JP2005347556A - Solid-state imaging element - Google Patents

Solid-state imaging element Download PDF

Info

Publication number
JP2005347556A
JP2005347556A JP2004165985A JP2004165985A JP2005347556A JP 2005347556 A JP2005347556 A JP 2005347556A JP 2004165985 A JP2004165985 A JP 2004165985A JP 2004165985 A JP2004165985 A JP 2004165985A JP 2005347556 A JP2005347556 A JP 2005347556A
Authority
JP
Japan
Prior art keywords
solid
state imaging
light receiving
imaging device
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004165985A
Other languages
Japanese (ja)
Inventor
Hideo Yamamoto
秀男 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2004165985A priority Critical patent/JP2005347556A/en
Publication of JP2005347556A publication Critical patent/JP2005347556A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid-state imaging element with a small size, low profile, high yield and high reliability for providing excellent sealing workability, by preventing an adhesive or a sealing resin from oozing out to an effective light receiving area so as to prevent deterioration in the imaging characteristic. <P>SOLUTION: The solid-state imaging element wherein a micro lens is formed on the surface of a light receiving element is configured such that at least one side of a range formed with the micro lens is nearly in matching with the edge of the effective light receiving area of the solid-state imaging element. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、固体撮像素子に関し、特に、受光素子表面にマイクロレンズが形成されている固体撮像素子に関する。   The present invention relates to a solid-state image sensor, and more particularly to a solid-state image sensor in which a microlens is formed on the surface of a light-receiving element.

近年、CCD、CMOSセンサー等の固体撮像素子は、デジタルカメラの他、パソコン、携帯電話等にまで搭載されるようになっており、ますます小型化、薄型化の実装形態の要求が強まっている。   In recent years, solid-state imaging devices such as CCD and CMOS sensors have been mounted not only on digital cameras, but also on personal computers, mobile phones, etc., and there is an increasing demand for smaller and thinner mounting forms. .

これらの要求を満たすために、従来よりマイクロレンズ付きの固体撮像素子が提案されている。基板に搭載されたマイクロレンズ付きの固体撮像素子を図5及び図6に示す。図5は、固体撮像素子の平面図であり、図6は、基板とその基板に搭載された固体撮像素子を含む固体撮像装置の断面図である。これらの図において、マイクロレンズ103付きの固体撮像素子101は、固体撮像素子101の受光エリア102に対向した開口部106aを有する可撓性基板等からなる基板106上に搭載される。固体撮像素子101の電極パッド105は、異方導電性接着剤等の接着剤104により、バンプ104aを介して基板106の一方の面に形成された配線パターンに電気的に接続される。基板106の他方の面には、透光性部材107が接着される。   In order to satisfy these requirements, a solid-state imaging device with a microlens has been proposed. A solid-state imaging device with a microlens mounted on a substrate is shown in FIGS. FIG. 5 is a plan view of a solid-state imaging device, and FIG. 6 is a cross-sectional view of a solid-state imaging device including a substrate and a solid-state imaging device mounted on the substrate. In these drawings, a solid-state image sensor 101 with a microlens 103 is mounted on a substrate 106 made of a flexible substrate or the like having an opening 106 a facing the light receiving area 102 of the solid-state image sensor 101. The electrode pad 105 of the solid-state imaging device 101 is electrically connected to a wiring pattern formed on one surface of the substrate 106 via a bump 104a by an adhesive 104 such as an anisotropic conductive adhesive. A translucent member 107 is bonded to the other surface of the substrate 106.

これにより、固体撮像素子101の表面に形成されているマイクロレンズ103と透光性部材107との間に空間が形成されるが、この空間内に水分、粉塵などが入り込まないように、例えば特開平08−148666号公報に開示された固体撮像装置は、開口部106aの空間が気密封止された状態となるように構成されている。このような固体撮像装置は、装置全体が小型化及び薄型化が可能になるとともに、撮像領域上における結露や撮像劣化を防止して信頼性を確保できるなど多くの利点を有するものである。   As a result, a space is formed between the microlens 103 formed on the surface of the solid-state imaging device 101 and the translucent member 107. For example, in order to prevent moisture, dust and the like from entering the space, The solid-state imaging device disclosed in Kaihei 08-148666 is configured such that the space of the opening 106a is hermetically sealed. Such a solid-state imaging device has many advantages such that the entire device can be reduced in size and thickness, and can be prevented from dew condensation and imaging degradation on the imaging region, thereby ensuring reliability.

ところが、上記特開平08−148666号公報に開示された固体撮像装置の構造の場合、受光エリア102を取り囲むように固体撮像素子101表面の全周囲を異方導電性接着剤等の接着剤104で接着するため、その異方導電性接着剤等の接着剤104が受光エリア102側にしみ出してしまうことがある。具体的には図7に示すように、接着材104がマイクロレンズ103の表面の複数の凸レンズ110の間の溝110aに、毛管現象により接着剤104が流れ込んで行ってしまう。特に、図5に示すように、固体撮像素子101の電極パッド108が2方向のみである場合、電極パッド108のない2方向にも異方導電性接着剤等の接着剤104を塗布せねばならず、この場合、この方向には配線パターンが無いため接着剤104が流れ出しやすく、歩留まりの確保が難しかった。   However, in the case of the structure of the solid-state imaging device disclosed in Japanese Patent Application Laid-Open No. 08-148666, the entire periphery of the surface of the solid-state imaging device 101 is surrounded by an adhesive 104 such as an anisotropic conductive adhesive so as to surround the light receiving area 102. In order to adhere, the adhesive 104 such as the anisotropic conductive adhesive may ooze out to the light receiving area 102 side. Specifically, as shown in FIG. 7, the adhesive 104 flows into the grooves 110 a between the plurality of convex lenses 110 on the surface of the microlens 103 due to capillary action. In particular, as shown in FIG. 5, when the electrode pad 108 of the solid-state imaging device 101 is only in two directions, the adhesive 104 such as an anisotropic conductive adhesive must be applied in two directions without the electrode pad 108. In this case, since there is no wiring pattern in this direction, the adhesive 104 easily flows out, and it is difficult to secure the yield.

従って、上記の構造では異方導電性接着剤等の接着剤104の受光エリア102へのしみ出しによる歩留りの低下という問題があった。さらに、しみ出した接着剤104の影響により、固体撮像素子101の撮像特性が劣化してしまうという問題もあった。   Therefore, in the above structure, there is a problem in that the yield decreases due to the adhesive 104 such as an anisotropic conductive adhesive oozing out into the light receiving area 102. Furthermore, there is a problem that the imaging characteristics of the solid-state imaging device 101 deteriorate due to the influence of the adhesive 104 that has oozed out.

また、従来の固体撮像素子101のマイクロレンズ103の形成範囲は、膜厚の均一化のために受光エリア102よりも大きめに形成されたカラーフィルタの形成範囲と慣例的にほぼ合わされており、有効受光エリア102の端部102aより4周とも外側に距離L1だけ、通常は200μm以上の距離だけ、ボンディング部とマイクロレンズ領域との距離が近い。よって、ボンディング部の接着剤104がしみ出した場合、図7に示すように、接着剤104がマイクロレンズ103の領域にまで到達しやすかった。一旦、接着剤104がマイクロレンズ103の表面にまで到達してしまうと、毛管現象により接着剤104が有効受光エリア102にまで広がってしまい、このことが接着剤104の受光エリア102へのしみ出しの大きな原因となっていた。   Further, the formation range of the conventional microlens 103 of the solid-state imaging device 101 is conventionally substantially matched with the formation range of the color filter formed larger than the light receiving area 102 in order to make the film thickness uniform. The distance between the bonding portion and the microlens region is close by a distance L1, generally a distance of 200 μm or more, on the outer sides of the end portion 102a of the light receiving area 102 by four distances. Therefore, when the adhesive 104 in the bonding portion oozes out, the adhesive 104 easily reaches the region of the microlens 103 as shown in FIG. Once the adhesive 104 reaches the surface of the microlens 103, the adhesive 104 spreads to the effective light receiving area 102 due to capillary action, and this causes the adhesive 104 to ooze into the light receiving area 102. It was a big cause of.

そこで、特開2002−124654号公報には、上記課題を解決するために、基板106の開口部106aの端面からマイクロレンズ領域までの距離を固体撮像素子101表面と基板106との間隔(接着剤104の厚さ)の2.5倍以上とする、固体撮像素子101表面や基板106の開口端部に堤防や溝を設ける、等の提案が開示されている。
特開平08−148666号公報 特開2002−124654号公報
In order to solve the above problem, Japanese Patent Application Laid-Open No. 2002-124654 discloses the distance from the end surface of the opening 106a of the substrate 106 to the microlens region as the distance between the surface of the solid-state imaging device 101 and the substrate 106 (adhesive agent). A proposal has been disclosed in which a dike or a groove is provided on the surface of the solid-state imaging device 101 or the opening end of the substrate 106, which is 2.5 times or more of the thickness (104).
Japanese Patent Laid-Open No. 08-148666 JP 2002-124654 A

しかし、特開2002−124654号公報に記載の固体撮像素子の場合、基板106の開口部106aを必要以上に大きく取るように構成すること、固体撮像素子101の表面の端部に堤防、溝等を設けること、等は、コストアップとなってしまう等の問題がある。さらに、特開2002−124654号公報に記載の提案によれば、チップサイズを小型化するという要求に反する。   However, in the case of the solid-state imaging device described in Japanese Patent Application Laid-Open No. 2002-124654, the opening 106a of the substrate 106 is configured to be larger than necessary, and a dike, a groove, or the like is formed at the end of the surface of the solid-state imaging device 101. However, there is a problem that the cost increases. Furthermore, according to the proposal described in Japanese Patent Application Laid-Open No. 2002-124654, it is against the request to reduce the chip size.

本発明は上記課題に鑑みなされたもので、チップサイズの小型化を可能とし、さらに接着剤あるいは封止樹脂などが固体撮像素子の受光エリアへしみ出すのを防止して歩留まりの向上を図るともに、撮像特性の劣化を防止して高い信頼性と歩留まりを有する固体撮像素子を提供することを目的とする。   The present invention has been made in view of the above problems, and enables reduction in the chip size, and further prevents the adhesive or sealing resin from oozing out to the light receiving area of the solid-state imaging device and improves the yield. An object of the present invention is to provide a solid-state imaging device having high reliability and yield by preventing deterioration of imaging characteristics.

上記課題を解決するため、請求項1に係わる発明は、受光素子面にマイクロレンズが形成された固体撮像素子において、該マイクロレンズの形成されている範囲が、少なくとも1辺において有効受光エリアの端面に略一致していることを特徴とするものである。   In order to solve the above-mentioned problem, the invention according to claim 1 is directed to a solid-state imaging device in which a microlens is formed on a light receiving element surface, and the area where the microlens is formed is an end face of an effective light receiving area on at least one side. Is substantially the same.

請求項2に係わる発明は、受光素子表面にマイクロレンズが形成された固体撮像素子において、該マイクロレンズの形成されている範囲が、少なくとも1辺において有効受光エリアの端面より外側に画素10列分以下とされていることを特徴とするものである。   According to a second aspect of the present invention, in the solid-state imaging device in which the microlens is formed on the surface of the light receiving element, the range in which the microlens is formed corresponds to 10 columns of pixels outside the end face of the effective light receiving area on at least one side. It is characterized as follows.

以上のような構成により、チップサイズを小型化するとともに、接着剤あるいは封止部材の受光エリアへのしみ出しによる撮像特性への悪影響を防止して、高歩留まりで高信頼性の固体撮像装置が実現可能となる。   With the configuration as described above, the chip size is reduced, and the adverse effect on the imaging characteristics due to the seepage of the adhesive or the sealing member to the light receiving area is prevented, so that a solid-state imaging device with high yield and high reliability can be obtained. It becomes feasible.

以上実施の形態に基づいて説明したように、本発明によれば、接着剤あるいは封止樹脂の有効受光エリアへのしみ出しを防止して、撮像特性の劣化を防ぐと共に、小型、薄型で封止作業性の良い高歩留まり及び高信頼性の固体撮像素子を得ることできる。また、固体撮像素子のチップサイズ小型化することが可能となり、より小型の固体撮像素子が実現し得る。   As described above based on the embodiments, according to the present invention, it is possible to prevent the adhesive or sealing resin from seeping into the effective light receiving area, thereby preventing the deterioration of the imaging characteristics, and the small and thin sealing. A high-yield and high-reliability solid-state imaging device with good workability can be obtained. In addition, the chip size of the solid-state image sensor can be reduced, and a smaller solid-state image sensor can be realized.

次に、本発明を実施するための最良の形態について説明する。
図1は、本発明の実施の形態に係わる固体撮像素子の平面図である。図2は、図1の固体撮像素子と基板を含む固体撮像装置の断面図である。
Next, the best mode for carrying out the present invention will be described.
FIG. 1 is a plan view of a solid-state imaging device according to an embodiment of the present invention. FIG. 2 is a cross-sectional view of a solid-state imaging device including the solid-state imaging element and substrate of FIG.

図2において、半導体チップである、マイクロレンズ3付きの固体撮像素子1は、固体撮像素子1の有効受光エリア2に対向した開口部6aを有する可撓性基板等からなる基板6上に搭載される。固体撮像素子1の突起電極である電極パッド5は、異方導電性接着剤等の接着剤4により、バンプ4aを介して基板6の一方の面に形成された配線パターンに電気的に接続されている。基板6の他方の面には、透光性部材7が接着剤にて接着される。   In FIG. 2, a solid-state imaging device 1 with a microlens 3, which is a semiconductor chip, is mounted on a substrate 6 made of a flexible substrate having an opening 6 a facing the effective light receiving area 2 of the solid-state imaging device 1. The An electrode pad 5 that is a protruding electrode of the solid-state imaging device 1 is electrically connected to a wiring pattern formed on one surface of the substrate 6 via a bump 4a by an adhesive 4 such as an anisotropic conductive adhesive. ing. The translucent member 7 is bonded to the other surface of the substrate 6 with an adhesive.

固体撮像素子1の表面に形成されているマイクロレンズ3と透光性部材7との間に空間が設けられているが、この空間内に水分、粉塵などが入り込まないように、固体撮像装置は、開口部6aの空間が気密封止された状態となるように、上述した接着剤4が有効受光エリア2の周囲に設けられている。なお、接着剤4の代わりに封止樹脂を用いてもよい。   A space is provided between the microlens 3 formed on the surface of the solid-state imaging device 1 and the translucent member 7, but the solid-state imaging device is configured so that moisture, dust, and the like do not enter the space. The adhesive 4 described above is provided around the effective light receiving area 2 so that the space of the opening 6a is hermetically sealed. A sealing resin may be used instead of the adhesive 4.

また、基板6は可撓性基板に限らず、セラミック、ガラエポ、金属等の硬質基板でも良い。透光性部材7としては、ガラスは勿論のこと、塩化ビニールやアクリル等の透明樹脂や、ローパスフィルター、IRカットフィルター、レンズ、プリズム等の光学部材でも良い。   Further, the substrate 6 is not limited to a flexible substrate, and may be a hard substrate such as ceramic, glass epoxy, or metal. The translucent member 7 may be glass, transparent resin such as vinyl chloride or acrylic, or an optical member such as a low-pass filter, an IR cut filter, a lens, or a prism.

さらにまた、電極パッド5は、ワイヤボンド方式で形成されたAu、Cu等のスタットバンプやメッキ方式で形成されたAu、Ag、Cu、In、ハンダ等のバンプの他、金属ボールや表面に金属メッキされた樹脂ボール、印刷等でパターン形成された導電性接着剤等でも良い。   Furthermore, the electrode pad 5 includes a metal ball or a metal surface on the surface in addition to a stat bump such as Au or Cu formed by a wire bond method, a bump such as Au, Ag, Cu, In, or solder formed by a plating method. A plated resin ball, a conductive adhesive patterned by printing, or the like may be used.

ここで、マイクロレンズ3が形成されている範囲(以下、マイクロレンズ形成範囲という)R1が、少なくとも1辺において有効受光エリア2の範囲(以下、有効受光範囲という)R2に略一致している。言い換えると、有効受光エリア2の面に直交する方向から固体撮像素子1を見たときに、有効受光エリア2の縁部2aである有効受光範囲R2の縁部の少なくとも1辺は、マイクロレンズ形成範囲R1の縁部に略一致している。   Here, a range R1 in which the microlens 3 is formed (hereinafter referred to as a microlens formation range) R1 substantially coincides with a range R2 in the effective light receiving area 2 (hereinafter referred to as an effective light receiving range) on at least one side. In other words, when the solid-state imaging device 1 is viewed from a direction orthogonal to the surface of the effective light receiving area 2, at least one side of the edge of the effective light receiving range R2, which is the edge 2a of the effective light receiving area 2, is formed as a microlens. It substantially coincides with the edge of the range R1.

なお、より詳細には、図1に示すように、マイクロレンズ形成範囲R1は、各辺において、有効受光範囲R2の縁部よりも、外側に画素10列分、あるいは画素9列分以下の寸法だけ大きい範囲を有する。当然に、画素10列分以下であれば少ないほどよく、可能であれば有効受光エリア2の端面に一致しているのがベストである。しかし、マイクロレンズ形成範囲R1の最外周端部ではマイクロレンズ3の形状不良が発生し易いため、画素5〜10列分程度までマイクロレンズ3を有効受光エリア2の外側まで形成しておく方が好ましい。   In more detail, as shown in FIG. 1, the microlens formation range R1 has dimensions of 10 pixels or 9 pixels or less outside the edge of the effective light receiving range R2 on each side. Only have a large range. Naturally, it is better that the number of pixels is 10 columns or less, and if possible, it is best to match the end face of the effective light receiving area 2 if possible. However, since the shape defect of the microlens 3 is likely to occur at the outermost peripheral end of the microlens formation range R1, it is preferable to form the microlens 3 to the outside of the effective light receiving area 2 up to about 5 to 10 columns of pixels. preferable.

図3は、マイクロレンズ形成範囲R1の縁部と有効受光範囲R2の縁部を説明するための図である。図4は、図2のBで示す部分の拡大断面図である。マイクロレンズ形成範囲R1が、有効受光範囲R2の4辺の各辺である各縁部と略一致する範囲を有しているが、図3及び図4に示すように、マイクロレンズ形成範囲R1は、有効受光範囲R2の4辺の各辺よりも外側にL1の距離だけ、有効受光範囲R2よりも大きい。このL1は、上述した画素10列分以下の長さである。   FIG. 3 is a diagram for explaining the edge of the microlens formation range R1 and the edge of the effective light receiving range R2. 4 is an enlarged cross-sectional view of a portion indicated by B in FIG. The microlens formation range R1 has a range that substantially coincides with each edge that is each of the four sides of the effective light receiving range R2, but as shown in FIGS. The effective light receiving range R2 is larger than the effective light receiving range R2 by a distance L1 outside the four sides. This L1 has a length of 10 pixels or less as described above.

例えば、1画素の大きさが5μmの場合、距離L1は、10画素分すなわち50μmである。よって、このような固体撮像装置によれば、電極パッド8とマイクロレンズ形成領域R1との距離が、上述した従来品に比べ、約150μmほど遠くなるため、電極パッド部の接着剤4がはみ出しても接着剤4がマイクロレンズ領域にまで到達し難くなる。したがって、接着剤4の有効受光エリア2へのしみ出しを防止することができ、固体撮像素子1の撮像特性の劣化を防止するとともに、高歩留まりで高信頼性のある固体撮像装置が実現できる。   For example, when the size of one pixel is 5 μm, the distance L1 is 10 pixels, that is, 50 μm. Therefore, according to such a solid-state imaging device, since the distance between the electrode pad 8 and the microlens formation region R1 is about 150 μm as compared with the conventional product described above, even if the adhesive 4 in the electrode pad portion protrudes. It becomes difficult for the adhesive 4 to reach the microlens region. Therefore, it is possible to prevent the adhesive 4 from seeping out into the effective light receiving area 2, to prevent deterioration of the imaging characteristics of the solid-state imaging device 1, and to realize a solid-state imaging device with high yield and high reliability.

なお、図3に示すように、本実施の形態では、マイクロレンズ形成範囲R1の4辺が、有効受光範囲R2の縁部と略一致している例を説明したが、固体撮像素子1の電極パッド5が2方向のみ、あるいは1方向のみに設けられる場合であって、どうしても電極パッド5のある方向からは接着剤4がマイクロレンズ3まで到達し易くなってしまう。そのような場合は、電極パッド5のある2方向、あるいは1方向からの接着剤4のマイクロレンズ3への流れ込みを防止すればよいので、マイクロレンズ形成範囲R1の少なくとも2辺、あるいは1辺が、有効受光範囲R2の縁部と略一致していれば良い。さらに、1方向のみからの接着剤4の流れ込みを防止すればよい場合は、電極パッド5のある方向に対応するマイクロレンズ形成範囲R1の少なくとも1辺が、有効受光範囲R2の縁部と略一致していれば良い。   As shown in FIG. 3, in the present embodiment, an example in which the four sides of the microlens formation range R1 substantially coincide with the edge of the effective light receiving range R2 has been described. In the case where the pad 5 is provided only in two directions or only in one direction, the adhesive 4 easily reaches the microlens 3 from the direction in which the electrode pad 5 exists. In such a case, it is only necessary to prevent the adhesive 4 from flowing into the microlens 3 from two directions or one direction where the electrode pad 5 exists, so that at least two sides or one side of the microlens formation range R1 is present. As long as it is substantially coincident with the edge of the effective light receiving range R2. Furthermore, when it is sufficient to prevent the adhesive 4 from flowing in only one direction, at least one side of the microlens formation range R1 corresponding to a certain direction of the electrode pad 5 is substantially the same as the edge of the effective light receiving range R2. It only has to be done.

以上のように、本実施の形態によれば、接着剤あるいは封止樹脂の有効受光エリアへのしみ出しを防止して、撮像特性の劣化を防ぐと共に、小型、薄型で封止作業性の良い高歩留まり及び高信頼性の固体撮像素子を得ることできる。また、固体撮像素子のチップサイズ小型化することが可能となり、より小型の固体撮像素子が実現し得る。   As described above, according to the present embodiment, it is possible to prevent the adhesive or the sealing resin from seeping out to the effective light receiving area, thereby preventing the deterioration of the imaging characteristics, and the small and thin structure with good sealing workability. A solid-state imaging device with high yield and high reliability can be obtained. In addition, the chip size of the solid-state image sensor can be reduced, and a smaller solid-state image sensor can be realized.

また、マイクロレンズ3の領域が狭くなるため、同じ有効受光エリアのサイズの固体撮像素子でも電極パッド部を有効受光エリア側により近づけられるので、チップサイズを小型化することが可能となり、より小型の固体撮像装置が実現できる。   Further, since the area of the microlens 3 is narrowed, the electrode pad portion can be brought closer to the effective light receiving area side even in a solid-state imaging device having the same effective light receiving area size, so that the chip size can be reduced and the size can be further reduced. A solid-state imaging device can be realized.

本発明は、上述した実施の形態に限定されるものではなく、本発明の要旨を変えない範囲において、種々の変更、改変等が可能である。   The present invention is not limited to the above-described embodiments, and various changes and modifications can be made without departing from the scope of the present invention.

本発明の実施の形態に係わる固体撮像素子の平面図である。It is a top view of the solid-state image sensing device concerning an embodiment of the invention. 図1の固体撮像素子と基板を含む固体撮像装置の断面図である。It is sectional drawing of the solid-state imaging device containing the solid-state image sensor and board | substrate of FIG. 本発明の実施の形態に係わるマイクロレンズ形成範囲R1の縁部と有効受光範囲R2の縁部を説明するための図である。It is a figure for demonstrating the edge part of the micro lens formation range R1 concerning embodiment of this invention, and the edge part of the effective light reception range R2. 図2のBで示す部分の拡大断面図である。It is an expanded sectional view of the part shown by B of FIG. 従来技術に係わる固体撮像素子の平面図である。It is a top view of the solid-state image sensor concerning a prior art. 従来技術に係わる基板とその基板に搭載された固体撮像素子を含む固体撮像装置の断面図である。It is sectional drawing of the solid-state imaging device containing the board | substrate concerning a prior art, and the solid-state image sensor mounted in the board | substrate. 図5のAで示す部分の拡大断面図である。It is an expanded sectional view of the part shown by A of FIG.

符号の説明Explanation of symbols

1 固体撮像素子、2 有効受光エリア、3 マイクロレンズ、4 接着剤、5 電極パッド、6 基板、6a 開口部、7 透光性部材
代理人 弁理士 伊 藤 進
DESCRIPTION OF SYMBOLS 1 Solid-state image sensor, 2 Effective light-receiving area, 3 Micro lens, 4 Adhesive, 5 Electrode pad, 6 Board | substrate, 6a Opening part, 7 Translucent member agent Patent attorney Susumu Ito

Claims (2)

受光素子表面にマイクロレンズが形成された固体撮像素子であって、
該マイクロレンズの形成されている範囲の少なくとも1辺は、前記固体撮像素子の有効受光エリアの縁部に略一致していることを特徴とする固体撮像素子。
A solid-state imaging device having a microlens formed on the surface of the light receiving element,
A solid-state imaging device, wherein at least one side of a range where the microlenses are formed substantially coincides with an edge of an effective light receiving area of the solid-state imaging device.
前記少なくとも1辺は、前記有効受光エリアの前記縁部より外側に画素10列分の距離の範囲内で、前記固体撮像素子の有効受光エリアの縁部に略一致していることを特徴とする固体撮像素子。

The at least one side substantially coincides with the edge of the effective light receiving area of the solid-state imaging device within a distance of 10 columns outside the edge of the effective light receiving area. Solid-state image sensor.

JP2004165985A 2004-06-03 2004-06-03 Solid-state imaging element Withdrawn JP2005347556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004165985A JP2005347556A (en) 2004-06-03 2004-06-03 Solid-state imaging element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004165985A JP2005347556A (en) 2004-06-03 2004-06-03 Solid-state imaging element

Publications (1)

Publication Number Publication Date
JP2005347556A true JP2005347556A (en) 2005-12-15

Family

ID=35499634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004165985A Withdrawn JP2005347556A (en) 2004-06-03 2004-06-03 Solid-state imaging element

Country Status (1)

Country Link
JP (1) JP2005347556A (en)

Similar Documents

Publication Publication Date Title
US8107005B2 (en) Method of manufacturing an image sensor module
JP5037450B2 (en) Display element / electronic element module and electronic information device
JP4673721B2 (en) Imaging apparatus and manufacturing method thereof
JP5375219B2 (en) Imaging device
US6977686B2 (en) Solid-state image pickup apparatus limiting adhesive intrusion
JP2004007386A (en) Image sensor module and its manufacturing method
US8223248B2 (en) Image sensor module having a semiconductor chip, a holder and a coupling member
JP2010045082A (en) Display element/electronic element module and its manufacturing method, and electronic information equipment
JP2010252164A (en) Solid-state image sensing device
CN103081105B (en) Image pick-up device, image pickup model and camera
JP2006294720A (en) Camera module
JP2005295050A (en) Camera module
JP4806970B2 (en) Solid-state imaging device
JP2008182051A (en) Optical device, optical device apparatus, camera module and method for manufacturing the optical device apparatus
JP2005347556A (en) Solid-state imaging element
KR20070008276A (en) Image sensor module for digital camera
JP2004173028A (en) Solid-state image pickup device
JP2006269784A (en) Imaging apparatus
JP2008263551A (en) Solid-state imaging device and manufacturing method therefor
JP2007329813A (en) Solid-state imaging apparatus and imaging apparatus provided with the solid-state imaging apparatus
JPH11191864A (en) Solid-state image pickup device
JPH07231074A (en) Solid-state image sensing module
WO2022085326A1 (en) Imaging device, electronic apparatus, and method for manufacturing imaging device
JP2013085095A (en) Imaging device
KR102398090B1 (en) Camera module

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070807