JP2005344341A - Floor slab waterproofing construction method and floor slab waterproofing structure - Google Patents
Floor slab waterproofing construction method and floor slab waterproofing structure Download PDFInfo
- Publication number
- JP2005344341A JP2005344341A JP2004163990A JP2004163990A JP2005344341A JP 2005344341 A JP2005344341 A JP 2005344341A JP 2004163990 A JP2004163990 A JP 2004163990A JP 2004163990 A JP2004163990 A JP 2004163990A JP 2005344341 A JP2005344341 A JP 2005344341A
- Authority
- JP
- Japan
- Prior art keywords
- floor slab
- resin composition
- concrete
- radical curable
- waterproofing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004078 waterproofing Methods 0.000 title claims abstract description 64
- 238000010276 construction Methods 0.000 title claims abstract description 20
- 239000004567 concrete Substances 0.000 claims abstract description 68
- 239000011342 resin composition Substances 0.000 claims abstract description 53
- 239000000463 material Substances 0.000 claims abstract description 52
- 239000010426 asphalt Substances 0.000 claims abstract description 50
- 239000011347 resin Substances 0.000 claims abstract description 38
- 229920005989 resin Polymers 0.000 claims abstract description 38
- 239000007788 liquid Substances 0.000 claims abstract description 33
- 239000008187 granular material Substances 0.000 claims abstract description 18
- 238000012360 testing method Methods 0.000 claims description 42
- 239000011248 coating agent Substances 0.000 claims description 25
- 238000000576 coating method Methods 0.000 claims description 25
- 238000000034 method Methods 0.000 claims description 20
- 239000003208 petroleum Substances 0.000 claims description 16
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 6
- 239000004925 Acrylic resin Substances 0.000 claims description 5
- 238000005452 bending Methods 0.000 claims description 5
- 239000000113 methacrylic resin Substances 0.000 claims description 2
- 230000000977 initiatory effect Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 29
- 230000000052 comparative effect Effects 0.000 description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- 239000000203 mixture Substances 0.000 description 10
- 239000000853 adhesive Substances 0.000 description 9
- 230000001070 adhesive effect Effects 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 238000005259 measurement Methods 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 229920001971 elastomer Polymers 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 239000011150 reinforced concrete Substances 0.000 description 6
- 239000005060 rubber Substances 0.000 description 6
- -1 acrylate ester Chemical class 0.000 description 5
- 238000013461 design Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 229910052956 cinnabar Inorganic materials 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 4
- 230000008439 repair process Effects 0.000 description 4
- 229920000178 Acrylic resin Polymers 0.000 description 3
- 101000972485 Homo sapiens Lupus La protein Proteins 0.000 description 3
- 102100022742 Lupus La protein Human genes 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 239000003607 modifier Substances 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 239000004576 sand Substances 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 238000010998 test method Methods 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 2
- 239000003522 acrylic cement Substances 0.000 description 2
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- NPEWZDADCAZMNF-UHFFFAOYSA-N gold iron Chemical compound [Fe].[Au] NPEWZDADCAZMNF-UHFFFAOYSA-N 0.000 description 2
- 239000012943 hotmelt Substances 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 239000002932 luster Substances 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 238000009827 uniform distribution Methods 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000004902 Softening Agent Substances 0.000 description 1
- 239000012615 aggregate Substances 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000004035 construction material Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 125000004177 diethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- UHESRSKEBRADOO-UHFFFAOYSA-N ethyl carbamate;prop-2-enoic acid Chemical compound OC(=O)C=C.CCOC(N)=O UHESRSKEBRADOO-UHFFFAOYSA-N 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- KCTAWXVAICEBSD-UHFFFAOYSA-N prop-2-enoyloxy prop-2-eneperoxoate Chemical compound C=CC(=O)OOOC(=O)C=C KCTAWXVAICEBSD-UHFFFAOYSA-N 0.000 description 1
- 238000007761 roller coating Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000007779 soft material Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Landscapes
- Road Paving Structures (AREA)
- Bridges Or Land Bridges (AREA)
Abstract
Description
本発明は、道路橋のコンクリート床版(鉄筋コンクリート床版)の損傷・劣化を防ぐ目的で採用されている床版防水施工方法及び該方法で防水された床版防水構造体に関するものである。 The present invention relates to a floor slab waterproofing construction method adopted for the purpose of preventing damage and deterioration of a concrete floor slab (reinforced concrete floor slab) of a road bridge, and a floor slab waterproof structure waterproofed by the method.
道路橋のコンクリート床版は、他のコンクリート構造物と比較して部材厚が薄く、且つ直接交通荷重を絶え間なく受ける等の非常に厳しい条件下に晒されている。 The concrete floor slab of the road bridge is exposed to extremely severe conditions such as a thinner member thickness than that of other concrete structures and continuous direct traffic loads.
近年、実際の交通を再現する耐久性能評価試験装置が考案され、様々な条件下での劣化メカニズムが明らかになってきた。その中で、湿潤状態にある床版は乾燥状態と比較しその疲労寿命が1/100まで短くなることが指摘されおり(例えば、非特許文献1参照)、水の存在がコンクリート床版の劣化を著しく促進することが明らかとなってきた。 In recent years, a durability performance evaluation test device that reproduces actual traffic has been devised, and the degradation mechanism under various conditions has become clear. Among them, it has been pointed out that a floor slab in a wet state has a fatigue life shortened to 1/100 compared to a dry state (see, for example, Non-Patent Document 1), and the presence of water deteriorates the concrete slab. Has been shown to significantly promote
重要な社会資本の一つである道路橋の損傷に伴う補修や打ち替えは、それにかかる費用のみでなく、社会に与える影響が大きいため、損傷を防ぐための維持・管理手法、即ち予防保全手法が注目されているなか、様々なコンクリート床版の防水手法が検討されている。 Repair and replacement due to damage to a road bridge, one of the important social capitals, not only costs it, but also has a large impact on society, so a maintenance and management method to prevent damage, that is, preventive maintenance method Various attention is being paid to waterproofing concrete floor slabs.
一般的に、コンクリート床版の防水に用いられている防水材は、シート防水材、舗装系防水材、塗膜系防水材に分類できる。 In general, waterproofing materials used for waterproofing concrete slabs can be classified into sheet waterproofing materials, pavement waterproofing materials, and coating film waterproofing materials.
シート系防水材としては、合成繊維不織布に特殊アスファルトを含浸させて成形した1.5〜4mm厚み程度のアスファルト系の防水シートが知られている。これは、床版に加熱溶融しながら接着したり、プライマーや接着剤等で貼り付けることで使用される。 As a sheet-based waterproof material, an asphalt-based waterproof sheet having a thickness of about 1.5 to 4 mm formed by impregnating special asphalt into a synthetic fiber nonwoven fabric is known. This is used by adhering to a floor slab while heating and melting, or by adhering with a primer or an adhesive.
舗装系防水材としては、例えばストレートアスファルトに精製トリニダットアスファルトを配合した硬質アスファルトをバインダーとして、骨材や砂粉を混合したもので、15〜25mm程度の厚さに施工されるものが知られている。 As a pavement waterproofing material, for example, a hard asphalt containing purified trinidad asphalt mixed with straight asphalt is used as a binder, and aggregates and sand powder are mixed, and those that are constructed to a thickness of about 15 to 25 mm are known. ing.
塗膜系防水材としては、クロロプレンゴムなどの合成ゴムに無機質フィラー、加硫剤、顔料などを添加し、揮発性溶剤を加えた高粘度溶液の合成ゴム系塗膜防水材やアスファルトに合成ゴムを10〜40%添加したゴム入りアスファルトを主成分とし、加熱溶融してコンクリート床版に塗布して防水層を形成するアスファルト系塗膜防水材や、エポキシ樹脂からなる主剤と変性ポリアミンからなる硬化剤の2成分を主成分とし、更に軟化剤、充填材、顔料等を添加したエポキシ系塗膜防水材が知られている。また、低温での伸び率が10%以上のラジカル硬化性樹脂を用いた塗膜系防水剤も提案されている(例えば、特許文献1参照)。 As a coating film waterproofing material, synthetic rubber such as chloroprene rubber is added to inorganic rubber, vulcanizing agents, pigments, etc., and volatile solvents are added. Asphalt-based coating film waterproofing material that contains 10-40% of rubber-containing asphalt as a main component, and is heated and melted and applied to a concrete floor slab to form a waterproof layer, and a curing agent composed of an epoxy resin and a modified polyamine An epoxy-based waterproofing coating material is known which has two components of the agent as a main component and further added with a softening agent, a filler, a pigment and the like. A coating waterproofing agent using a radical curable resin having an elongation rate of 10% or more at a low temperature has also been proposed (see, for example, Patent Document 1).
ところで、シート系防水材は、アスファルト系の柔らかい材料を用いているため、床版にクラックが生じた場合のクラック追従性に優れ、またアスファルト舗装との接着性に優れる等の長所を有する。 By the way, since the sheet-based waterproofing material uses an asphalt-based soft material, the sheet-based waterproofing material has advantages such as excellent crack followability when cracks occur in the floor slab and excellent adhesion to asphalt pavement.
しかしながら、シートに厚みがあるため、コンクリート床版の不陸に沿った防水層を形成しにくく空気を巻き込みやすいことや、防水層の上にアスファルト合材を舗設する際に骨材によってシートに孔が開きやすく、また一旦防水層の一部が破れて水が浸入した場合に水が廻りやすい等の問題点があった。 However, because the sheet is thick, it is difficult to form a waterproof layer along the uneven surface of the concrete floor slab, and it is easy to entrain air, and when asphalt composite material is paved on the waterproof layer, the aggregate makes holes in the sheet. There is a problem that the water is easy to open, and when a part of the waterproof layer is broken and water enters, the water easily turns.
舗装系防水材は、通常の舗装機器・設備で施工できる等の特徴はあるが、他の防水材に比べ防水性能の確実性に欠け、特にコンクリート床版に不陸がある場合に、防水層に薄い箇所が発生するため、防水性能を確保しにくいという問題点があった。 Pavement-based waterproofing materials have features such as being able to be constructed with ordinary pavement equipment and facilities, but they lack certainty of waterproofing performance compared to other waterproofing materials, especially when there is unevenness in concrete slabs. However, there is a problem that it is difficult to ensure waterproof performance.
塗膜系防水材は、何れもコンクリート床版上に数回に分けて塗り重ね、最終的な膜厚として0.4〜1.5mm程度の防水層を形成するものであるが、ピンホールが発生しやすく、防水性能の確実性が低いという問題があった。また、コンクリート床版への高い接着性と、コンクリート床版にクラックを生じた場合の追従性とをバランスよく満たすことが難しい問題があった。 Each of the coating-type waterproofing materials is applied to a concrete floor slab in several times to form a waterproof layer having a final film thickness of about 0.4 to 1.5 mm. There was a problem that it was easy to occur and the certainty of waterproof performance was low. In addition, there is a problem that it is difficult to balance the high adhesiveness to the concrete slab and the following ability when cracks occur in the concrete slab.
更に、上記いずれの防水材も、コンクリート床版上に接着された防水層を形成するものであり、この防水層には必ずコンクリート表面との界面が存在するため、この界面に防水層の側端面側から水が侵入する恐れがある。また、床版コンクリートそのものに防水性能を付与しているものではないため、防水層の一部に欠損が発生した場合、その欠陥部分を通して水がコンクリート床版全体に広がる可能性もある。 Further, any of the above waterproofing materials forms a waterproof layer bonded on the concrete floor slab, and since this waterproof layer always has an interface with the concrete surface, the side end face of the waterproof layer is present at this interface. There is a risk of water entering from the side. In addition, since the floor slab concrete itself is not waterproofed, if a defect occurs in part of the waterproof layer, water may spread throughout the concrete slab through the defective part.
本発明は、上記従来の問題点に鑑みてなされたもので、コンクリートと防水層を一体化してコンクリート床版と防水層間の界面をなくすと共に、クラックの発生にも追従できる床版防水施工方法及び床版防水構造体を提供することを目的とする。 The present invention has been made in view of the above-mentioned conventional problems, and is a floor slab waterproofing construction method that can integrate the concrete and waterproof layer to eliminate the interface between the concrete floor slab and the waterproof layer, and can also follow the occurrence of cracks. An object is to provide a floor slab waterproof structure.
本発明の第1は、上記目的のために、コンクリート床版上にアクリル系ラジカル硬化性液状樹脂組成物を塗布し、コンクリート床版に含浸させた後硬化させると共に、このアクリル系ラジカル硬化性液状樹脂組成物の塗布と同時又は塗布後に、分子内に不飽和二重結合基を有する加熱軟化型樹脂粒状物を撒布した後、更に加熱塗布系アスファルト防水材を塗布することを特徴とする床版防水工法を提供するものである。 In the first aspect of the present invention, for the above purpose, an acrylic radical curable liquid resin composition is applied onto a concrete floor slab, impregnated into the concrete floor slab and then cured, and this acrylic radical curable liquid is used. A floor slab characterized by spreading a heat-softening type resin granular material having an unsaturated double bond group in the molecule at the same time as or after application of the resin composition, and further applying a heat-applied asphalt waterproofing material. It provides a waterproof construction method.
上きい本発明の第1は、前記アクリル系ラジカル硬化性樹脂組成物の塗布時の粘度が2000mPa・s以下であり且つ、塗布量が50g/m2以上500g/m2以下であること、
前記ラジカル硬化性液状樹脂組成物が、JIS A 1106.3(供試体)により作製した100mm×100mm×400mmのコンクリートブロックの中央部付近に曲げ荷重を加えて2片に破断した後、その2片の破断面を0.2mmの間隔をあけて突き合わせ対向させた状態で固定することにより試験片を作製し、水平方向に維持した試験片上面に200g/m2塗布した際に、ひび割れに含浸硬化してコンクリートを一体化する深さが10mm以上であること、
前記分子内に不飽和二重結合基を有する加熱軟化型樹脂粒状物が、軟化点が60℃以上130℃以下である石油樹脂又はポリシクロペンタジエンであること、
前記アクリル系ラジカル硬化性樹脂組成物が、アクリル系及び/又はメタアクリル系樹脂を主成分とする液状樹脂組成物であること、
をその好ましい態様として含むものである。
The first aspect of the present invention is that the acrylic radical curable resin composition has a viscosity of 2000 mPa · s or less and a coating amount of 50 g / m 2 or more and 500 g / m 2 or less,
After the radical curable liquid resin composition was broken into two pieces by applying a bending load near the center of a 100 mm × 100 mm × 400 mm concrete block prepared according to JIS A 1106.3 (specimen), the two pieces A test piece was prepared by fixing the fractured surface of the test piece in a state of being opposed to each other with a spacing of 0.2 mm, and when applied to the upper surface of the test piece maintained in a horizontal direction, 200 g / m 2 was applied to impregnate and cure the crack. And the depth of integrating the concrete is 10 mm or more,
The heat-softening type resin granular material having an unsaturated double bond group in the molecule is a petroleum resin or polycyclopentadiene having a softening point of 60 ° C. or higher and 130 ° C. or lower,
The acrylic radical curable resin composition is a liquid resin composition mainly composed of an acrylic and / or methacrylic resin;
Is included as a preferred embodiment thereof.
また、本発明の第2は、上記本発明の第1のいずれかの床版防水施工方法で防水施工されたコンクリート床版であることを特徴とする床版防水構造体を提供するものである。 Moreover, 2nd of this invention provides the floor slab waterproofing structure characterized by being the concrete slab waterproofed by the floor slab waterproofing construction method in any one of the said 1st of this invention. .
本発明によれば、コンクリート床版にラジカル硬化性液状樹脂組成物を含浸硬化させて、コンクリート床版を構成するコンクリートの表面層を防水層としているので、コンクリート床版と一体化した防水層を形成することができ、表面に塗膜層として防水層を形成する場合のように、ピンホールを生じる恐れをなくすことができると共に、コンクリート床版と防水層間の界面をなくすことができる。従って、防水層端部や防水層欠陥部分から、コンクリート床版と防水層の界面への水の浸入という問題を生じることのない防水コンクリート床版を得ることができる。また、本発明によれば、ラジカル硬化性液状樹脂組成物がクラックに浸透硬化するので、防水施工と同時に、コンクリート床版のクラック補修を行うことができる。 According to the present invention, the concrete slab is impregnated and cured with a radical curable liquid resin composition, and the concrete surface layer constituting the concrete slab is used as a waterproof layer. As in the case of forming a waterproof layer as a coating layer on the surface, the possibility of pinholes can be eliminated, and the interface between the concrete floor slab and the waterproof layer can be eliminated. Therefore, it is possible to obtain a waterproof concrete floor slab that does not cause the problem of water intrusion into the interface between the concrete floor slab and the waterproof layer from the waterproof layer end or the waterproof layer defective portion. Moreover, according to this invention, since a radical curable liquid resin composition is osmotically hardened to a crack, the crack repair of a concrete floor slab can be performed simultaneously with waterproof construction.
本発明によれば、上記ラジカル硬化性液状樹脂組成物を含浸硬化させた面に、分子内に不飽和二重結合基を有する加熱軟化型樹脂粒状物が撒布され、更に加熱塗布型アスファルト防水材が塗布されるので、加熱塗布型アスファルト防水材の塗布時に加熱軟化型樹脂粒状物が軟化して、加熱塗布型アスファルト防水材とコンクリート床版間の良好な密着力が得られる。従って、更にその上に施される舗装材であるアスファルト混合物の定着性が向上すると共に、加熱塗布型アスファルト防水材がコンクリート床版に密着したまま、施工後に発生するひび割れに対しても追従性を発揮するので、長期に亘って防水性能を確保することが可能な床版防水工法並びに床版防水構造体を提供できる。 According to the present invention, heat softening resin granules having an unsaturated double bond group in the molecule are distributed on the surface of the radical curable liquid resin composition impregnated and cured, and further, a heat-applied asphalt waterproofing material is provided. Therefore, the heat softening type resin granular material is softened when the heat application type asphalt waterproof material is applied, and a good adhesion between the heat application type asphalt waterproof material and the concrete floor slab is obtained. Therefore, the fixability of the asphalt mixture, which is a paving material applied on it, is further improved, and the heat-applicable asphalt waterproofing material is also in close contact with the concrete floor slab, and can also follow the cracks that occur after construction. Therefore, it is possible to provide a floor slab waterproofing method and a floor slab waterproof structure that can ensure waterproof performance over a long period of time.
以下、更に本発明を詳細に説明する。また、本発明の床版防水方法及び床版防水構造体は、新設床版に舗装を行なう場合と既設床版の舗装打ち替えの場合との双方に適応が可能である。 Hereinafter, the present invention will be further described in detail. In addition, the floor slab waterproofing method and floor slab waterproof structure of the present invention can be applied both when paving a newly installed floor slab and when replacing an existing floor slab.
本発明で用いるアクリル系ラジカル硬化性液状樹脂組成物としては、(メタ)アクリル酸エステルモノマー中に必要に応じて(メタ)アクリル酸エステルモノマーに可溶なポリマーあるいはウレタンアクリレート、エポキシアクリレート等のアクリルオリゴマーを含有してなる常温硬化型の(メタ)アクリル樹脂組成物を挙げることができる。本発明で用いるアクリル系ラジカル硬化性液状樹脂組成物として更に好ましいものとしては、日本国特許第3315619号に示されている1分子中にカルボニル基と隣接しないエチレン性不飽和二重結合を有するジシクロペンテニロキシ基を有する単官能(メタ)アクリレートあるいは1分子中にカルボニル基と隣接しないエチレン性不飽和二重結合を有する両末端(メタ)アクリル変性液状ポリブタジエンおよびその誘導体である多官能(メタ)アクリレートを含有してなる常温硬化型の(メタ)アクリル樹脂組成物を挙げることができる。具体的には、市販の「ハードロックII・DK550−003」、「ハードロックII・DK550−01」(電気化学工業社製アクリル系接着剤)等を挙げることができるが、本発明はこれらに限定されるものではない。 As the acrylic radical curable liquid resin composition used in the present invention, a polymer soluble in the (meth) acrylate ester monomer or an acrylic such as urethane acrylate or epoxy acrylate, if necessary, in the (meth) acrylate ester monomer. A room temperature curable (meth) acrylic resin composition containing an oligomer may be mentioned. More preferable examples of the acrylic radical curable liquid resin composition used in the present invention include diethyl having an ethylenically unsaturated double bond not adjacent to a carbonyl group in one molecule as shown in Japanese Patent No. 3315619. A monofunctional (meth) acrylate having a cyclopentenyloxy group or a polyfunctional (meta) which is a derivative (meth) acryl-modified liquid polybutadiene having an ethylenically unsaturated double bond not adjacent to a carbonyl group in one molecule and a derivative thereof. ) A room-temperature curable (meth) acrylic resin composition containing an acrylate. Specifically, commercially available “Hard Rock II · DK550-003”, “Hard Rock II · DK550-01” (an acrylic adhesive manufactured by Denki Kagaku Kogyo Co., Ltd.) and the like can be mentioned, but the present invention includes these. It is not limited.
上記アクリル系ラジカル硬化性液状樹脂組成物は、塗布時の粘度が2000mPa・s以下の状態でコンクリート床版に塗布することが好ましい。該アクリル系ラジカル硬化性液状樹脂組成物の塗布時の粘度が2000mPa・sを超える場合、コンクリート床版への含浸性が悪くなり、床版に浸透して表層と一体化した防水層の形成がしにくくなり、表面に塗膜を形成して、ピンホールの発生原因となりやすい。 The acrylic radical-curable liquid resin composition is preferably applied to a concrete slab with a viscosity of 2000 mPa · s or less when applied. When the viscosity at the time of application of the acrylic radical curable liquid resin composition exceeds 2000 mPa · s, the impregnation property of the concrete floor slab is deteriorated, and a waterproof layer that penetrates the floor slab and is integrated with the surface layer is formed. It tends to cause pinholes by forming a coating film on the surface.
上記アクリル系ラジカル硬化性液状樹脂組成物の粘度は、JIS K6833の6.3(粘度)によって測定した粘度をいう。また、この粘度の調整は、例えばラジカル硬化性液状樹脂組成物中の(メタ)アクリル酸エステルモノマー含有量、あるいは市販の増粘剤の添加等によって行うことができる。 The viscosity of the acrylic radical curable liquid resin composition is a viscosity measured according to 6.3 (viscosity) of JIS K6833. The viscosity can be adjusted by, for example, adding a (meth) acrylic acid ester monomer content in the radical curable liquid resin composition or adding a commercially available thickener.
アクリル系ラジカル硬化性液状樹脂組成物のコンクリート床版への塗布量は、50g/m2以上500g/m2以下であことが好ましい。アクリル系ラジカル硬化性液状樹脂組成物の塗布量が50g/m2未満の場合は、床版と一体化する防水層の厚みが薄くなると共に、塗り斑により部分的に防水層の形成が不十分となりやすい。また、500g/m2を超える塗布量としても、床版と一体化する防水層の厚みをさほど厚くすることはできない反面、塗布量の増大によって経済的負担が大きくなる。 The coating amount of the acrylic radical curable liquid resin composition on the concrete floor slab is preferably 50 g / m 2 or more and 500 g / m 2 or less. When the coating amount of the acrylic radical curable liquid resin composition is less than 50 g / m 2, the waterproof layer integrated with the floor slab becomes thin, and the waterproof layer is partially formed due to smears. It is easy to become. Even if the coating amount exceeds 500 g / m 2 , the thickness of the waterproof layer integrated with the floor slab cannot be increased so much, but the economic burden increases due to the increase in the coating amount.
アクリル系ラジカル硬化性液状樹脂組成物の塗布方法は特に制限はなく、施工面積、施工場所等に応じて、ヘラ塗り、ローラー塗り、コテ塗り、吹き付け等、適宜の方法を採用することができる。また、アクリル系ラジカル硬化性液状樹脂組成物の塗布は、コンクリート床版の上下面及び側面の全面に行うことが理想であるが、最小限の塗布量でコンクリート床版の湿潤を効果的に防止できるよう、少なくとも上面(舗装面)全面に塗布することが好ましい。 The application method of the acrylic radical curable liquid resin composition is not particularly limited, and an appropriate method such as spatula coating, roller coating, trowel coating, or spraying can be employed depending on the construction area, construction location, and the like. In addition, it is ideal to apply the acrylic radical curable liquid resin composition to the entire upper and lower surfaces and side surfaces of the concrete floor slab, but it effectively prevents wetting of the concrete floor slab with a minimum amount of application. It is preferable to apply at least the entire upper surface (paved surface) so that it can be made.
アクリル系ラジカル硬化性液状樹脂組成物は、その塗布によって、コンクリート床版に生じたクラックの補修をもできるよう、次の条件を満たすものであることが好ましい。 The acrylic radical curable liquid resin composition preferably satisfies the following conditions so that the application can repair cracks generated in the concrete floor slab.
即ち、JIS A 1106.3(供試体)により作製した100mm×100mm×400mmのコンクリートブロックの中央部付近に曲げ荷重を加え2片に破断した後、その2片の破断面を0.2mmのスペーサーを用いて0.2mmの間隔をあけて突き合わせて対向させた状態で固定することにより試験片を作製し、この試験片を水平方向に維持しながら、アクリル系ラジカル硬化性樹脂組成物を試験片上面に200g/m2塗布して硬化させた時に、アクリル系ラジカル硬化性樹脂組成物がクラックに含浸硬化してコンクリートと一体化する深さが10mm以上となるものが好ましい。アクリル系ラジカル硬化性液状樹脂組成物のクラック浸透性が10mm未満の場合、細かいクラックに充分深く浸透して一体化することができず、本発明の付帯効果であるコンクリート床版のクラック補修効果が小さくなる。 That is, after applying a bending load to the vicinity of the central part of a 100 mm × 100 mm × 400 mm concrete block prepared according to JIS A 1106.3 (specimen) and breaking it into two pieces, the fracture surface of the two pieces is a 0.2 mm spacer. A test piece was prepared by abutting and facing each other with an interval of 0.2 mm using the, and the acrylic radical curable resin composition was added to the test piece while maintaining the test piece in the horizontal direction. It is preferable that when the upper surface is coated with 200 g / m 2 and cured, the acrylic radical curable resin composition is impregnated and cured into cracks and integrated with concrete to a depth of 10 mm or more. When the crack penetration of the acrylic radical curable liquid resin composition is less than 10 mm, the crack cannot be integrated by deeply penetrating fine cracks, and the crack repairing effect of the concrete floor slab, which is an incidental effect of the present invention, is achieved. Get smaller.
コンクリート床版の防水層化した表面と、後述する加熱溶融型アスファルト防水材の間の接着力を増し、舗装のズレ等不具合を防止するため、上記ラジカル硬化性液状樹脂組成物の塗布と同時又は塗布後に、軟化点が60℃から130℃で、分子内に不飽和二重結合基を有する加熱軟化型樹脂粒状物を表面改質材として撒布する。この表面改質材の撒布は、表面改質材を混合したラジカル硬化性液状樹脂組成物の塗布によって、ラジカル硬化性液状樹脂組成物の塗布と同時に行っても、ラジカル硬化性液状樹脂組成物の塗布後、この塗布面に別途表面改質材を撒布することで行ってもよい。分子内に不飽和二重結合基を有する加熱軟化型樹脂粒状物は、加熱溶融型アスファルト防水材を塗布する工程で軟化し、その不飽和二重結合基が、コンクリート床版に含浸されたアクリル系ラジカル硬化性液状樹脂組成物と反応することで、加熱溶融型アスファルト防水材とコンクリート床版間の強固な密着力を付与する。 In order to increase the adhesive force between the waterproof layered surface of the concrete slab and the heat-melting type asphalt waterproofing material described later, and to prevent problems such as pavement displacement, simultaneously with the application of the radical curable liquid resin composition or After coating, a heat softening type resin granular material having a softening point of 60 ° C. to 130 ° C. and having an unsaturated double bond group in the molecule is distributed as a surface modifier. Even if the surface modifying material is distributed simultaneously with the application of the radical curable liquid resin composition by the application of the radical curable liquid resin composition mixed with the surface modifying material, After the application, the surface may be separately distributed on the application surface. Heat softening resin granules having unsaturated double bond groups in the molecule are softened in the process of applying a heat-melting type asphalt waterproofing material, and the acrylic resin in which the unsaturated double bond groups are impregnated into the concrete floor slab. By reacting with the system radical curable liquid resin composition, a strong adhesion between the heat-melt type asphalt waterproofing material and the concrete floor slab is imparted.
上記分子内に不飽和二重結合基を有する加熱軟化型樹脂粒状物としては、分子内に不飽和二重結合基を有する石油樹脂又はポリシクロペンタジエン樹脂粒状物が好ましい。分子内に不飽和二重結合基を有する石油樹脂又はポリシクロペンタジエン樹脂の代表的な構造式をそれぞれ化1及び化2に示す。本発明はこれらに限定されるものでなく、これらを変性した構造を持つものも使用できる。 As the heat-softening resin granular material having an unsaturated double bond group in the molecule, a petroleum resin or polycyclopentadiene resin granular material having an unsaturated double bond group in the molecule is preferable. Typical structural formulas of petroleum resin or polycyclopentadiene resin having an unsaturated double bond group in the molecule are shown in Chemical Formula 1 and Chemical Formula 2, respectively. This invention is not limited to these, What has the structure which modified | denatured these can also be used.
上記分子内に不飽和二重結合基を有する加熱軟化型樹脂粒状物の軟化点が60℃未満の場合、保存中にブロッキングを起しやく、作業性が悪くなりやすい。また、軟化点が130℃を超える場合、加熱溶融型アスファルト防水材を塗布した時に軟化しにくく、密着性が低下しやすくなる。更に、軟化点が60℃未満でも130℃を超えても、加熱溶融型アスファルト防水材とコンクリート床版との密着力の向上効果が小さくなる。 When the softening point of the heat-softening resin granular material having an unsaturated double bond group in the molecule is less than 60 ° C., blocking tends to occur during storage, and workability tends to deteriorate. Moreover, when a softening point exceeds 130 degreeC, when apply | coating a heat-melt-type asphalt waterproofing material, it is hard to soften and adhesiveness falls easily. Furthermore, even if a softening point is less than 60 degreeC or exceeds 130 degreeC, the improvement effect of the adhesive force of a heat-melt-type asphalt waterproofing material and a concrete floor slab becomes small.
前記分子内に不飽和二重結合基を有する加熱軟化型樹脂粒状物は、粒径約0.2〜3.0mmの粒状物であることが好ましく、前記アクリル系ラジカル硬化性液状樹脂組成物を塗布、含浸する工程と、加熱溶融型アスファルト防水材の塗布工程の間で散布するか、又は前記アクリル系ラジカル硬化性液状樹脂組成物を塗布、含浸する工程において、アクリル系ラジカル硬化性液状樹脂組成物に予め混合して塗布する。前記分子内に不飽和二重結合基を有する加熱軟化型樹脂粒状物の粒径が0.2mm未満の場合、撒布する時に風に飛ばされやすいため、風の強い日には所定量を撒布しにくくなったり、周囲を汚染しやすくなる。また、粒径が3.0mmを超える場合、粒径が大きすぎて均一撒布が行いにくくなる。 The heat-softening resin granular material having an unsaturated double bond group in the molecule is preferably a granular material having a particle size of about 0.2 to 3.0 mm, and the acrylic radical curable liquid resin composition is In the step of applying and impregnating the acrylic radical curable liquid resin composition, or spraying between the step of applying and impregnating and the step of applying the hot melt asphalt waterproofing material, the acrylic radical curable liquid resin composition Premix and apply to the object. When the particle size of the heat-softening resin granular material having an unsaturated double bond group in the molecule is less than 0.2 mm, it is easily blown by the wind when it is distributed. Therefore, a predetermined amount is distributed on a windy day. It becomes difficult and it becomes easy to pollute the surroundings. Moreover, when a particle size exceeds 3.0 mm, a particle size is too large and it becomes difficult to perform uniform distribution.
前記分子内に不飽和二重結合基を有する加熱軟化型樹脂粒状物の撒布量は特に制限はなく、アクリル系ラジカル硬化型樹脂組成物の塗布状況やコスト等から適宜洗選択することができるが、50g/m2〜500g/m2の間であることが好ましい。撒布量が50g/m2未満の場合は、加熱溶融型アスファルト防水材を塗布した際に、コンクリート床版との間の接着力の向上効果が乏しく、撒布量が500g/m2を超える場合は、コストが掛かり、経済的負担が大きくなる。 The amount of the heat-softening resin granules having an unsaturated double bond group in the molecule is not particularly limited, and can be appropriately selected based on the application status and cost of the acrylic radical curable resin composition. , preferably between 50g / m 2 ~500g / m 2 . When the spread amount is less than 50 g / m 2, the effect of improving the adhesive strength with the concrete floor slab is poor when the hot melt type asphalt waterproofing material is applied, and when the spread amount exceeds 500 g / m 2 , Cost increases and economic burden increases.
分子内に不飽和二重結合基を有する加熱軟化型樹脂粒状物の好ましい一例である、分子内に不飽和二重結合基を有する石油樹脂としては、市販の「ハイレッツG−100X」、「ハイレッツT−480X」、「ハイレッツR−100X」、「ハイレッツR−500X」(三井化学社製)等があり、また分子内に不飽和二重結合基を有する加熱軟化型樹脂粒状物の好ましい他の例である、分子内に不飽和二重結合基を有するポリシクロペンタジエン樹脂としては、市販の「クイントン1325」、「クイントン1500」、「クイントン1700」(日本ゼオン社製)等があるが、本発明はこれらに限定されるものではない。 Examples of the petroleum resin having an unsaturated double bond group in the molecule, which is a preferred example of the heat-softening resin granular material having an unsaturated double bond group in the molecule, include commercially available “HI-LETTS G-100X” and “HI-LET'S”. T-480X "," Highlet R-100X "," Highlet R-500X "(manufactured by Mitsui Chemicals Co., Ltd.), etc., and other preferable heat softening resin granules having an unsaturated double bond group in the molecule Examples of the polycyclopentadiene resin having an unsaturated double bond group in the molecule include commercially available “Quinton 1325”, “Quinton 1500”, “Quinton 1700” (manufactured by Nippon Zeon), etc. The invention is not limited to these examples.
本発明で用いる加熱塗布型アスファルト防水材としては、ニチレキ株式会社製「セロシールSS-B」、東亜道路株式会社製「タフシール」等があるが、特にこれらに限定されるものではなく、一般的に床版防水材に使用されている加熱塗布型アスファルト防水材を使用することができる。 Examples of the heat-applied asphalt waterproofing material used in the present invention include “Cello Seal SS-B” manufactured by Nichireki Co., Ltd. and “Tough Seal” manufactured by Toa Road Co., Ltd., but are not particularly limited to these. The heat application type asphalt waterproofing material used for the floor slab waterproofing material can be used.
加熱塗布型アスファルト防水材を塗布した後、アスファルト防水材の粘着性を低減し舗装用の重機の通行を確保すると同時に、アスファルト塗膜防水材の損傷を防ぐため、硅砂を撒布することができる。 After applying the heat-applied asphalt waterproofing material, dredged sand can be distributed to reduce the stickiness of the asphalt waterproofing material and ensure the passage of heavy equipment for paving and at the same time prevent the asphalt coating waterproofing material from being damaged.
次に、実施例及び比較例により本発明を具体的に説明する。 Next, the present invention will be specifically described with reference to Examples and Comparative Examples.
実施例1
アクリル系ラジカル硬化型樹脂組成物として、電気化学工業株式会社製アクリル系含浸接着剤「DK550−003」を20℃の恒温室の中で使用した。「DK550−003」の20℃における粘度は300mPa・sであった。
Example 1
As the acrylic radical curable resin composition, an acrylic impregnated adhesive “DK550-003” manufactured by Denki Kagaku Kogyo Co., Ltd. was used in a temperature-controlled room at 20 ° C. The viscosity of “DK550-003” at 20 ° C. was 300 mPa · s.
試験体として、表面をブラスト処理して表面のレイタンスを除去した30×30×6cmのコンクリート平板を6枚用意し、上記「DK550−003」を200g/m2の割合でゴムベラを使用して6枚全てに塗布し、予め7メッシュの金網(目開き2.83mm)で篩った石油樹脂(三井化学株式会社製「ハイレッツG−100X」:軟化点100℃)を100g/m2換算となるよう手で均一に撒布した。 As test specimens, six 30 × 30 × 6 cm concrete flat plates whose surfaces were blasted to remove surface latency were prepared, and the above “DK550-003” was used at a rate of 200 g / m 2 using a rubber spatula. Petroleum resin (“HI-LET'S G-100X” manufactured by Mitsui Chemicals, Inc .: softening point 100 ° C.) applied to all sheets and sieved in advance with a 7-mesh wire mesh (aperture 2.83 mm) is converted to 100 g / m 2. Evenly distributed by hand.
その後、東亜道路工業株式会社製の加熱塗布系アスファルト防水材「タフシール」を230℃に加熱して完全に溶解し、石油樹脂を撒布した試験体の表面に1.2Kg/m2換算で撒布し、バーナーで加熱しながら素早く金ごてを使用して平らに均した後、4号硅砂を1.0Kg/m2換算で手で撒布した。 After that, the heat-applied asphalt waterproofing material “Tough Seal” manufactured by Toa Road Industry Co., Ltd. is heated to 230 ° C. to completely dissolve it, and is sprayed on the surface of the test specimen coated with petroleum resin in terms of 1.2 kg / m 2. After heating with a burner and leveling quickly using a gold iron, No. 4 cinnabar was hand-spread by 1.0 kg / m 2 conversion.
1時間放置した後試験体5枚に、最大粒径13mmのSMA(Stone Mastic Asphalt)を用い、厚さ4cmとなるように線圧30Kg/cmに調整したコンパクターを使用して舗設を行なった。同時に、厚さ0.5mmの鉄板を#280番の研磨紙で金属光沢が出るまで研磨したものを準備して、アセトンで充分表面を脱脂した後、コンクリート平板と同じ様に「DK550−003」を塗布した。試験体は1日放置した後、日本道路協会「道路橋鉄筋コンクリート床版防水層設計・施工資料」に記載されている床版防水材品質基準項目の試験を行なった。なお、SMAとは、耐久的で耐流動性のある加熱アスファルトをいう。 After leaving for 1 hour, pavement was performed on 5 specimens using a compactor having a maximum particle size of 13 mm and adjusted to a linear pressure of 30 kg / cm so as to be 4 cm thick. At the same time, prepare a steel plate with a thickness of 0.5 mm polished with # 280 abrasive paper until it has a metallic luster, degrease the surface sufficiently with acetone, and then “DK550-003” in the same way as a concrete plate. Was applied. The test specimens were allowed to stand for a day and then tested for quality standards for floor slab waterproofing materials described in “Road Bridge Reinforced Concrete Slab Waterproof Layer Design and Construction Data” of the Japan Road Association. Note that SMA refers to durable and fluid resistance heated asphalt.
主な条件を表1に、結果を表5に示す。 The main conditions are shown in Table 1, and the results are shown in Table 5.
実施例2
アクリル系ラジカル硬化型樹脂組成物として、電気化学工業株式会社製アクリル系含浸接着剤「DK550−007」を、実施例1と同様に、20℃の恒温室の中で使用した。「DK550−007」の20℃における粘度は約700mPa・sであった。
Example 2
As an acrylic radical curable resin composition, an acrylic impregnated adhesive “DK550-007” manufactured by Denki Kagaku Kogyo Co., Ltd. was used in a constant temperature room at 20 ° C. as in Example 1. The viscosity of “DK550-007” at 20 ° C. was about 700 mPa · s.
実施例1と同様に、ブラスト処理した30×30×6cmのコンクリート平板6枚に「DK550−007」を400g/m2の割合でゴムベラを用いて塗布した。塗布後約10分経過した後、予め7メッシュの篩(目開き2.83mm)で篩った石油樹脂(三井化学株式会社製ハイレッツG−100X:軟化点100℃)を150g/m2換算となるよう手で撒布した。 In the same manner as in Example 1, “DK550-007” was applied to six blasted 30 × 30 × 6 cm flat concrete plates at a rate of 400 g / m 2 using a rubber spatula. About 10 minutes after the application, petroleum resin (Hilets G-100X manufactured by Mitsui Chemicals, Inc .: softening point 100 ° C.) previously sieved with a 7 mesh sieve (aperture 2.83 mm) is converted to 150 g / m 2. I distributed it by hand.
実施例1と同じく東亜道路工業株式会社製の加熱塗布系アスファルト防水材「タフシール」を230℃に加熱して完全に溶解し、石油樹脂を撒布した試験体の表面に1.2Kg/m2換算で撒布し、バーナーで加熱しながら素早く金ごてを使用して平らに均し、4号硅砂を1.0Kg/m2換算で手で撒布した。 As in Example 1, a heat-applied asphalt waterproofing material “Tough Seal” manufactured by Toa Road Industry Co., Ltd. was heated to 230 ° C. to completely dissolve it, and converted to 1.2 kg / m 2 on the surface of the test specimen coated with petroleum resin. Then, the mixture was quickly leveled using a gold iron while heating with a burner, and No. 4 cinnabar sand was manually distributed in terms of 1.0 kg / m 2 .
1時間放置した後、試験体5枚に、最大粒径13mmのSMAを用い、厚さ4cmとなるように線圧30Kg/cmに調整したコンパクターを使用して舗設を行なった。同時に、厚さ0.5mmの鉄板を#280番の研磨紙で金属光沢が出るまで研磨したものを準備して、アセトンで充分表面を脱脂した後、コンクリート平板と同じ様に「DK550−007」を塗布した。試験体は1日放置した後、日本道路協会「道路橋鉄筋コンクリート床版防水層設計・施工資料」に記載されている床版防水材品質基準項目の試験を行なった。 After standing for 1 hour, SMA with a maximum particle diameter of 13 mm was used for 5 specimens, and paved using a compactor adjusted to a linear pressure of 30 kg / cm so as to have a thickness of 4 cm. At the same time, prepare a steel plate with a thickness of 0.5 mm polished with # 280 polishing paper until it has a metallic luster, thoroughly degrease the surface with acetone, and then “DK550-007” in the same way as a concrete plate. Was applied. The test specimens were allowed to stand for a day and then tested for quality standards for floor slab waterproofing materials described in “Road Bridge Reinforced Concrete Slab Waterproof Layer Design and Construction Data” of the Japan Road Association.
主な条件を表1に、結果を表5に示す。 The main conditions are shown in Table 1, and the results are shown in Table 5.
実施例3
アクリル系ラジカル硬化型樹脂組成物である「DK550−003」の塗布量を50g/m2とし、表面に撒布する石油系樹脂(三井化学株式会社製ハイレッツG−100X:軟化点100℃)を予め14メッシュの金網(目開き1.4mm)で振るったものを200g/m2換算となるように手で撒布し、加熱塗布系アスファルト防水材としてニチレキ株式会社製「セロシールSS-B」を使用した以外は実施例1と同様に試験体を作成し評価試験を行なった。
Example 3
The coating amount of “DK550-003”, which is an acrylic radical curable resin composition, is 50 g / m 2, and a petroleum-based resin (Highlets G-100X manufactured by Mitsui Chemicals, Inc., softening point 100 ° C.) to be distributed on the surface is previously provided. What was shaken with a 14-mesh wire mesh (aperture 1.4 mm) was distributed by hand so as to be equivalent to 200 g / m 2, and “Cello Seal SS-B” manufactured by Nichireki Co., Ltd. was used as a heat-applied asphalt waterproofing material. Except for this, a test specimen was prepared in the same manner as in Example 1, and an evaluation test was performed.
主な条件を表1に、結果を表5に示す。 The main conditions are shown in Table 1, and the results are shown in Table 5.
実施例4
アクリル系ラジカル硬化型樹脂組成物である「DK550−007」に、石油樹脂(三井化学株式会社製「ハイレッツG−100X」:軟化点100℃)を溶解して20℃における粘度が1800mPa・sとなるように調整したもの(DK−X)を塗布量が150g/m2となるように塗布した後、同じく石油樹脂(三井化学株式会社製「ハイレッツG−100X」:軟化点100℃)を予め14メッシュ(目開き1.4mm)の金網で振るい、200g/m2の割合となるよう手で撒布した以外は実施例2と同様にアスファルト系塗膜防水材を塗布して床版防水材品質基準項目の試験を行なった。
Example 4
A petroleum resin (“HI-LET'S G-100X” manufactured by Mitsui Chemicals, Inc .: softening point 100 ° C.) is dissolved in “DK550-007” which is an acrylic radical curable resin composition, and the viscosity at 20 ° C. is 1800 mPa · s. (DK-X) prepared in such a manner that the coating amount is 150 g / m 2, and then petroleum resin (“HI-LET'S G-100X” manufactured by Mitsui Chemicals, Inc .: softening point 100 ° C.) is used in advance. The quality of floor slab waterproofing material by applying asphalt film waterproofing material in the same manner as in Example 2 except that it is shaken with a 14 mesh (mesh 1.4 mm) wire mesh and hand-spreaded at a rate of 200 g / m 2. Tests of reference items were performed.
主な条件を表1に、結果を表5に示す。 The main conditions are shown in Table 1, and the results are shown in Table 5.
実施例5
ラジカル硬化型樹脂組成物であるDK550−003の塗布量が150g/m2とし、表面に撒布する石油系樹脂(日本ゼオン株式会社製「クイントンB170」:軟化点70℃)を予め7メッシュの金網(目開き2.83mm)で振るったものを150g/m2となるように手で撒布し、加熱塗布系アスファルト防水材として東亜道路工業株式会社製「タフシール」を使用した以外は実施例1と同様に試験体を作成し評価試験を行なった。
Example 5
The coating amount of DK550-003, which is a radical curable resin composition, is 150 g / m 2, and a petroleum-based resin (“Quinton B170” manufactured by Nippon Zeon Co., Ltd .: softening point 70 ° C.) to be distributed on the surface is preliminarily 7 mesh. Example 1 with the exception of using a “Tough Seal” manufactured by Toa Road Industry Co., Ltd. as a heat-applied asphalt waterproofing material, by hand-shaking what was shaken at 2.83 mm (mesh opening) to 150 g / m 2. Similarly, a test specimen was prepared and an evaluation test was performed.
主な条件を表2に、結果を表6に示す。 The main conditions are shown in Table 2, and the results are shown in Table 6.
実施例6
アクリル系ラジカル硬化型樹脂組成物である「DK550−007」を塗布量が200g/m2となるように塗布した後、石油樹脂(新日本石油化学株式会社製「日石ネオポリマー・グレード130」:軟化点130℃)を予め14メッシュ(目開き1.4mm)の金網で振るい、200g/m2の割合で手で撒布した以外は実施例2と同様に加熱塗布系アスファルト防水材を塗布して床版防水材品質基準項目の試験を行なった。
Example 6
After applying “DK550-007”, which is an acrylic radical curable resin composition, to a coating amount of 200 g / m 2 , petroleum resin (“Nisseki Neopolymer Grade 130” manufactured by Nippon Petrochemical Co., Ltd.) : Softening point 130 ° C.) was applied in advance in the same manner as in Example 2 except that it was shaken with a 14 mesh (mesh 1.4 mm) wire mesh and hand-spreaded at a rate of 200 g / m 2. The floor slab waterproofing quality standard items were tested.
主な条件を表2に、結果を表6に示す。 The main conditions are shown in Table 2, and the results are shown in Table 6.
実施例7
屋外ヤードに打設した厚さ30cmの模擬床版を1m×2mに区分し、表面の埃、水分、レイタンスを除去した後、「DK550−003」をローラーを使用して200g/m2塗布した後、石油系樹脂(三井化学株式会社製「ハイレッツG−100」:軟化点100℃)を予め14メッシュ(目開き1.4mm)の金網で振るったものを、150g/m2手で撒布した。
Example 7
A simulated floor slab with a thickness of 30 cm placed in an outdoor yard was divided into 1 m × 2 m, and after removing dust, moisture and latency on the surface, “DK550-003” was applied at 200 g / m 2 using a roller. Thereafter, a petroleum resin (“HI-LET'S G-100” manufactured by Mitsui Chemicals, Inc .: softening point 100 ° C.) previously shaken with a 14-mesh (mesh 1.4 mm) wire mesh was distributed with 150 g / m 2 hands. .
約10分養生した後、230℃に加熱溶融した加熱塗布系アスファルト防水材「タフシール」を1.2Kg/m2となるように杓子で撒布し、素早くブラシ他で均し、4号硅砂を1.0Kg/m2となるように手で撒布した。次に、一部防水層を残しながら、アスファルトフフィニッシャーで13mmトップSMAを厚さ50mmとなるように舗設し、マカダムローラーとタイヤローラーで押し固めを行なった。 After curing for about 10 minutes, heat-melted asphalt waterproofing material “Tough Seal” heated and melted at 230 ° C. is spread with an insulator to 1.2 kg / m 2 , quickly smoothed with a brush, etc. It was distributed by hand so as to be 0.0 kg / m 2 . Next, while leaving a part of the waterproof layer, a 13 mm top SMA was paved to a thickness of 50 mm with an asphalt finisher and pressed with a Macadam roller and a tire roller.
翌日、コアリングマシーンで アスファルト舗装が舗設されていない場所から100mmφのコアを抜き防水試験を行なった。また、舗装を掛けた場所のほぼ中央の部分から同じく100mmφのコアを3本抜き引張付着試験を行なった。 On the next day, a 100 mmφ core was removed from a place where asphalt pavement was not paved on a coring machine, and a waterproof test was conducted. Further, three cores with a diameter of 100 mmφ were similarly extracted from the substantially central portion of the place where the pavement was applied, and a tensile adhesion test was conducted.
主な条件を表2に、結果を表6に示す。 The main conditions are shown in Table 2, and the results are shown in Table 6.
実施例8
実施例5の模擬床版を小型の切削機で切削し、舗装の打ち変え工事を想定した床版(1m×2m)を作成した。その上に、アクリル系ラジカル硬化型樹脂組成物として「DK550−003」を300g/m2換算となるようにローラーで塗布した。
Example 8
The simulated floor slab of Example 5 was cut with a small cutting machine to prepare a floor slab (1 m × 2 m) that assumed pavement replacement work. On top of that, “DK550-003” as an acrylic radical curable resin composition was applied with a roller so as to be equivalent to 300 g / m 2 .
塗布後約10分経過後に、石油樹脂(三井化学株式会社製「ハイレッツG−100X」:軟化点100℃)を予め7メッシュの篩(目開き2.83mm)で振るい、200g/m2換算となるよう手で撒布した。その後、実施例5と同じ手順で「タフシール」と4号硅砂を施工後、実施例5と同じ手順で一部防水層を残しながら13mmトップ、改質II型アスファルトを使用した密粒アスファルト混合物を厚さ5cmとなるように舗設を行なった。 About 10 minutes after application, petroleum resin (Mitsui Chemicals Co., Ltd. “HI-LET'S G-100X”: softening point 100 ° C.) was shaken in advance with a 7-mesh sieve (mesh opening 2.83 mm) and converted to 200 g / m 2. I distributed it by hand. Then, after constructing “Tough Seal” and No. 4 cinnabar in the same procedure as in Example 5, a dense asphalt mixture using 13 mm top and modified type II asphalt while leaving a part of the waterproof layer in the same procedure as in Example 5. Pavement was performed so that the thickness was 5 cm.
翌日、実施例5と同様に、未舗装の部分からコアリングマシーンで100mmφのコアを抜き防水試験を行ない、舗装した部分からも同様にコアリングを行い引張付着試験を実施した。 On the next day, in the same manner as in Example 5, a 100 mmφ core was removed from the unpaved portion with a coring machine, a waterproof test was performed, and a coring was similarly performed from the paved portion to perform a tensile adhesion test.
主な条件を表2に、結果を表6に示す。 The main conditions are shown in Table 2, and the results are shown in Table 6.
実施例9
JIS A 1106.3(供試体)で規定されている方法で作成した10×10×40cmのコンクリート供試体をほぼ中心部で割裂し、割れ部分に0.2mmのスペーサーを挟み込み、0.2mm幅のクラックを有するコンクリート供試体を12本準備した。
Example 9
A 10 × 10 × 40 cm concrete specimen prepared by the method specified in JIS A 1106.3 (specimen) is split at almost the center, and a 0.2 mm spacer is sandwiched in the cracked part. Twelve concrete specimens having the following cracks were prepared.
次に、各4本づつ、「K550−003」、「DK550−007」と実施例4で使用した「DK−X」を200g/m2ゴムベラで塗布し、1夜経過後、各1本づつ再びクラック部分から破断させ、アクリル系ラジカル硬化型樹脂組成物が0.2mm幅のクラックに10mm以上含浸していることを確認した。 Next, apply four each of “K550-003”, “DK550-007” and “DK-X” used in Example 4 with 200 g / m 2 rubber spatula, and after one night, each one. The crack was broken again, and it was confirmed that the acrylic radical curable resin composition was impregnated with 10 mm or more in a 0.2 mm wide crack.
残りの各3本は、「財団法人日本道路協会」が道路橋鉄筋コンクリート床版防水層設計・施工資料に定めている試験法に則り防水試験を行った。具体的には、クラック部分が防水試験器の中心を通る様に装置をセットして測定を行ない、漏水量が0.0mlであることを確認した。 The remaining three were subjected to a waterproof test in accordance with the test method specified in the road bridge reinforced concrete floor slab waterproof layer design and construction data by the Japan Road Association. Specifically, the measurement was performed by setting the device so that the crack part passed through the center of the waterproof tester, and it was confirmed that the amount of water leakage was 0.0 ml.
主な条件及び結果を表9に示す The main conditions and results are shown in Table 9.
比較例1
アクリル系ラジカル硬化型樹脂組成物として、20℃における粘度が4000mPa・sである電気化学工業株式会社製アクリル系接着剤「DK550−04」を使用したこと以外は実施例1と同様の手順・方法で防水を実施後、アスファルト混合物を舗設して評価を行なった。
Comparative Example 1
The same procedure and method as in Example 1 except that an acrylic adhesive “DK550-04” manufactured by Denki Kagaku Kogyo Co., Ltd. having a viscosity at 20 ° C. of 4000 mPa · s was used as the acrylic radical curable resin composition. After carrying out waterproofing, asphalt mixture was paved and evaluated.
主な条件を表3に、結果を表7に示す。 The main conditions are shown in Table 3, and the results are shown in Table 7.
比較例2
アクリル系ラジカル硬化型樹脂組成物の塗布量が40g/m2であること以外は実施例2と同様の方法・手順で防水を実施後、アスファルト混合物を舗設して評価を行なった。
Comparative Example 2
The asphalt mixture was paved and evaluated after waterproofing was carried out in the same manner and procedure as in Example 2 except that the coating amount of the acrylic radical curable resin composition was 40 g / m 2 .
主な条件を表3に、結果を表7に示す。 The main conditions are shown in Table 3, and the results are shown in Table 7.
比較例3
アクリル系ラジカル硬化型樹脂組成物の塗布量が150g/m2であり、使用する表面改質材が軟化温度が140℃である「クイントン1345」(日本ゼオン株式会社社製)とし、これを14メッシュ(目開き2.83mm)で篩ったものを100g/m2の割合で撒布した以外は実施例3と同様にアスファルト混合物を舗設して、評価を行なった。
Comparative Example 3
The coating amount of the acrylic radical curable resin composition is 150 g / m 2 , and the surface modifier used is “Quinton 1345” (manufactured by Zeon Corporation) having a softening temperature of 140 ° C. Evaluation was performed by paving an asphalt mixture in the same manner as in Example 3 except that a sieve (mesh of 2.83 mm) was screened at a rate of 100 g / m 2 .
主な条件を表3に、結果を表7に示す。 The main conditions are shown in Table 3, and the results are shown in Table 7.
比較例4
アクリル系ラジカル硬化型樹脂組成物を電気化学工業株式会社製「DK550−007」とし、これを200g/m2換算で塗布して床版に充分含浸させた。次に、表面改質材として、荒川化学工業株式会社製脂環族飽和炭化樹脂「アルゴンP−70」(軟化温度:60〜75℃)に可塑剤を配合して軟化温度を60℃以下に調整したものを低温下で粉砕して撒布を試みたが、ブロキングを起し、均一撒布ができず、供試体の作成ができなかった。
Comparative Example 4
The acrylic radical curable resin composition was “DK550-007” manufactured by Denki Kagaku Kogyo Co., Ltd., which was applied in terms of 200 g / m 2 and sufficiently impregnated into the floor slab. Next, as a surface modifier, a plasticizer is blended with an alicyclic saturated carbonized resin “Argon P-70” (softening temperature: 60 to 75 ° C.) manufactured by Arakawa Chemical Industries, Ltd., and the softening temperature is reduced to 60 ° C. or lower. The prepared material was pulverized at a low temperature for distribution, but broking occurred, and uniform distribution could not be made, so that a specimen could not be prepared.
主な条件を表3に、結果を表7に示す。 The main conditions are shown in Table 3, and the results are shown in Table 7.
比較例5
実施例7、8で使用した模擬床版を小型の切削機で切削し、舗装の打ち変え工事を想定した床版(1m×2m)を作成した。
Comparative Example 5
The simulated floor slabs used in Examples 7 and 8 were cut with a small cutting machine, and floor slabs (1 m × 2 m) were prepared assuming replacement work for pavement.
その上に、Grace Construction Products社製アスファルト系プライマー「PrimerB2」を200g/m2の割合で塗布し表面のタックが無くなるまで乾燥させた。 On top of that, asphalt primer “Primer B2” manufactured by Grace Construction Products was applied at a rate of 200 g / m 2 and dried until there was no tack on the surface.
その後、同じくGrace Construction Products社製のシート防水材「Bit−Dek」を貼り付け、実施例5と同様の手順で13mmトップのSMAで一部防水材を残しながら厚み 5cmの舗装を行った。 Thereafter, a sheet waterproof material “Bit-Dek” manufactured by Grace Construction Products was pasted, and pavement with a thickness of 5 cm was performed in the same procedure as in Example 5 while leaving a part of the waterproof material with a 13 mm top SMA.
翌日、実施例5と同様に未舗装の部分からコアリングマシンを用いて100mmφのコアを抜き防水試験を行い、舗装部分から抜いたコアで引張付着試験を行なった。 On the next day, a 100 mmφ core was removed from the unpaved portion using a coring machine in the same manner as in Example 5, and a waterproof test was conducted. A tensile adhesion test was conducted on the core removed from the paved portion.
主な条件を表4に、結果を表8に示す。 The main conditions are shown in Table 4, and the results are shown in Table 8.
比較例6
比較例5と同様に、模擬床版を小型の切削機で切削した1m×2mの区画に、「カチコートR」を0.4l/m2の割合で塗布し、30分以上放置して乾燥させた。次に、同じくニチレキ株式会社社製塗膜防水材「セロシールSS-B」を250℃に加熱して溶解し、1.2Kg/m2の割合で塗布し、刷毛他で平らに均した後、4号硅砂を1.0Kg/m2の割合で撒布した。
Comparative Example 6
As in Comparative Example 5, “Kachi Coat R” was applied at a rate of 0.4 l / m 2 to a 1 m × 2 m section obtained by cutting the simulated floor slab with a small cutting machine, and left to dry for 30 minutes or longer. It was. Next, Nichireki Co., Ltd. coating film waterproofing material “Ceroseal SS-B” was heated to 250 ° C. to dissolve, applied at a rate of 1.2 Kg / m 2 , and leveled with a brush or the like, No. 4 cinnabar was spread at a rate of 1.0 kg / m 2 .
次に、アスファルトが13mmトップのSMAを比較例5と同様の手順でアスファルト舗設を行なった。また、比較例5と同様にコアリングマシンを用いて100mmφのコアを抜き防水試験と引張付着試験を行なった
主な条件を表4に、結果を表8に示す。
Next, asphalt paving was performed on the SMA with asphalt top of 13 mm in the same procedure as in Comparative Example 5. Table 4 shows the main conditions in which a 100 mmφ core was removed using a coring machine in the same manner as in Comparative Example 5, and a waterproof test and a tensile adhesion test were performed. Table 8 shows the results.
比較例7
実施例9と同様の手順で、中心部に0.2mmのクラックを有する10×10×40cmの供試体を4本準備し、そのクラック部分に比較例1で使用したDK550−04を200g/m2の割合で塗布した。一夜放置後、その内の1本を再びクラックの部分から割り樹脂の含浸深さを確認した。更に残りの供試体3本を用いて実施例9と同様の手順で防水試験を行なった。
Comparative Example 7
In the same procedure as in Example 9, four 10 × 10 × 40 cm specimens having a crack of 0.2 mm at the center were prepared, and DK550-04 used in Comparative Example 1 was 200 g / m in the crack portion. It was applied at a ratio of 2 . After standing overnight, one of them was again cracked from the crack and the impregnation depth of the resin was confirmed. Further, a waterproof test was performed in the same procedure as in Example 9 using the remaining three specimens.
主な条件及び結果を表9に示す。 The main conditions and results are shown in Table 9.
実施例1〜6及び比較例1〜6で作成した供試体は、全て財日本道路協会が定める、「道路橋鉄筋コンクリート床版防水層設計。施工資料に示されている防水材品質基準評価方法に準拠して評価試験を行なった。 The specimens created in Examples 1 to 6 and Comparative Examples 1 to 6 are all defined by the Japan Road Association, “Road bridge reinforced concrete floor slab waterproof layer design. In the waterproof material quality standard evaluation method shown in the construction material. An evaluation test was conducted in conformity with this.
各実施例及び比較例で作成した供試体のうち、厚さ0.5mmの脱脂した研磨鉄板に夫々の条件で塗布した供試体は−10℃の恒温槽の中に一日以上放置し、同じく−10℃に冷却していた直径10mmφの鉄製マンドレルに押さえ付けて180°曲げ、塗布層の剥離や破損の無い場合を合格。ある場合を不合格として判定した。本試験は3回試験を行ない、その内2個が合格の場合に合格と判定した。 Among the specimens prepared in each of the examples and comparative examples, the specimens applied to the degreased polished iron plate having a thickness of 0.5 mm under the respective conditions are left in a thermostatic bath at −10 ° C. for more than one day. Passed to a steel mandrel with a diameter of 10 mmφ that had been cooled to -10 ° C, bent 180 °, and passed the case where there was no peeling or breakage of the coating layer. Some cases were judged as rejected. This test was conducted three times, and when two of them passed, it was determined to be acceptable.
防水試験は、各実施例及び比較例で作成した、アスファルト混合物を舗設していない供試体の2箇所で試験を行なった。測定開始後3分から33分までの30分間の漏水量0.5ml以下の場合を合格と判定した。 The waterproof test was performed in two places of the specimens prepared in each Example and Comparative Example, in which the asphalt mixture was not paved. The case where the amount of water leakage for 30 minutes from 3 minutes to 33 minutes after the start of measurement was 0.5 ml or less was determined to be acceptable.
剪断試験は、アスファルト舗設を行なったコンクリート平板の周囲を約5cm幅でトリミングを行い、10×10cmに切り出して試験体とした。試験体は測定温度(20℃、−10℃)にセットした恒温槽に1夜以上放置した後、所定の冶具で載荷速度1mm/minで剪断強度を測定した。測定は各温度条件で夫々試験体3個の剪断強度を求め、その平均値を合否の基準と共に下表に記載した。 In the shear test, the periphery of a concrete flat plate on which asphalt paving was performed was trimmed to a width of about 5 cm, and cut into 10 × 10 cm to obtain a test specimen. The test specimen was left in a thermostat set at a measurement temperature (20 ° C., −10 ° C.) for one night or longer, and then the shear strength was measured with a predetermined jig at a loading speed of 1 mm / min. In the measurement, the shear strength of three test specimens was obtained under each temperature condition, and the average value was listed in the table below together with a pass / fail criterion.
引張試験は、アスファルト混合物を舗設したコンクリート平板の中央部分にコアカッターで100mmφの切込みをコンクリート板に達するまで入れ、100mmφの鉄製冶具を接着剤で貼り付ける。接着剤の硬化を待って測定温度に調整している恒温層へ入れ一夜放置後、建研式引張試験機で引張強度を測定する。測定は各温度条件で夫々3箇所測定し、その平均値を合否の基準と共に下表に記載した。 In the tensile test, a 100 mmφ incision is made with a core cutter in the central part of the concrete plate on which the asphalt mixture is paved until it reaches the concrete plate, and a 100 mmφ iron jig is attached with an adhesive. After waiting for the adhesive to harden, put it in a constant temperature layer adjusted to the measurement temperature and leave it overnight, then measure the tensile strength with a Kenken-type tensile tester. The measurement was carried out at three locations under each temperature condition, and the average value was listed in the table below together with the pass / fail criteria.
水浸7日後の引張接着試験は、引張試験と同様に、コアリングマシンで100mmφの切込みをコンクリート板まで入れ、100mmφの鉄製冶具を接着材で貼り付けたものを20℃の水中に7日間浸漬した後、建研式引張試験機で引張強度を測定する。測定は各温度条件で3箇所行いその平均値を求め、水浸試験を行なわない場合の引張強度に対する保持率を算出し、合否の基準と共に下表に記載した。 The tensile adhesion test after 7 days of water immersion is similar to the tensile test. A 100 mmφ incision was made up to the concrete plate with a coring machine, and a 100 mmφ iron jig was affixed with an adhesive for 7 days in 20 ° C water. After that, the tensile strength is measured with a Kenken type tensile tester. The measurement was performed at three locations under each temperature condition, the average value thereof was obtained, the retention rate with respect to the tensile strength when the water immersion test was not performed was calculated, and listed in the table below together with the acceptance criteria.
実施例10
JIS A 1106.3(供試体)で規定されている方法で作成した10×10×40cmのコンクリート供試体をほぼ中心部で割裂し、割れ部分に0.2mmのスペーサーを挟み込み、0.2mm幅のクラックを有するコンクリート供試体を4本準備した。次に、この試験体の表面にラジカル硬化型樹脂組成物としてDK550−003を200g/m2ゴムベラで塗布し、一夜経過後、4個の供試体の中の1体を選び、クラック部分から破断させ、ラジカル硬化型樹脂組成物が0.2mm幅のクラックに10mm以上含浸していることを確認した。残りの供試体の中から2本を選び、日本道路協会「道路橋鉄筋コンクリート床版防水層設計・施工資料」に規定されている防水性能評価試験方法に準じて防水試験を行った。具体的には、クラック部分が防水試験器の中心を通るように装置をセットして測定を行なった。その結果、漏水量が0.0mlであることを確認した。また、残りの1本はJIS A 1106.5に記載されている試験方法に準拠して曲げ強度を測定し、曲げ強度が0.06N/mm2であることを確認し、本発明で開示している技術はひび割れに充分含浸し、且つひび割れ部分を補修すると同時に防水性能も付与できることが明らかになった。
Example 10
A 10 × 10 × 40 cm concrete specimen prepared by the method specified in JIS A 1106.3 (specimen) is split at almost the center, and a 0.2 mm spacer is sandwiched in the cracked part. Four concrete specimens having the above cracks were prepared. Next, DK550-003 as a radical curable resin composition was applied to the surface of this test body with 200 g / m 2 rubber spatula, and after one night, one of the four test specimens was selected and fractured from the crack portion. It was confirmed that the radical curable resin composition impregnated 10 mm or more into a crack having a width of 0.2 mm. Two specimens were selected from the remaining specimens, and a waterproof test was conducted in accordance with the waterproof performance evaluation test method defined in “Road Bridge Reinforced Concrete Floor Waterproofing Layer Design and Construction Data” of the Japan Road Association. Specifically, the measurement was performed by setting the device so that the crack portion passed through the center of the waterproof tester. As a result, it was confirmed that the amount of water leakage was 0.0 ml. The remaining one was measured for bending strength in accordance with the test method described in JIS A 1106.5, confirmed that the bending strength was 0.06 N / mm 2 , and disclosed in the present invention. It has been found that the technology can sufficiently impregnate the cracks and repair the cracked parts, and at the same time provide waterproof performance.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004163990A JP4022209B2 (en) | 2004-06-02 | 2004-06-02 | Floor slab waterproofing construction method and floor slab waterproof structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004163990A JP4022209B2 (en) | 2004-06-02 | 2004-06-02 | Floor slab waterproofing construction method and floor slab waterproof structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005344341A true JP2005344341A (en) | 2005-12-15 |
JP4022209B2 JP4022209B2 (en) | 2007-12-12 |
Family
ID=35496977
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004163990A Expired - Lifetime JP4022209B2 (en) | 2004-06-02 | 2004-06-02 | Floor slab waterproofing construction method and floor slab waterproof structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4022209B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008057119A (en) * | 2006-08-29 | 2008-03-13 | Jdc Corp | Waterproof construction method for concrete floor slab for road bridge |
JP2016017298A (en) * | 2014-07-07 | 2016-02-01 | 首都高速道路株式会社 | Waterproofing method for concrete slab, and waterproof construction of concrete slab |
JP2022081038A (en) * | 2020-11-19 | 2022-05-31 | 日進化成株式会社 | Waterproofing method of concrete floor slab for road bridge and waterproofing structure of concrete floor slab for road bridge |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5457777B2 (en) * | 2009-10-07 | 2014-04-02 | 電気化学工業株式会社 | Waterproofing method for concrete floor slabs |
-
2004
- 2004-06-02 JP JP2004163990A patent/JP4022209B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008057119A (en) * | 2006-08-29 | 2008-03-13 | Jdc Corp | Waterproof construction method for concrete floor slab for road bridge |
JP2016017298A (en) * | 2014-07-07 | 2016-02-01 | 首都高速道路株式会社 | Waterproofing method for concrete slab, and waterproof construction of concrete slab |
JP2022081038A (en) * | 2020-11-19 | 2022-05-31 | 日進化成株式会社 | Waterproofing method of concrete floor slab for road bridge and waterproofing structure of concrete floor slab for road bridge |
Also Published As
Publication number | Publication date |
---|---|
JP4022209B2 (en) | 2007-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4351723B2 (en) | Construction method of waterproofing material for asphalt-based paints for buildings or bridges | |
JP5385171B2 (en) | Waterproof pavement structure of concrete floor slab, waterproof construction method thereof and waterproof pavement construction method | |
JP6328936B2 (en) | Concrete construction method | |
JP2008057119A (en) | Waterproof construction method for concrete floor slab for road bridge | |
JP5457777B2 (en) | Waterproofing method for concrete floor slabs | |
JP5323980B1 (en) | Waterproof structure of road bridge deck | |
PT1133600E (en) | System for repairing bituminous wearing courses | |
JP4022209B2 (en) | Floor slab waterproofing construction method and floor slab waterproof structure | |
CN114277677A (en) | Novel rigid-flexible composite steel bridge deck pavement structure and pavement method thereof | |
Zheng et al. | An experimental study on a composite bonding structure for steel bridge deck pavements | |
JP2007085013A (en) | Concrete floor slab waterproofing construction method and concrete floor slab waterproofing structure | |
Ha et al. | An experimental study on sag-resistance ability and applicability of sprayed FRP system on vertical and overhead concrete surfaces | |
JP4058017B2 (en) | Concrete floor slab waterproofing construction method and waterproof concrete slab | |
JP6767752B2 (en) | Primer for floor slab waterproof structure, construction method of floor slab waterproof structure, and construction method of floor slab waterproof structure | |
KR101835734B1 (en) | Waterproof agent compound and method for forming the same | |
Abe et al. | Proposition of Thin‐Layer Repairing Methods Using Low‐Elasticity Polymer Portland Cement Materials and Glue and Study on the Fatigue Resistance of Reinforced Concrete Slab | |
JP2016160676A (en) | Floor stab water proof sheet, construction method of floor stab water proof structure, and floor stab water proof structure | |
KR100954802B1 (en) | Composite and method using it for waterproofing concrete bridge deck | |
KR0185286B1 (en) | Repairing construction of bridge deck and road | |
US9988308B1 (en) | Epoxy based material and applications therefore | |
JP2008179993A (en) | Rubber latex mortar construction method | |
Chen et al. | Stiffening thin orthotropic deck structures with thermoset epoxy asphalt for improved fatigue resistance | |
JP7332771B1 (en) | Reinforcement method and structure of concrete structure | |
Sprinkel | Twenty-Five-Year Experience with Polymer Concrete Overlays on Bridge Decks | |
RU60945U1 (en) | ROAD COVERING FOR BRIDGE PAVEMENT WITH METAL ORTOTROPIC PLATE |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070131 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070515 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070711 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070925 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070928 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101005 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4022209 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111005 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121005 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121005 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131005 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |