JP2005346913A - 垂直磁気記録方式の磁気ディスク装置 - Google Patents

垂直磁気記録方式の磁気ディスク装置 Download PDF

Info

Publication number
JP2005346913A
JP2005346913A JP2005196577A JP2005196577A JP2005346913A JP 2005346913 A JP2005346913 A JP 2005346913A JP 2005196577 A JP2005196577 A JP 2005196577A JP 2005196577 A JP2005196577 A JP 2005196577A JP 2005346913 A JP2005346913 A JP 2005346913A
Authority
JP
Japan
Prior art keywords
signal
data
servo
read
head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005196577A
Other languages
English (en)
Inventor
Akihiko Takeo
昭彦 竹尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005196577A priority Critical patent/JP2005346913A/ja
Publication of JP2005346913A publication Critical patent/JP2005346913A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Signal Processing For Digital Recording And Reproducing (AREA)
  • Recording Or Reproducing By Magnetic Means (AREA)
  • Digital Magnetic Recording (AREA)

Abstract

【課題】垂直磁気記録方式において、サーボ信号とデータ信号のそれぞれの特性に適合する信号処理方式を適用するディスクドライブを提供することにある。
【解決手段】垂直磁気記録方式のディスクドライブにおいて、データチャネル11は、リードヘッドによりディスク1から読出されたリード信号の中で、垂直矩形波のデータ信号に対して正係数PR等化式のPRML信号処理によりデータ復号化を実行する。データチャネル11は、垂直矩形波のサーボ信号を微分等化回路111により微分信号波形に変換し、当該微分信号波形からサーボデータを再生する。
【選択図】 図1

Description

本発明は、一般的には垂直磁気記録方式のディスクドライブに関し、特にサーボ信号とデータ信号の信号処理技術に関する。
近年、ハードディスクドライブを代表とする磁気ディスク装置(ディスクドライブ)の分野では、長手磁気記録(面内磁気記録)方式での記録密度の限界を超えるための技術として、垂直磁気記録方式が注目されている。垂直磁気記録方式では、デジタルデータ(0/1)が記録媒体であるディスク上に記録される場合、当該データに対応する磁化領域がディスクの垂直方向(深さ方向)に形成される。
さらに、高記録密度化を図るために、最近のディスクドライブでは、スライダ上にリードヘッドとライトヘッドとが分離して実装された構造の磁気ヘッドが採用されている。ライトヘッドは、垂直磁気記録方式に適合する例えば単磁極型ヘッドである。リードヘッドは、巨大磁気抵抗効果型素子(GMR素子またはスピンバルブ型MR素子)からなる。
垂直磁気記録方式では、ディスクからリードヘッドにより読出されるリード信号波形は、磁化転移位置で振幅が転移し、振幅が磁化の方向に対応する矩形波の信号波形となる。即ち、長手磁気記録方式でのリード信号波形を積分したような信号波形となる。このため、リード信号から記録データを復号(再生)する信号処理回路として、長手磁気記録方式の回路を転用する場合には、リード信号波形を微分信号波形に変換する微分回路が必要となる。ここで、当該信号処理回路は、データチャネルまたはリード/ライトチャネルと呼ばれており、通常ではPRML(partial response maximum likelihood)方式を採用したものである。
垂直磁気記録方式のディスクドライブにおいて、矩形波のリード信号波形を微分信号波形に変換することにより、長手磁気記録方式の信号処理回路(データチャネル)の転用が可能となる。しかしながら、微分回路によりリード信号波形に対する微分等化処理が実行された場合に、ノイズ(システムノイズ)の高域成分を強調することになる。このため、特に広帯域のリード信号に対して、システムとして十分なS/N比(信号/ノイズ比)を確保することが困難となる。換言すれば、リード信号波形から記録データを再生するときのリードエラーレートが悪化する事態となる。
一方、垂直磁気記録方式での矩形波のリード信号を、微分波形に変換することなく、直接的に信号処理する方式がある。この方式は、垂直磁気記録方式に適合する正係数パーシャル・レスポンス(PR)等化方式(PRクラス1またはPRクラス2に対応する方式)によるPRML信号処理方式である。しかしながら、矩形波のリード信号波形は、DC成分を有するため、特に低域のカットオフ周波数が高い回路系を伝達されると、信号波形の歪み及び信号振幅の変動が発生する要因となる。ディスクドライブでは、サーボシステムは、ディスクから読出したサーボ信号からサーボデータを再生し、ヘッドの位置決め制御を実行する。サーボシステムは、サーボ信号の振幅値によりヘッドの位置を検出するため、当該サーボ信号の振幅変動を抑制する必要がある。
このような点を解消するために、低域のカットオフ周波数による信号波形の歪みの影響を取り除くために、サーボ信号の記録時に、一定周波数以下のDC領域を、最高記録周波数を使用するAC領域に置き換えて記録する先行技術が提案されている(例えば、非特許文献1を参照)。
即ち、この先行技術は、サーボ信号中でDC成分の強い低密度記録領域を、一定の高密度記録領域に置き換えることにより、低周波成分(DC成分)の歪みの影響を取り除く内容である。
The 8th joint MMM-Intermag Digest(日立製作所)
前述の先行技術の方法は、サーボ信号を記録するときの置き換え処理が複雑でかつ面倒な操作が必要であり、置き換え信号の安定性にも問題があることが指摘されている。
そこで、本発明の目的は、垂直磁気記録方式のディスクドライブにおいて、サーボ信号とデータ信号のそれぞれの特性に適合する信号処理方式を適用することにより、高記録密度化と高信頼性化を図ることが可能なディスクドライブを提供することにある。
本発明の観点に従ったディスクドライブは、垂直異方性を有する垂直記録層と軟磁性層の2層を含む垂直磁気記録用のディスク媒体と、前記ディスク媒体からサーボ信号またはデータ信号を含む矩形波リード信号を出力するシールド型磁気抵抗効果素子からなるリードヘッドと、前記データ信号の周波数よりも低い周波数の前記サーボ信号であって、前記リードヘッドから出力された矩形波リード信号を微分信号波形に変換する微分回路と、前記微分回路から出力される微分信号波形で、DC成分が除去された前記サーボ信号からサーボデータを再生するサーボ処理手段と、前記リードヘッドから出力された前記矩形波リード信号から正係数パーシャル・レスポンス等化方式によりデジタルデータを検出し、最尤復号化方式を使用した復号化処理により前記データ信号に対応する記録データを再生するデータ処理手段とを備えた構成である。
このような構成により、相対的に低周波数で、振幅変動の抑制が要求されるサーボ信号に対しては、微分信号波形からサーボデータを再生する処理が実行される。従って、安定かつ信頼性の高いサーボデータを再生し、高精度のヘッド位置決め制御を実現できる。
一方、高密度かつ広帯域のデータ信号に対しては、垂直矩形波信号に適合する正係数PR等化方式による信号処理を実行するため、システムとして十分なS/N比を確保することができる。従って、リード信号波形から記録データを再生するときのリードエラーレートの向上を図ることができる。結果として、高記録密度で高信頼性の垂直磁気記録方式のディスクドライブを実現できる。
本発明によれば、垂直磁気記録方式のディスクドライブにおいて、サーボ信号とデータ信号のそれぞれの特性に適合する信号処理方式を適用することができる。従って、高精度のヘッド位置決め制御及び高記録密度化を実現することができる。
以下図面を参照して、本発明の実施形態を説明する。
(ディスクドライブの構成)
図1、図2及び図7は、本実施形態に関するディスクドライブの構成を示す図である。
同実施形態のディスクドライブは、垂直磁気記録方式を採用したドライブであり、垂直方向の磁気異方性を示す記録層及び軟磁性層の2層構造のディスク1を有する。ディスク1は、スピンドルモータ(SPM)2により保持されて、高速回転する。ディスクドライブは、SPM2により回転するディスク1から、磁気ヘッド3によりデータのリード/ライト動作(記録再生)を実行する。磁気ヘッド3は、磁気抵抗効果型素子であるシールド型MR素子、GMR素子(スピンバルブ型MR素子)、またはTMR素子(トンネル効果型MR素子)などからなるリードヘッドと、垂直磁気記録の可能な例えば単磁極ヘッドからなるライトヘッドとを有する。リードヘッド及びライトヘッドは、同一スライダ上に分離されて実装されている。
磁気ヘッド3は、マイクロプロセッサ(CPU)14により制御される位置決め機構(サーボ機構)13により、ディスク1上の目標位置に位置決めされる。磁気ヘッド3は、伝送経路10を介してデータチャネル(リード/ライトチャネル)11との間で、リード/ライト信号を入出力する。
伝送経路10は、図2に示すように、プリアンプ回路20をメイン要素としている。プリアンプ回路20は、リードヘッドから出力されるリード信号(垂直矩形波信号RS1)を増幅して、データチャネル11に伝送するリードアンプを有する。また、プリアンプ回路20は、データチャネル11から出力されるライト信号(図示せず)をライト電流に変換して、ライトヘッドに伝送するライトアンプを有する。
データチャネル11は、大別してリード信号のPRML信号処理を実行するリードチャネルと、ライトデータの符号化処理等を実行するライトチャネルとからなる。但し、同実施形態はデータ再生機能に関するため、ライトチャネルの説明を省略する。以下、データチャネル11はリードチャネルを意味する。
データチャネル11は、伝送経路10から伝送されるリード信号(垂直矩形波信号RS1)の中で、データ信号から記録データ(ユーザデータ)を復号化するデータ系復調回路110と、サーボ信号からサーボデータを復号化するサーボ系復調回路112とを有する。データ系復調回路110は、垂直矩形波信号に適合する正係数PR等化方式のPRML式信号処理回路であり、垂直矩形波信号のデータ信号から記録データ(リードデータRD)をディスクコントローラ12に送出する。
サーボ系復調回路112は、微分等化回路111により微分信号波形に変換されたサーボ信号(SS)からサーボデータを復号化する回路である。サーボ系復調回路112は、復号化したサーボデータ(SD)をCPU14に送出する。CPU14は、再生されたサーボデータSDを使用して、ヘッド3の位置を検出する。
ディスク1は、図2に示すように、同心円状の多数のトラック100が構成されている。また、ディスク1は、半径方向のサーボエリア101が、周方向に所定の間隔で配置された構成である。サーボエリア101は、図4(A)に示すように、各トラック毎のサーボセクタ40からなる。サーボセクタ40には、図6に示すように、大別してトラックアドレスを示すアドレスパターン(アドレスコード)と、トラック内の位置誤差を検出するためのサーボバーストパターンとが記録されている。これらを合わせてサーボデータと呼ぶ。
各トラックには、図4(A)に示すように、サーボセクタ40間に、通常では複数のデータセクタ41が配置されている。但し、スプリット(split)・データフィールドと呼ぶデータセクタの一部が分割して配置される場合もある。データセクタ41は、図4(B)に示すように、先頭部にはPLLエリアとも呼ぶ同期信号領域400と、ユーザデータ領域401と、ECC(エラー検出コード)領域402とを有する。同期信号領域400は、一定周波数の繰り返し信号パターンからなる。
位置決め機構(サーボ機構)13は、図2に示すように、ヘッド3を搭載しているアクチュエータ4と、ボイスコイルモータ(VCM)5と、VCMドライバ21Aとから構成されている。アクチュエータ4は、VCM5の駆動力により、ディスク1の半径方向に移動可能になっている。CPU14は、VCMドライバ21Aを制御することにより、アクチュエータ4に搭載されたヘッド3の位置決め制御を実行する。VCMドライバ21Aは、SPM2を駆動制御するSPMドライバ21Bと共に、モータドライバIC21として集積化されている。
CPU14は、ディスクドライブのメインコントローラであり、ヘッド位置決め制御や、リード/ライト動作の制御などの各種制御を実行する。メモリ15は、CPU14の制御動作に必要なプログラムやデータを格納している。ディスクコントローラ(HDC)12は、ディスクドライブとホストシステムとのインターフェースを構成し、主としてリード/ライトデータの転送制御を実行する。
以上のようなディスクドライブは、図7に示すように、例えばアルミ合金製の筐体の中に、ディスク1、SPM2、ヘッド3を搭載したアクチュエータ4、及びVCM5等の機構が組み込まれて構成されている。
(データ再生動作)
以下、同実施形態のディスクドライブにおいて、データチャネル11のリード動作と共に、同実施形態の作用効果を説明する。
まず、垂直磁気記録方式のディスク1から、リードヘッドにより読出されるリード信号RS1は、図3(A)に示すように、垂直矩形波のリード信号波形である。リード信号RS1は、伝送経路(リードアンプなど)10を経由すると、同図(B)に示すように、歪みが発生する信号波形RS2となる。伝送経路10は、信号のDC成分をそのまま通過させることはできず、また例えば数100kHz前後の低域遮断特性を有するリードアンプを含む。このような要因により、歪みのあるリード信号波形RS2が、データチャネル11に入力される。
(サーボ信号処理)
同実施形態のデータチャネル11では、リード信号RS2が、図4(A)に示すサーボセクタ40から読出されたサーボ信号の場合には、微分等化回路111により微分信号波形SSに変換される(図3(C)を参照)。サーボ系復調回路112は、通常の例えばPR4方式を採用したPRML信号処理により、微分波形であるサーボ信号SSからサーボデータを復号化(再生)する。前述したように、CPU14は、データチャネル11から出力されるサーボデータを使用して、ヘッド3の位置決め制御を実行する。ここで、サーボ信号とデータ信号とは、サーボセクタ及びデータセクタの各ゲート信号により識別されて、それぞれの信号処理回路への分岐処理が実行される。
CPU14による位置決め制御では、サーボ信号の振幅値を使用して、ヘッド3の位置が検出される。従って、垂直矩形波であるリード信号に波形歪みが発生している場合には、図6(B)に示すように、特にサーボ信号に含まれるサーボバーストパターンには、振幅変動(振幅の歪み)が発生する。ここで、同図(A)は、振幅変動がない正常なサーボ信号氏の各パターンを示す。このようなサーボ信号の振幅変動は、CPU14の位置決め制御の精度を低下させる悪影響を及ぼす。
そこで、同実施形態のデータチャネル11は、サーボ信号に対して微分等化回路111により微分処理を実行することにより、垂直矩形波のサーボ信号からDC成分を除去できる。従って、図3(C)に示すように、伝送経路10での低域遮断特性の影響による波形歪みもなく、従来の長手磁気記録方式でのサーボ信号波形と同様の信号波形を得ることができる。
(データ信号処理)
一方、リード信号RS2が、図4(B)に示すように、データセクタ41のユーザデータ401に対応するデータ信号の場合には、データチャネル11のデータ系復調回路110により復号化処理される。データ系復調回路110は、垂直矩形波信号に適合する正係数PR等化方式のPRML式信号処理回路であり、垂直矩形波信号のデータ信号から記録データ(リードデータRD)を復号化する。即ち、同実施形態のデータチャネル11は、垂直矩形波信号であるデータ信号をそのままの波形で信号処理するため、微分等化回路などが不要である。
図5は、同実施形態の正係数PR等化方式でのデータ復号化時の特性(50)と、従来の長手磁気記録方式で採用されているものと同様の信号を得る微分等化処理とPR4方式とを採用したデータチャネルでの特性(51)とを比較したものである。即ち、図5は、規格化線密度に対する所要S/N比(SNR)を示す。規格化線密度(LD)とは、「LD=微分波形半値幅/転送ビット長」として定義する。即ち、転送レートに対する必要SN比は、リード信号波形の分解能によっても異なるため、ここでは、横軸を規格化線密度として表示している。また、S/N比(SNR)は、一定量のエラーレート(例えば10の−6乗以下)を確保するために必要な値として定義している。
規格化線密度が低い領域では、両者の信号処理方式(50,51)にはそれ程の差は無いが、図5に示すように、規格化線密度が2を越える領域になると、従来の信号処理氏方式(51)では、同実施形態の信号処理方式(50)と比較して、相対的に必要SN比が高くなる。換言すれば、同実施形態の信号処理方式(50)は、規格化線密度が2以上になると、低いSNRでもエラーレートを改善できる特性を示すことになる。
このことは、従来の信号処理方式(51)では、リード信号波形に微分等化処理を実行するため、元来白色性であるランダムなシステムノイズに対しても高域が強調されて、分解能が低いほど高域ノイズの影響を強く受けるためであると推定できる。このようなことから、同じ再生分解能の場合に、高密度に記録したデータを正確に再生する場合に、同実施形態の正係数PR方式の信号処理が相対的に優れていることが確認できる。要するに、同実施形態のデータチャネル11では、リード信号波形に対して微分等化処理を実行せずに、垂直矩形波のままで処理するため、ノイズ(システムノイズ)の高域成分が強調されるような事態を回避できる。これにより、特に広帯域のデータ信号に対して、システムとして十分なS/N比を確保し、記録データを再生するときのリードエラーレートが悪化するような事態を防止できる。
ここで、前述したサーボ信号の周波数は、データ信号の転送ビット周波数と比較して、数分の1程度と低い規格化線密度を用いることが一般的である。このため、サーボ信号については、微分等化処理がなされても、その帯域が狭いことからシステムノイズによる劣化が少なく、十分なSN比を確保できる。
なお、同実施形態のディスクドライブの具体的仕様として、ライトヘッドが単磁極型ヘッドで、リードヘッドがシールド型GMR素子(シールド間隔は90nm程度)またはTMR素子からなるドライブが想定できる。また、ディスク1としては、FeAlSiやCoZrNb、FeNi、FeCo等からなる軟磁性層と、中間制御層、および垂直異方性を有するCoCr系材料やCoPt系材料からなる記録磁性層からなる多層構造のディスクを想定する。一般的には、ディスク1の表面には記録層の上層にCなどからなる数nm厚の保護層画形成されて、更に表面潤滑材による表面加工処理が施されている。例えば同実施形態においては、リードヘッドから読出されるリード信号の孤立微分波形において、その微分半値幅は95nm程度であり、ディスク1のトラック密度は60kTPI(0.423μmのトラックピッチ)程度のものを用いた。
この場合、サーボ信号の周波数は例えば40MHzであり、最高データ周波数は150MHz程度である。即ち、一般的に、サーボ信号のS/N比の確保、およびサーボ系信号処理回路の簡素化のため、サーボ信号の周波数は、データ信号の周波数の数分の一程度に低く設定されることが多い。ここで、同実施形態では、微分等化回路111はサーボ信号に対してのみ適用される。このため、データ信号の最高周波数に依存せずに、サーボ信号の周波数のみに従って、微分等化回路111の高域カットオフ周波数を設定することができる。微分等化回路111の設計では、カットオフ周波数が低いほど簡単であり、かつサーボ信号のS/N比を向上させることができる。また、微分等化回路111の高域カットオフ周波数をローパスフィルタの遮断周波数と等しくすることにより、サーボ系復調回路112には、新たにローパスフィルタを設ける必要が無くなり、より簡便な回路構成を実現することができる。
(変形例)
同実施形態のディスクドライブは、ディスク1上のサーボセクタ40に記録されたサーボ信号を使用してヘッド位置決め制御を行なうため、セクタサーボ方式と呼ばれている。セクタサーボ方式は、サーボセクタ間に複数のデータセクタ41が設けられている。
ところで、ディスクドライブでは、ユーザデータをデータセクタ40に記録するライト動作時には、ディスク1の回転変動を許容するため、一般的にはデータセクタ間に非記録マージン領域(ギャップ部)が設けられている。このため、各データセクタの手前の領域では、当該ギャップ部に対応するDC領域が生じてしまう。リード動作時に、データセクタから読出される先頭データ系列は、当該DC領域により大きく低域歪みが発生した信号波形となる。同実施形態では、サーボセクタ40から読出されるサーボ信号については、微分等化回路111による微分処理で、当該波形歪みの影響が除去される。しかし、データセクタ41の先頭データ系列からは、当該波形歪みの影響をそのままでは除去できない。
そこで、本変形例として、データセクタ41の先頭領域に、信号のDC歪み量を検知するための擬似信号領域を設ける。データチャネル11は、データ再生動作時に、当該DC歪み量を使用して、リード信号波形の歪み補正を実行する歪み補正回路を有する。また、データ系復調回路110には、当該波形歪みのあるリード信号がそのまま入力される場合がある。垂直矩形波のリード信号が最もDC歪みの強い形で表れる場合、その信号振幅は歪みのない本来の信号振幅の2倍の大きさになることが確認されている。従って、データ系復調回路110の入力飽和レベルは、本来の歪みのないリード信号振幅レベル(リードアンプの出力)の2倍以上に設定されることが望ましい。
また、データチャネル11の中に、前述の歪み補正回路を設けることなく、低域遮断による信号波形歪みの影響を緩和する方法として、歪み影響の強い領域と、高いデータ信頼性を要求される領域とを分ける構成でもよい。即ち、ディスク1上に一定のDC磁化領域が存在する場合、そのリード信号中で低域遮断特性による歪み影響が生じる領域は、当該DC領域の次に来る領域である。この領域は、磁化転移信号の手前のDC領域とほぼ同じ長さの領域である。また、その磁化転移信号の後ろ側の領域にも歪みを生じる。
前述したように、DC磁化領域は、データセクタ間のマージン領域に生じやすい。データセクタ41の先頭部には、図4(B)に示すように、一定の繰り返し周波数信号が記録されたPLL領域400である。このPLL領域400の周波数は、信号品質の保証面などからデータ信号の最高周波数と比較して、低い周波数が用いられる。データセクタ41の手前のDC領域による歪み影響をより最小限に抑えるためには、このPLL領域400の長さを、データセクタ41の手前のDC領域よりも長くすることが望ましい。これにより、少なくともデータセクタ41中のランダムなユーザデータ領域401への波形歪みの影響が及ぶことを回避できる。即ち、PLL領域400(同期信号領域)の長さをL1とし、前記DC領域の長さをL2とした場合に、「L1>L2」の関係を満足するような構成である。
なお、同実施形態のデータチャネル11のデータ系復調回路110は、データ信号から記録データを復号化する処理方法として、ターボ復号方法を併用してもよい。
以上のように同実施形態によれば、サーボデータを再生するサーボ処理系は、垂直矩形波のリード信号を微分等化して得られるサーボ信号を使用する。一方、ユーザデータ(記録データ)を再生するデータ処理系は、垂直矩形波のリード信号をそのまま処理する正係数PR等化方式の信号処理を実行する。
従って、サーボシステムとしては、振幅変動を抑制した安定化した振幅値を有するサーボ信号を使用できる。これにより、高精度のヘッド位置決め制御を実現できる。また、データ再生システムとしては、広帯域かつ高記録密度に適したデータ信号処理を利用できるため、高トラック記録密度化かつ高線記録密度化を実現することができる。
なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
本発明の実施形態に関するディスクドライブに使用されているデータチャネルとその周辺構成を示すブロック図。 同実施形態に関するディスクドライブの要部を示すブロック図。 同実施形態に関するリード信号波形を説明するための図。 同実施形態に関するディスクのトラックフォーマットを説明するための図。 同実施形態に関する正係数PR等化方式の特性を説明するための図。 同実施形態に関するサーボ信号波形を説明するための図。 同実施形態に関するディスクドライブの外観を示す図。
符号の説明
1…ディスク、2…スピンドルモータ(SPM)、
3…磁気ヘッド(リードヘッドとライトヘッド)、4…アクチュエータ、
5…ボイスコイルモータ(VCM)、10…伝送経路、11…データチャネル、
12…ディスクコントローラ(HDC)、13…位置決め機構(サーボ機構)、
14…マイクロプロセッサ(CPU)、15…メモリ、20…プリアンプ回路、
21…モータドライバIC、21A…VCMドライバ、21B…SPMドライバ、
100…トラック、101…サーボエリア、110…データ系復調回路、
111…微分等化回路、112…サーボ系復調回路。

Claims (7)

  1. 垂直異方性を有する垂直記録層と軟磁性層の2層を含む垂直磁気記録用のディスク媒体と、
    前記ディスク媒体からサーボ信号またはユーザデータ信号を含む矩形波リード信号を出力するシールド型磁気抵抗効果素子からなるリードヘッドと、
    前記ユーザデータ信号の周波数よりも低い周波数の前記サーボ信号であって、前記リードヘッドから出力された前記サーボ信号の矩形波リード信号のみを微分信号波形に変換する微分回路と、
    前記微分回路から出力される微分信号波形で、DC成分が除去された前記サーボ信号からサーボデータを再生するサーボ処理手段と、
    前記リードヘッドから出力された前記ユーザデータ信号の前記矩形波リード信号から正係数パーシャル・レスポンス等化方式によりデジタルデータを検出し、最尤復号化方式を使用した復号化処理により前記データ信号に対応する記録データを再生するデータ処理手段と
    を具備したことを特徴とする磁気ディスク装置。
  2. 前記データ処理手段は、前記正係数パーシャル・レスポンス等化方式の信号処理を実行する回路を有し、
    当該回路の入力飽和レベルが、前記リードヘッドから出力される前記ユーザデータ信号を増幅するためのリードアンプ回路の出力レベルの2倍以上に設定されている構成であることを特徴とする請求項1に記載の磁気ディスク装置。
  3. 前記ディスク媒体は、同心円状の複数のトラックが構成されて、当該各トラックは、前記サーボ信号が記録されるサーボセクタと、前記ユーザデータ信号が記録されるデータセクタとが設けられた構成であり、
    前記各データセクタの先頭部には、前記リードヘッドにより読出される前記ユーザデータ信号のDC歪みを検知し、当該DC歪みを補正するための疑似信号領域が設けられた構成であることを特徴とする請求項1または請求項2のいずれか1項に記載の磁気ディスク装置。
  4. 前記ディスク媒体は、同心円状の複数のトラックが構成されて、当該各トラックは、前記サーボ信号が記録されるサーボセクタと、前記ユーザデータ信号が記録されるデータセクタとが設けられた構成であり、
    前記各データセクタの先頭部に設けられた一定周波数の同期信号領域及び前記各データセクタの境界部に設けられたDC領域において、前記同期信号領域の長さをL1とし、前記DC領域の長さをL2とした場合に、「L1>L2」の関係を満足するように構成されていることを特徴とする請求項1から請求項3のいずれか1項に記載の磁気ディスク装置。
  5. 前記ユーザデータ信号の微分波形の半値幅を、データの転送ビット長で除算して求められる規格化線密度において、前記データ処理手段において、当該規格化線密度が2以上のデータ転送レートにて用いられることを特徴とする請求項1から請求項4のいずれか1項に記載の磁気ディスク装置。
  6. 前記リードヘッドと垂直磁気記録の可能なライトヘッドとを含む磁気ヘッドを有することを特徴とする請求項1から請求項5のいずれか1項に記載の磁気ディスク装置。
  7. 垂直異方性を有する垂直記録層と軟磁性層の2層を含む垂直磁気記録用のディスク媒体と、前記ディスク媒体からサーボ信号またはユーザデータ信号を含む矩形波リード信号を出力するシールド型磁気抵抗効果素子からなるリードヘッドとを含む垂直磁気記録方式の磁気ディスク装置に適用し、
    前記リードヘッドから、前記サーボ信号の周波数は前記データ信号の周波数よりも低い周波数であり、前記矩形波リード信号を微分信号波形に変換するときの高域カットオフ周波数が前記ユーザデータ信号の最高周波数よりも低い前記矩形波リード信号を入力し、当該入力信号からデータを再生して出力するデータチャネルにおいて、
    前記入力信号に含まれる前記サーボ信号を微分処理して、微分信号波形に変換する微分回路と、
    前記微分回路から出力される微分信号波形で、DC成分が除去された前記サーボ信号からサーボデータを再生するサーボ復調回路と、
    前記矩形波リード信号に含まれる前記ユーザデータ信号から、正係数パーシャル・レスポンス等化方式によりデジタルデータを検出するPR信号処理回路と、
    前記デジタルデータから記録データを復号化する復号化回路と
    を具備したことを特徴とするデータチャネル。
JP2005196577A 2005-07-05 2005-07-05 垂直磁気記録方式の磁気ディスク装置 Pending JP2005346913A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005196577A JP2005346913A (ja) 2005-07-05 2005-07-05 垂直磁気記録方式の磁気ディスク装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005196577A JP2005346913A (ja) 2005-07-05 2005-07-05 垂直磁気記録方式の磁気ディスク装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001303879A Division JP4028201B2 (ja) 2001-09-28 2001-09-28 垂直磁気記録方式の磁気ディスク装置

Publications (1)

Publication Number Publication Date
JP2005346913A true JP2005346913A (ja) 2005-12-15

Family

ID=35499113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005196577A Pending JP2005346913A (ja) 2005-07-05 2005-07-05 垂直磁気記録方式の磁気ディスク装置

Country Status (1)

Country Link
JP (1) JP2005346913A (ja)

Similar Documents

Publication Publication Date Title
JP3776797B2 (ja) 磁気記録再生装置
JP2005004917A (ja) 垂直磁気記録媒体及び磁気ディスク装置
JP4028201B2 (ja) 垂直磁気記録方式の磁気ディスク装置
JP2006196068A (ja) サーボ情報記録方法、磁気記録媒体及び磁気ディスク装置
JP2003045120A (ja) ディスク記憶装置及び同装置に適用するリード方法
US7126774B2 (en) Magnetic recording and reproducing apparatus
JP4211977B2 (ja) 磁気記録装置、磁気記録媒体及び磁気記録方法
US6894855B2 (en) Magnetic disk drive including read channel for processing differentiated read signal
US6975469B2 (en) Servo data coded recording system for disk drive
US20020089773A1 (en) Disk drive including preamplifier for perpendicular magnetic recording system
US7284164B2 (en) Method and apparatus for error correction of read data in a disk drive
JP2005346913A (ja) 垂直磁気記録方式の磁気ディスク装置
JP3607672B2 (ja) 垂直磁気記録方式の磁気ディスク装置及び同装置に適用する記録補償方法
US10255945B1 (en) Media storage areal density
JP2006048920A (ja) 磁気記録媒体
US7965461B2 (en) Information reproducing apparatus
JP2006172670A (ja) 磁気記録再生装置
JP2003045133A (ja) 垂直磁気記録方式のサーボライト方法及び磁気ディスク装置
US20080007869A1 (en) Disk drive and magnetic storage medium
US7952838B2 (en) Read head for magnetic storage system
JP3998575B2 (ja) スパイクノイズ訂正機能を有する記録装置
JP2005302198A (ja) 磁気ディスク装置
JP5532369B2 (ja) ディスク装置および再生ヘッド
JP2002197603A (ja) 磁気ディスク装置及びヘッドアンプ回路
JP2002251703A (ja) 磁気記録装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20070821

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071211