JP2010097968A - Multilayer solid electrolytic capacitor - Google Patents

Multilayer solid electrolytic capacitor Download PDF

Info

Publication number
JP2010097968A
JP2010097968A JP2008264855A JP2008264855A JP2010097968A JP 2010097968 A JP2010097968 A JP 2010097968A JP 2008264855 A JP2008264855 A JP 2008264855A JP 2008264855 A JP2008264855 A JP 2008264855A JP 2010097968 A JP2010097968 A JP 2010097968A
Authority
JP
Japan
Prior art keywords
solid electrolytic
electrolytic capacitor
anode body
anode
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008264855A
Other languages
Japanese (ja)
Inventor
Takeshi Saito
猛 齋藤
Koji Sakata
幸治 坂田
Takashi Mizukoshi
崇 水越
Takeo Kasuga
健男 春日
Yuji Yoshida
雄次 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2008264855A priority Critical patent/JP2010097968A/en
Publication of JP2010097968A publication Critical patent/JP2010097968A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multilayer solid electrolytic capacitor in which a leakage current fraction defective is reduced. <P>SOLUTION: For a solid electrolytic capacitor element, a valve action metal with a dielectric formed on the surface serves as an anode body 1, a solid electrolytic layer comprising a conductive high polymer layer 5 and a cathode layer comprising a graphite layer 6 and a silver paste layer 7 are successively formed at the cathode part of the anode body 1, and a metal frame 8 extended from the end part of the anode body is connected to the anode part of the anode body 1. The plurality of solid electrolytic capacitor elements are laminated, and the metal frames are connected to each other through a conductive material comprising high temperature solder 10 at a part extended from the end part of the anode body. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は各種電子機器に使用される積層型固体電解コンデンサに関する。   The present invention relates to a multilayer solid electrolytic capacitor used in various electronic devices.

近年、CPUやメモリ、画像処理チップの高速化、高集積化、小型化により、コンデンサには低インピーダンス化、小型化、薄型化、高信頼性が要求されているが、従来は積層セラミックコンデンサを多数並列接続して使用することにより、この要求に応えているものがあった。   In recent years, with the increase in speed, integration, and miniaturization of CPUs, memories, and image processing chips, capacitors are required to have low impedance, downsizing, thinning, and high reliability. There are some that meet this requirement by using many connected in parallel.

また近年、積層セラミックコンデンサ数十個を一つで置き換えられるような大容量、低インピーダンスの固体電解コンデンサの開発が促進されており、固体電解コンデンサ素子を並列に接続して積層する構造が採用されている。   In recent years, development of large-capacity, low-impedance solid electrolytic capacitors that can replace dozens of multilayer ceramic capacitors with one has been promoted, and a structure in which solid electrolytic capacitor elements are connected in parallel and stacked is adopted. ing.

例えば、特許文献1には、複数のコンデンサ素子の陽極部間に高さ調整用の金属フレーム(特許文献1ではスペーサーと記載)を配置し、積層した後に抵抗溶接して導通させることにより、抵抗溶接による折れ曲がり変形に伴うLC不良を低減させる固体電解コンデンサが開示されている。   For example, in Patent Document 1, a metal frame for height adjustment (described as a spacer in Patent Document 1) is arranged between the anode portions of a plurality of capacitor elements, and after laminating, resistance welding is performed to make it conductive. A solid electrolytic capacitor that reduces LC defects associated with bending deformation due to welding is disclosed.

特開2003−243257号公報JP 2003-243257 A

しかしながら特許文献1では金属フレームと固体電解コンデンサ素子の陽極部を積層した後、弁作用金属と金属フレームが交互に多層積層された積層型固体電解コンデンサ素子の陽極部を抵抗溶接にて一体に接合する際に、弁作用金属表面の酸化皮膜が大きな抵抗となって電流が流れにくくなり、一部でしか溶接されない、あるいは全く溶接されないという問題が発生していた。   However, in Patent Document 1, after laminating the metal frame and the anode portion of the solid electrolytic capacitor element, the anode portion of the laminated solid electrolytic capacitor element in which the valve metal and the metal frame are alternately laminated is integrally joined by resistance welding. In this case, the oxide film on the surface of the valve action metal becomes a large resistance, making it difficult for current to flow, causing a problem that only a part of the metal is welded or not welded at all.

この課題を解決するために、溶接電流を大きくしたり、レーザー溶接により溶接したりすることも考えられるが、このような方法によって溶接を行った場合には溶融した金属ヒュームが陽陰極間に飛散してショートが発生したり、飛散した金属ヒューム上の外装樹脂が薄くなり、気密性が低下したりする等の新たな問題があった。更に抵抗溶接やレーザー溶接によって金属フレーム付き固体電解コンデンサ素子の複数個を一体に接合する際に、各金属フレーム付き固体電解コンデンサ陽極部間に発生している隙間を押しつぶすように加圧して接合を行うため、加圧によるストレスで弁作用金属酸化皮膜にクラックが発生して漏れ電流不良が発生するという別の課題も有していた。   In order to solve this problem, it is conceivable to increase the welding current or to perform welding by laser welding. However, when welding is performed by such a method, molten metal fume is scattered between the positive and negative electrodes. As a result, there are new problems such as occurrence of a short circuit, thinning of the exterior resin on the scattered metal fume, and deterioration of airtightness. Furthermore, when joining together multiple solid electrolytic capacitor elements with metal frames by resistance welding or laser welding, pressurization is performed so as to crush the gap generated between the solid electrolytic capacitor anode parts with metal frames. Therefore, there was another problem that a crack occurred in the valve action metal oxide film due to stress due to pressurization, resulting in a leakage current failure.

本発明は上述の問題を解決するためになされたものであり、その技術的課題は、陽極部の接続において良好な電気特性を確保し、且つ漏れ電流不良率を低減させるような積層型固体電解コンデンサを提供することにある。   The present invention has been made in order to solve the above-mentioned problems, and the technical problem thereof is a stacked solid electrolysis that ensures good electrical characteristics in the connection of the anode part and reduces the leakage current failure rate. It is to provide a capacitor.

本願発明は上記課題を解決する手段を提供するものであって、その構成は以下のとおりである。   The present invention provides means for solving the above-mentioned problems, and its configuration is as follows.

本発明の積層型固体電解コンデンサは、表面に酸化皮膜からなる誘電体が形成された平板状の弁作用金属を陽極体とし、前記陽極体の陰極部に固体電解質層、陰極層が順次形成され、前記陽極体の陽極部に陽極体端部より延伸する金属フレームが接続された固体電解コンデンサ素子が複数個積層され、前記金属フレーム同士が陽極体端部より延伸した部分で導電材を介して接続されたことを特徴とする。   The multilayer solid electrolytic capacitor of the present invention uses a flat valve-acting metal having a dielectric formed of an oxide film on the surface as an anode body, and a solid electrolyte layer and a cathode layer are sequentially formed on the cathode portion of the anode body. A plurality of solid electrolytic capacitor elements in which a metal frame extending from an end portion of the anode body is connected to the anode portion of the anode body, and the metal frames are extended from the end portion of the anode body via a conductive material. It is connected.

また、前記導電材が高温はんだまたは導電性接着剤であることを特徴とする。   Further, the conductive material is high-temperature solder or a conductive adhesive.

本発明によれば積層型固体電解コンデンサにおける固体電解コンデンサ素子の金属フレーム同士の接続において、金属フレームが陽極体の端部より外側で、導電性接着剤や高温はんだを介して接続抵抗が低い金属フレーム同士と一定以上の接続面積を有して接続されているため、積層枚数を増やしても接続抵抗が低く抑えられ、積層型固体電解コンデンサの特徴である低ESRを十分引き出すことが可能であり、更に固体電解コンデンサ陽極部の接続に抵抗溶接やレーザー溶接を行わないため、積層型固体電解コンデンサ陽極部の加圧が無いので、加圧によるストレスで弁作用金属酸化皮膜にクラックが発生して漏れ電流不良が発生することも無く、漏れ電流不良率を低減することが可能である。   According to the present invention, in the connection between the metal frames of the solid electrolytic capacitor element in the multilayer solid electrolytic capacitor, the metal frame is located outside the end of the anode body and has a low connection resistance via a conductive adhesive or high-temperature solder. Since it is connected to the frames with a certain connection area, the connection resistance can be kept low even when the number of stacked layers is increased, and the low ESR characteristic of the stacked solid electrolytic capacitor can be fully exploited. Furthermore, since resistance welding and laser welding are not used to connect the solid electrolytic capacitor anode part, there is no pressurization of the laminated solid electrolytic capacitor anode part, and cracks occur in the valve metal oxide film due to stress due to pressurization. A leakage current failure does not occur, and the leakage current failure rate can be reduced.

以下、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

本発明では、粗面化された平板状の弁作用金属、例えばアルミの表面に陽極酸化により酸化皮膜からなる誘電体を形成した後、陽極部と陰極部の分断のためにエポキシ樹脂等からなるレジスト層を形成し、レジスト層によって分断された陰極部の陽極酸化皮膜上に固体電解質層、およびグラファイト層、銀ペースト層からなる陰極層を順次形成し、レジスト層によって分断された弁作用金属の残る部分の陽極部に陰極部側と反対側に、陽極体端部より延伸させるように配置させた金属フレームを超音波溶接してこれを金属フレーム付き固体電解コンデンサ素子とする。その後、金属フレーム付き固体電解コンデンサ素子を複数個積層し、陰極部は導電性接着剤にて接着、導通をとり、陽極部は高温はんだ(一度220度以上で溶融し、その後再凝固すると融点が280℃以上になるはんだを高温はんだと称する)または導電性接着剤にて接着、導通をとる。   In the present invention, a dielectric material composed of an oxide film is formed by anodic oxidation on the surface of a roughened flat valve metal such as aluminum, and then an epoxy resin or the like is used to divide the anode portion and the cathode portion. A resist layer is formed, and a cathode layer composed of a solid electrolyte layer, a graphite layer, and a silver paste layer is sequentially formed on the anodized film of the cathode portion divided by the resist layer, and the valve action metal divided by the resist layer is formed. A metal frame disposed so as to extend from the end of the anode body to the anode portion of the remaining portion opposite to the cathode portion side is ultrasonically welded to obtain a solid electrolytic capacitor element with a metal frame. Thereafter, a plurality of solid electrolytic capacitor elements with metal frames are laminated, the cathode part is bonded and conductive with a conductive adhesive, and the anode part is melted at a high temperature solder (once at 220 degrees or more, and then re-solidified, the melting point becomes The solder that reaches 280 ° C. or higher is referred to as a high-temperature solder) or is bonded and conductive with a conductive adhesive.

このようにして金属フレーム付き固体電解コンデンサ素子の金属フレームは上下に積層され、隣接する他の金属フレーム付き固体電解コンデンサ素子の金属フレームと、弁作用金属からなる陽極体の外側の金属フレームの延伸部分で接続された固体電解コンデンサ素子積層体とする。その後外部端子接続のため、絶縁層の両面の銅箔が固体電解コンデンサ素子の陽極部、陰極部と同様の陰極、陽極パターンにエッチング等により形成され、絶縁層内をビアで接続した両面銅貼り基板に固体電解コンデンサ素子積層体を導電性接着剤にて接続、封止樹脂にて外装して積層型固体電解コンデンサとしている。   In this way, the metal frames of the solid electrolytic capacitor element with the metal frame are stacked one above the other, and the metal frame of the other solid electrolytic capacitor element with the metal frame and the metal frame outside the anode body made of the valve metal are stretched. It is set as the solid electrolytic capacitor element laminated body connected in the part. After that, copper foil on both sides of the insulating layer is formed on the anode part and cathode part of the solid electrolytic capacitor element by etching or the like, and the inside of the insulating layer is connected with vias to connect external terminals. A solid electrolytic capacitor element laminate is connected to a substrate with a conductive adhesive and is covered with a sealing resin to form a laminated solid electrolytic capacitor.

積層型固体電解コンデンサを両面銅貼り基板に接続する際は陰極部を導電性接着剤で接着した後、陽極部を高温はんだにて接続しても良い。更に金属フレーム付き固体電解コンデンサ素子を複数個積層し、陰極部のみ固体電解コンデンサ素子及び両面銅貼り基板と一度に導電性接着剤にて接続した後、固体電解コンデンサ素子積層体の陽極部の接続と両面銅貼り基板陽極部の接続を、高温はんだを用いて一度に接続しても良い。積層工程と両面銅貼り基板接続工程について、順序及び材料の組み合わせはこの限りではない。   When connecting the multilayer solid electrolytic capacitor to the double-sided copper-clad substrate, the anode portion may be connected with a high-temperature solder after the cathode portion is bonded with a conductive adhesive. Furthermore, after stacking a plurality of solid electrolytic capacitor elements with metal frames and connecting only the cathode part to the solid electrolytic capacitor element and the double-sided copper-clad substrate with a conductive adhesive at a time, connection of the anode part of the solid electrolytic capacitor element laminate And a double-sided copper-clad substrate anode part may be connected at once using high-temperature solder. The order and combination of materials are not limited to this in the lamination process and the double-sided copper-clad substrate connection process.

さらに、積層型固体電解コンデンサの外装については両面銅貼り基板を用いても良いし、外部回路接続用のリードフレームが陽陰極部にそれぞれ接続され、外装樹脂で封止され、リードフレームが折り曲げられた構造であっても良い。   Furthermore, for the exterior of the multilayer solid electrolytic capacitor, a double-sided copper-clad substrate may be used, or a lead frame for connecting an external circuit is connected to the cathode part, sealed with an exterior resin, and the lead frame is bent. The structure may be different.

以下、本発明の実施例について、図面を用いて詳細を記載する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(実施例1)
図1は本発明の実施例1の積層型固体電解コンデンサの断面図である。まず、平板状のアルミ箔からなる弁作用金属の陽極体1を粗面化した陽極体拡面化層2を陽極酸化して陽極酸化皮膜3を形成した後、陽陰極の分断のため、レジスト層4を形成する。その後、陰極部となる陽極酸化皮膜3上に固体電解質となる導電性高分子層5を形成し、集電体としてグラファイト層6、銀ペースト層7を順次形成する。しかる後にレジスト層4で区切られた陽極部に、銅を母材としてニッケル、銅、銀メッキを順次メッキ処理した寸法0.8×4.3×0.15mmの金属フレーム8を陰極側とは反対方向に陽極体1の端部より0.1mm延伸し露出させて超音波溶接にて溶接し、寸法8.2×4.5×0.3mmの金属フレーム付き固体電解コンデンサ素子とした。
Example 1
1 is a cross-sectional view of a multilayer solid electrolytic capacitor according to Example 1 of the present invention. First, an anode body widened layer 2 formed by roughening a valve metal anode body 1 made of a flat aluminum foil is anodized to form an anodized film 3, and then a resist is used to separate the positive and negative electrodes. Layer 4 is formed. Thereafter, a conductive polymer layer 5 serving as a solid electrolyte is formed on the anodized film 3 serving as a cathode portion, and a graphite layer 6 and a silver paste layer 7 are sequentially formed as a current collector. Thereafter, a metal frame 8 having dimensions of 0.8 × 4.3 × 0.15 mm obtained by sequentially plating nickel, copper, and silver plating using copper as a base material on the anode section separated by the resist layer 4 is the cathode side. Extending 0.1 mm from the end of anode body 1 in the opposite direction, exposed, and welded by ultrasonic welding to obtain a solid electrolytic capacitor element with a metal frame of dimensions 8.2 × 4.5 × 0.3 mm.

その後、金属フレーム付き固体電解コンデンサ素子を5枚積層し、並列接続になるように陰極部どうしを導電性接着剤9にて接着させ、金属フレーム付固体電解コンデンサ素子の金属フレーム8に高温はんだ10を塗布して240℃10秒の雰囲気下で溶融させて陽極部同士を接着させ、固体電解コンデンサ素子積層体を得る。このようにして得た固体電解コンデンサ素子積層体を、外部端子接続のため、絶縁層の両面の銅箔が固体電解コンデンサ素子と同じ陰極、陽極パターンにエッチングされ、絶縁層内をビア11で接続した両面銅貼り基板12に固体電解コンデンサ素子積層体を導電性接着剤13にて接続し、封止樹脂14にて外装し寸法8.5×5.3×2.0mmの積層型固体電解コンデンサとした。本実施例1の積層型固体電解コンデンサ30個の周波数100kHzにおけるESR平均値と漏れ電流不良率を表1に示す。   Thereafter, five solid electrolytic capacitor elements with metal frames are stacked, and the cathode portions are bonded with a conductive adhesive 9 so as to be connected in parallel, and the high-temperature solder 10 is attached to the metal frame 8 of the solid electrolytic capacitor elements with metal frames. Is applied and melted in an atmosphere of 240 ° C. for 10 seconds to bond the anode parts together to obtain a solid electrolytic capacitor element laminate. In order to connect the solid electrolytic capacitor element laminate thus obtained to external terminals, the copper foils on both sides of the insulating layer are etched to the same cathode and anode pattern as the solid electrolytic capacitor element, and the inside of the insulating layer is connected by vias 11. A solid electrolytic capacitor element laminate is connected to the double-sided copper-clad substrate 12 with a conductive adhesive 13 and is packaged with a sealing resin 14 so as to have a size of 8.5 × 5.3 × 2.0 mm. It was. Table 1 shows the ESR average value and leakage current failure rate at a frequency of 100 kHz of 30 multilayer solid electrolytic capacitors of Example 1.

(実施例2)
実施例2における積層型固体電解コンデンサは実施例1に示した積層型固体電解コンデンサに対し、弁作用金属からなる陽極体端面から延伸し露出させる金属フレームの距離を0.2mmにしたものであり、これ以外の構成は実施例1と同様であるため、図面は省略する。このように構成された実施例2による積層型固体電解コンデンサ30個の周波数100kHzにおけるESR平均値と漏れ電流不良率を表1に示す。
(Example 2)
The multilayer solid electrolytic capacitor in Example 2 is a multilayer solid electrolytic capacitor shown in Example 1, with the distance of the metal frame extending from the end face of the anode body made of a valve action metal exposed to 0.2 mm. Other configurations are the same as those in the first embodiment, and the drawings are omitted. Table 1 shows the ESR average value and the leakage current defect rate at the frequency of 100 kHz of the 30 stacked solid electrolytic capacitors according to Example 2 configured as described above.

(実施例3)
実施例3における形態は実施例1に示した積層型固体電解コンデンサに対し、弁作用金属からなる陽極体端面から延伸し露出させる金属フレームの距離を0.3mmにしたものであり、これ以外の構成は実施例1と同様であるため、図面は省略する。このように構成された実施例3による積層型固体電解コンデンサ30個の周波数100kHzにおけるESR平均値と漏れ電流不良率を表1に示す。
(Example 3)
The form in Example 3 is such that the distance of the metal frame that extends from the end face of the anode body made of valve metal and is exposed to the multilayer solid electrolytic capacitor shown in Example 1 is 0.3 mm. Since the configuration is the same as that of the first embodiment, the drawings are omitted. Table 1 shows the ESR average value and leakage current failure rate at a frequency of 100 kHz of 30 multilayer solid electrolytic capacitors of Example 3 configured as described above.

(比較例1)
図2は従来技術で構成された比較例1の積層型固体電解コンデンサの断面図である。すなわち、比較例1における形態は実施例1に示した積層型固体電解コンデンサに対し、従来技術である弁作用金属からなる陽極体端面から露出させる金属フレームの距離を0mm(陽極端面から金属フレームを露出させない)にし、金属フレーム付き固体電解コンデンサ素子を複数個積層し、弁作用金属の陽極部と金属フレームが交互に積層された固体電解コンデンサ素子積層体の陽極部をレーザー溶接にて積層された陽極部と金属フレームを溶融接合したものであり、これ以外の構成は実施例1と同様である。このように構成された比較例1による積層型固体電解コンデンサ30個の周波数100kHzにおけるESR平均値とESR平均値と漏れ電流不良率を表1に示す。
(Comparative Example 1)
FIG. 2 is a cross-sectional view of the multilayer solid electrolytic capacitor of Comparative Example 1 configured according to the prior art. That is, the form in Comparative Example 1 is a distance of the metal frame exposed from the end face of the anode body made of a valve metal, which is a conventional technique, to the multilayer solid electrolytic capacitor shown in Example 1 is 0 mm (the metal frame from the end face of the anode). A plurality of solid electrolytic capacitor elements with a metal frame were laminated, and the anode part of the solid electrolytic capacitor element laminate in which the valve action metal anode part and the metal frame were alternately laminated were laminated by laser welding. The anode part and the metal frame are fusion-bonded, and the other configuration is the same as that of the first embodiment. Table 1 shows the ESR average value, the ESR average value, and the leakage current failure rate at the frequency of 100 kHz of the 30 stacked solid electrolytic capacitors according to Comparative Example 1 configured as described above.

(比較例2)
比較例2における形態は実施例1に示した積層型固体電解コンデンサに対し、弁作用金属からなる陽極体端面から露出させる金属フレームの距離を0mm(陽極端面から金属フレームを露出させない)にしたものであり、これ以外の構成は実施例1と同様であるため、図面は省略する。このように構成された実施例3による積層型固体電解コンデンサ30個の周波数100kHzにおけるESR平均値と漏れ電流不良率を表1に示す。
(Comparative Example 2)
The form in Comparative Example 2 is that in which the distance of the metal frame exposed from the end face of the anode body made of valve metal is 0 mm (the metal frame is not exposed from the end face of the anode) with respect to the multilayer solid electrolytic capacitor shown in Example 1. Since the other configuration is the same as that of the first embodiment, the drawing is omitted. Table 1 shows the ESR average value and leakage current failure rate at a frequency of 100 kHz of 30 multilayer solid electrolytic capacitors of Example 3 configured as described above.

Figure 2010097968
Figure 2010097968

このように、本発明を用いて作製した積層型固体電解コンデンサは、従来技術で作製した積層型固体電解コンデンサに比べてESRを低く抑えることができ、且つ、漏れ電流不良率を低減させることが可能である。   As described above, the multilayer solid electrolytic capacitor fabricated using the present invention can suppress ESR lower than the multilayer solid electrolytic capacitor fabricated by the prior art, and can reduce the leakage current defect rate. Is possible.

本発明の実施例1における積層型固体電解コンデンサの断面図。Sectional drawing of the multilayer solid electrolytic capacitor in Example 1 of this invention. 従来技術で作製した比較例1の積層型固体電解コンデンサの断面図。Sectional drawing of the laminated type solid electrolytic capacitor of the comparative example 1 produced with the prior art.

符号の説明Explanation of symbols

1 陽極体
2 陽極体拡面化層
3 陽極酸化皮膜
4 レジスト層
5 導電性高分子層
6 グラファイト層
7 銀ペースト層
8 金属フレーム
9 導電性接着剤
10 高温はんだ
11 ビア
12 両面銅貼り基板
13 導電性接着剤
14 封止樹脂
15 レーザー溶接部
DESCRIPTION OF SYMBOLS 1 Anode body 2 Anode body expansion layer 3 Anodized film 4 Resist layer 5 Conductive polymer layer 6 Graphite layer 7 Silver paste layer 8 Metal frame 9 Conductive adhesive 10 High temperature solder 11 Via 12 Double-sided copper-clad substrate 13 Conductivity Adhesive 14 Sealing resin 15 Laser weld

Claims (2)

表面に酸化皮膜からなる誘電体が形成された平板状の弁作用金属を陽極体とし、前記陽極体の陰極部に固体電解質層、陰極層が順次形成され、前記陽極体の陽極部に陽極体端部より延伸する金属フレームが接続された固体電解コンデンサ素子が複数個積層され、前記金属フレーム同士が陽極体端部より延伸した部分で導電材を介して接続されたことを特徴とする積層型固体電解コンデンサ。   A flat valve-acting metal having an oxide film formed on its surface is used as an anode body, a solid electrolyte layer and a cathode layer are sequentially formed on the cathode portion of the anode body, and an anode body on the anode portion of the anode body A multilayer type in which a plurality of solid electrolytic capacitor elements connected to a metal frame extending from an end are stacked, and the metal frames are connected via a conductive material at a portion extending from an end of the anode body Solid electrolytic capacitor. 前記導電材が高温はんだまたは導電性接着剤であることを特徴とする請求項1に記載の積層型固体電解コンデンサ。   The multilayer solid electrolytic capacitor according to claim 1, wherein the conductive material is high-temperature solder or a conductive adhesive.
JP2008264855A 2008-10-14 2008-10-14 Multilayer solid electrolytic capacitor Pending JP2010097968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008264855A JP2010097968A (en) 2008-10-14 2008-10-14 Multilayer solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008264855A JP2010097968A (en) 2008-10-14 2008-10-14 Multilayer solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JP2010097968A true JP2010097968A (en) 2010-04-30

Family

ID=42259473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008264855A Pending JP2010097968A (en) 2008-10-14 2008-10-14 Multilayer solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2010097968A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013089884A (en) * 2011-10-21 2013-05-13 Murata Mfg Co Ltd Solid electrolytic capacitor and method of manufacturing the same
WO2021085555A1 (en) * 2019-10-31 2021-05-06 パナソニックIpマネジメント株式会社 Electrolytic capacitor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004289142A (en) * 2003-03-04 2004-10-14 Nec Tokin Corp Laminated solid electrolytic capacitor and laminated transmission line element
JP2006128247A (en) * 2004-10-27 2006-05-18 Nec Tokin Corp Surface-mounted capacitor and its manufacturing method
JP2008205108A (en) * 2007-02-19 2008-09-04 Tdk Corp Solid electrolytic capacitor and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004289142A (en) * 2003-03-04 2004-10-14 Nec Tokin Corp Laminated solid electrolytic capacitor and laminated transmission line element
JP2006128247A (en) * 2004-10-27 2006-05-18 Nec Tokin Corp Surface-mounted capacitor and its manufacturing method
JP2008205108A (en) * 2007-02-19 2008-09-04 Tdk Corp Solid electrolytic capacitor and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013089884A (en) * 2011-10-21 2013-05-13 Murata Mfg Co Ltd Solid electrolytic capacitor and method of manufacturing the same
WO2021085555A1 (en) * 2019-10-31 2021-05-06 パナソニックIpマネジメント株式会社 Electrolytic capacitor

Similar Documents

Publication Publication Date Title
JP4812118B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP5466722B2 (en) Solid electrolytic capacitor
JPH05205984A (en) Laminated solid electrolytic capacitor
JP4757698B2 (en) Solid electrolytic capacitor
KR20080007874A (en) Chip type solid electrolytic capacitor
JP5534106B2 (en) Solid electrolytic capacitor manufacturing method and solid electrolytic capacitor
JP5874746B2 (en) Solid electrolytic capacitor, electronic component module, method for manufacturing solid electrolytic capacitor, and method for manufacturing electronic component module
JP2011071559A (en) Solid electrolytic capacitor
JP2005079357A (en) Chip type solid electrolytic capacitor, its manufacturing method, and lead frame used therefor
JP2007184308A (en) Manufacturing method of chip-like solid electrolytic capacitor
JP5445673B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2007043197A (en) Stacked capacitor
JP2010097968A (en) Multilayer solid electrolytic capacitor
JP2009260235A (en) Solid electrolytic capacitor device and method of manufacturing the same
JP2008311583A (en) Solid electrolytic capacitor, and its manufacturing method
JP2007013043A (en) Electrode assembly for mounting electric element, electric component employing the same, and solid electrolytic capacitor
JP2007012797A (en) Laminated solid electrolytic capacitor
JP4936458B2 (en) Multilayer solid electrolytic capacitor
JP2005311216A (en) Solid electrolytic capacitor and its manufacturing method
JP2011176067A (en) Solid-state electrolytic capacitor
JP2005228801A (en) Chip-type solid electrolytic capacitor and lead frame used therefor
JP2010212600A (en) Solid electrolytic capacitor and method of manufacturing the same
JP5164213B2 (en) Solid electrolytic capacitor
JP5025958B2 (en) Solid electrolytic capacitor
JP5201688B2 (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120919

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130130