without reversing. On the other hand, with respect to the lead frame 15 (15-2), in the stacked station C1, four sheets are formed on the other surface (the conventional lower surface and the upper surface by reversal) in the same manner as described above. The single capacitors 20 are sequentially stacked, and the multilayer capacitor 21 is formed on the other surface of the lead frame 15 (15-2).
[0065]
When the single capacitors 20 are stacked on the other surface of the lead frame 15 (15-2), and a predetermined number of the single capacitors 20 are stacked on both surfaces of the lead frame, the multilayer capacitor 21 is formed. The lead frame 15 (15-1, 15-2) is sent along the conveyance path 16, and the next lead frame 15 (15-3) located at the reverse station C3 in FIG. It goes without saying that the single capacitors 20 are stacked in this lead frame after being fed into the stacking station C1.
[0066]
As described above, since the inverted stations C2 and C3 are provided on both sides of the stacked station C1, even when the single capacitors 20 are stacked on both surfaces of the lead frame 15 and the multilayer capacitor 21 is formed on both surfaces. During the stacking of the lead frames at the stacking station C1, the lead frames can be reversed with sufficient margins at the reversing stations C2 and C3, and there is no need to interrupt the stacking process for the reversing. The multilayer capacitor 21 can be efficiently formed on both sides of the lead frame. That is, the two lead frames 15 can be processed continuously, and high productivity is ensured.
[0067]
In the embodiment, a predetermined number of four single capacitors 20 stacked on the next lead terminal 152 after the four single capacitors 20 are stacked on the first lead terminal 151 on one surface of the lead frame 15. The batch lamination method is adopted. However, after the first single capacitor 20 (20-1) is stacked on the lead terminals 151 to 1530, the second single capacitor 20 (20-2) is stacked on the lead terminals 151 to 1530. You may employ | adopt the sequential lamination | stacking system for every sheet. FIG. 13A shows the movement of the lead frame 15 in the sequential lamination method. FIG. 13B is a cross-sectional view taken along line BB in FIG.
In the embodiment, the four single capacitors 20 are stacked to form the multilayer capacitor 21, but it goes without saying that the number of the single capacitors to be stacked can be arbitrarily changed by changing the program of the CPU.
[0068]
When the spacer 52 is not sandwiched between the anode members 22, the step difference between the anode member 22 and the cathode member 29 is large as shown in FIG. 9G, and the bending angle of the anode member is extremely large. However, as shown in FIGS. 9E and 9F, if the spacer 52 is sandwiched between the anode members 22, the step difference between the anode member and the cathode member 29 can be made zero, and the anode member can be bent. Since the angle becomes small and stress concentration on the anode member can be suppressed, deterioration of the capacitor characteristics can be prevented as much as possible.
[0069]
The lead frame 15 in which four single capacitors 20 are stacked on both sides, that is, the lead frame having the multilayer capacitor 21 on both sides is sent along the transport path 16 to the next shaping means 44 (FIG. 1). reference).
[0070]
The anode member 22 sandwiching the spacer 52 is fixed to the lead frame 15 by resistance welding, whereas the cathode member 29 is fixed to the lead frame via the conductive adhesive 54. ing. Since the adhesive 54 has fluidity, it is difficult to form a uniform layer. Compared to fixing by welding, the fixing by the adhesive has a weak fixing force, and therefore resists the anode member 22 with the spacer 52. When welding is repeated, as shown in FIG. 14, the cathode member 29 expands at the end far from the anode member, and the upper and lower surfaces of the four stacked single capacitors 20 (multilayer capacitors 21) become inclined, and the shape tends to collapse. It is in.
[0071]
The shaping means 44 prevents the cathode member 29 from expanding and shapes the shape of the multilayer capacitor 21 to correct the shape loss. As shown in FIG. 14, the shaping means 44 has upper and lower pressing members 442 and 444 that move up and down. Configured. The pressing members 442 and 444 have a shape that can be pressed by sandwiching the cathode member 29, and the upper pressing member 442 is lowered and the lower pressing member 444 is raised to move the cathode member above and below the lead frame 15. Is pressed and pressed so that the upper and lower surfaces of the multilayer capacitor 21 are parallel and the deformation of the shape is corrected. Further, the thickness of the multilayer capacitor 21 is made uniform.
[0072]
Holding the shaped multilayer capacitor 21, the lead frame 15 is sent along the transport path 16 to the defective product discharge means 46 (see FIG. 1).
The defective product discharging means 46 is provided for separating and discharging the poorly welded multilayer capacitor 21 from the lead frame 15. That is, the CPU detects a welding abnormality that has occurred in the welding power source that supplies a high current to the electrode members 422 and 424 in the stacking means 42, and determines that the welding in which the abnormality has occurred is defective. Specifically, the CPU memorizes which abnormal current flows to the welding power source when welding which lead terminal of which lead frame.
[0073]
The defective product discharge means 46 has a combination of an upper blade and a lower blade, and based on the CPU's memory that abnormal current has flowed to the welding power source when welding which lead terminal of which lead frame. The blade and the lower blade are moved up and down simultaneously, the lead terminal determined to be defective is cut from the lead frame 15, and the multilayer capacitor 21 is removed together with the lead terminal.
[0074]
The lead frame 15 from which the poorly welded multilayer capacitor 21 has been removed is housed in the lead frame housing means 48 located at the end of the transport path 16. The multilayer capacitor 21 is transported from the lead frame storage means 48 to the next process while being held by the lead frame 15. As described above, the lead frame storage means 48 is composed of an ascending multi-stage shelf case for storing a large number of lead frames in the vertical direction. The frame is configured to rise while being sequentially stored in the uppermost shelf.
[0075]
In the configuration in which the carrier bar transport path 14 and the lead frame transport path 16 are provided in the tangential direction of the index table 12 and provided in parallel with the index table in between, the capacitor manufacturing apparatus Although 10 must be a vertically long shape, it can be made compact and downsized.
[0076]
The above-described embodiments are for explaining the present invention, and are not intended to limit the present invention. All modifications, alterations and the like within the technical scope of the present invention are included in the present invention. Needless to say.
In the example Index table 12, the index table is provided with a suction arm, and the suction arm may suck and hold the single capacitor 20 to move up and down. Index table 12 up and down Index table 12 This includes the case where the suction arm is raised and lowered without raising and lowering the main body.
[0077]
【The invention's effect】
As described above, according to the present invention, as described in claims 1 and 2, the index table adsorbs and holds a single solid electrolytic capacitor cut from the carrier bar, and the anode is provided via the spacer. By electrically welding the members to the lead frame, a single solid electrolytic capacitor on the index table is stacked on the lead frame, and the index table is intermittently fed by the index table. The multilayer solid electrolytic capacitor is formed on the lead frame by repeating welding and stacking of the single solid electrolytic capacitor from the lead frame to the lead frame under the same reference plane and under the same conditions. Thus, since the single solid electrolytic capacitor is welded and stacked on the lead frame in synchronization with the intermittent feed of the index table, the multilayer solid electrolytic capacitor can be quickly formed. In addition, since welding and stacking of single solid electrolytic capacitors are repeated on the same reference surface and under the same conditions, stress concentration does not occur on the single capacitor, preventing deterioration of capacitor characteristics and efficient welding and stacking. Therefore, high productivity can be secured. Of course, since a single solid electrolytic capacitor is fixed to the lead frame via a spacer, the difference in thickness between the anode member and the cathode member is eliminated, and bending of the anode member is suppressed. Also from this point, the deterioration of the capacitor characteristics can be prevented.
[0078]
By adjusting the relative positions of the guide rails for the pair of welding electrodes, the index table, and the lead frame according to the number of unit capacitors to be stacked, The reference surface, welding under the same conditions, and stacking are easily ensured.
[0079]
According to the fourth aspect of the present invention, if the carrier bar transport path and the lead frame transport path are provided in parallel with the index table in the tangential direction of the index table, the work space is provided. -The work is limited and work can be done efficiently without wasteful movement.
[0080]
According to the fifth aspect of the present invention, if the shaping step is provided and the multilayer solid electrolytic capacitor is pressed and shaped, the deformation of the multilayer capacitor can be corrected and the thickness of the multilayer capacitor can be made uniform.
[0081]
As described in claim 6, if a defective product elimination step is provided and defective multilayer solid electrolytic capacitors are eliminated in advance based on the abnormal information of electric welding, the necessary work is performed only for non-defective products in the next step. Therefore, useless work is eliminated, and work in the next process can be performed efficiently.
[0082]
According to the seventh aspect of the present invention, if the inversion positions of the lead frame are provided on both sides of the stacking position of the single solid electrolytic capacitor, the stacking can be reversed without interruption, and the two lead frames can be continuously connected. High productivity is ensured.
[0083]
The cutting of the single solid electrolytic capacitor from the carrier bar is divided into a primary cutting for cutting longer than a predetermined length and a secondary cutting for cutting to a predetermined length, and only the primary cutting is performed on the carrier. In the transport path of the bar Position along Since the time required for cutting (primary cutting) on the transport path is shortened, the transport speed of the carrier bar is not reduced because of the cutting of the single capacitor, and is maintained at a high speed. High productivity can be maintained.
[0084]
According to the ninth aspect of the present invention, if the single solid electrolytic capacitor is positioned by the positioning means and then the secondary cutting is performed, the single capacitor can be accurately cut at a predetermined length, and the single capacitor of the predetermined length can be quickly and reliably can get.
[0085]
According to the present invention, as described in claim 10, the single-piece solid electrolytic capacitor in which the index table is cut from the carrier bar is adsorbed and held, and the anode member is passed through the spacer by the stacking means. The solid electrolytic capacitors on the index table are stacked on the lead frame, and the index table is intermittently fed from the index table. A multilayer solid electrolytic capacitor is formed on a lead frame by repeating welding and stacking of a single solid electrolytic capacitor to the lead frame under the same reference surface and the same conditions.
Thus, since the single solid electrolytic capacitor is welded and stacked on the lead frame in synchronization with the intermittent feed of the index table, the multilayer solid electrolytic capacitor can be quickly formed. In addition, since welding and stacking of single solid electrolytic capacitors are repeated on the same reference surface and under the same conditions, stress concentration does not occur on the single capacitor, preventing deterioration of capacitor characteristics and stacking means Without complication, welding and stacking can be performed efficiently, and high productivity can be secured. Of course, since a single solid electrolytic capacitor is fixed to the lead frame via a spacer, the difference in thickness between the anode member and the cathode member is eliminated, and bending of the anode member is suppressed. Also from this point, the deterioration of the capacitor characteristics can be prevented.
[0086]
According to the eleventh aspect of the present invention, the relative positions of the guide rails for the pair of welding electrodes, the index table, and the lead frame are the same by adjusting them according to the number of stacked single capacitors. The reference surface, welding under the same conditions, and stacking can be easily ensured without complicating the stacking means.
[0087]
According to a twelfth aspect of the present invention, if the carrier bar transport path and the lead frame transport path are provided in parallel with the index table in the tangential direction of the index table, the work space is provided. Therefore, a capacitor manufacturing apparatus that can efficiently work without wasteful movement is obtained.
[0088]
According to the thirteenth aspect of the present invention, if the shaping means is provided and the laminated solid electrolytic capacitor is pressed to be shaped, the deformation of the laminated capacitor can be corrected and the thickness of the laminated capacitor can be made uniform.
[0089]
As described in claim 14, if defective product eliminating means is provided and defective multilayer solid electrolytic capacitors are excluded in advance based on abnormal information of electric welding, the necessary work is performed only for non-defective products in the next step. Therefore, useless work is eliminated, and work in the next process can be performed efficiently.
[0090]
According to the fifteenth aspect, if the inversion positions of the lead frame are provided on both sides of the stacking position of the single solid electrolytic capacitor, the stacking can be reversed without interruption, and the two lead frames can be continuously connected. High productivity is ensured.
[0091]
The cutting means for cutting a single solid electrolytic capacitor from the carrier bar is divided into a primary cutting means for cutting longer than a predetermined length and a secondary cutting means for cutting to a predetermined length, and the primary cutting is performed. Only the means at a position along the carrier bar transport path If provided, Since the time required for cutting (primary cutting) on the conveyance path is shortened, the conveyance speed of the carrier bar is not slowed down due to the cutting of the single capacitor, and is maintained at high speed, so that high productivity is achieved. Can be maintained.
[0092]
According to the seventeenth aspect, the secondary cutting means has positioning means, and if the single solid electrolytic capacitor is positioned by the positioning means and then the secondary cutting is performed, the single capacitor can be accurately cut at a predetermined length. A single capacitor having a predetermined length can be obtained quickly and reliably.
[0093]
As claimed in claim 18, Hold the spacer , Transport the spacer under intermittent rotation The conveying means consists of a rotary table that also serves as a welding electrode and attracts and holds the spacer with negative pressure, Also serves as a welding electrode Rotary table To the anode member of a single solid electrolytic capacitor Rotary table If the upper spacer is electrically welded, the number of welding electrodes as independent members is reduced, and the spacer can be efficiently welded to the anode member of the single capacitor.
[0094]
As claimed in claim 19, Rotary table While rotating other welding electrodes synchronously, Rotary table If the spacer is electrically welded while raising and lowering the other welding electrodes, the spacer can be efficiently welded to the anode member of the single capacitor. Also, Rotary table Since the electrode part is changed by intermittently rotating other welding electrodes, local consumption of the electrodes can be prevented, and the electrodes can be used continuously for a long period of time.
[0095]
As claimed in claim 20, the spacer Adsorb and hold at negative pressure Transport under intermittent rotation Rotary table Also serves as a welding electrode, Rotary table While rotating other welding electrodes synchronously, Rotary table If the spacer is electrically welded under the lifting and lowering of other welding electrodes, Rotary table Since it also serves as a welding electrode, the number of welding electrodes as independent members is reduced, and the spacer can be efficiently welded to the anode member of the single capacitor. Also, Rotary table Since the spacer is electrically welded under intermittent rotation and raising / lowering of other welding electrodes, the spacer can be efficiently welded while avoiding contact with the guide rail of the carrier bar. further, Rotary table Since the electrode part is changed by intermittently rotating other welding electrodes, local consumption of the electrodes can be prevented, and the electrodes can be used continuously for a long period of time.
[0096]
As claimed in claim 21, the spacer Adsorb and hold at negative pressure Transport under intermittent rotation Rotary table Le also serves as a welding electrode, Rotary table While rotating other welding electrodes synchronously, Rotary table If the spacer is electrically welded under the lifting and lowering of other welding electrodes, Rotary table Since the electrode also serves as a welding electrode, the number of welding electrodes as independent members is reduced, and the spacer can be efficiently welded to the anode member of the single capacitor by a spacer welding machine having a simple configuration. Also, Rotary table Since the spacer is electrically welded under intermittent rotation and raising / lowering of other welding electrodes, the spacer can be efficiently welded while avoiding contact with the guide rail of the carrier bar. further, Rotary table Since the electrode part is changed by intermittently rotating other welding electrodes, local consumption of the electrodes can be prevented, and the electrodes can be used continuously for a long period of time.
[0097]
According to the twenty-second aspect, if the rotary table is made up of two or more members and the single member is used as a welding electrode, the rotary table that also serves as the welding electrode is easy. Is obtained.
[0098]
If a rotary table is formed by stacking two or more members as described in claim 23, and the one member is used as a welding electrode and an air passage is provided in another member, welding is performed. A rotary table that also serves as an electrode and adsorbs and holds a spacer can be easily obtained.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an apparatus for producing a multilayer solid electrolytic capacitor (multilayer capacitor) according to the present invention.
2A is a plan view of a carrier bar holding a single capacitor, and FIG. 2B is a plan view of a lead frame holding a multilayer capacitor.
FIG. 3 is a longitudinal sectional view of a single multilayer solid electrolytic capacitor (single capacitor) held by a carrier bar.
FIG. 4 is a diagram showing spacer cutting by the spacer cutting means and spacer welding by the spacer welding means.
FIGS. 5A and 5B are diagrams showing adhesion of the conductive adhesive by the conductive adhesive attaching means. FIG.
FIGS. 6A, 6B, and 6C are views showing cutting of a single capacitor from a carrier bar by a capacitor cutting means.
7A and 7B are views showing stacking of single capacitors on a lead frame by a capacitor stacking unit.
8 (C) and 8 (D) are diagrams showing stacking of single capacitors on a lead frame by capacitor stacking means.
FIGS. 9E and 9F are diagrams illustrating a multilayer capacitor formed by stacking single capacitors on one side or both sides of a lead frame, and FIG. 9G is a diagram illustrating forming a multilayer capacitor on both sides of a lead frame without a spacer. FIG. 5H is a view of a multilayer capacitor formed when the spacer and the conductive adhesive are provided on different surfaces.
FIG. 10A is a plan view of a partially broken lead frame in a predetermined number batch lamination method in which four single capacitors are stacked on the lead terminals of the lead frame, and FIG. 10B is a line B of FIG. FIG. 6 is a partially cutaway cross-sectional view of the lead frame along B.
FIG. 11 is a diagram illustrating a stacking station and a reversing station in a lead frame conveyance path;
FIG. 12 is a diagram illustrating a stacking station and a reversing station in a lead frame conveyance path;
13A is a plan view of a partially broken lead frame in a sequential lamination method in which single capacitors are repeatedly stacked one by one on lead terminals of a lead frame, and FIG. 13B is a line BB in FIG. FIG. 3 is a cross-sectional view of a partially broken lead frame along.
[Fig.14] By shaping means Laminated It is a figure which shows shaping of a capacitor | condenser.
[Explanation of symbols]
10. Manufacturing equipment for multilayer solid electrolytic capacitors
12 Index table (rotary table)
13 Career bar
14 Carrier bar transport path
15 Lead frame
16 Lead frame transport path
20 Single capacitor (single solid electrolytic capacitor)
21 Multilayer capacitors (Multilayer solid electrolytic capacitors)
22 Anode capacitor anode
29 Cathode member of a single capacitor
30 Carrier bar supply means
32 Spacer cutting means
34 Spacer welding means (spacer welding machine)
36 Adhesive means for conductive adhesive
38 Capacitor cutting means
39 Carrier bar storage means
40 Lead frame supply means
42 Capacitor stacking means
44 Monolithic capacitor shaping means
46 Molded product for defective product discharge means of multilayer capacitor
48 Lead frame storage means
52 Spacer
54 Conductive adhesive

Claims (17)

アルミニウム、タンタルなどの弁作用を有する金属箔からなる陽極部材の表面に、誘電性酸化皮膜、固体電解質皮膜からなる陰極部材を形成した単体の固体電解コンデンサを、陽極部材間に導電性のスペーサを介在して複数積み重ねてなる積層型固体電解コンデンサの製造方法において、
長尺体から導電性のスペーサを所定長に切断し、
キャリアバー上に保持された単体の固体電解コンデンサの陽極部材にスペーサを電気溶接で固着し、
キャリアバー上の単体の固体電解コンデンサの陰極部材に導電性の接着剤を付着し、
キャリアバーから単体の固体電解コンデンサを切断してインデックステーブルで吸着、保持し、
スペーサを介して陽極部材をリードフレームに電気溶接することにより、インデックステーブル上の単体の固体電解コンデンサをリードフレームに積み重ね、インデックステーブルの間欠送りのもとで、インデックステーブルからリードフレームへの単体の固体電解コンデンサの溶接、積み重ねを同一基準面、同一条件で繰り返して、積層型固体電解コンデンサをリードフレーム上に成形することを特徴とする積層型固体電解コンデンサの製造方法。
A single solid electrolytic capacitor in which a cathode member made of a dielectric oxide film and a solid electrolyte film is formed on the surface of an anode member made of a metal foil having a valve action such as aluminum or tantalum, and a conductive spacer is placed between the anode members. In the manufacturing method of the stacked solid electrolytic capacitor which is a plurality of stacked interposing,
Cut the conductive spacer from the long body into a predetermined length,
The spacer is fixed to the anode member of a single solid electrolytic capacitor held on the carrier bar by electric welding,
A conductive adhesive is attached to the cathode member of a single solid electrolytic capacitor on the carrier bar,
A single solid electrolytic capacitor is cut from the carrier bar and is sucked and held by the index table.
By electrically welding the anode member to the lead frame via the spacer, the single solid electrolytic capacitors on the index table are stacked on the lead frame, and the single unit from the index table to the lead frame under intermittent feed of the index table. A method for producing a multilayer solid electrolytic capacitor, wherein the solid electrolytic capacitor is formed on a lead frame by repeating welding and stacking of the solid electrolytic capacitor on the same reference surface and under the same conditions.
アルミニウム、タンタルなどの弁作用を有する金属箔からなる陽極部材の表面に、誘電性酸化皮膜、固体電解質皮膜からなる陰極部材を形成した単体の固体電解コンデンサを、陽極部材間に導電性のスペーサを介在して複数積み重ねてなる積層型固体電解コンデンサの製造方法において、
陽極部材を介して多数の単体の固体電解コンデンサを保持するキャリアバーを供給する工程と、
長尺体から導電性のスペーサを所定長に切断し、キャリアバー上の単体の固体電解コンデンサの陽極部材にスペーサを電気溶接で固着する工程と、
キャリアバー上の単体の固体電解コンデンサの陰極部材に導電性の接着剤を付着する工程と、
キャリアバーから単体の固体電解コンデンサを切断する工程と、
キャリアバーから切断された単体の固体電解コンデンサを、間欠送りされるインデックステーブルで吸着、保持する工程と、
リードフレームを供給する工程と、
スペーサを介して陽極部材をリードフレームに電気溶接することにより、インデックステーブル上の単体の固体電解コンデンサをリードフレームに積み重ね、インデックステーブルの間欠送りのもとで、インデックステーブルからリードフレームへの単体の固体電解コンデンサの溶接、積み重ねを同一基準面、同一条件で繰り返して、積層型固体電解コンデンサをリードフレーム上に成形する積み重ね工程と
を備えたことを特徴とする積層型固体電解コンデンサの製造方法。
A single solid electrolytic capacitor in which a cathode member made of a dielectric oxide film and a solid electrolyte film is formed on the surface of an anode member made of a metal foil having a valve action such as aluminum or tantalum, and a conductive spacer is placed between the anode members. In the manufacturing method of the stacked solid electrolytic capacitor which is a plurality of stacked interposing,
Supplying a carrier bar for holding a large number of single-piece solid electrolytic capacitors via an anode member;
Cutting the conductive spacer from the elongated body into a predetermined length, and fixing the spacer to the anode member of a single solid electrolytic capacitor on the carrier bar by electric welding;
Attaching a conductive adhesive to the cathode member of a single solid electrolytic capacitor on the carrier bar;
Cutting a single solid electrolytic capacitor from the carrier bar;
A step of adsorbing and holding a single solid electrolytic capacitor cut from a carrier bar with an index table that is intermittently fed;
Supplying a lead frame;
By electrically welding the anode member to the lead frame via the spacer, the single solid electrolytic capacitors on the index table are stacked on the lead frame, and the single unit from the index table to the lead frame under intermittent feed of the index table. A method of manufacturing a multilayer solid electrolytic capacitor, comprising: stacking a solid electrolytic capacitor on a lead frame by repeating welding and stacking of the solid electrolytic capacitor on the same reference surface and under the same conditions.
陽極部材をリードフレームに電気溶接するためにインデックステーブルを挟んで配置された一対の溶接電極、インデックステーブル、リードフレーム搬送用のガイドレールの相対位置を、積み重ねられる単体コンデンサの数に応じて調整している請求項1または2記載の積層型固体電解コンデンサの製造方法。  Adjust the relative position of a pair of welding electrodes, index table, and guide rail for transporting the lead frame, which are arranged across the index table to electrically weld the anode member to the lead frame, according to the number of stacked single capacitors. The method for producing a multilayer solid electrolytic capacitor according to claim 1 or 2. キャリアバーの搬送路とリードフレームの搬送路とはインデックステーブルの接線方向でインデックステーブルを挟んで平行に設けられている請求項1〜3のいずれか記載の積層型固体電解コンデンサの製造方法。  The method for manufacturing a multilayer solid electrolytic capacitor according to any one of claims 1 to 3, wherein the carrier bar conveyance path and the lead frame conveyance path are provided in parallel with the index table in the tangential direction of the index table. リードフレーム上に成形された積層型固体電解コンデンサを押圧して整形する整形工程をさらに備えている請求項2〜4のいずれか記載の積層型固体電解コンデンサの製造方法。  The method for producing a multilayer solid electrolytic capacitor according to claim 2, further comprising a shaping step of pressing and shaping the multilayer solid electrolytic capacitor formed on the lead frame. 単体の固体電解コンデンサの積み重ね工程での電気溶接の異常を記憶し、その情報に基づいてリードフレーム上の積層型固体電解コンデンサをリードフレームから排除する不良品排除工程をさらに備えている請求項2〜5のいずれか記載の積層型固体電解コンデンサの製造方法。  3. A defective product removing step of storing an abnormality in electric welding in the stacking step of the single solid electrolytic capacitor and further removing the stacked solid electrolytic capacitor on the lead frame from the lead frame based on the information. The manufacturing method of the multilayer solid electrolytic capacitor in any one of -5. 単体の固体電解コンデンサの積み重ね工程において、リードフレームの上下面に単体の固体電解コンデンサを積み重ねるためにリードフレームは反転され、リードフレームの反転位置が、単体の固体電解コンデンサを積み重ねる位置の両側に設けられている請求項2〜6のいずれか記載の積層型固体電解コンデンサの製造方法。  In the stacking process of single solid electrolytic capacitors, the lead frame is reversed to stack the single solid electrolytic capacitors on the top and bottom surfaces of the lead frame, and the lead frame inversion positions are provided on both sides of the position where the single solid electrolytic capacitors are stacked. The method for producing a multilayer solid electrolytic capacitor according to any one of claims 2 to 6. キャリアバーからの単体の固体電解コンデンサの切断工程は、キャリアバーから単体の固体電解コンデンサを所定長より長く切断する一次切断と、所定長に切断する二次切断とに分割され、一次切断のみがキャリアバーの搬送路に沿った位置で行なわれる請求項3または4記載の積層型固体電解コンデンサの製造方法。  The cutting process of the single solid electrolytic capacitor from the carrier bar is divided into a primary cutting that cuts the single solid electrolytic capacitor from the carrier bar longer than a predetermined length and a secondary cutting that cuts to a predetermined length, and only the primary cutting is performed. The method for producing a multilayer solid electrolytic capacitor according to claim 3, wherein the method is performed at a position along the conveyance path of the carrier bar. 単体の固体電解コンデンサの切断工程で二次切断は、位置決め手段を単体の固体電解コンデンサに押し当て、切断位置から所定長に対応する距離だけ離反した位置に位置決め手段を移動させ、単体の固体電解コンデンサを位置決めして行なわれる請求項8記載の積層型固体電解コンデンサの製造方法。  Secondary cutting in the cutting process of the single solid electrolytic capacitor is performed by pressing the positioning means against the single solid electrolytic capacitor and moving the positioning means to a position separated by a distance corresponding to a predetermined length from the cutting position. The method for producing a multilayer solid electrolytic capacitor according to claim 8, wherein the method is performed by positioning the capacitor. アルミニウム、タンタルなどの弁作用を有する金属箔からなる陽極部材の表面に、誘電性酸化皮膜、固体電解質皮膜からなる陰極部材を形成した単体の固体電解コンデンサを、陽極部材間に導電性のスペーサを介在して複数積み重ねてなる積層型固体電解コンデンサの製造装置において、
陽極部材を介して多数の単体の固体電解コンデンサを保持するキャリアバーを供給する手段と、
長尺体から導電性のスペーサを所定長に切断し、キャリアバー上の単体の固体電解コンデンサの陽極部材にスペーサを電気溶接で溶接する手段と、
キャリアバー上の単体の固体電解コンデンサの陰極部材に導電性の接着剤を付着する手段と、キャリアバーから単体の固体電解コンデンサを切断する手段と、
キャリアバーから切断された単体の固体電解コンデンサを吸着、保持して間欠送りされるインデックステーブルと、リードフレームを供給する手段と、
スペーサを介して陽極部材をリードフレームに電気溶接することにより、インデックステーブル上の単体の固体電解コンデンサをリードフレームに積み重ね、インデックステーブルの間欠送りのもとで、インデックステーブルからリードフレームへの単体の固体電解コンデンサの溶接、積み重ねを同一基準面、同一条件で繰り返して、積層型固体電解コンデンサをリードフレーム上に成形する積み重ね手段と
を備えたことを特徴とする積層型固体電解コンデンサの製造装置。
A single solid electrolytic capacitor in which a cathode member made of a dielectric oxide film and a solid electrolyte film is formed on the surface of an anode member made of a metal foil having a valve action such as aluminum or tantalum, and a conductive spacer is placed between the anode members. In a manufacturing apparatus for a stacked solid electrolytic capacitor in which a plurality of layers are interposed,
Means for supplying a carrier bar for holding a large number of single solid electrolytic capacitors via an anode member;
A means for cutting a conductive spacer from a long body into a predetermined length and welding the spacer to an anode member of a single solid electrolytic capacitor on a carrier bar by electric welding;
Means for attaching a conductive adhesive to the cathode member of a single solid electrolytic capacitor on the carrier bar; and means for cutting the single solid electrolytic capacitor from the carrier bar;
An index table that sucks and holds a single solid electrolytic capacitor cut from a carrier bar and intermittently feeds it, and means for supplying a lead frame;
By electrically welding the anode member to the lead frame via the spacer, the single solid electrolytic capacitors on the index table are stacked on the lead frame, and the single unit from the index table to the lead frame under intermittent feed of the index table. An apparatus for producing a multilayer solid electrolytic capacitor, comprising: stacking means for forming a multilayer solid electrolytic capacitor on a lead frame by repeating welding and stacking of the solid electrolytic capacitor on the same reference surface and under the same conditions.
積み重ね手段は、陽極部材をリードフレームに電気溶接するためにインデックステーブルを挟んで配置された一対の溶接電極を備え、一対の溶接電極、インデックステーブル、リードフレーム搬送用のガイドレールの相対位置を、積み重ねられる単体コンデンサの数に応じて調整して、同一基準面、同一条件での溶接、積み重ねを確保している請求項10記載の積層型固体電解コンデンサの製造装置。  The stacking means includes a pair of welding electrodes arranged with an index table sandwiched in order to electrically weld the anode member to the lead frame, and the relative position of the pair of welding electrodes, the index table, and the guide rail for conveying the lead frame, The apparatus for manufacturing a multilayer solid electrolytic capacitor according to claim 10, wherein welding is performed under the same reference plane and under the same conditions, and stacking is ensured by adjusting according to the number of unit capacitors stacked. キャリアバーの搬送路とリードフレームの搬送路とはインデックステーブルの接線方向でインデックステーブルを挟んで平行に設けられ、
キャリアバーの供給手段、スペーサの溶接手段、導電性接着剤の付着手段、単体の固体電解コンデンサ切断手段は、キャリアバーの搬送路に沿って配置され、
リードフレームの供給手段、単体の固体電解コンデンサ積層手段は、リードフレームの搬送路に沿って配置されている請求項10または11記載の積層型固体電解コンデンサの製造装置。
The carrier bar conveyance path and the lead frame conveyance path are provided in parallel with the index table in the tangential direction of the index table,
Carrier bar supply means, spacer welding means, conductive adhesive adhesion means, single solid electrolytic capacitor cutting means are arranged along the carrier bar conveyance path,
12. The apparatus for producing a multilayer solid electrolytic capacitor according to claim 10, wherein the lead frame supply means and the single solid electrolytic capacitor lamination means are arranged along a lead frame conveyance path.
リードフレーム上に成形された積層型固体電解コンデンサを押圧して整形する整形手段をさらに備え、この整形手段はリードフレームの搬送路に沿って配置されている請求項10〜12のいずれか記載の積層型固体電解コンデンサの製造装置。  The shaping device according to any one of claims 10 to 12, further comprising shaping means for pressing and shaping the multilayer solid electrolytic capacitor formed on the lead frame, the shaping means being disposed along the lead frame conveyance path. Multilayer solid electrolytic capacitor manufacturing equipment. 積層手段での電気溶接の異常を記憶し、その情報に基づいてリードフレーム上の積層型固体電解コンデンサをリードフレームから排除する不良品排除手段をさらに備え、この不良品排除手段はリードフレームの搬送路に沿って配置されている請求項10〜13のいずれか記載の積層型固体電解コンデンサの製造装置。  An abnormality of electrical welding in the laminating means is stored, and a defective product eliminating means for excluding the multilayer solid electrolytic capacitor on the lead frame from the lead frame based on the information is further provided. The manufacturing apparatus of the multilayer solid electrolytic capacitor according to any one of claims 10 to 13, which is disposed along the path. 積み重ね手段による固体電解コンデンサの積み重ねにおいて、リードフレームの上下面に単体の固体電解コンデンサを積み重ねるためにリードフレームは反転され、リードフレームの反転位置が、リードフレームの搬送路に沿って単体の固体電解コンデンサ積層位置の両側に設けられている請求項10〜14のいずれか記載の積層型固体電解コンデンサの製造装置。  In the stacking of solid electrolytic capacitors by stacking means, the lead frame is reversed to stack the single solid electrolytic capacitors on the upper and lower surfaces of the lead frame, and the reversing position of the lead frame moves along the lead frame transport path. The manufacturing apparatus of the multilayer solid electrolytic capacitor according to claim 10, which is provided on both sides of the capacitor stacking position. キャリアバーからの単体の固体電解コンデンサの切断手段は、キャリアバーから単体の固体電解コンデンサを所定長より長く切断する一次切断手段と、所定長に切断する二次切断手段とを備え、一次切断手段のみがキャリアバーの搬送路に沿って配置されている請求項10〜15のいずれか記載の積層型固体電解コンデンサの製造装置。  The means for cutting a single solid electrolytic capacitor from the carrier bar comprises primary cutting means for cutting the single solid electrolytic capacitor from the carrier bar to be longer than a predetermined length, and secondary cutting means for cutting to a predetermined length. The apparatus for manufacturing a stacked solid electrolytic capacitor according to any one of claims 10 to 15, wherein only one of them is disposed along a transport path of a carrier bar. 二次切断手段は、単体の固体電解コンデンサに押し当てられ切断位置から所定長に対応する距離だけ離反した位置に移動して単体の固体電解コンデンサを位置決めする位置決め手段を有している請求項16記載の積層型固体電解コンデンサの製造装置。  The secondary cutting means includes positioning means for positioning the single solid electrolytic capacitor by being pressed against the single solid electrolytic capacitor and moved to a position separated from the cutting position by a distance corresponding to a predetermined length. The manufacturing apparatus of the lamination type solid electrolytic capacitor of description.
JP2002134276A 2002-05-09 2002-05-09 Manufacturing method and manufacturing apparatus for multilayer solid electrolytic capacitor, and spacer welding machine therefor Expired - Fee Related JP4270539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002134276A JP4270539B2 (en) 2002-05-09 2002-05-09 Manufacturing method and manufacturing apparatus for multilayer solid electrolytic capacitor, and spacer welding machine therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002134276A JP4270539B2 (en) 2002-05-09 2002-05-09 Manufacturing method and manufacturing apparatus for multilayer solid electrolytic capacitor, and spacer welding machine therefor

Publications (3)

Publication Number Publication Date
JP2003332177A JP2003332177A (en) 2003-11-21
JP2003332177A5 JP2003332177A5 (en) 2005-09-22
JP4270539B2 true JP4270539B2 (en) 2009-06-03

Family

ID=29696971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002134276A Expired - Fee Related JP4270539B2 (en) 2002-05-09 2002-05-09 Manufacturing method and manufacturing apparatus for multilayer solid electrolytic capacitor, and spacer welding machine therefor

Country Status (1)

Country Link
JP (1) JP4270539B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11043685B2 (en) 2017-04-28 2021-06-22 Honda Motor Co., Ltd. Method and apparatus for producing resin frame equipped membrane electrode assembly
JP6442554B2 (en) * 2017-04-28 2018-12-19 本田技研工業株式会社 Manufacturing method and apparatus for electrolyte membrane / electrode structure with resin frame

Also Published As

Publication number Publication date
JP2003332177A (en) 2003-11-21

Similar Documents

Publication Publication Date Title
JP4250733B2 (en) Automated lithium secondary battery manufacturing system
CN113631337B (en) Electrode body cutting device and separator cutting device
JP4713373B2 (en) Lithium ion battery and method and apparatus for manufacturing the same
KR101883126B1 (en) Ultrasonic bonding device and ultrasonic bonding method
JP2020024816A (en) Electrode stack manufacturing apparatus
JP2007329111A (en) Manufacturing method and manufacturing device of lithium ion cell, its manufacturing method as well as manufacturing device, and manufacturing method as well as manufacturing device of bagged electrode plate
CN112838260B (en) Lamination device
JP4626170B2 (en) Manufacturing method and apparatus for multilayer electronic component
JP2011181395A (en) Laminated lithium ion secondary battery, and method and device of manufacturing the same
JP5932619B2 (en) Manufacturing method of multilayer secondary battery and suction pad used therefor
JP2007329112A (en) Lithium ion cell, its manufacturing method, and manufacturing device
CN113646938A (en) Manufacturing device for laminated electrode body
CN113632277A (en) Device and method for manufacturing laminated electrode assembly
CN113678276A (en) Supply device
JP4270539B2 (en) Manufacturing method and manufacturing apparatus for multilayer solid electrolytic capacitor, and spacer welding machine therefor
JP6702079B2 (en) Laminated electrode manufacturing apparatus and laminated electrode manufacturing method
CN111463491A (en) Cylindrical lithium battery production equipment and method
CN113632278A (en) Conveying roller of electrode body
CN110842341A (en) Transfer jig and welding production line
CN101465209B (en) Electronic component and production method thereof
CN111755756B (en) Battery cell lamination method and device
CN109524510B (en) Photovoltaic cell laminating method, equipment and method for splicing and assembling photovoltaic cell assembly
CN216926966U (en) Testing device for chip multilayer ceramic capacitor
WO2019090654A1 (en) Capacitor cell manufacturing equipment and capacitor cell manufacturing method
CN209785963U (en) Photovoltaic cell laminating equipment

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050414

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080304

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080702

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090223

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4270539

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150306

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees