JP4058017B2 - Concrete floor slab waterproofing construction method and waterproof concrete slab - Google Patents
Concrete floor slab waterproofing construction method and waterproof concrete slab Download PDFInfo
- Publication number
- JP4058017B2 JP4058017B2 JP2004125245A JP2004125245A JP4058017B2 JP 4058017 B2 JP4058017 B2 JP 4058017B2 JP 2004125245 A JP2004125245 A JP 2004125245A JP 2004125245 A JP2004125245 A JP 2004125245A JP 4058017 B2 JP4058017 B2 JP 4058017B2
- Authority
- JP
- Japan
- Prior art keywords
- concrete
- resin composition
- floor slab
- radical curable
- concrete floor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004567 concrete Substances 0.000 title claims description 112
- 238000004078 waterproofing Methods 0.000 title claims description 38
- 238000010276 construction Methods 0.000 title claims description 21
- 238000012360 testing method Methods 0.000 claims description 95
- 239000011342 resin composition Substances 0.000 claims description 52
- 239000007788 liquid Substances 0.000 claims description 39
- 239000011347 resin Substances 0.000 claims description 36
- 229920005989 resin Polymers 0.000 claims description 36
- 239000010410 layer Substances 0.000 claims description 26
- 239000003208 petroleum Substances 0.000 claims description 19
- 229920001153 Polydicyclopentadiene Polymers 0.000 claims description 15
- 238000005452 bending Methods 0.000 claims description 15
- 239000008187 granular material Substances 0.000 claims description 7
- 239000004925 Acrylic resin Substances 0.000 claims description 4
- 239000002344 surface layer Substances 0.000 claims description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 3
- 239000000113 methacrylic resin Substances 0.000 claims description 2
- 239000010426 asphalt Substances 0.000 description 39
- 239000000463 material Substances 0.000 description 25
- 238000000034 method Methods 0.000 description 25
- 239000000203 mixture Substances 0.000 description 21
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 20
- 239000011248 coating agent Substances 0.000 description 18
- 238000000576 coating method Methods 0.000 description 18
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 10
- 229910052742 iron Inorganic materials 0.000 description 10
- 239000003607 modifier Substances 0.000 description 8
- 238000005259 measurement Methods 0.000 description 7
- 239000002245 particle Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 239000011150 reinforced concrete Substances 0.000 description 6
- 238000010998 test method Methods 0.000 description 6
- 239000000853 adhesive Substances 0.000 description 5
- 230000001070 adhesive effect Effects 0.000 description 5
- 238000013461 design Methods 0.000 description 5
- 238000007654 immersion Methods 0.000 description 5
- 238000005470 impregnation Methods 0.000 description 5
- 238000009864 tensile test Methods 0.000 description 5
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229920001971 elastomer Polymers 0.000 description 4
- 230000008439 repair process Effects 0.000 description 4
- 239000005060 rubber Substances 0.000 description 4
- 125000006850 spacer group Chemical group 0.000 description 4
- 238000005507 spraying Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000003522 acrylic cement Substances 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000009408 flooring Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 229920003051 synthetic elastomer Polymers 0.000 description 3
- 239000005061 synthetic rubber Substances 0.000 description 3
- 229920000178 Acrylic resin Polymers 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- 239000012615 aggregate Substances 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 2
- 238000010073 coating (rubber) Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 101000972485 Homo sapiens Lupus La protein Proteins 0.000 description 1
- 102100022742 Lupus La protein Human genes 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000004902 Softening Agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 239000004035 construction material Substances 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- UHESRSKEBRADOO-UHFFFAOYSA-N ethyl carbamate;prop-2-enoic acid Chemical compound OC(=O)C=C.CCOC(N)=O UHESRSKEBRADOO-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000002932 luster Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- KCTAWXVAICEBSD-UHFFFAOYSA-N prop-2-enoyloxy prop-2-eneperoxoate Chemical compound C=CC(=O)OOOC(=O)C=C KCTAWXVAICEBSD-UHFFFAOYSA-N 0.000 description 1
- 238000007761 roller coating Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000007779 soft material Substances 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Landscapes
- Road Paving Structures (AREA)
- Bridges Or Land Bridges (AREA)
Description
本発明は、近年、コンクリート床版(鉄筋コンクリート床版)を持つ道路橋の損傷・劣化を防ぐ目的で採用されているコンクリート床版の防水に関するものであり、特にラジカル硬化性液状樹脂組成物の塗布によって防水層を形成するコンクリート床版防水施工方法及びそれによって得られる防水コンクリート床版に関する。 The present invention relates to waterproofing of concrete floor slabs that have recently been adopted for the purpose of preventing damage and deterioration of road bridges having concrete slabs (reinforced concrete slabs), and in particular, application of radical curable liquid resin compositions. The present invention relates to a concrete floor slab waterproofing construction method for forming a waterproof layer and a waterproof concrete floor slab obtained thereby.
道路橋のコンクリート床版は、他のコンクリート構造物と比較して部材厚が薄く且つ直接交通荷重を絶え間なく受ける等、非常に厳しい条件下に晒されている。 The concrete floor slabs of road bridges are exposed to very severe conditions such as a thinner member thickness than other concrete structures and direct exposure to direct traffic loads.
近年、実際の交通を再現する耐久性能評価試験装置が考案され、コンクリート床版の様々な条件下での劣化メカニズムが明らかになってきた。その中で、湿潤状態は乾燥状態と比較しその疲労寿命が1/100まで短くなることが指摘されおり(例えば、非特許文献1参照)、水の存在がコンクリート床版の劣化を著しく促進することが明らかとなってきた。 In recent years, a durability performance evaluation test device that reproduces actual traffic has been devised, and the deterioration mechanism of concrete floor slabs under various conditions has become clear. Among them, it has been pointed out that the fatigue life of the wet state is shortened to 1/100 compared to the dry state (see, for example, Non-Patent Document 1), and the presence of water significantly accelerates the deterioration of the concrete slab. It has become clear.
重要な社会資本の一つである道路橋の損傷に伴う補修や打ち替えは、それに掛かる費用のみでなく、社会に与える影響が大きいため、損傷を防ぐための維持・管理手法が注目されているなか、コンクリート床版の防水は交通負荷に伴う損傷の低減に効果があることが認識され、様々な防水材が検討・採用されてきた。 Repair and replacement due to damage to a road bridge, which is one of the important social capitals, not only costs it, but also has a large impact on society, so maintenance and management methods to prevent damage are drawing attention. In particular, it has been recognized that waterproofing of concrete slabs is effective in reducing damage caused by traffic load, and various waterproof materials have been studied and adopted.
一般的にコンクリート床版の防水に用いられている防水材は、シート系防水材、舗装系防水材、塗膜系防水材に分類できる。 In general, waterproofing materials used for waterproofing concrete slabs can be classified into sheet-based waterproofing materials, pavement-based waterproofing materials, and coating-based waterproofing materials.
シート系防水材としては、合成繊維不織布に特殊アスファルトを含浸させて成型した1.5〜4mm厚み程度のアスファルト系の防水シートで、コンクリート床版に加熱溶融又は接着剤等で貼り付けるものがある。 As a sheet-based waterproofing material, there is an asphalt-based waterproof sheet having a thickness of about 1.5 to 4 mm formed by impregnating a synthetic fiber non-woven fabric with special asphalt, and is attached to a concrete floor slab with heat melting or an adhesive. .
舗装系防水材としては、硬質アスファルトに骨材と石粉を混ぜたものがある。 As a pavement waterproofing material, there is a mixture of hard asphalt and aggregate and stone powder.
塗膜系防水材としては、合成ゴム塗膜系防水材、アスファルト塗膜系防水材、エポキシ樹脂塗膜系防水材がある(例えば、特許文献1参照)。 Examples of the coating waterproofing material include a synthetic rubber coating waterproofing material, an asphalt coating waterproofing material, and an epoxy resin coating waterproofing material (see, for example, Patent Document 1).
ところで、シート系防水材は、アスファルト系の柔らかい材料をバインダーとして用いているため、コンクリート床版にクラック(ひび割れ)が生じた場合のクラック追従性に優れ、また同種の材料であるアスファルト舗装との接着性に優れる等の長所を有する。 By the way, the sheet-based waterproofing material uses an asphalt-based soft material as a binder. It has advantages such as excellent adhesion.
しかしながら、シートを加熱溶融しながら接着したり、溶剤系の接着剤を塗布乾燥後に接着するため施工に時間が掛かる。また、シートに厚みがあるため、コンクリート床版の不陸に沿った完全な防水層を形成しにくく、空気を巻き込み、ブリスタリングを起こしやすい等の問題点があった。 However, since the sheets are bonded while being heated and melted, or the solvent-based adhesive is bonded after being applied and dried, it takes time for the construction. Further, since the sheet is thick, it is difficult to form a complete waterproof layer along the uneven surface of the concrete floor slab, and there are problems such as air entrainment and blistering.
舗装系防水材としては、ストレートアスファルトに精製トリニダットアスファルトを配合した硬質アスファルトをバインダーとして骨材や砂粉を混合したもので、15〜25mm程度の厚さに施工されるものが知られている。通常の舗装機器・設備で施工できる等の特徴はあるが、他の防水材に比べて防水性能の確実性に欠け、特にコンクリート床版に不陸がある場合に、防水層の薄い箇所が発生するため、防水性能を確実に確保しにくいという問題点があった。 As a pavement waterproofing material, a hard asphalt in which purified trinidad asphalt is blended with straight asphalt is used as a binder, and aggregate and sand powder are mixed, and those that are constructed to a thickness of about 15 to 25 mm are known. . Although it can be constructed with ordinary pavement equipment and facilities, it has a lack of certainty in waterproof performance compared to other waterproofing materials, especially when the concrete slab has unevenness, a thin waterproof layer occurs Therefore, there is a problem that it is difficult to ensure the waterproof performance.
塗膜系防水材としては、クロロプレンゴム等の合成ゴムに無機質フィラー、加硫剤、顔料等を添加し、揮発性溶剤を加えた高粘度溶液の合成ゴム系塗膜防水材や、アスファルトに合成ゴムを10〜40%添加したゴム入りアスファルトを主成分とし、加熱溶融してコンクリート床版に塗布して防水層を形成するアスファルト系塗膜防水材や、エポキシ樹脂からなる主剤と変性ポリアミンからなる硬化剤の2成分を主成分とし、更に軟化剤、充填材、顔料等を添加したエポキシ系塗膜防水材が知られている。何れもコンクリート床版に数回に分けて塗布し、最終的な膜厚として0.4〜1.5mm程度の防水層を形成するものであるが、ピンホールが発生し易く、防水性能が損なわれやすい。また、防水材自体や併用するプライマーに溶剤を含む場合が多いため、乾燥が不十分な場合に舗装材料のカットバックを引き起こしやすい問題もあった。更に、エポキシ系塗膜防水材は、コンクリート床版に対する接着性は充分だが、舗装材料に対する接着性を確保するのが現場施工では難しいという問題点があった。 As a coating film waterproofing material, synthetic rubber coating film waterproofing material of high viscosity solution in which inorganic filler, vulcanizing agent, pigment, etc. are added to synthetic rubber such as chloroprene rubber and volatile solvent is added, or synthesized on asphalt Containing rubber asphalt with 10 to 40% of rubber as the main component, asphalt-based coating waterproofing material that forms a waterproof layer by heating and melting and applying to concrete floor slabs, and consists of an epoxy resin main agent and a modified polyamine Epoxy-based waterproofing coating materials are known that have two components of a curing agent as a main component and further added with a softening agent, a filler, a pigment, and the like. All of these are applied to the concrete floor slab in several steps to form a waterproof layer with a final film thickness of about 0.4 to 1.5 mm, but pinholes are likely to occur and the waterproof performance is impaired. It is easy. In addition, since the waterproofing material itself and the primer used in combination often contain a solvent, there is a problem that the pavement material is likely to be cut back when drying is insufficient. Further, the epoxy film waterproofing material has sufficient adhesion to the concrete floor slab, but has a problem that it is difficult to secure the adhesion to the pavement material in the field construction.
以上のコンクリート床版防水工法は、何れもコンクリート床版上に厚みが0.2〜4.0mmの防水層を形成するものであり、これらの接着層を含む防水層には必ずコンクリート床版表面との間に界面が存在する。また、コンクリート床版のコンクリートそのものに防水性能を付与しているものではないため、コンクリート床版と防水層の界面に防水層の端面側から水が浸入したり、防水層の一部に欠損が発生した場合にその欠陥部分を通して水が上記界面全体に広がる可能性がある等、防水性能の信頼性に問題があった。 Each of the above concrete floor slab waterproofing methods forms a waterproof layer having a thickness of 0.2 to 4.0 mm on the concrete floor slab. There is an interface between In addition, because the concrete itself of the concrete slab does not provide waterproof performance, water may enter the interface between the concrete slab and the waterproof layer from the end face side of the waterproof layer, or a part of the waterproof layer may be damaged. When it occurs, there is a problem in the reliability of the waterproof performance, such that water may spread over the entire interface through the defective portion.
本発明は、上記従来の問題点に鑑みてなされたもので、コンクリート床版と防水層を一体化してコンクリート床版と防水層の間の界面を無くし、コンクリート床版と防水層間の界面への水の浸入を防止できるようにすると共に、コンクリート床版に発生しているクラックを補修してコンクリート床版の耐久性を向上させることが可能なコンクリート床版防水施工方法及びそれによって得られる防水コンクリート床版を提供することを目的とする。 The present invention has been made in view of the above-mentioned conventional problems. The concrete floor slab and the waterproof layer are integrated to eliminate the interface between the concrete floor slab and the waterproof layer, and to the interface between the concrete floor slab and the waterproof layer. Concrete floor slab waterproofing construction method capable of preventing water intrusion and repairing cracks occurring in the concrete floor slab to improve the durability of the concrete floor slab and waterproof concrete obtained thereby The purpose is to provide a floor slab.
上記課題を解決するために、本発明の第1は、塗布時の粘度が2000mPa・s以下のラジカル硬化性液状樹脂組成物を、30g/m2以上500g/m2以下の塗布量でコンクリート床版に塗布し、コンクリート床版に含浸させた後硬化させて、ラジカル硬化性液状樹脂組成物が含浸硬化されたコンクリートの表面層を防水層とすることを特徴とするコンクリート床版防水施工方法を提供するものである。 In order to solve the above problems, a first aspect of the present invention is to apply a radical curable liquid resin composition having a viscosity at the time of application of 2000 mPa · s or less at a coating amount of 30 g / m 2 or more and 500 g / m 2 or less. A concrete floor slab waterproofing construction method characterized in that a surface layer of concrete impregnated and cured with a radical curable liquid resin composition is applied as a waterproof layer after being applied to a plate, impregnated into a concrete floor slab, and then cured. It is to provide.
上記本発明の第1は、前記ラジカル硬化性液状樹脂組成物が、JIS A 1106.3(供試体)により作製した100mm×100mm×400mmのコンクリートブロックの中央部付近に曲げ荷重を加えて2片に破断した後、その2片の破断面を0.2mmの間隔をあけて突き合わせ対向させた状態で固定することにより試験片を作製し、水平方向に維持した試験片上面に200g/m2塗布した際に、クラックに含浸硬化してコンクリートを一体化する深さが10mm以上であること、
前記ラジカル硬化性液状樹脂組成物をコンクリート床版に塗布して含浸させる工程と、軟化点60から130℃であり、分子内に不飽和二重結合基を有する石油樹脂又はポリジシクロペンタジエン樹脂粒状物を散布する工程とを有すること、
前記ラジカル硬化性液状樹脂組成物をコンクリート床版に塗布して含浸させる工程において、前記ラジカル硬化性液状樹脂組成物に、軟化点が60から130℃で、分子内に不飽和二重結合基を有する石油樹脂またはポリジシクロペンタジエン樹脂粒状物を混合して塗布すること、
前記ラジカル硬化性液状樹脂組成物が、アクリル系及び又はメタアクリル系樹脂を主成分とする液状樹脂組成物であること、
をその好ましい態様として含むものである。
In the first aspect of the present invention, the radical curable liquid resin composition is obtained by applying a bending load to the vicinity of the central part of a 100 mm × 100 mm × 400 mm concrete block prepared according to JIS A 1106.3 (specimen). After breaking, the test piece was prepared by fixing the two fractured surfaces in a state of being opposed to each other with an interval of 0.2 mm, and coated with 200 g / m 2 on the upper surface of the test piece maintained in the horizontal direction. The depth of impregnating and hardening the crack to integrate the concrete is 10 mm or more,
A step of applying and impregnating a concrete slab with the radical curable liquid resin composition; and a petroleum resin or polydicyclopentadiene resin granular material having a softening point of 60 to 130 ° C. and having an unsaturated double bond group in the molecule Having a step of spraying,
In the step of applying and impregnating a concrete slab with the radical curable liquid resin composition, the radical curable liquid resin composition has a softening point of 60 to 130 ° C. and an unsaturated double bond group in the molecule. Applying and mixing petroleum resin or polydicyclopentadiene resin particulates having,
The radical curable liquid resin composition is a liquid resin composition mainly composed of acrylic and / or methacrylic resin;
Is included as a preferred embodiment thereof.
また、本発明の第2は、上記本発明の第1に係るコンクリート床版防水施工方法で防水施工されていることを特徴とするコンクリート床版防水構造体を提供するものである。 A second aspect of the present invention provides a waterproof concrete floor slab structure that is waterproofed by the concrete floor slab waterproofing construction method according to the first aspect of the present invention.
本発明によれば、コンクリート床版にラジカル硬化性液状樹脂組成物を含浸硬化させて、コンクリート床版を構成するコンクリートの表面層を防水層としているので、コンクリート床版と一体化した防水層を形成することができ、コンクリート床版と防水層間の界面をなくすことができる。従って、防水層端部や防水層欠陥部分から、コンクリート床版と防水層の界面への水の浸入という問題を生じることのない防水コンクリート床版を得ることができる。また、本発明によれば、ラジカル硬化性液状樹脂組成物がクラックに浸透硬化するので、防水施工と同時に、コンクリート床版のクラック補修を行うことができる。更に、ラジカル硬化型樹脂組成物を塗布、含浸させた後に特定の石油樹脂又はポリジシクロペンタジエン樹脂粒状物を撒布するか、ラジカル硬化系樹脂組成物に特定の石油樹脂又はポリジシクロペンタジエン樹脂粒状物を混ぜて塗布することで、次の工程である舗装工程でアスファルト混合物との接着性を良好に保つことができるものである。 According to the present invention, the concrete slab is impregnated and cured with the radical curable liquid resin composition, and the concrete surface layer constituting the concrete slab is used as a waterproof layer. It can be formed and the interface between the concrete slab and the waterproof layer can be eliminated. Therefore, it is possible to obtain a waterproof concrete floor slab that does not cause the problem of water intrusion into the interface between the concrete floor slab and the waterproof layer from the waterproof layer end or the waterproof layer defective portion. Moreover, according to this invention, since a radical curable liquid resin composition is osmotically hardened to a crack, the crack repair of a concrete floor slab can be performed simultaneously with waterproof construction. Furthermore, after applying and impregnating a radical curable resin composition, a specific petroleum resin or polydicyclopentadiene resin particulate is distributed, or a specific petroleum resin or polydicyclopentadiene resin granular is added to the radical curable resin composition. By mixing and applying, the adhesiveness with the asphalt mixture can be kept good in the paving process which is the next process.
以下、更に本発明を詳細に説明する。また、以下に述べる本発明のコンクリート床版防水施工方法及びそれによって得られる防水コンクリート床版は、新設のコンクリート床版に舗装を行なう場合だけでなく、既設のコンクリート床版上の舗装を打ち替える場合にも適用することができるものである。 Hereinafter, the present invention will be further described in detail. In addition, the concrete floor slab waterproofing construction method of the present invention described below and the waterproof concrete floor slab obtained by the method are used not only when paving on a new concrete floor slab, but also replacing the pavement on an existing concrete floor slab. It can also be applied to cases.
本発明で用いるラジカル硬化性液状樹脂組成物とは、(メタ)アクリル酸エステルモノマー中に必要に応じて(メタ)アクリル酸エステルモノマーに可溶なポリマーあるいはウレタンアクリレート、エポキシアクリレート等のアクリルオリゴマーを含有してなる常温硬化型の(メタ)アクリル樹脂組成物が挙げられるが、これらに限定されるものではない。本発明で用いるラジカル硬化性液状樹脂組成物として更に好ましいものとしては日本国特許第3315619号に示されている1分子中にカルボニル基と隣接しないエチレン性不飽和二重結合を有するジシクロペンテニロキシ基を有する単官能(メタ)アクリレートあるいは1分子中にカルボニル基と隣接しないエチレン性不飽和二重結合を有する両末端(メタ)アクリル変性液状ポリブタジエンおよびその誘導体である多官能(メタ)アクリレートを含有してなる常温硬化型の(メタ)アクリル樹脂組成物をいい、具体的には、市販の「ハードロックII・DK550−003」、「ハードロックII・DK550−01」(電気化学工業社製アクリル系接着剤)等を挙げることができるが、本発明はこれらに限定されるものではない。 The radical curable liquid resin composition used in the present invention includes a polymer soluble in the (meth) acrylate monomer or an acrylic oligomer such as urethane acrylate or epoxy acrylate as required in the (meth) acrylate monomer. Although the room temperature curable (meth) acrylic resin composition is included, it is not limited thereto. More preferable as the radical curable liquid resin composition used in the present invention is dicyclopenteni having an ethylenically unsaturated double bond not adjacent to the carbonyl group in one molecule as shown in Japanese Patent No. 3315619. A monofunctional (meth) acrylate having a roxy group or a polyfunctional (meth) acrylate which is a derivative of both ends (meth) acryl-modified liquid polybutadiene having an ethylenically unsaturated double bond not adjacent to a carbonyl group in one molecule and its derivative It refers to a room temperature curable (meth) acrylic resin composition, specifically, commercially available “Hard Rock II · DK550-003”, “Hard Rock II · DK550-01” (manufactured by Denki Kagaku Kogyo Co., Ltd.) Acrylic adhesive) and the like, but the present invention is not limited to these.
上記ラジカル硬化性液状樹脂組成物は、塗布時の粘度が2000mPa・s以下の状態でコンクリート床版に塗布される。該ラジカル硬化性液状樹脂組成物の塗布時の粘度が200mPa・s以上の場合、コンクリート床版への含浸性が極端に小さくなって塗膜化しやすくなり、コンクリート床版のコンクリート表面層自体を防水層化することができず、またピンホールによる欠陥が発生し易くなる。 The radical curable liquid resin composition is applied to a concrete slab with a viscosity at the time of application of 2000 mPa · s or less. When the viscosity at the time of application of the radical curable liquid resin composition is 200 mPa · s or more, the impregnation property of the concrete floor slab becomes extremely small and it becomes easy to form a coating film, and the concrete surface layer itself of the concrete floor slab is waterproofed. It cannot be layered, and defects due to pinholes are likely to occur.
上記ラジカル硬化性液状樹脂組成物の粘度は、JIS K6833の6.3(粘度)によって測定した粘度をいう。また、この粘度の調整は、例えばラジカル硬化性液状樹脂組成物中の(メタ)アクリル酸エステルモノマー含有量、あるいは市販の増粘剤の添加等によって行うことができる。 The viscosity of the radical curable liquid resin composition is a viscosity measured according to 6.3 (viscosity) of JIS K6833. The viscosity can be adjusted by, for example, adding a (meth) acrylic acid ester monomer content in the radical curable liquid resin composition or adding a commercially available thickener.
ラジカル硬化性液状樹脂組成物のコンクリート床版への塗布量は30g/m2以上500g/m2以下である。ラジカル硬化性液状樹脂組成物の塗布量が30g/m2未満の場合、防水層化されるコンクリート床版の表面領域が薄くなり、部分的に防水層の形成ができなくなる等の不具合が生じやすくなる。また、塗布量が500g/m2を超える場合、経済的に不利であるだけでなく、コンクリート床版に含浸できずに表面に滞留する量が多くなり、舗装工程で使用する設備機器への付着を生じたり、すべりやすくなって通行に支障をきたしやすくなる。 The coating amount of the radical curable liquid resin composition on the concrete floor slab is 30 g / m 2 or more and 500 g / m 2 or less. When the application amount of the radical curable liquid resin composition is less than 30 g / m 2 , the surface area of the concrete floor slab to be waterproofed becomes thin, and problems such as partial formation of the waterproof layer tend to occur. Become. In addition, when the coating amount exceeds 500 g / m 2 , it is not only economically disadvantageous, but also increases the amount that stays on the surface without impregnating the concrete slab, and adheres to equipment used in the paving process. It becomes easy to make and slip, and it becomes easy to interfere with traffic.
ラジカル硬化性液状樹脂組成物の塗布方法は特に制限は無く、施工面積、施工場所等に応じて、ヘラ塗り、ローラー塗り、コテ塗り、吹き付け等、適宜の方法を採用することができる。また、ラジカル硬化性液状樹脂組成物の塗布は、コンクリート床版の上下面及び側面の全面に行うことが理想であるが、最小限の塗布量でコンクリート床版の湿潤を効果的に防止できるよう、少なくとも上面(舗装面)全面に塗布することが好ましい。 The application method of the radical curable liquid resin composition is not particularly limited, and an appropriate method such as spatula coating, roller coating, trowel coating, or spraying can be employed depending on the construction area, construction location, and the like. In addition, it is ideal to apply the radical curable liquid resin composition to the entire upper and lower surfaces and side surfaces of the concrete floor slab. However, it is possible to effectively prevent wetting of the concrete floor slab with a minimum amount of application. It is preferable to apply at least the entire upper surface (paved surface).
ラジカル硬化性液状樹脂組成物は、その塗布によって、コンクリート床版に生じたクラックの補修をもできるよう、次の条件を満たすものであることが好ましい。 It is preferable that the radical curable liquid resin composition satisfies the following conditions so that the coating can repair cracks generated in the concrete slab.
即ち、JIS A 1106.3(供試体)により作製した100mm×100mm×400mmのコンクリートブロックの中央部付近に曲げ荷重を加え2片に破断した後、その2片の破断面を0.2mmのスペーサーを用いて0.2mmの間隔をあけて突き合わせて対向させた状態で固定することにより試験片を作製し、この試験片を水平方向に維持しながら、ラジカル硬化性樹脂組成物を試験片上面に200g/m2塗布して硬化させた時に、ラジカル硬化性樹脂組成物がクラックに含浸硬化してコンクリートと一体化する深さが10mm以上となるものが好ましい。ラジカル硬化性液状樹脂組成物のクラック浸透性が10mm未満の場合、細かいクラックに充分深く浸透して一体化することができず、本発明の付帯効果であるコンクリート床版のクラック補修効果が小さくなる。 That is, after applying a bending load to the vicinity of the central part of a 100 mm × 100 mm × 400 mm concrete block prepared according to JIS A 1106.3 (specimen) and breaking it into two pieces, the fracture surface of the two pieces is a 0.2 mm spacer. A test piece was prepared by abutting and facing each other with an interval of 0.2 mm using a, and the radical curable resin composition was placed on the upper surface of the test piece while maintaining the test piece in the horizontal direction. When 200 g / m 2 is applied and cured, the radical curable resin composition is preferably 10 mm or more deeply integrated with concrete by impregnating and curing the crack. When the crack permeability of the radically curable liquid resin composition is less than 10 mm, the crack cannot be integrated by deeply penetrating fine cracks, and the crack repair effect of the concrete slab, which is an incidental effect of the present invention, is reduced. .
コンクリート床版の防水層化した表面とアスファルト舗装の間の接着力を増し、舗装のズレ等の不具合をより確実に防止するため、ラジカル硬化性液状樹脂組成物を塗布、含浸させる工程と、加熱アスファルト混合物を用いて舗装する工程との間に、軟化点が60℃から130℃で、分子内に不飽和二重結合基を有する石油樹脂又はポリジシクロペンタジエン樹脂粒状物を表面改質材として撒布する工程を介在させることが好ましい。また、同様の目的で、ラジカル硬化性液状樹脂組成物を塗布、含浸させる工程において、ラジカル硬化性液状樹脂組成物に、軟化点が60℃から130℃で、分子内に不飽和二重結合基を有する石油樹脂又はポリジシクロペンタジエン樹脂粒状物を混合して塗布することもできる。 Applying and impregnating radical curable liquid resin composition and heating in order to increase the adhesion between the waterproof layered surface of concrete floor slab and asphalt pavement and more reliably prevent defects such as pavement displacement During the process of paving with an asphalt mixture, a softening point of 60 ° C. to 130 ° C. and a petroleum resin or polydicyclopentadiene resin granular material having an unsaturated double bond group in the molecule as a surface modifier It is preferable to intervene the process to do. For the same purpose, in the step of applying and impregnating the radical curable liquid resin composition, the radical curable liquid resin composition has a softening point of 60 ° C. to 130 ° C. and an unsaturated double bond group in the molecule. It is also possible to apply a petroleum resin or polydicyclopentadiene resin granular material having a mixture.
これらの分子内に不飽和二重結合基を有する石油樹脂又はポリジシクロペンタジエン樹脂は、加熱アスファルト混合物を用いて舗装する工程において軟化し、その不飽和二重結合基が、コンクリート床版に含浸されたラジカル硬化性液状樹脂組成物と反応することで、アスファルト舗装とコンクリート床版間の強固な密着力を付与する。 Petroleum resins or polydicyclopentadiene resins having unsaturated double bond groups in these molecules soften in the process of paving with a heated asphalt mixture, and the unsaturated double bond groups are impregnated into the concrete slab. By reacting with the radical curable liquid resin composition, a strong adhesion between the asphalt pavement and the concrete slab is imparted.
前記の分子内に不飽和二重結合基を有する石油樹脂又はポリジシクロペンタジエン樹脂の代表的な構造式をそれぞれ化1及び化2に示す。本発明はこれらに限定されるものでなく、これらを変性した構造を持つものも使用できる。 Typical structural formulas of the petroleum resin or polydicyclopentadiene resin having an unsaturated double bond group in the molecule are shown in Chemical Formula 1 and Chemical Formula 2, respectively. This invention is not limited to these, What has the structure which modified | denatured these can also be used.
上記分子内に不飽和二重結合基を有する石油樹脂又はポリジシクロペンタジエン樹脂の軟化点が60℃未満でも130℃を超えても、アスファルト舗装とコンクリート床版との密着力の向上効果が小さくなる。 Even if the softening point of petroleum resin or polydicyclopentadiene resin having an unsaturated double bond group in the molecule is less than 60 ° C or more than 130 ° C, the effect of improving the adhesion between the asphalt pavement and the concrete floor slab is reduced. .
前記分子内に不飽和二重結合基を有する石油樹脂又はポリジシクロペンタジエン樹脂は粒径約0.2〜3.0mmの粒状物として、前記ラジカル硬化性液状樹脂組成物を塗布、含浸する工程と、加熱アスファルト混合物を用いて舗装する工程との間で散布するか、又は前記ラジカル硬化性液状樹脂組成物を塗布、含浸する工程において、ラジカル硬化性液状樹脂組成物に予め混合して塗布することが好ましい。前記分子内に不飽和二重結合基を有する石油樹脂又はポリジシクロペンタジエン樹脂の粒径が0.2mm未満の場合、撒布する時に風に飛ばされやすいため、風の強い日には所定量を撒布しにくくなったり、周囲を汚染しやすくなる。また、粒径が3.0mmを超える場合、粒径が大きすぎて均一撒布が行いにくくなる。 The petroleum resin or polydicyclopentadiene resin having an unsaturated double bond group in the molecule is coated and impregnated with the radical curable liquid resin composition as a granular material having a particle size of about 0.2 to 3.0 mm; In the step of spraying with a heated asphalt mixture or paving with the heated asphalt mixture, or applying and impregnating the radical curable liquid resin composition, the radical curable liquid resin composition is previously mixed and applied. Is preferred. When the particle size of the petroleum resin or polydicyclopentadiene resin having an unsaturated double bond group in the molecule is less than 0.2 mm, it is easy to be blown by the wind when it is distributed. It becomes difficult to do it and it becomes easy to pollute the surroundings. Moreover, when a particle size exceeds 3.0 mm, a particle size is too large and it becomes difficult to perform uniform distribution.
前記分子内に不飽和二重結合基を有する石油樹脂又はポリジシクロペンタジエン樹脂の撒布量は特に制限は無く、ラジカル硬化型樹脂組成物の塗布状況やコスト等から適宜洗選択することができるが、撒布量は50g/m2〜500g/m2の間であることが好ましい。但し、撒布量が50g/m2未満の場合は、アスファルト混合物を舗設した際に、コンクリート床版との間の接着力の向上効果が乏しく、ダンプやフィニッシャー等の舗装機器の通行時にタイヤに付着して周囲を汚染すしやすく、撒布量が500g/m2を超える場合は、コストが掛かり、経済的負担が大きくなる。 The amount of petroleum resin or polydicyclopentadiene resin having an unsaturated double bond group in the molecule is not particularly limited, and can be appropriately selected from the application status and cost of the radical curable resin composition, spraying amount is preferably between 50g / m 2 ~500g / m 2 . However, when the amount of distribution is less than 50 g / m 2 , when paving the asphalt mixture, the effect of improving the adhesive strength with the concrete slab is poor, and it adheres to the tires when paving equipment such as dumpers and finishers pass. In the case where the surroundings are easily contaminated and the amount of distribution exceeds 500 g / m 2 , the cost increases and the economic burden increases.
本発明に係る分子内に不飽和二重結合基を有する石油樹脂としては、市販の「ハイレッツG−100X」、「ハイレッツT−480X」、「ハイレッツR−100X」、「ハイレッツR−500X」(三井化学社製)等があり、またポリジシクロペンタジエン樹脂としては、市販の「クイントン1325」、「クイントン1500」、「クイントン1700」(日本ゼオン社製)等があるが、本発明はこれらに限定されるものではない。 As the petroleum resin having an unsaturated double bond group in the molecule according to the present invention, commercially available “HI-LETTS G-100X”, “HI-LET'S T-480X”, “HI-LET'S R-100X”, “HI-LET'S R-500X” ( In addition, examples of the polydicyclopentadiene resin include commercially available “Quinton 1325”, “Quinton 1500”, “Quinton 1700” (manufactured by Nippon Zeon Co., Ltd.), etc., but the present invention is limited to these. Is not to be done.
次に、実施例及び比較例により本発明を具体的に説明する。 Next, the present invention will be specifically described with reference to Examples and Comparative Examples.
実施例1
ラジカル硬化型樹脂組成物として、電気化学工業社製アクリル系接着剤「ハードロックII・DK550−003」(以下「DK550−003」と記す)を20℃の恒温室の中で使用した。「DK550−003」の20℃における塗布時の粘度は300mPa・sであった。
Example 1
As the radical curable resin composition, an acrylic adhesive “Hard Rock II DK550-003” (hereinafter referred to as “DK550-003”) manufactured by Denki Kagaku Kogyo Co., Ltd. was used in a temperature-controlled room at 20 ° C. The viscosity of “DK550-003” at 20 ° C. was 300 mPa · s.
表面をブラスト処理してレイタンスを除去した30×30×5cmのコンクリート平板を6枚用意した。上記「DK550−003」をゴムベラで塗布量200g/m2で6枚全てに塗布した。 Six 30 × 30 × 5 cm concrete flat plates were prepared by removing the latency by blasting the surface. The above “DK550-003” was applied to all six sheets with a rubber spatula at an application amount of 200 g / m 2 .
「DK550−003」を塗布して1時間放置したコンクリート平板6枚の内の5枚に対し、それぞれ骨材(最大粒径13mm)、改質II型アスファルトを使用した密粒アスファルト混合物を厚さ5cmとなるように計量して、線圧30Kg/cmに調整したコンパクターを使用して舗設を行なった。 Thickness of dense asphalt mixture using aggregate (maximum particle size 13mm) and modified type II asphalt on five of the six concrete flat plates left for 1 hour after applying "DK550-003" Pavement was performed using a compactor that was weighed to 5 cm and adjusted to a linear pressure of 30 kg / cm.
上記のようにして得た、コンクリート平板に「DK550−003」を塗布した試験体1枚と、更にアスファルト混合物の舗設を行った試験体5枚とについて、それぞれ約1日放置した後、後述する日本道路協会「道路橋鉄筋コンクリート床版防水層設計・施工資料」に記載のコンクリート床版防水材品質基準項目の試験(防水試験、剪断試験、引張試験)を行った。この試験体の基本構成を表1に示すと共に、試験結果を表3に示す。 Each of the test specimens obtained as described above and coated with “DK550-003” on a concrete flat plate and further five specimens on which an asphalt mixture was paved were left for about one day, and will be described later. Tests (waterproof test, shear test, tensile test) of quality standards for concrete floor slab waterproofing materials described in Japan Road Association “Road Bridge Reinforced Concrete Slab Waterproof Layer Design and Construction Data” were conducted. The basic configuration of this test body is shown in Table 1, and the test results are shown in Table 3.
上記コンクリート平板とは別に、厚さ0.5mmの鉄板を#280番の研磨紙で金属光沢が出るまで研磨し、アセトンで脱脂した後、コンクリート平板と同じように「DK550−003」を塗布し約1日放置した後、後述する日本道路協会「道路橋鉄筋コンクリート床版防水層設計・施工資料」に記載のコンクリート床版防水材品質基準項目の試験(低温可撓性試験)を行った。試験結果を表3に示す。 Aside from the concrete flat plate, an iron plate with a thickness of 0.5 mm is polished with # 280 abrasive paper until it has a metallic luster, degreased with acetone, and then coated with “DK550-003” in the same manner as the concrete flat plate. After leaving for about one day, the concrete road slab waterproofing material quality standard item (low temperature flexibility test) described in “Japan Road Association Reinforced Concrete Floor Waterproofing Layer Design / Construction Data” described later was conducted. The test results are shown in Table 3.
上記試験体とは別に、JIS A 1106.3に準拠した方法で作成した100×100×400mmのコンクリートブロックの略中央を曲げ試験機で破断し、破断した2片の破断面に厚さ0.2mmのスペーサーを挿入して固定し、幅0.2mmのギャップを持つ試験片を3本準備した。この試験片をほぼ水平に維持して、上面に「DK550−003」(塗布時の粘度300mPa・s)を塗布量200g/m2で塗布し、約1日放置して硬化させ、3本の試験体を得た後、1本については、クラック部分の防水試験(日本道路協会「道路橋鉄筋コンクリート床版防水層設計。施工資料」に規定されている防水試験方法に準拠)を行った。具体的には、クラック部分が防水試験器の中心を通るように装置をセットして測定を行なった。残りの2本については、JIS A 1106「コンクリートの曲げ強度試験方法」に準拠した方法で曲げ強度の測定を行なった。曲げ試験で破断した試験体については、ラジカル硬化型樹脂組成物のクラック部への含浸深さを測定した。試験結果を表5に示す。 Separately from the above test specimen, the approximate center of a 100 × 100 × 400 mm concrete block prepared by a method in accordance with JIS A 1106.3 was ruptured with a bending tester, and a thickness of 0. A 2 mm spacer was inserted and fixed, and three test pieces having a gap with a width of 0.2 mm were prepared. The test piece was kept almost horizontal, and “DK550-003” (viscosity of 300 mPa · s) was applied on the upper surface at an application amount of 200 g / m 2 , and left to cure for about 1 day. After obtaining the test body, one of the specimens was subjected to a waterproof test of the cracked part (in accordance with the waterproof test method prescribed in the Japan Road Association “Road Bridge Reinforced Concrete Flooring Waterproof Layer Design. Construction Data”). Specifically, the measurement was performed by setting the device so that the crack portion passed through the center of the waterproof tester. For the remaining two pieces, the bending strength was measured by a method based on JIS A 1106 “Concrete bending strength test method”. About the test body fractured | ruptured in the bending test, the impregnation depth to the crack part of a radical curable resin composition was measured. The test results are shown in Table 5.
実施例2
実施例1と同様にブラスト処理した30×30×5cmのコンクリート平板6枚に「DK550−003」を150g/m2 の割合でゴムベラを用いて塗布した。「DK550−003」を塗布して約10分経過した6枚のコンクリート床版に対し、表面改質材として、予め20メッシュの篩(目開き0.85mm)で篩った石油樹脂(三井化学社製「ハイレッツT−480X」:軟化点80℃)を100g/m2換算となるよう手で撒布した。「DK550−003」を塗布して1時間経過後に、実施例1と同様、6枚のコンクリート平板の内の5枚に改質II型密粒アスファルト混合物を厚み5cmになるように舗設を行い、充分に冷却した。
Example 2
“DK550-003” was applied at a rate of 150 g / m 2 on six 30 × 30 × 5 cm concrete plates blasted in the same manner as in Example 1 using a rubber spatula. Petroleum resin (Mitsui Chemicals Co., Ltd.) previously screened with a 20-mesh sieve (mesh opening 0.85 mm) as a surface modifier on 6 concrete floor slabs that have passed about 10 minutes after applying "DK550-003" “Highlets T-480X” (softening point: 80 ° C.) was distributed by hand so as to be 100 g / m 2 equivalent. 1 hour after applying "DK550-003", as in Example 1, pave the modified II type dense granule asphalt mixture on 5 of the 6 concrete flat plates to a thickness of 5 cm, Cooled well.
上記のようにして得た、コンクリート平板に「DK550−003」を塗布し、表面改質材を撒布した試験体1枚と、更にアスファルト混合物の舗設を行った試験体5枚とについて、それぞれ実施例1と同様の試験を行った。この試験体の基本構成を表1に示すと共に、試験結果を表3に示す。 For each of the test specimens obtained by applying “DK550-003” to the concrete flat plate obtained as described above and spreading the surface modifier, and further, five specimens on which the asphalt mixture was paved. The same test as in Example 1 was performed. The basic configuration of this test body is shown in Table 1, and the test results are shown in Table 3.
また、実施例1と同様に、0.5mmの厚さのアセトンで充分に脱脂した研磨鉄板を用意し、「DK550−003」を上記コンクリート平板と同じ比率で塗布し、1日放置した後、実施例1と同様に低温可撓性試験行った。試験結果を表3に示す。 Further, similarly to Example 1, a polished iron plate sufficiently degreased with acetone having a thickness of 0.5 mm was prepared, and “DK550-003” was applied at the same ratio as the above-mentioned concrete plate and left for one day. A low temperature flexibility test was conducted in the same manner as in Example 1. The test results are shown in Table 3.
実施例3
ラジカル硬化型樹脂組成物である「DK550−003」の塗布量を50g/m2とし、表面に撒布する表面改質材として、顆粒状アスファルト(昭和シェル石油社製粉末アスファルト「アスパ」:軟化点118℃)を予め20メッシュの金網(目開き0.85mm)で篩ったものを用い、これを150g/m2となるように手で撒布した以外は実施例1と同様とし、実施例1と同様の試験を行った。この試験体の基本構成を表1に示すと共に、試験結果を表3に示す。
Example 3
The coating amount of “DK550-003”, which is a radical curable resin composition, is 50 g / m 2, and as a surface modifier to be distributed on the surface, granular asphalt (powder asphalt “ASPA” manufactured by Showa Shell Sekiyu KK): softening point 118 ° C.) was previously screened with a 20-mesh wire mesh (aperture 0.85 mm), and this was the same as Example 1 except that it was manually distributed to 150 g / m 2. The same test was conducted. The basic configuration of this test body is shown in Table 1, and the test results are shown in Table 3.
また、実施例1と同様に、0.5mmの厚さのアセトンで充分に脱脂した研磨鉄板を用意し「DK550−003」を上記コンクリート平板と同じ比率で塗布し、1日放置した後、実施例1と同様に低温可撓性試験行った。試験結果を表3に示す。 Further, similarly to Example 1, a polished iron plate sufficiently degreased with acetone having a thickness of 0.5 mm was prepared, and “DK550-003” was applied at the same ratio as the above-mentioned concrete plate and allowed to stand for one day. A low temperature flexibility test was conducted as in Example 1. The test results are shown in Table 3.
実施例4
厚さ15cmの模擬床版の表面を小型の切削機で切削し、舗装の打ち替え工事を想定したコンクリート床版(100×200cm)を作成した。その上に、ラジカル硬化型樹脂組成物として「DK550−003」(塗布時の粘度300mPa・s)を500g/m2の塗布量でローラーで塗布し、約10分経過後に、表面改質材として、予め14メッシュの篩(目開き2.00mm)で篩った石油樹脂(三井化学社製「ハイレッツG−100X」:軟化点100℃)を200g/m2換算となるよう手で撒布した。その後、通常行なわれるアスファルト舗装と同じ手順で、骨材(最大粒径13mm)、改質IIアスファルトを使用した密粒アスファルト混合物を厚さ5cmとなるように舗設を行なった。翌日コンクリートカッターによりアスファルト混合物を舗設していない箇所から1枚、アスファルト混合物を舗設している場所から5枚、それぞれ30×30cm角に試験体を切り出し、実施例1と同様の試験を行った。この試験体の基本構成を表1に示すと共に、試験結果を表3に示す。
Example 4
The surface of the simulated floor slab having a thickness of 15 cm was cut with a small cutting machine, and a concrete floor slab (100 × 200 cm) was prepared assuming replacement work for pavement. Further, “DK550-003” (viscosity of 300 mPa · s) as a radical curable resin composition was applied with a roller at an application amount of 500 g / m 2 , and after about 10 minutes, as a surface modifier. Then, a petroleum resin (“HI-LET'S G-100X” manufactured by Mitsui Chemicals, Inc .: softening point 100 ° C.) previously sieved with a 14-mesh sieve (mesh 2.00 mm) was manually distributed so as to be converted to 200 g / m 2 . Thereafter, a dense asphalt mixture using aggregate (maximum particle size 13 mm) and modified II asphalt was paved so as to have a thickness of 5 cm in the same procedure as that for asphalt pavement that is usually performed. On the next day, a test specimen was cut into 30 × 30 cm squares, one from the place where the asphalt mixture was not paved with a concrete cutter and five from the place where the asphalt mixture was paved, and the same test as in Example 1 was performed. The basic configuration of this test body is shown in Table 1, and the test results are shown in Table 3.
また、実施例1と同様に、0.5mmの厚さのアセトンで充分に脱脂した研磨鉄板を用意し、「DK550−003」を上記模擬床版と同じ塗布量で塗布し、1日放置した後、実施例1と同様に低温可撓性試験行った。試験結果を表3に示す。 Further, similarly to Example 1, a polished iron plate sufficiently degreased with acetone having a thickness of 0.5 mm was prepared, and “DK550-003” was applied in the same application amount as that of the simulated floor slab, and left for one day. Thereafter, a low temperature flexibility test was conducted in the same manner as in Example 1. The test results are shown in Table 3.
実施例5
ラジカル硬化型樹脂組成物をローラーで塗布し、表面に撒布する表面改質材として、ポリジシクロペンタジェン樹脂(日本ゼオン社製「クイントン1325」:軟化点125℃)を予め14メッシュの篩(目開き2.00mm)で篩ったものを用い、これを200g/m2換算となるように手で撒布した以外は実施例2と同様とし、実施例2と同様の試験を行った。この試験体の基本構成を表1に示すと共に、試験結果を表3に示す。
Example 5
As a surface modifier that is coated with a radical curable resin composition with a roller and spread on the surface, a polydicyclopentagen resin (“Quinton 1325” manufactured by Nippon Zeon Co., Ltd .: softening point 125 ° C.) is previously applied to a 14 mesh sieve (mesh The same test as in Example 2 was performed, except that a sieve with an opening of 2.00 mm) was used, and this was spread by hand so as to be equivalent to 200 g / m 2 . The basic configuration of this test body is shown in Table 1, and the test results are shown in Table 3.
また、実施例1と同様に、0.5mmの厚さのアセトンで充分に脱脂した研磨鉄板を用意し「DK550−003」を上記コンクリート平板と同じ比率で塗布し、1日放置した後、実施例1と同様に低温可撓性試験行った。試験結果を表3に示す。 Further, similarly to Example 1, a polished iron plate sufficiently degreased with acetone having a thickness of 0.5 mm was prepared, and “DK550-003” was applied at the same ratio as the above-mentioned concrete plate and allowed to stand for one day. A low temperature flexibility test was conducted as in Example 1. The test results are shown in Table 3.
比較例1
ラジカル硬化型樹脂組成物として、20℃における塗布時の粘度が4000mPa・sである電気化学工業社製アクリル系接着剤「ハードロックII・DK550−04」(以下「DK550−04」と記す)を使用した以外は実施例1と同様の手順・方法で塗布し、アスファルト混合物を舗設していない試験体と、アスファルト混合物を舗設した試験体を得、実施例1と同様の試験を行った。この試験体の基本構成を表2に示すと共に、試験結果を表4に示す。
Comparative Example 1
As a radical curable resin composition, an acrylic adhesive “Hard Rock II DK550-04” (hereinafter referred to as “DK550-04”) manufactured by Denki Kagaku Kogyo Co., Ltd. having a viscosity of 4000 mPa · s at 20 ° C. when applied. Except having used, it apply | coated by the procedure and method similar to Example 1, the test body which has not paved the asphalt mixture, and the test body which paved the asphalt mixture were obtained, and the test similar to Example 1 was done. Table 2 shows the basic structure of this test body, and Table 4 shows the test results.
また、実施例1と同様に厚さ0.5mmの研磨鉄板をアセトンで脱脂した後、上記コンクリート平板と同じように「DK550−04」を塗布し、1日放置した後、実施例1と同様に低温可撓性試験行った。試験結果を表4に示す。 Moreover, after degreasing a 0.5 mm-thick polished iron plate with acetone in the same manner as in Example 1, “DK550-04” was applied in the same manner as the above concrete flat plate, and allowed to stand for one day, and then the same as in Example 1. A low temperature flexibility test was conducted. The test results are shown in Table 4.
上記試験体とは別に、JIS A 1106.3に準拠した方法で作成した100×100×400mmのコンクリートブロックの略中央を曲げ試験機で破断し、破断した2片の破断面に厚さ0.2mmのスペーサーを挿入して固定し、幅0.2mmのギャップを持つ試験片を3本準備した。この試験片をほぼ水平に維持して、上面に「DK550−04」(塗布時の粘度4000mPa・s)を塗布量200g/m2で塗布し、約1日放置して硬化させ、3本の試験体を得た後、1本については、クラック部分の防水試験(日本道路協会「道路橋鉄筋コンクリート床版防水層設計。施工資料」に規定されている防水試験方法に準拠)を実施例1と同様にして行い、残りの2本については、実施例1と同様にして、JIS A 1106「コンクリートの曲げ強度試験方法」に準拠した方法で曲げ強度の測定を行なった。曲げ試験で破断した試験体については、ラジカル硬化型樹脂組成物のクラック部への含浸深さを測定した。試験結果を表5に示す。 Separately from the above test specimen, the approximate center of a 100 × 100 × 400 mm concrete block prepared by a method in accordance with JIS A 1106.3 was ruptured with a bending tester, and a thickness of 0. A 2 mm spacer was inserted and fixed, and three test pieces having a gap with a width of 0.2 mm were prepared. The test piece was kept almost horizontal, and “DK550-04” (viscosity of 4000 mPa · s at the time of application) was applied on the upper surface at an application amount of 200 g / m 2 and allowed to stand for about one day to be cured. After obtaining the test specimen, one of the specimens was subjected to a waterproof test on the cracked part (according to the waterproof test method specified in “Road Bridge Reinforced Concrete Flooring Waterproof Layer Design. Construction Data”) of Example 1 and Example 1. In the same manner as in Example 1, bending strength was measured for the remaining two by the method based on JIS A 1106 “Concrete bending strength test method”. About the test body fractured | ruptured in the bending test, the impregnation depth to the crack part of a radical curable resin composition was measured. The test results are shown in Table 5.
比較例2
ラジカル硬化型樹脂組成物の塗布量を25g/m2としたこと以外は実施例2と同様の方法・手順で試験体を作成し、同様の試験を行った。試験体の基本構成を表2に示すと共に、試験結果を表4に示す。
Comparative Example 2
Except that the application amount of the radical curable resin composition was 25 g / m 2 , a test body was prepared by the same method and procedure as in Example 2, and the same test was performed. The basic configuration of the test specimen is shown in Table 2, and the test results are shown in Table 4.
比較例3
三井化学社製「ハイレッツT−480X」200gをトルエン1000gに溶解した溶液中にメタノール1000gを撹拌しながら滴下し、白色の沈殿物を得た。この沈殿物をフィルターで濾過した濾液を、80℃、1mmHgの減圧下で乾燥し、軟化点50℃の石油樹脂試作品#1を80g得た。
Comparative Example 3
1000 g of methanol was added dropwise to a solution prepared by dissolving 200 g of “Hilets T-480X” manufactured by Mitsui Chemicals, in 1000 g of toluene, to obtain a white precipitate. The filtrate obtained by filtering the precipitate through a filter was dried at 80 ° C. under reduced pressure of 1 mmHg to obtain 80 g of petroleum resin prototype # 1 having a softening point of 50 ° C.
表面に撒布する表面改質材として、上記石油樹脂試作品#1を用い、150g/m2換算となるよう手で撒布したこと以外は実施例2と同様の方法・手順で試験体を作成し、同様の試験を行った。試験体の基本構成を表2に示すと共に、試験結果を表4に示す。 A test specimen was prepared in the same manner and procedure as in Example 2 except that the above-mentioned petroleum resin prototype # 1 was used as a surface modifier to be distributed on the surface, and was manually distributed so as to be converted to 150 g / m 2. A similar test was conducted. The basic configuration of the test specimen is shown in Table 2, and the test results are shown in Table 4.
比較例4
ラジカル硬化型樹脂組成物の塗布量を550g/m2としたことと、試験体として実施例1と同じコンクリート平板を用いたこと以外は実施例4と同様の方法・手順で試験体を作成し、同様の試験を行なった。試験体の基本構成を表2に示すと共に、試験結果を表4に示す。
Comparative Example 4
A test specimen was prepared in the same manner and procedure as in Example 4 except that the coating amount of the radical curable resin composition was 550 g / m 2 and the same concrete flat plate as in Example 1 was used as the test specimen. A similar test was conducted. The basic configuration of the test specimen is shown in Table 2, and the test results are shown in Table 4.
比較例5
表面に撒布する改質材として、軟化点140℃のポリジシクロペンタジェン樹脂(日本ゼオン社製「クイントン1345」)を用いたこと以外は実施例5と同じ方法・手順で試験体を作成し、同様の試験を行なった。試験体の基本構成を表2に示すと共に、試験結果を表4に示す。
Comparative Example 5
A test specimen was prepared by the same method and procedure as in Example 5 except that a polydicyclopentagen resin having a softening point of 140 ° C. (“Quinton 1345” manufactured by Nippon Zeon Co., Ltd.) was used as a modifier to be distributed on the surface. A similar test was conducted. The basic configuration of the test specimen is shown in Table 2, and the test results are shown in Table 4.
比較例6
一般的に使われているアスファルト系塗膜防水材のクラック含浸性能を評価した。
Comparative Example 6
The crack impregnation performance of commonly used asphalt-based waterproofing membranes was evaluated.
実施例1と同様に、JIS A 1106.3に準拠した方法で作成した100×100×400mmのコンクリートブロックの略中央を曲げ試験機で破断し、破断した2片の破断面に厚さ0.2mmのスペーサーを挿入して固定し、幅0.2mmのギャップを持つ試験片を3本準備した。この試験片をほぼ水平に維持して、上面にニチレキ社製アスファルト系プライマー「カチコートR」を塗布量0.4リッター/m2で塗布し乾燥後、同じくニチレキ社製加熱型塗膜防水材「セロシールSS−B」を加熱溶解させて塗布量が1.2Kg/m2となるように塗布し、約1日放置して硬化させ、3本の試験体を得た後、1本については、実施例1と同様にして、クラック部分の防水試験(日本道路協会「道路橋鉄筋コンクリート床版防水層設計。施工資料」に規定されている防水試験方法に準拠)を行い、残りの2本については、実施例1と同様にして、JIS A 1106「コンクリートの曲げ強度試験方法」に準拠した方法で曲げ強度の測定を行なった。曲げ試験で破断した試験体については、上記防水材のクラック部への含浸深さを測定した。試験結果を表5に示す。 As in Example 1, the center of a 100 × 100 × 400 mm concrete block prepared by a method in accordance with JIS A 1106.3 was broken with a bending tester, and a thickness of 0. A 2 mm spacer was inserted and fixed, and three test pieces having a gap with a width of 0.2 mm were prepared. This test piece was kept almost horizontal, and Nichireki's asphalt primer “Kachi Coat R” was applied to the top surface at a coating amount of 0.4 liter / m 2 and dried. “Celloseal SS-B” was dissolved by heating and applied to a coating amount of 1.2 kg / m 2, and left to cure for about 1 day to obtain three test specimens. In the same manner as in Example 1, a crack test was performed (based on the waterproof test method specified in the Road Bridge Reinforced Concrete Flooring Waterproof Layer Design. Construction Materials) of the Japan Road Association, and the remaining two were In the same manner as in Example 1, the bending strength was measured by a method in accordance with JIS A 1106 “Concrete bending strength test method”. About the test body fractured | ruptured in the bending test, the impregnation depth to the crack part of the said waterproof material was measured. The test results are shown in Table 5.
次に、上記各実施例及び比較例で行った、表3及び4に示される試験項目について列挙して説明する。 Next, the test items shown in Tables 3 and 4 performed in each of the above examples and comparative examples will be listed and described.
(1)低温可撓性試験
各実施例及び比較例で作成した供試体のうち、厚さ0.5mmの脱脂した研磨鉄板にそれぞれの条件で塗布した供試体を−10℃の恒温槽の中に一日以上放置し、同じく−10℃に冷却していた直径10mmφの鉄製マンドレルに押さえ付けて180°曲げ、塗布層の剥離や破損を目視観察して、無い場合を合格、ある場合を不合格として判定した。本試験は3回試験を行ない、その内2個が合格の場合を合格と判定した。
(1) Low temperature flexibility test Among the specimens prepared in each of the examples and comparative examples, the specimen applied to a degreased polished iron plate having a thickness of 0.5 mm under the respective conditions was placed in a thermostatic chamber at -10 ° C. Left to stand for more than a day, pressed against an iron mandrel with a diameter of 10 mmφ that had been cooled to −10 ° C., bent 180 °, and visually observed for peeling or breakage of the coating layer. Judged as passing. This test was conducted three times, and two of them were judged to be acceptable.
(2)防水試験
防水試験は、各実施例及び比較例で作成した、アスファルト混合物を舗設していない供試体の2箇所で行なった。測定開始後3分から33分までの30分間の漏水量が0.5ml以下の場合を合格と判定した。
(2) Waterproof test The waterproof test was performed in two places of the specimens prepared in each of the examples and comparative examples where the asphalt mixture was not paved. The case where the amount of water leakage for 30 minutes from 3 minutes to 33 minutes after the start of measurement was 0.5 ml or less was determined to be acceptable.
(3)剪断試験
剪断試験は、アスファルト舗設を行なったコンクリート平板の周囲を約5cm幅でトリミングし、10×10cmに切り出した試験体を用いて行った。試験体を測定温度(20℃、−10℃)にセットした恒温槽に1夜以上放置した後、所定の冶具で載荷速度1mm/minで剪断強度を測定した。測定は、各温度条件でそれぞれ試験体3個の剪断強度を求め、その平均値を下表に記載した。
(3) Shear test The shear test was carried out using a test specimen obtained by trimming the periphery of a concrete plate subjected to asphalt pavement with a width of about 5 cm and cutting it out to 10 × 10 cm. The specimen was left in a thermostat set at the measurement temperature (20 ° C., −10 ° C.) for one night or longer, and then the shear strength was measured with a predetermined jig at a loading speed of 1 mm / min. In the measurement, the shear strength of each of the three test specimens was obtained under each temperature condition, and the average value was listed in the table below.
(4)引張試験
水浸前の引張試験は、アスファルト混合物を舗設したコンクリート平板の中央部分にコアカッターで100mmφの切込みをコンクリート板に達するまで入れ、100mmφの鉄製冶具を接着剤で貼り付け、接着剤の硬化を待って測定温度に調整している恒温層へ入れて一夜放置後、建研式引張試験機で引張強度を測定することで行った。測定は、各温度条件でそれぞれ3箇所測定し、その平均値を下表に記載した。
(4) Tensile test A tensile test before water immersion is performed by inserting a 100 mmφ notch into the center of a concrete plate paved with asphalt mixture until it reaches the concrete plate, and attaching an iron jig of 100 mmφ with adhesive. After waiting for the agent to cure, it was placed in a constant temperature layer adjusted to the measurement temperature and allowed to stand overnight, and then the tensile strength was measured with a Kenken type tensile tester. The measurement was performed at three locations under each temperature condition, and the average values are shown in the table below.
水浸7日後の引張試験は、上記水浸前の引張試験と同様に、コアカッターで100mmφの切込みをコンクリート板まで入れ、100mmφの鉄製冶具を接着剤で貼り付けた物を20℃の水中に7日間浸漬した後、建研式引張試験機で引張強度を測定することで行った。測定は、各温度条件で3箇所行い、その平均値を求め、水浸前の引張強度に対する保持率を算出した。 The tensile test after 7 days of water immersion is the same as the above-described tensile test before water immersion. A 100 mmφ incision was made with a core cutter up to the concrete plate, and a 100 mmφ iron jig was attached with an adhesive in 20 ° C water. After immersion for 7 days, the tensile strength was measured with a Kenken tensile tester. The measurement was performed at three locations under each temperature condition, the average value was obtained, and the retention rate with respect to the tensile strength before water immersion was calculated.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004125245A JP4058017B2 (en) | 2004-04-21 | 2004-04-21 | Concrete floor slab waterproofing construction method and waterproof concrete slab |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004125245A JP4058017B2 (en) | 2004-04-21 | 2004-04-21 | Concrete floor slab waterproofing construction method and waterproof concrete slab |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005307542A JP2005307542A (en) | 2005-11-04 |
JP4058017B2 true JP4058017B2 (en) | 2008-03-05 |
Family
ID=35436621
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004125245A Expired - Lifetime JP4058017B2 (en) | 2004-04-21 | 2004-04-21 | Concrete floor slab waterproofing construction method and waterproof concrete slab |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4058017B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011080275A (en) * | 2009-10-07 | 2011-04-21 | Denki Kagaku Kogyo Kk | Concrete slab waterproofing construction method |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6430734B2 (en) * | 2014-07-07 | 2018-11-28 | 首都高速道路株式会社 | Method for waterproofing concrete slab and waterproof structure of concrete slab |
-
2004
- 2004-04-21 JP JP2004125245A patent/JP4058017B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011080275A (en) * | 2009-10-07 | 2011-04-21 | Denki Kagaku Kogyo Kk | Concrete slab waterproofing construction method |
Also Published As
Publication number | Publication date |
---|---|
JP2005307542A (en) | 2005-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4351723B2 (en) | Construction method of waterproofing material for asphalt-based paints for buildings or bridges | |
JP5385171B2 (en) | Waterproof pavement structure of concrete floor slab, waterproof construction method thereof and waterproof pavement construction method | |
JP5086917B2 (en) | Repair method for asphalt pavement | |
JP6328936B2 (en) | Concrete construction method | |
JP2008057119A (en) | Waterproof construction method for concrete floor slab for road bridge | |
JP5457777B2 (en) | Waterproofing method for concrete floor slabs | |
KR102653648B1 (en) | Construction method for thin layer overlaying pavement using a high functional resin composition having excellent crack resistance | |
KR102667546B1 (en) | Thin layer overlay pavement composition with excellent adhesion durability and thin layer overlay pavement construction method using the same | |
JP5323980B1 (en) | Waterproof structure of road bridge deck | |
KR102460723B1 (en) | Aspalt seal-waterproofing material and water-proofing method | |
KR101136810B1 (en) | A high durable epoxy asphalt pavement materials | |
JP4058017B2 (en) | Concrete floor slab waterproofing construction method and waterproof concrete slab | |
KR102199977B1 (en) | Bridge waterproofing structure and waterproofing method with improved adhesion between pavement layer and waterproofing layer | |
JP4022209B2 (en) | Floor slab waterproofing construction method and floor slab waterproof structure | |
JP2007085013A (en) | Concrete floor slab waterproofing construction method and concrete floor slab waterproofing structure | |
KR102065388B1 (en) | Water-proof Coating Composition for Coating Bridge Surface and Water-proof Coating Method For Using the Same | |
IE20200124A2 (en) | Binding means for surface treatments | |
KR101280975B1 (en) | The coating primer to be united with asphalt waterproof sheets. | |
KR102250270B1 (en) | Composition of the watertight asphalt paving overlay for bridges and concrete roadways | |
KR101241795B1 (en) | Process for paving with non-slip paving material | |
KR101835734B1 (en) | Waterproof agent compound and method for forming the same | |
JP2016160676A (en) | Floor stab water proof sheet, construction method of floor stab water proof structure, and floor stab water proof structure | |
JP2017048669A (en) | Primer for floor slab waterproof construction, construction method for floor slab waterproof construction, and construction method for floor slab waterproof structure | |
KR101653366B1 (en) | Concrete structure waterproofing construction method using deposite-coating on site | |
KR102403945B1 (en) | Epoxy modified rapid set cement concrete composite and method for reparing and reinforcing concrete structures and road pavement using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070129 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070807 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071002 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071204 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071214 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4058017 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101221 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111221 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111221 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121221 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121221 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131221 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |