JP2005340758A - Transparent body for plasma treatment apparatus, and plasma treatment apparatus - Google Patents

Transparent body for plasma treatment apparatus, and plasma treatment apparatus Download PDF

Info

Publication number
JP2005340758A
JP2005340758A JP2004371794A JP2004371794A JP2005340758A JP 2005340758 A JP2005340758 A JP 2005340758A JP 2004371794 A JP2004371794 A JP 2004371794A JP 2004371794 A JP2004371794 A JP 2004371794A JP 2005340758 A JP2005340758 A JP 2005340758A
Authority
JP
Japan
Prior art keywords
plasma
transparent
light transmitting
transmitting body
yttrium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004371794A
Other languages
Japanese (ja)
Other versions
JP4487764B2 (en
Inventor
Junichi Iwazawa
順一 岩澤
Masakatsu Kiyohara
正勝 清原
Ryoichi Nishimizu
亮市 西水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2004371794A priority Critical patent/JP4487764B2/en
Publication of JP2005340758A publication Critical patent/JP2005340758A/en
Application granted granted Critical
Publication of JP4487764B2 publication Critical patent/JP4487764B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transparent body which is reinforced in durability to the plasma of site glass or a transparent chamber inner face, for a plasma treatment apparatus. <P>SOLUTION: The plasma treatment apparatus is characterized in that an upper electrode 2 and a lower electrode 3 are arranged in a chamber body composed of an aluminium alloy, that a chuck 4 mounting a processed work W is provided on the lower electrode 3, that site glass 5 is inserted in an aperture formed in the chamber body 1, and that a transparent plasma-proof layer 5a composed of yttrium oxide (Y<SB>2</SB>O<SB>3</SB>) polycrystalline is formed at the inner side of the site glass 5. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、耐プラズマに優れた透光体とこの透光体を用いた処理装置に関する。   The present invention relates to a translucent body excellent in plasma resistance and a processing apparatus using the translucent body.

半導体ウェーハやガラス基材の表面に多層配線を形成するにはエッチングやアッシングなどの表面処理をプラズマ雰囲気で繰り返すことが行なわれる。この処理を行なうプラズマ処理装置は、チャンバー内に被処理物を載置するテーブルを設けるとともにチャンバー内またはチャンバー外に電極を配置し、チャンバー内を減圧状態にし電極間に高周波を印加してプラズマを発生せしめている。   In order to form a multilayer wiring on the surface of a semiconductor wafer or glass substrate, surface treatment such as etching or ashing is repeated in a plasma atmosphere. A plasma processing apparatus that performs this processing is provided with a table for placing an object to be processed in a chamber, and an electrode is disposed inside or outside the chamber, the chamber is decompressed, and a high frequency is applied between the electrodes to generate plasma. It is generated.

前記チャンバーとしてはアルミ合金製のチャンバーの一部にサイトガラスを嵌め込んだもの、或いはチャンバー全体を合成石英で構成したものがあるが、プラズマに曝されると、徐々に腐食が進行して厚みが薄くなり(所謂痩せてくる)、透明部分の光透過率が低下して内部のモニタリングができなくなったり、パーティクルが発生して歩留り低下を招くなどの不具合がある。   As the chamber, there is a chamber in which sight glass is fitted in a part of an aluminum alloy chamber, or a chamber in which the whole chamber is made of synthetic quartz. Becomes thin (so-called thinning), the light transmittance of the transparent portion is lowered and internal monitoring cannot be performed, and particles are generated, resulting in a decrease in yield.

そこで、特許文献1には、高純度アルミナ焼結体や酸化イットリウム溶射膜を耐プラズマ性が必要とされる箇所に用いることが提案されている。
また、特許文献2には、脆性材料を高速で基盤に衝突させて機械的衝撃力を付加し、結晶子同士の界面などの壁開面に沿って結晶格子のずれを生じせしめ、あるいは破砕し、ずれ面や破面に表面エネルギーが高い新生面を形成し、これら新生面同士を結合せしめて緻密な脆性材料の透明層を形成することが開示され、特に、脆性材料として、酸化イットリウムが開示されている。
特開2002−252209号公報 (第2頁) 特開2003−183848号公報 段落(0021)
Therefore, Patent Document 1 proposes to use a high-purity alumina sintered body or a yttrium oxide sprayed film in a place where plasma resistance is required.
Further, Patent Document 2 applies a mechanical impact force by causing a brittle material to collide with a base at a high speed, causing a crystal lattice to be displaced along a wall open surface such as an interface between crystallites, or crushing. It is disclosed that a new surface having a high surface energy is formed on a slip surface or a fracture surface, and that these new surfaces are bonded together to form a transparent layer of a dense brittle material, and in particular, yttrium oxide is disclosed as a brittle material. Yes.
JP 2002-252209 A (Page 2) JP 2003-183848 A paragraph (0021)

上記した先行技術をプラズマ処理装置に適用した場合、サイトガラスなどの透光体の早期失透、パーティクルの発生が生じやすい。 When the above-described prior art is applied to a plasma processing apparatus, early devitrification and generation of particles of a light transmitting body such as sight glass are likely to occur.

即ち、本発明はプラズマ曝露中における透明性の維持、耐パーティクル性の維持を同時に満たすプラズマ処理装置用透光体を提供する。   That is, the present invention provides a light transmitting body for a plasma processing apparatus that simultaneously satisfies the maintenance of transparency and particle resistance during plasma exposure.

上記課題を解決するため本発明は、チャンバー内に被処理物をセットし、減圧下でチャンバー内にプラズマを発生せしめて被処理物に表面処理を施すプラズマ処理装置用透光体において、この透光体の内側面には透明耐プラズマ層が形成され、この透明耐プラズマ層は酸化イットリウム(Y)多結晶体を主成分とし、厚みは1μm〜100μmで、平均結晶粒径は100nm以下で、結晶同士の界面にはガラス層からなる粒界層が実質的に存在しない構成とした。 In order to solve the above problems, the present invention provides a transparent body for a plasma processing apparatus in which a workpiece is set in a chamber, plasma is generated in the chamber under reduced pressure, and the workpiece is subjected to surface treatment. A transparent plasma-resistant layer is formed on the inner surface of the light body. This transparent plasma-resistant layer is mainly composed of a yttrium oxide (Y 2 O 3 ) polycrystal, has a thickness of 1 μm to 100 μm, and an average crystal grain size of 100 nm. Below, it was set as the structure which the grain boundary layer which consists of a glass layer does not exist substantially in the interface of crystals.

前記透光体としては、チャンバー自体またはサイトガラスが考えられ、更に
透光体が透明であるには、上記の厚み範囲(100μm以下)と平均結晶粒径(100nm以下)にする必要がある。尚、厚みを1μm以上とするのはこれ未満だと耐プラズマ性に劣るからである。
As the translucent body, the chamber itself or sight glass is conceivable. Further, in order for the translucent body to be transparent, it is necessary to have the above thickness range (100 μm or less) and the average crystal grain size (100 nm or less). The reason why the thickness is 1 μm or more is that if it is less than this, the plasma resistance is poor.

ここで、本発明において透光体とは、200nm〜1000nmの特定の波長の光が透過可能なものを指す。また透光体が透明であるか否かは、前記透明耐プラズマ層を形成した透光体の波長550nmにおける光透過率が50%以上であることを意味する。   Here, in the present invention, the translucent material refers to a material that can transmit light having a specific wavelength of 200 nm to 1000 nm. Whether or not the light transmitting body is transparent means that the light transmittance at a wavelength of 550 nm of the light transmitting body on which the transparent plasma-resistant layer is formed is 50% or more.

前記透明耐プラズマ層の特徴は、酸化イットリウム(Y)多結晶体が実質的に結晶配向性がなく、また一部が透光体の内面に食い込むアンカー部を形成していることが挙げられる。 The transparent plasma-resistant layer is characterized in that the yttrium oxide (Y 2 O 3 ) polycrystal has substantially no crystal orientation, and a part thereof forms an anchor portion that bites into the inner surface of the translucent body. Can be mentioned.

ここで、本発明を理解する上で重要となる語句の解釈を以下に行う。
(多結晶)本件では結晶子が接合・集積してなる構造体を指す。結晶子は実質的にそれひとつで結晶を構成しその径は通常5nm以上である。ただし、微粒子が破砕されずに透明な構造物中に取り込まれるなどの場合がまれに生じるが、実質的には多結晶である。
(膜厚)本件で膜厚とは、触針式表面形状測定器(日本真空技術社製/Dectak3030)による測定や走査型電子顕微鏡(日立製作所社製/S-4100)、透過型電子顕微鏡による断面方向からの観察により測定・算出される基材上に形成された透明な構造物の形成高さを言う。また基材と透明な構造物の界面にアンカー部が形成される場合は、基材の最表面から測定・算出した形成高さを言う。
(平均結晶粒径)本件で平均結晶粒径とは、X線回折法におけるScherrerの方法によって、算出される結晶子のサイズを言い、マックサイエンス社製MXP−18を使用して測定・算出する。
(結晶配向性)本件では多結晶である透明な構造物中での結晶軸の配向具合を指し、配向性があるかないかは、一般には実質的に配向性のないと考えられる粉末X線回折などによ
って標準データとされたJCPDS(ASTM)データを指標として判断する。透明な構造物中の
脆性材料結晶を構成する物質をあげたこの指標における主要な回折3ピークのピーク強度を100%として、透明な構造物の同物質測定データ中、最も主要なピークのピーク強度をこれに揃えた場合に、他の2ピークのピーク強度が指標の値と比較して30%以内にそのずれが収まっている状態を、本件では実質的に配向性がないとする。
(界面)本件では結晶子同士の境界を構成する領域を指す。
(粒界層)界面あるいは焼結体でいう粒界に位置するある厚み(通常数nm〜数μm)を持つ層で、通常結晶粒内の結晶構造とは異なるアモルファス構造をとり、また場合によっては不純物の偏析を伴う。
(アンカー部)本件の場合には、基材と透明な構造物の界面に形成された凹凸を指し、特に、予め基材に凹凸を形成させるのではなく、透明な構造物形成時に、元の基材の表面精度を変化させて形成される凹凸のことを指す。
Here, the interpretation of the words that are important for understanding the present invention will be described below.
(Polycrystalline) In this case, it refers to a structure in which crystallites are joined and accumulated. The crystallite is essentially one crystal, and its diameter is usually 5 nm or more. However, the case where the fine particles are taken into a transparent structure without being crushed rarely occurs, but is substantially polycrystalline.
(Film thickness) In this case, the film thickness is measured with a stylus type surface shape measuring instrument (Nihon Vacuum Technology Co., Ltd./Dectak3030), a scanning electron microscope (Hitachi, Ltd./S-4100), or a transmission electron microscope. The height of the transparent structure formed on the substrate measured and calculated by observation from the cross-sectional direction. Moreover, when an anchor part is formed in the interface of a base material and a transparent structure, the formation height measured and calculated from the outermost surface of a base material is said.
(Average crystal grain size) In this case, the average crystal grain size means the crystallite size calculated by the Scherrer method in the X-ray diffraction method, and is measured and calculated using MXP-18 manufactured by Mac Science. .
(Crystal orientation) In this case, it refers to the degree of orientation of crystal axes in a transparent structure that is polycrystalline, and whether or not there is orientation is generally X-ray powder diffraction, which is considered to be substantially non-oriented. JCPDS (ASTM) data, which is standard data by the above, is judged as an index. The peak intensity of the three major diffraction peaks in this index, which is the material constituting the brittle material crystal in the transparent structure, is defined as 100%. In this case, it is assumed that there is substantially no orientation in a state where the deviation of the peak intensity of the other two peaks is within 30% of the index value.
(Interface) In this case, it refers to the region that forms the boundary between crystallites.
(Grain boundary layer) A layer with a certain thickness (usually several nanometers to several micrometers) located at the grain boundary in the interface or sintered body, and usually takes an amorphous structure different from the crystal structure in the crystal grain, and in some cases Is accompanied by segregation of impurities.
(Anchor part) In the case of this case, it refers to the unevenness formed at the interface between the base material and the transparent structure, and in particular, it is not necessary to form the unevenness in the base material in advance. It refers to irregularities formed by changing the surface accuracy of the substrate.

上記の特徴を持つ透明耐プラズマ層を基材表面に形成するには、例えば、後述するエアロゾルデポジション法(AD法)を用いることができる。ここで、基材とは透光性(透明性)を有するものであれば、特に限定されるものではないが、例えば、石英ガラス、ケイ酸ガラス、ソーダ石灰ガラス、鉛アルカリガラス、ホウケイ酸ガラス、アルミノケイ酸ガラス、リン酸ガラス、アルカリシリケートガラス、バリウムガラス、カリ石灰ガラス、リチウムケイ酸塩ガラス、サファイアが挙げられる。
またAD法では、以下のメカニズムにより基材上に透明耐プラズマ層が形成される。
具体的には、延展性を持たない脆性材料(セラミックス)に機械的衝撃力を付加すると、結晶子同士の界面などの壁開面に沿って結晶格子のずれを生じたり、あるいは破砕される。そして、これらの現象が起こると、ずれ面や破面には、もともと内部に存在し別の原子と結合していた原子が剥き出しの状態となった新生面が形成される。この新生面の原子一層の部分は、もともと安定した原子結合状態から外力により強制的に不安定な表面状態に晒され、表面エネルギーが高い状態となる。この活性面が隣接した脆性材料表面や同じく隣接した脆性材料の新生面あるいは基材表面と接合して安定状態に移行する。外部からの連続した機械的衝撃力の付加は、この現象を継続的に発生させ、微粒子の変形、破砕な
どの繰り返しにより接合の進展、緻密化が行われ、脆性材料の透明層が形成される。
In order to form the transparent plasma-resistant layer having the above characteristics on the substrate surface, for example, an aerosol deposition method (AD method) described later can be used. Here, the substrate is not particularly limited as long as it has translucency (transparency). For example, quartz glass, silicate glass, soda lime glass, lead alkali glass, borosilicate glass , Aluminosilicate glass, phosphate glass, alkali silicate glass, barium glass, potassium lime glass, lithium silicate glass, and sapphire.
In the AD method, a transparent plasma-resistant layer is formed on the substrate by the following mechanism.
Specifically, when a mechanical impact force is applied to a brittle material (ceramics) that does not have spreadability, the crystal lattice shifts along the wall open surface such as the interface between crystallites or is crushed. When these phenomena occur, a new surface is formed on the slipping surface or fracture surface, in which atoms originally present inside and bonded to other atoms are exposed. The part of the atomic layer on the new surface is exposed to an unstable surface state by an external force from a stable atomic bond state, and the surface energy is high. This active surface joins to the adjacent brittle material surface, the newly formed brittle material surface, or the surface of the base material, and shifts to a stable state. The addition of a continuous mechanical impact force from the outside causes this phenomenon to occur continuously, and does not deform or crush fine particles.
The repetition and densification of bonding are performed by any repetition, and a transparent layer of a brittle material is formed.

本発明に係るプラズマ処理装置用透光体によれば、プラズマ耐久性に優れ、サイトガラスなどの透明部材が長期間失透しないプラズマ処理装置が得られる。   According to the light transmitting body for a plasma processing apparatus according to the present invention, it is possible to obtain a plasma processing apparatus that is excellent in plasma durability and in which a transparent member such as sight glass is not devitrified for a long time.

以下に本発明の実施の形態を添付図面に基づいて説明する。図1および図2は本発明に係る透光体を適用したプラズマ処理装置の一例の断面図であり、図1に示すプラズマ処理装置は、アルミニウム合金からなるチャンバー本体1内に上部電極2と下部電極3を配置し、下部電極3上に被処理物Wを載置するチャック4を設け、また、チャンバー本体1に形成した開口にサイトガラス5が嵌め込まれ、このサイトガラス5の内側面に酸化イットリウム(Y)多結晶体からなる透明耐プラズマ層5aが形成されている。 Embodiments of the present invention will be described below with reference to the accompanying drawings. 1 and 2 are sectional views of an example of a plasma processing apparatus to which a light transmitting body according to the present invention is applied. The plasma processing apparatus shown in FIG. 1 includes an upper electrode 2 and a lower part in a chamber body 1 made of an aluminum alloy. The electrode 3 is disposed, the chuck 4 for placing the workpiece W on the lower electrode 3 is provided, and the sight glass 5 is fitted into the opening formed in the chamber body 1, and the inner surface of the sight glass 5 is oxidized. A transparent plasma-resistant layer 5a made of yttrium (Y 2 O 3 ) polycrystal is formed.

また、図2に示すプラズマ処理装置は、合成石英からなるチャンバー本体1の上部外周にシート電極6,7を配置し、チャンバー本体1の下部には被処理物Wを載置するチャック4を臨ませている。そして、チャンバー本体1の内側面に酸化イットリウム(Y)多結晶体からなる透明耐プラズマ層1aが形成されている。 In the plasma processing apparatus shown in FIG. 2, sheet electrodes 6 and 7 are disposed on the outer periphery of the upper portion of the chamber body 1 made of synthetic quartz, and a chuck 4 on which the workpiece W is placed faces the lower portion of the chamber body 1. Not. A transparent plasma-resistant layer 1 a made of a yttrium oxide (Y 2 O 3 ) polycrystal is formed on the inner surface of the chamber body 1.

図3は前記透明耐プラズマ層1a,5aを形成する作製装置の概略構成図であり、窒素、乾燥空気、ヘリウムの各種ガスボンベ11が、搬送管12を介してエアロゾル発生器13に連結され、さらに搬送管12を通じて構造物形成装置14内にノズル15が配置される。ノズル15の先方にはXYステージ17に設置された基材16がノズル15に対向して10mmの間隔をあけて配置される。構造物形成室14は排気ポンプ18に接続している。   FIG. 3 is a schematic configuration diagram of a production apparatus for forming the transparent plasma-resistant layers 1a and 5a. Various gas cylinders 11 of nitrogen, dry air, and helium are connected to an aerosol generator 13 through a transport pipe 12, and A nozzle 15 is arranged in the structure forming apparatus 14 through the transport pipe 12. A base material 16 installed on the XY stage 17 is disposed at the tip of the nozzle 15 so as to face the nozzle 15 with an interval of 10 mm. The structure forming chamber 14 is connected to an exhaust pump 18.

そして、材料粉末をエアロゾル発生器13内に充填した後、ガスボンベ11を開き、乾燥空気を搬送管12を通じてエアロゾル発生器13に導入し、材料粉末をガス中に分散させたエアロゾルを発生させる。このエアロゾルを搬送管12を通じてさらに構造物形成室14の方向へ搬送し、高速に加速させつつノズル15より材料粉末を基材16に向けて噴射する。   Then, after the material powder is filled in the aerosol generator 13, the gas cylinder 11 is opened, and dry air is introduced into the aerosol generator 13 through the transport pipe 12, thereby generating an aerosol in which the material powder is dispersed in the gas. This aerosol is further transported in the direction of the structure forming chamber 14 through the transport pipe 12, and the material powder is sprayed toward the base material 16 from the nozzle 15 while being accelerated at a high speed.

本実施例にあっては、前記透明耐プラズマ層1a,5aを形成する材料として酸化イットリウム(Y)微粒子とこれよりも大粒径のアルミニウム(Y)微粒子の混合粉末を用いている。 In this embodiment, a mixed powder of yttrium oxide (Y 2 O 3 ) fine particles and aluminum (Y 2 O 3 ) fine particles having a larger particle diameter than that is used as a material for forming the transparent plasma-resistant layers 1a and 5a. Used.

図4(a)に示すように、ノズルから混合粉末を基材に高速で噴出せしめると、酸化イットリウム(Y)微粒子は基材に衝突した衝撃で変形或いは破砕されて新生面を形成し、新生面同士が結合して緻密な膜を形成するが、大粒径の粒子が混ざっていると、同図(b)に示すように、大粒径の粒子が小粒径の酸化イットリウム粒子を背面から圧潰し、より効果的に新生面が形成される。 As shown in FIG. 4 (a), when the mixed powder is ejected from the nozzle onto the base material at a high speed, the yttrium oxide (Y 2 O 3 ) fine particles are deformed or crushed by the impact that hits the base material to form a new surface. The newly formed surfaces are bonded to form a dense film. When large particles are mixed, as shown in FIG. 4B, the large particles are converted to small yttrium oxide particles. By crushing from the back, a new surface is formed more effectively.

(実施例)
酸化イットリウム(Y)微粒子と酸化アルミニウム(Al)粒子を用意した。酸化アルミニウム粒子の体積基準による50%平均粒径は2.1μmで、酸化イットリウム微粒子の粒径は0.47μmであった。ここで体積基準による50%平均粒径とは、レーザー回折式粒度分布計を用いて測定した粒度分布測定データにおける、粒径の小さい側からの粒子の累積体積が50%に達した時の粒子の粒径をいう。また、酸化イットリウム微粒子の粒子径は、フィッシャー・サブシーブサイザーで測定した比表面積から算出した粒子径である。
(Example)
Yttrium oxide (Y 2 O 3 ) fine particles and aluminum oxide (Al 2 O 3 ) particles were prepared. The 50% average particle size based on volume of the aluminum oxide particles was 2.1 μm, and the particle size of the yttrium oxide fine particles was 0.47 μm. Here, the 50% average particle size based on the volume refers to particles when the cumulative volume of particles from the smaller particle size reaches 50% in the particle size distribution measurement data measured using a laser diffraction particle size distribution meter. The particle size of Further, the particle diameter of the yttrium oxide fine particles is a particle diameter calculated from the specific surface area measured by a Fischer sub-sieve sizer.

次にこれらの微粒子を(酸化アルミニウム微粒子):(酸化イットリウム微粒子)=1 :10の個数比で混合して粒子混合物を得た。   Next, these fine particles were mixed at a number ratio of (aluminum oxide fine particles) :( yttrium oxide fine particles) = 1: 10 to obtain a particle mixture.

上記粒子混合物を図3に示した作製装置のエアロゾル発生器に装填し、キャリアガスとして窒素ガスを5リットル/分の流量で装置内を流しながらエアロゾルを発生させて、石英基材上に噴出させた。こうして、基材上に高さ10μm、面積20mm×20mmの透光性を有する酸化イットリウム膜を形成した。   The above particle mixture is loaded into the aerosol generator of the production apparatus shown in FIG. 3, and aerosol is generated while flowing nitrogen gas as a carrier gas at a flow rate of 5 liters / minute, and is jetted onto the quartz substrate. It was. In this manner, a light-transmitting yttrium oxide film having a height of 10 μm and an area of 20 mm × 20 mm was formed on the substrate.

一方、酸化イットリウム微粒子の平均粒径を0.47μm、酸化アルミニウム微粒子の平均粒径を5.9μmとし、(酸化アルミニウム微粒子):(酸化イットリウム微粒子)=1:100の個数比で混合した粒子混合物を用いた場合には、黒色の酸化イットリウム膜となってしまった。   On the other hand, the average particle diameter of the yttrium oxide fine particles is 0.47 μm, the average particle diameter of the aluminum oxide fine particles is 5.9 μm, and the particle mixture is mixed at a number ratio of (aluminum oxide fine particles) :( yttrium oxide fine particles) = 1: 100. Was used, it became a black yttrium oxide film.

このように、酸化アルミニウム微粒子と酸化イットリウム微粒子の粒径および混合比は酸化イットリウム膜が透光性を発揮するための必須の条件となる。基材(ガラス板などの透明部材)の光透過率(波長550nm)が95%の場合、基材+透明耐プラズマ層(酸化イットリウム膜)の光透過率(波長550nm)が内部のモニタリングを行う上で必要とされる50%以上となるには、平均粒径0.010μm〜1.0μmの酸化イットリウム(Y)微粒子と平均粒径1.0μm〜5.0μmの微粒子(酸化アルミニウム微粒子など)とを、1:1〜1:1000の割合で混合した粉末材料を用いることが好ましい。 Thus, the particle size and mixing ratio of the aluminum oxide fine particles and the yttrium oxide fine particles are indispensable conditions for the yttrium oxide film to exhibit translucency. When the light transmittance (wavelength 550 nm) of the base material (transparent member such as a glass plate) is 95%, the light transmittance (wavelength 550 nm) of the base material + transparent anti-plasma layer (yttrium oxide film) performs internal monitoring. In order to achieve 50% or more required above, yttrium oxide (Y 2 O 3 ) fine particles having an average particle size of 0.010 μm to 1.0 μm and fine particles having an average particle size of 1.0 μm to 5.0 μm (such as aluminum oxide fine particles) ) Is preferably used in a ratio of 1: 1 to 1: 1000.

尚、酸化アルミニウム微粒子は酸化イットリウム微粒子を変形或いは破砕せしめて新生面を生じさせるためのもので、衝突後は反射し、不可避的に混入するものを除いて直接膜の構成材料にはならないため、その材料は酸化アルミニウムに限定されず、酸化イットリウムを用いてもよいが、コスト面を考慮すると酸化アルミニウムが最適である。   Aluminum oxide fine particles are for deforming or crushing yttrium oxide fine particles to form a new surface, and since they are reflected after collision and inevitably mixed in, they do not directly constitute the material of the film. The material is not limited to aluminum oxide, and yttrium oxide may be used, but aluminum oxide is optimal in consideration of cost.

図5(a)は上記のAD法によって得た透明耐プラズマ層である酸化イットリウム(Y)膜の耐プラズマ試験前の状態を示すSEM写真、(b)は同膜の耐プラズマ試験後の状態を示すSEM写真である。 FIG. 5A is an SEM photograph showing a state before the plasma resistance test of the yttrium oxide (Y 2 O 3 ) film, which is a transparent plasma resistance layer obtained by the AD method, and FIG. 5B is a plasma resistance test of the film. It is a SEM photograph which shows a back state.

耐プラズマ試験の条件は以下の通りである。
装置:RIE型エッチャー装置(DEA-506/日電アネルバ製)
ガス:CF+(40SCCM)+O(10SCCM)
高周波電源
電力:1kw(0.55W/cm
周波数:13.56MHz
プラズマ照射時間:180min
真空度:5〜7torr
評価方法
浸食深さおよび表面粗さ:試料をプラズマ雰囲気に曝露した後、試料のマスクを施した部位と施してない部位の段差を、触針式表面形状測定器(日本真空技術社製/Dectak3030)を用いて測定した。
表面SEM観察:プラズマ雰囲気曝露前後の表面観察をSEM(走査型電子顕微鏡:日立製作所製S4100)により行った。
The conditions for the plasma resistance test are as follows.
Equipment: RIE type etcher equipment (DEA-506 / Nippon Anelva)
Gas: CF 4 + (40 SCCM) + O 2 (10 SCCM)
High frequency power supply: 1 kW (0.55 W / cm 2 )
Frequency: 13.56MHz
Plasma irradiation time: 180 min
Degree of vacuum: 5-7 torr
Evaluation Method Erosion Depth and Surface Roughness: After exposing the sample to the plasma atmosphere, the level difference between the portion where the sample was masked and the portion where the sample was not applied was measured with a stylus type surface shape measuring instrument (manufactured by Nippon Vacuum Technology Co., Ltd./Dectak 3030 ).
Surface SEM observation: Surface observation before and after exposure to the plasma atmosphere was performed by SEM (scanning electron microscope: S4100 manufactured by Hitachi, Ltd.).

図6乃至図9の(a)および(b)は他の材料についてのプラズマ雰囲気曝露前後の表面のSEM写真であり、図6は焼結(HIP)によって形成した酸化イットリウム(Y)膜、図7は溶射法によって得た酸化イットリウム(Y)膜、図8はサファイア膜、図9は石英を示す。 FIGS. 6A to 9B are SEM photographs of the surface of the other material before and after exposure to the plasma atmosphere, and FIG. 6 shows yttrium oxide (Y 2 O 3 ) formed by sintering (HIP). 7 shows a yttrium oxide (Y 2 O 3 ) film obtained by thermal spraying, FIG. 8 shows a sapphire film, and FIG. 9 shows quartz.

図6乃至図9から、本発明に係る透明酸化イットリウム膜は、プラズマ雰囲気曝露前においては、石英やサファイアと同様にポアが観察されず、焼結(HIP)によって形成した酸化イットリウム膜および溶射法によって得た酸化イットリウム膜には数μmのポアが観察される。   From FIG. 6 to FIG. 9, the transparent yttrium oxide film according to the present invention is not observed to have pores like quartz and sapphire before exposure to the plasma atmosphere, and the yttrium oxide film formed by sintering (HIP) and the thermal spraying method. A pore of several μm is observed in the yttrium oxide film obtained by the above method.

また、プラズマ雰囲気曝露後においては、本発明に係る透明酸化イットリウム膜は、サファイアと同様に表面状態に変化はなく、焼結(HIP)によって形成した酸化イットリウム膜は、曝露前に存在していたポアの周辺が浸食されポアの大きさが拡大し、溶射法によって得た酸化イットリウム膜は、表面に亀裂が入った状態になり、石英については曝露前に存在しなかったポアが観察された。   In addition, after the plasma atmosphere exposure, the transparent yttrium oxide film according to the present invention had no change in the surface state like sapphire, and the yttrium oxide film formed by sintering (HIP) existed before the exposure. The pores were eroded and the size of the pores increased, and the yttrium oxide film obtained by thermal spraying was cracked on the surface, and the pores that were not present before exposure were observed for quartz.

図10はプラズマ試験前後の表面粗さを比較したグラフであり、本発明に係る透明酸化イットリウム膜のプラズマ試験前の表面粗さは、サファイアおよび石英に比較すると若干劣るものの、プラズマ試験後においても殆んど表面粗さは変化しないことが分かる。   FIG. 10 is a graph comparing the surface roughness before and after the plasma test. The surface roughness of the transparent yttrium oxide film according to the present invention before the plasma test is slightly inferior to that of sapphire and quartz, but even after the plasma test. It can be seen that the surface roughness hardly changes.

図11はプラズマ試験後の浸食深さを比較したグラフであり、本発明に係る透明酸化イットリウム膜のプラズマ試験後の浸食深さは他の材料に比較して極めて少ないことがわかる。   FIG. 11 is a graph comparing the erosion depth after the plasma test. It can be seen that the erosion depth after the plasma test of the transparent yttrium oxide film according to the present invention is extremely small as compared with other materials.

図12は、プラズマ照射前におけるAD法により作製したイットリア膜の膜厚と透過率の関係で、膜厚2.0μm、5.0μm、8.5μmの3種類において、波長200nmから800nmまでの光透過率を比較したグラフである。このグラフにおいて、プラズマ照射前においては、膜厚が厚くなるほど少しずつ透過率が低下していることが分かる。段落0009にも記載してある通り、透光体が透明であるか否かは、前記透明耐プラズマ層を形成した透光体の波長550nmにおける光透過率が50%以上であるかどうかで判断しているが、ここでは膜厚2.0μmで透過率が81%、、膜厚5.0μmで透過率76.5%、8.5μmで透過率73%であり、いずれも50%を超えているので透明体と言える。   FIG. 12 shows the relationship between the film thickness and the transmittance of the yttria film prepared by the AD method before plasma irradiation. In three types of film thicknesses of 2.0 μm, 5.0 μm, and 8.5 μm, light having a wavelength of 200 nm to 800 nm is shown. It is the graph which compared the transmittance | permeability. In this graph, it can be seen that the transmittance decreases gradually as the film thickness increases before plasma irradiation. As described in paragraph 0009, whether or not the transparent body is transparent is determined by whether or not the light transmittance at a wavelength of 550 nm of the transparent body on which the transparent plasma-resistant layer is formed is 50% or more. However, the transmittance is 81% at a film thickness of 2.0 μm, the transmittance is 76.5% at a film thickness of 5.0 μm, and the transmittance is 73% at 8.5 μm, both of which exceed 50%. It can be said that it is transparent.

上記のAD法によるイットリア製膜条件としては、平均粒子径2.1μmのアルミナ粒子(母粒子、ボンバー粒子)と平均粒子径0.5μmのイットリア粒子(子粒子、製膜粒子)を個数比で母粒子:子粒子=1:10となるように粉体を調整し、キャリアガスは窒素(5L/分)を用いた。   As the yttria film forming conditions by the above-mentioned AD method, alumina particles (mother particles, bomber particles) having an average particle diameter of 2.1 μm and yttria particles (child particles, film forming particles) having an average particle diameter of 0.5 μm are in a number ratio. Powder was adjusted so that mother particle: child particle = 1: 10, and nitrogen (5 L / min) was used as a carrier gas.

また、プラズマ照射前後の透過率測定における耐プラズマ試験条件としては、装置にRIE型エッチャー(DEA−506/アネルバ製)を用い、腐食性ガスにはCF4(40sccm)とO2(10sccm)を使った。該装置の高周波電力は1kW(0.55W/cm、周波数は13.56MHz)であり、照射時間は6時間(360分)であった。 Moreover, as a plasma resistance test condition in the transmittance measurement before and after plasma irradiation, an RIE type etcher (DEA-506 / manufactured by Anelva) was used for the apparatus, and CF 4 (40 sccm) and O 2 (10 sccm) were used for the corrosive gas. . The high frequency power of the apparatus was 1 kW (0.55 W / cm 2 , the frequency was 13.56 MHz), and the irradiation time was 6 hours (360 minutes).

更に、透過率測定に用いた装置は、分光光度計(UV−3150/島津製作所製)であり、AD膜の測定は、石英基板(3mmt)の厚みを含めた測定データである。   Furthermore, the apparatus used for the transmittance measurement is a spectrophotometer (UV-3150 / manufactured by Shimadzu Corporation), and the measurement of the AD film is measurement data including the thickness of the quartz substrate (3 mmt).

図13は、プラズマ照射前と6時間照射した後の石英ガラスの透過率を比較している。透光体の波長550nmにおいて、プラズマ照射前の光透過率が93%から47.5%に低下していて、変化率は48.9%ある。プラズマ6時間照射の後は50%を切っているので、プラズマ6時間照射後の石英ガラスは透光性とは言えなくなっていることが分かる。   FIG. 13 compares the transmittance of quartz glass before plasma irradiation and after irradiation for 6 hours. At a wavelength of 550 nm of the light transmitting body, the light transmittance before plasma irradiation is reduced from 93% to 47.5%, and the rate of change is 48.9%. Since 50% is cut after 6 hours of plasma irradiation, it can be seen that the quartz glass after 6 hours of plasma irradiation cannot be said to be translucent.

図14は、厚さ5μmのADイットリア膜について、プラズマ照射前と6時間照射後の透過率を比較している。透過率は、プラズマ照射前で76%、6時間照射後で73.5%となっていて、変化率は3.3%である。この場合は、プラズマ6時間照射後でも十分な透光性をもっていると言える。   FIG. 14 compares the transmittance before plasma irradiation and after 6 hours of irradiation for an AD yttria film having a thickness of 5 μm. The transmittance is 76% before plasma irradiation, 73.5% after 6 hours irradiation, and the rate of change is 3.3%. In this case, it can be said that it has sufficient translucency even after plasma irradiation for 6 hours.

本発明に係る透光体を適用したプラズマ処理装置は、集積回路形成工程に使用することができる。   The plasma processing apparatus to which the light transmitting body according to the present invention is applied can be used in an integrated circuit formation process.

本発明に係る透光体を適用したプラズマ処理装置の一例の断面図Sectional drawing of an example of the plasma processing apparatus to which the transparent body which concerns on this invention is applied 本発明に係る透光体を適用したプラズマ処理装置の一例の断面図Sectional drawing of an example of the plasma processing apparatus to which the transparent body which concerns on this invention is applied AD法による複合構造物作製装置の概略構成図Schematic configuration diagram of a composite structure manufacturing apparatus using the AD method AD法による膜形成の過程を説明した図Diagram explaining the process of film formation by AD method (a)はAD法によって得た酸化イットリウム(Y)膜の耐プラズマ試験前の状態を示すSEM写真、(b)は同膜の耐プラズマ試験後の状態を示すSEM写真であり、(a)及び(b)とも同スケールである。(A) is a SEM photograph showing the state before the plasma resistance test of the yttrium oxide (Y 2 O 3 ) film obtained by AD method, (b) is a SEM photograph showing the state after the plasma resistance test of the film, (A) and (b) are the same scale. (a)は焼結(HIP)によって形成した酸化イットリウム(Y)膜の耐プラズマ試験前の状態を示すSEM写真、(b)は同膜の耐プラズマ試験後の状態を示すSEM写真であり、(a)及び(b)とも図5と同スケールである。(A) is an SEM photograph showing the state of the yttrium oxide (Y 2 O 3 ) film formed by sintering (HIP) before the plasma resistance test, and (b) is an SEM photograph showing the state of the film after the plasma resistance test. (A) and (b) are the same scale as FIG. (a)は溶射法によって得た酸化イットリウム(Y)膜の耐プラズマ試験前の状態を示すSEM写真、(b)は同膜の耐プラズマ試験後の状態を示すSEM写真であり、(a)及び(b)とも図5と同スケールである。(A) is a SEM photograph showing the state before the plasma resistance test of the yttrium oxide (Y 2 O 3 ) film obtained by the thermal spraying method, (b) is a SEM photograph showing the state after the plasma resistance test of the film, (A) and (b) are the same scale as FIG. (a)はサファイア膜の耐プラズマ試験前の状態を示すSEM写真、(b)は同膜の耐プラズマ試験後の状態を示すSEM写真であり、(a)及び(b)とも図5の1/2スケールである。(A) is a SEM photograph showing the state of the sapphire film before the plasma resistance test, (b) is a SEM photograph showing the state of the film after the plasma resistance test, and both (a) and (b) are 1 in FIG. / 2 scale. (a)は石英の耐プラズマ試験前の状態を示すSEM写真、(b)は同膜の耐プラズマ試験後の状態を示すSEM写真であり、(a)及び(b)とも図5の1/2スケールである。(A) is a SEM photograph showing the state of the quartz before the plasma resistance test, (b) is a SEM photograph showing the state of the film after the plasma resistance test, both (a) and (b) of FIG. 2 scale. プラズマ試験前後の表面粗さを比較したグラフGraph comparing surface roughness before and after plasma test プラズマ試験後の浸食深さを比較したグラフGraph comparing erosion depth after plasma test AD法により作製したイットリア膜の膜厚と透過率の関係Relationship between film thickness and transmittance of yttria film produced by AD method 石英ガラスの透過率変化(プラズマ照射前と6時間後)Change in transmittance of quartz glass (before plasma irradiation and after 6 hours) ADイットリア膜(5μm)の透過率変化(プラズマ照射6時間)Change in transmittance of AD yttria film (5μm) (Plasma irradiation 6 hours)

符号の説明Explanation of symbols

1…チャンバー本体、1a,5a…透明耐プラズマ層、2…上部電極、3…下部電極、4…チャック、5…サイトガラス、6,7…シート、11…ガスボンベ、12…搬送管、13…エアロゾル発生器、14…構造物形成装置、15…ノズル、16…基材、17…XYステージ、18…排気ポンプ、W…被処理物。
DESCRIPTION OF SYMBOLS 1 ... Chamber main body, 1a, 5a ... Transparent plasma-resistant layer, 2 ... Upper electrode, 3 ... Lower electrode, 4 ... Chuck, 5 ... Sight glass, 6, 7 ... Sheet, 11 ... Gas cylinder, 12 ... Transfer pipe, 13 ... Aerosol generator, 14 ... structure forming device, 15 ... nozzle, 16 ... substrate, 17 ... XY stage, 18 ... exhaust pump, W ... workpiece.

Claims (6)

チャンバー内に被処理物をセットし、減圧下でチャンバー内にプラズマを発生せしめて被処理物に表面処理を施すプラズマ処理装置用透光体において、この透光体の内側面には透明耐プラズマ層が形成され、この透明耐プラズマ層は酸化イットリウム(Y)多結晶体を主成分とし、この層の厚みは1μm〜100μmで、前記多結晶体の平均結晶粒径は100nm以下で、結晶同士の界面にはガラス層からなる粒界層が実質的に存在しないことを特徴とするプラズマ処理用透光体。 In a light transmitting body for a plasma processing apparatus in which an object to be processed is set in a chamber and plasma is generated in the chamber under reduced pressure to perform surface treatment on the object to be processed. This transparent plasma-resistant layer is mainly composed of a yttrium oxide (Y 2 O 3 ) polycrystal, the thickness of this layer is 1 μm to 100 μm, and the average crystal grain size of the polycrystal is 100 nm or less. A translucent material for plasma processing, characterized in that a grain boundary layer composed of a glass layer is substantially absent at an interface between crystals. 請求項1に記載のプラズマ処理装置用透光体において、前記酸化イットリウム(Y)多結晶体は実質的に結晶配向性がないことを特徴とするプラズマ処理用透光体。 The light transmitting body for plasma processing apparatus according to claim 1, wherein the yttrium oxide (Y 2 O 3 ) polycrystalline body has substantially no crystal orientation. 請求項1または請求項2に記載のプラズマ処理装置用透光体において、前記透明耐プラズマ層の一部が透光体の内面に食い込むアンカー部を形成していることを特徴とするプラズマ処理用透光体。 3. The light transmitting body for a plasma processing apparatus according to claim 1, wherein a part of the transparent plasma-resistant layer forms an anchor portion that bites into an inner surface of the light transmitting body. Translucent body. 請求項1乃至請求項3の何れかに記載のプラズマ処理装置用透光体において、前記透光体はチャンバー自体またはサイトガラスであることを特徴とするプラズマ処理装置用透光体。 The light transmitting body for a plasma processing apparatus according to any one of claims 1 to 3, wherein the light transmitting body is a chamber itself or a sight glass. 請求項4に記載のプラズマ処理装置用透光体において、前記透明耐プラズマ層を形成した透光体の波長550nmにおける光透過率は50%以上であることを特徴とするプラズマ処理装置用透光体。 5. The light transmitting body for a plasma processing apparatus according to claim 4, wherein the light transmitting body at a wavelength of 550 nm of the light transmitting body on which the transparent plasma-resistant layer is formed is 50% or more. body. 請求項1乃至請求項5の何れかに記載の透光体を備えたことを特徴とするプラズマ処理装置。

A plasma processing apparatus comprising the light-transmitting body according to claim 1.

JP2004371794A 2004-04-30 2004-12-22 Translucent body for plasma processing apparatus and plasma processing apparatus Active JP4487764B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004371794A JP4487764B2 (en) 2004-04-30 2004-12-22 Translucent body for plasma processing apparatus and plasma processing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004136438 2004-04-30
JP2004371794A JP4487764B2 (en) 2004-04-30 2004-12-22 Translucent body for plasma processing apparatus and plasma processing apparatus

Publications (2)

Publication Number Publication Date
JP2005340758A true JP2005340758A (en) 2005-12-08
JP4487764B2 JP4487764B2 (en) 2010-06-23

Family

ID=35493926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004371794A Active JP4487764B2 (en) 2004-04-30 2004-12-22 Translucent body for plasma processing apparatus and plasma processing apparatus

Country Status (1)

Country Link
JP (1) JP4487764B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007243020A (en) * 2006-03-10 2007-09-20 Hitachi High-Technologies Corp Plasma treatment device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007243020A (en) * 2006-03-10 2007-09-20 Hitachi High-Technologies Corp Plasma treatment device

Also Published As

Publication number Publication date
JP4487764B2 (en) 2010-06-23

Similar Documents

Publication Publication Date Title
US20060178010A1 (en) Member having plasma-resistance for semiconductor manufacturing apparatus and method for producing the same
US20060159946A1 (en) Member having plasma-resistance for semiconductor manufacturing apparatus and method for producing the same
US9988702B2 (en) Component for plasma processing apparatus and method for manufacturing component for plasma processing apparatus
US11623898B2 (en) Plasma-resistant member
KR100983952B1 (en) Composite structure
JP6326210B2 (en) Quartz glass part and method for producing quartz glass part
US11939678B2 (en) Method of making a semiconductor manufacturing apparatus member
TW201812098A (en) Member for semiconductor manufacturing device
WO2014174946A1 (en) Handle substrate for composite substrate for semiconductor
WO2015008694A1 (en) Handle substrate for composite substrate for semiconductor
US8114473B2 (en) Composite structure and production method thereof
JP3897631B2 (en) Composite structure and manufacturing method thereof
JP2021077900A (en) Member for semiconductor manufacturing device, semiconductor manufacturing device including the member, and display manufacturing device
JP4487764B2 (en) Translucent body for plasma processing apparatus and plasma processing apparatus
JP2007320797A (en) Composite structure and its manufacturing method
US20200273675A1 (en) Semiconductor manufacturing apparatus member, and display manufacturing apparatus and semiconductor manufacturing apparatus comprising semiconductor manufacturing apparatus member
JP2005217349A (en) Member for semiconductor production system having plasma resistance and its production process
JP2007109828A (en) Plasma resistant member
US11142829B2 (en) Semiconductor manufacturing apparatus member, and display manufacturing apparatus and semiconductor manufacturing apparatus comprising semiconductor manufacturing apparatus member
US20200273674A1 (en) Semiconductor manufacturing apparatus member, and display manufacturing apparatus and semiconductor manufacturing apparatus comprising semiconductor manufacturing apparatus member
JP2006083429A (en) Composite structure
KR20210134239A (en) Semiconductor manufacturing equipment including composite structures and composite structures
Iwasawa et al. Preparation of transparent yttrium oxide film by aerosol deposition method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100322

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 4