JP2005340640A - Al base alloy wiring forming method of semiconductor device - Google Patents

Al base alloy wiring forming method of semiconductor device Download PDF

Info

Publication number
JP2005340640A
JP2005340640A JP2004159627A JP2004159627A JP2005340640A JP 2005340640 A JP2005340640 A JP 2005340640A JP 2004159627 A JP2004159627 A JP 2004159627A JP 2004159627 A JP2004159627 A JP 2004159627A JP 2005340640 A JP2005340640 A JP 2005340640A
Authority
JP
Japan
Prior art keywords
temperature
wiring
film
pressure
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004159627A
Other languages
Japanese (ja)
Other versions
JP4646547B2 (en
Inventor
Takashi Onishi
隆 大西
Tatsuya Yasunaga
龍哉 安永
Hideo Fujii
秀夫 藤井
Tetsuya Yoshikawa
哲也 吉川
Atsushi Munemasa
淳 宗政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2004159627A priority Critical patent/JP4646547B2/en
Publication of JP2005340640A publication Critical patent/JP2005340640A/en
Application granted granted Critical
Publication of JP4646547B2 publication Critical patent/JP4646547B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for forming wiring for a reliable semiconductor device which stably exhibits high quality such as low electric resistance and excellent denseness and adhesion to an insulating film. <P>SOLUTION: Wiring of a semiconductor device is formed by forming a thin film 5 of Al or Al alloy (hereinafter, Al base metal) by sputtering on the surface of an insulating film 2 comprising a recess 3 formed on a substrate, and then applying high-temperature and high-pressure process so that the Al base metal is packed in the recess. The above sputtering is performed under conditions of 0.5-1.1 mTorr sputtering gas pressure, 3-15 W/cm<SP>2</SP>discharge power density, and 100-300°C substrate temperature. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半導体装置のAl系合金配線形成方法に関するものであり、特に、絶縁膜に形成されたビアやトレンチ等の凹部に、高圧リフロー法でAl系合金を埋め込んで、例えばULSI(超大規模集積回路)等に代表されるSi半導体デバイス等のAl系合金配線を形成する方法に関するものである。   The present invention relates to a method for forming an Al-based alloy wiring of a semiconductor device. In particular, an Al-based alloy is embedded in a recess such as a via or a trench formed in an insulating film by a high-pressure reflow method, for example, ULSI (ultra-large scale). The present invention relates to a method for forming an Al-based alloy wiring such as a Si semiconductor device represented by an integrated circuit).

近年、LSI(大規模集積回路)の高集積化や高速信号伝播の要求を満たすためデザインルールは縮小の一途を辿っており、配線ピッチや配線幅の縮小、配線間距離の縮小はますます加速されている。これらはデバイスの高速化を主目的とするものであるが、高速化のための一手法として近年、低抵抗配線材料を使用する試みが活発化している。即ち、従来のAl系配線材料よりも、電気抵抗を低減できる配線材料としてCu系材料を使用してCu系配線を形成することが行なわれている。   In recent years, design rules have been steadily reduced to meet the demands for higher integration of LSIs (Large Scale Integrated Circuits) and high-speed signal propagation, and the reduction of wiring pitch, wiring width, and distance between wirings is increasingly accelerated. Has been. These are mainly aimed at increasing the speed of devices, but in recent years, attempts to use low-resistance wiring materials have become active as a technique for increasing the speed. That is, Cu-based wiring is formed using a Cu-based material as a wiring material capable of reducing electric resistance as compared with a conventional Al-based wiring material.

また高集積化・高性能化を実現するため、上記Cu系配線を多層構造とすることが行なわれており、該多層構造を実現するための手段として、ダマシン配線技術が用いられている(例えば特許文献1)。この方法は、常法に従って半導体基板上に酸化シリコンや窒化シリコン等の絶縁膜を形成し、該絶縁膜に埋込配線用のトレンチやビアホールといった配線溝や層間接続孔を形成し、該配線溝の内部にCu等の配線材料を埋め込みながら成膜し、化学機械研磨(Chemical Mechanical Polish,CMP)法により研磨を行なって、配線溝以外の部分に堆積した不要な配線材料を除去し、配線溝内部にのみ配線材料を残してこれを配線とする方法である。この多層配線における配線溝や層間接続孔は、集積度の増加と共に、アスペクト比(深さ/孔径の比)が高くなっている。   In order to realize high integration and high performance, the Cu-based wiring is made to have a multilayer structure, and damascene wiring technology is used as means for realizing the multilayer structure (for example, Patent Document 1). In this method, an insulating film such as silicon oxide or silicon nitride is formed on a semiconductor substrate according to a conventional method, and a wiring groove such as a trench for a buried wiring or a via hole or an interlayer connection hole is formed in the insulating film. A film is formed while embedding a wiring material such as Cu inside the substrate, and polishing is performed by a chemical mechanical polishing (CMP) method to remove unnecessary wiring material deposited on portions other than the wiring groove. In this method, the wiring material is left only inside and used as wiring. The wiring grooves and interlayer connection holes in this multilayer wiring have an increased aspect ratio (ratio of depth / hole diameter) as the degree of integration increases.

Cu系配線を上記ダマシン配線技術で形成する場合、現状では、予め形成したビア・トレンチにCu系金属を電解めっき法により埋め込みながら形成していくが、LSI配線はロードマップに従って微細化されるため、該電解めっき法では埋め込みが困難となる。特に配線ルールが0.1μm以下になると、ビア・トレンチのサイズの微細化や前記アスペクト比の増加が生じるため、Cu系材料の完全埋込が困難となる。   When forming Cu-based wiring by the above-mentioned damascene wiring technology, at present, Cu-based metal is formed by embedding a Cu-based metal in a previously formed via trench by electrolytic plating, but LSI wiring is miniaturized according to the road map. The electrolytic plating method makes it difficult to embed. In particular, when the wiring rule is 0.1 μm or less, the size of the via / trench is reduced and the aspect ratio is increased, so that it is difficult to completely bury the Cu-based material.

Cu系配線には、前記完全埋込の他、低電気抵抗率(ρ≦3.0μΩcm)、接続信頼性(確実なコンタクトの形成)、配線信頼性(ストレスマイグレーションによる断線に対する耐性[SM耐性]やエレクトロマイグレーションによる断線に対する耐性[EM耐性]の確保)などの特性が求められるが、電解めっき法を用いた現状のダマシン配線技術では、バルクCu材と同等の上記特性を有するCu系配線の形成が難しく、これらの特性を全て満たすCu系配線を実現できない。   For Cu-based wiring, in addition to the above-mentioned complete embedding, low electrical resistivity (ρ ≦ 3.0 μΩcm), connection reliability (reliable contact formation), wiring reliability (resistance to disconnection due to stress migration [SM resistance] And resistance to disconnection due to electromigration [EM resistance] is required, but the current damascene wiring technology using the electrolytic plating method forms a Cu-based wiring having the same characteristics as those of a bulk Cu material. Therefore, it is difficult to realize a Cu-based wiring satisfying all these characteristics.

更にCu系配線では、自由電子の0℃での平均自由工程(λ)が421Åであり、Al系配線の場合(300Å)と比較して大きいため、配線が微細化するにつれ、配線の表面・界面・側面での電子衝突による電子散乱の影響が大きくなり、配線ルールが0.1μm以下の微細配線になると、Cu系配線の電気抵抗率がAl系配線の電気抵抗率を上回るという現象(電気抵抗率の逆転現象)が生じることが懸念される。   Further, in Cu-based wiring, the free electron mean free path (λ) at 0 ° C. is 421 mm, which is larger than that in the case of Al-based wiring (300 mm). When the influence of electron scattering due to electron collision at the interface / side surface becomes large and the wiring rule becomes fine wiring of 0.1 μm or less, the electrical resistivity of the Cu-based wiring exceeds the electrical resistivity of the Al-based wiring (electricity There is a concern that a resistivity reversal phenomenon) occurs.

これらの理由から、現状では半導体装置においてCu系配線の使用が広まりつつあるが、今後、更に配線ルールが縮小されると、Cu系材料を使用した場合には良好な特性を発揮する配線を実現することが困難になるため、ローカル配線を中心にAl系配線が再度使用される可能性があると思われる。   For these reasons, the use of Cu-based wiring is now widespread in semiconductor devices, but if the wiring rules are further reduced in the future, wiring that exhibits good characteristics will be realized when Cu-based materials are used. Since it is difficult to do so, it is considered that there is a possibility that the Al-based wiring is used again mainly on the local wiring.

Al系配線を用いた多層配線構造は、現状のLSIでも多数採用されているが、該Al系配線を、上記ダマシン配線技術を使用して形成した例はほとんどない。特にULSI(シリコン半導体デバイス)配線として、Al系配線をダマシン配線技術で形成する方法は未だ実用化されておらず、研究例が存在する程度である。該研究例によれば、Al薄膜をビア・トレンチ(配線接続孔・配線溝)に埋め込むには、温度:400℃以上、圧力:60MPa以上の高温高圧条件とすればよいことが報告されている(例えば非特許文献1や非特許文献2、非特許文献3)。しかしビアサイズが直径0.2μmを下回る場合には、完全に埋め込むことが難しいと思われる。   Many multi-layer wiring structures using Al-based wiring are also used in current LSIs, but there are few examples of forming the Al-based wiring using the damascene wiring technology. In particular, as a ULSI (silicon semiconductor device) wiring, a method of forming an Al-based wiring by a damascene wiring technique has not been put into practical use yet, and there are research examples. According to this research example, it has been reported that in order to embed an Al thin film in a via trench (wiring connection hole / wiring groove), a high temperature and high pressure condition of temperature: 400 ° C. or higher and pressure: 60 MPa or higher may be used. (For example, Non-Patent Document 1, Non-Patent Document 2, Non-Patent Document 3). However, if the via size is less than 0.2 μm in diameter, it may be difficult to completely embed.

これまで形成されているAl系多層配線は、フィールド配線としてAl合金(Al−1.0%Si−0.5%Cu合金、Al−0.5%Cu合金)からなるものをスパッタリング法で形成し、ビア(層間接続孔)にCVD法でW(タングステン)膜が形成されたものが提案されている。   Al-based multilayer wiring formed so far is made of Al alloy (Al-1.0% Si-0.5% Cu alloy, Al-0.5% Cu alloy) as field wiring by sputtering method, and via (interlayer connection) A film in which a W (tungsten) film is formed in the hole) by a CVD method has been proposed.

上記技術でビアにW膜を形成するのは、CVD法を採用してビア部に選択的にW膜を形成できるためである。しかしながら、この様な配線構造には次の様な問題が残っている。
(a)比抵抗の高いWがビアに使用されるため、配線の実効的電気抵抗率が増加する。
(b)フィールド配線(Al)とビアに充填されたWとの接続部(AlとWの界面)でコンタクト抵抗が発生して、配線の実効的電気抵抗率が増加する。
(c)W膜の成膜原料ガスであるWF6が高価である。
The reason why the W film is formed in the via by the above technique is that the CVD method can be employed to selectively form the W film in the via portion. However, the following problems remain in such a wiring structure.
(A) Since the high specific resistance W is used for the via, the effective electrical resistivity of the wiring increases.
(B) Contact resistance is generated at the connection portion (interface between Al and W) between the field wiring (Al) and W filled in the via, and the effective electrical resistivity of the wiring increases.
(C) WF 6 which is a film forming raw material gas for the W film is expensive.

また上記技術では、Al合金での成膜とW膜の成膜を行なう必要があり、工程数増加や工程複雑化がスループットの低下やコスト上昇を招く原因となっている。   In the above technique, it is necessary to form a film with an Al alloy and a W film, and the increase in the number of processes and the complexity of the processes cause a decrease in throughput and an increase in cost.

この様な課題を解決するための方法として、Al系配線を用いた多層配線構造の製造において、ダマシン配線技術を用いてフィールド配線とビア(層間接続孔)を、AlまたはAl合金(以下「Al系金属」という)の単一種類のメタルで同時に形成すれば、配線の実効的電気抵抗率を低減でき、また上述の従来法に比べて工程数が少なくすみ、コストを低減できるといったメリットがある。即ち、高集積化・高速化等の高特性を発揮する半導体装置を低コストで実現できる。   As a method for solving such a problem, in the production of a multilayer wiring structure using Al-based wiring, field wiring and vias (interlayer connection holes) are made of Al or Al alloy (hereinafter referred to as “Al”) using damascene wiring technology. If it is formed at the same time with a single type of metal), the effective electrical resistivity of the wiring can be reduced, and the number of processes can be reduced compared to the conventional method described above, and the cost can be reduced. . That is, a semiconductor device that exhibits high characteristics such as high integration and high speed can be realized at low cost.

しかし、ダマシン配線技術を用いてAl合金配線を形成する場合、前述したCu配線の様に電解めっき法では形成できず、形成方法としては、Al合金配線材料を高温でスパッタリングした後、該スパッタリング後に高温高圧リフロー法を実施することが有効と考えられる(例えば特許文献2や特許文献3)。   However, when forming an Al alloy wiring by using the damascene wiring technology, it cannot be formed by the electrolytic plating method like the Cu wiring described above. As a forming method, after sputtering the Al alloy wiring material at a high temperature, It is considered effective to perform a high-temperature and high-pressure reflow method (for example, Patent Document 2 and Patent Document 3).

この方法は、図1(a)に示す様に、ビア(配線接続孔)3やトレンチ(配線溝)6といった凹部の予め形成された絶縁膜1の表面に、該凹部をブリッジングする様にAl系金属からなる薄膜をスパッタリング法で形成した後、図1(b)に示す様に、該薄膜表面に対して垂直かつ等方的に加圧し(例えば特許文献4に記載の様に常圧を超える圧力の静水圧で加圧し)、凹部へAl合金を押し込む方法である。しかし、この方法には次の様な問題が残っている。即ち、形成されたAl合金薄膜が連続かつ気密状態でなければ、高温高圧リフロー法を実施しても十分に押し込まれず、またAl系金属の薄膜が変形して破断すると、それ以上埋め込まれないといった問題点がある。更に、Al系金属の高温リフロー性(高温流動性)を高め、該金属を塑性変形させて埋め込むには、高温かつ高圧状態にする必要があり、特に、微細でアスペクト比の高いビア・トレンチに完全に埋め込むには、より高い温度および圧力状態とすることが必要となるが、現状ではこの様な温度と圧力を実現し得ていない。
特開平10−79428号公報 特開平10−116898号公報 特開平9−36230号公報 特開平5−211238号公報 G.A.Dixit et al. IEDM'94 Technical Digest(1994)p.105〜108 P.J.Holuerson et al.Proceedings 1995 VMIC Conference Asian Session (1995)p.537〜543 G.A.Dixit et al. Semiconductor International August 1995(1995)p.79
In this method, as shown in FIG. 1A, the recesses are bridged on the surface of the insulating film 1 formed in advance such as vias (wiring connection holes) 3 and trenches (wiring grooves) 6. After forming a thin film made of an Al-based metal by sputtering, as shown in FIG. 1 (b), it is pressurized perpendicularly and isotropically to the surface of the thin film (for example, normal pressure as described in Patent Document 4). And pressurizing with a hydrostatic pressure exceeding the pressure) and pushing the Al alloy into the recess. However, this method still has the following problems. That is, if the formed Al alloy thin film is not continuous and airtight, even if the high temperature and high pressure reflow method is carried out, it will not be pushed in sufficiently, and if the Al-based metal thin film is deformed and fractured, it will not be embedded further. There is a problem. Furthermore, in order to improve the high-temperature reflow property (high-temperature fluidity) of Al-based metal and to embed the metal by plastic deformation, it is necessary to be in a high temperature and high pressure state. In order to completely embed, it is necessary to set a higher temperature and pressure state, but at present, such a temperature and pressure cannot be realized.
Japanese Patent Laid-Open No. 10-79428 JP-A-10-116898 JP-A-9-36230 Japanese Patent Laid-Open No. 5-21238 GADixit et al. IEDM'94 Technical Digest (1994) p.105-108 PJHoluerson et al. Proceedings 1995 VMIC Conference Asian Session (1995) p.537-543 GADixit et al. Semiconductor International August 1995 (1995) p.79

本発明は上記の様な事情に着目してなされたものであって、その目的は、半導体製造装置の製造において、孔や溝といった凹部に隙間なくAl系金属を充填させて、電気抵抗率が低く、膜の緻密性や絶縁膜との密着性に優れたAl系金属配線を容易に実現するための方法を提供することにある。   The present invention has been made paying attention to the above-described circumstances, and the purpose thereof is to fill an indentation such as a hole or a groove with an Al-based metal without gaps in the manufacture of a semiconductor manufacturing apparatus, so that the electrical resistivity is reduced. An object of the present invention is to provide a method for easily realizing an Al-based metal wiring that is low and has excellent film density and adhesion to an insulating film.

上記課題を解決することのできた本発明にかかる半導体装置の配線形成方法とは、基板上に形成された凹部(孔や溝)を有する絶縁膜の表面に、Al系金属(AlまたはAl合金)よりなる薄膜をスパッタリング法で形成した後、高温高圧処理を施して該Al系金属を上記凹部内に充填して半導体装置の配線を形成する方法であって、上記スパッタリングを下記条件で行なうところに特徴を有する。
スパッタリングガス圧:0.5〜1.1mTorr
放電パワー密度:3〜15W/cm2
基板温度:100〜300℃
The method of forming a wiring of a semiconductor device according to the present invention that has solved the above-mentioned problem is that an Al-based metal (Al or Al alloy) is formed on the surface of an insulating film having a recess (hole or groove) formed on a substrate. After forming a thin film comprising a sputtering method, a method of forming a wiring of a semiconductor device by performing high-temperature and high-pressure treatment to fill the recess with the Al-based metal, where the sputtering is performed under the following conditions: Has characteristics.
Sputtering gas pressure: 0.5 to 1.1 mTorr
Discharge power density: 3 to 15 W / cm 2
Substrate temperature: 100-300 ° C

前記スパッタリングは、上記条件を特に下記範囲に制御して行なえばAl系金属をより確実に上記凹部内に埋め込むことができるので好ましい。
スパッタリングガス圧:0.5〜1.0mTorr
放電パワー密度:5〜10W/cm2
基板温度:100〜200℃
The sputtering is preferably performed by controlling the above conditions within the following range, since the Al-based metal can be more reliably embedded in the recess.
Sputtering gas pressure: 0.5 to 1.0 mTorr
Discharge power density: 5-10 W / cm 2
Substrate temperature: 100-200 ° C

また前記高温高圧処理を下記条件で行えば、確実にAl系金属を上記凹部内に埋め込むことができるので好ましい。
処理温度(雰囲気温度):400〜600℃
処理圧力:100〜150MPa
処理時間:15分以上
In addition, it is preferable to perform the high-temperature and high-pressure treatment under the following conditions because the Al-based metal can be reliably embedded in the recess.
Processing temperature (atmosphere temperature): 400-600 ° C
Processing pressure: 100-150 MPa
Processing time: 15 minutes or more

本発明によれば、半導体装置(例えばSi半導体デバイス等)の製造において、配線接続孔や接続溝等の凹部に隙間なくAl系金属を充填させて、電気抵抗率が低く、膜の緻密性や絶縁膜との密着性に優れた埋込式のAl系金属配線を容易に実現でき、集積回路の高集積化・高性能化の促進に寄与することができる。   According to the present invention, in the manufacture of a semiconductor device (for example, a Si semiconductor device), a recess such as a wiring connection hole or a connection groove is filled with an Al-based metal without a gap so that the electrical resistivity is low, the film is dense, An embedded Al metal wiring having excellent adhesion to the insulating film can be easily realized, and can contribute to the promotion of higher integration and higher performance of integrated circuits.

上記課題を解決すべく本発明者らは、基板上に形成された孔や溝といった凹部を有する絶縁膜の表面に、Al系金属よりなる薄膜をスパッタリング法で形成した後、高温高圧処理を行なって該Al系金属を上記凹部内に充填して半導体装置の配線を形成する方法において、絶縁膜に形成された凹部に上記薄膜を隙間なく埋め込んで、優れた特性を安定して発揮するAl系金属配線を容易に実現するための方法について鋭意研究を行なったところ、前記スパッタリング時の条件を制御することが有効であることを見出し、本発明に想到した。   In order to solve the above problems, the present inventors formed a thin film made of an Al-based metal on the surface of an insulating film having a recess such as a hole or a groove formed on a substrate by sputtering, and then performed high-temperature and high-pressure treatment. In the method of forming the wiring of the semiconductor device by filling the Al-based metal in the recess, the Al-based that stably exhibits excellent characteristics by embedding the thin film in the recess formed in the insulating film without any gap. As a result of diligent research on a method for easily realizing metal wiring, it was found that it is effective to control the sputtering conditions, and the present invention has been conceived.

即ち、Al系金属よりなる薄膜をスパッタリング法で形成する際の条件(成膜パラメータ)には、電圧、ガス流量、圧力、基板温度等の様々な条件があるが、その中でも特に、スパッタリングガス圧、放電パワー密度および基板温度を制御すればよいことを見出した。以下、各条件について規定した理由を詳述する。   That is, there are various conditions such as voltage, gas flow rate, pressure, and substrate temperature for forming a thin film made of an Al-based metal by sputtering (film formation parameters). It has been found that the discharge power density and the substrate temperature may be controlled. The reason why each condition is specified will be described in detail below.

<スパッタリングガス圧:0.5〜1.1mTorr>
スパッタリングガス圧が低すぎると、ガスプラズマが生じ難くなりアーク放電が不連続となって、膜厚の均一なAl系金属膜が得られにくくなる。よって、スパッタリングガス圧は0.5mTorr以上とする必要があり、好ましくは0.8mTorr以上である。一方、スパッタリングガス圧が高すぎると、後工程である高温高圧処理でAl系金属を凹部内に完全に埋め込むことができない。よって、スパッタリングガス圧は1.1mTorr以下に抑える必要があり、好ましくは1.0mTorr以下である。
<Sputtering gas pressure: 0.5 to 1.1 mTorr>
If the sputtering gas pressure is too low, it is difficult to generate gas plasma, arc discharge becomes discontinuous, and it becomes difficult to obtain an Al-based metal film having a uniform film thickness. Therefore, the sputtering gas pressure needs to be 0.5 mTorr or more, preferably 0.8 mTorr or more. On the other hand, if the sputtering gas pressure is too high, the Al-based metal cannot be completely embedded in the recesses by a high-temperature and high-pressure process that is a subsequent process. Therefore, the sputtering gas pressure needs to be suppressed to 1.1 mTorr or less, preferably 1.0 mTorr or less.

尚、本発明では、上記ガスの種類まで限定するものでないが、ArやKr、Xe等の希ガスが好ましく使用される。   In the present invention, the type of the gas is not limited, but rare gases such as Ar, Kr, and Xe are preferably used.

<放電パワー密度:3〜15W/cm2
放電パワー密度が低すぎると、高温高圧処理時のリフロー性が低下し、高温高圧処理でAl系金属が凹部内に十分に埋め込まれない。よって、放電パワー密度を3W/cm2以上とする必要がある。好ましくは5W/cm2以上である。一方、放電パワー密度が高すぎても高温高圧処理時のリフロー性が低下し、この場合も、高温高圧処理でAl系金属膜が凹部内に埋め込まれ難くなる。よって、放電パワー密度は15W/cm2以下に抑える。好ましくは10W/cm2以下である。
<Discharge power density: 3 to 15 W / cm 2 >
When the discharge power density is too low, the reflow property at the time of the high-temperature and high-pressure treatment is lowered, and the Al-based metal is not sufficiently embedded in the recess by the high-temperature and high-pressure treatment. Therefore, the discharge power density needs to be 3 W / cm 2 or more. Preferably it is 5 W / cm 2 or more. On the other hand, even if the discharge power density is too high, the reflow property at the time of the high-temperature and high-pressure treatment is lowered, and also in this case, the Al-based metal film is difficult to be embedded in the recess by the high-temperature and high-pressure treatment. Therefore, the discharge power density is suppressed to 15 W / cm 2 or less. Preferably it is 10 W / cm 2 or less.

<基板温度:100〜300℃>
基板温度が低すぎるとAl薄膜の結晶粒が微細化し、降伏応力が高くなるため、その後に高温高圧処理を行なっても、Al系金属を十分に凹部に埋め込むことができない。よって、基板温度は100℃以上にまで高める。好ましくは150℃以上である。一方、基板温度を高めすぎると、基板等が変形するなど熱的損傷を受けるだけでなく、結晶粒内の欠陥が少なくなり塑性変形能が低下するため、後工程の高温高圧処理でAl系金属を十分に埋め込むことができない。よって、基板温度は300℃以下に抑えるのがよく、好ましくは200℃以下である。
<Substrate temperature: 100 to 300 ° C.>
If the substrate temperature is too low, the crystal grains of the Al thin film become finer and the yield stress increases, so that even if high-temperature and high-pressure treatment is performed thereafter, the Al-based metal cannot be sufficiently embedded in the recesses. Therefore, the substrate temperature is increased to 100 ° C. or higher. Preferably it is 150 degreeC or more. On the other hand, if the substrate temperature is raised too much, not only will the substrate be deformed, but it will be thermally damaged, and defects in the crystal grains will be reduced and the plastic deformability will be reduced. Can not be embedded sufficiently. Therefore, the substrate temperature should be suppressed to 300 ° C. or lower, and preferably 200 ° C. or lower.

上記スパッタリングにおけるその他の条件については特に限定されず、一般的なスパッタリング法における条件を採用することができる。尚、スパッタリング法としては、成膜効率の高さからDCマグネトロンスパッタリング法を採用するのが好ましい。   Other conditions in the sputtering are not particularly limited, and conditions in a general sputtering method can be employed. As the sputtering method, it is preferable to adopt the DC magnetron sputtering method because of high film forming efficiency.

また上記スパッタリングで形成するAl系合金膜の厚さは、デバイス設計で定まる事項であり、特に限定されない。更にAl系合金膜の組成も特に限定されず、適度の導電性を有するものであれば、純Alの他、任意の組成のAl系合金をスパッタリングに用いることができる。   The thickness of the Al-based alloy film formed by sputtering is a matter determined by device design, and is not particularly limited. Further, the composition of the Al-based alloy film is not particularly limited, and an Al-based alloy having an arbitrary composition other than pure Al can be used for sputtering as long as it has appropriate conductivity.

また、上記Al系合金膜のベースとなる半導体基板上の絶縁膜を形成する方法や、該絶縁膜に埋込配線用溝や接続孔を形成する方法も特に限定されず、公知の方法を採用すれば良い。上記絶縁膜としては、酸化シリコンや窒化シリコン、BSG(Boro-Silicate Glass)、PSG(Phospho-Silicate Glass)、BPSG(Boro-Phospho-SilicateGlass)等を用いることができる。   Also, there is no particular limitation on the method of forming an insulating film on the semiconductor substrate that is the base of the Al-based alloy film, and the method of forming a trench for embedded wiring or a connection hole in the insulating film, and a known method is adopted. Just do it. As the insulating film, silicon oxide, silicon nitride, BSG (Boro-Silicate Glass), PSG (Phospho-Silicate Glass), BPSG (Boro-Phospho-Silicate Glass), or the like can be used.

更に、埋込配線用溝または接続孔の形成された絶縁膜上に、後述する実施例の図2に示す通りバリア層を形成することもできる。該バリア層とは、上述した様に、バリア層上に形成するAl系金属中のAlが絶縁膜へ拡散するのを防止する膜であり、該膜として、TaN膜、TiN膜等を形成することができる。尚、後述する実施例では、バリア層として窒化タンタル(TaN)を形成している。TaNはセラミックスであって、Alとは殆ど反応せず、例えば700℃程度の高温処理を行なってもTaN膜中へのAlの拡散は殆ど起こらないので好ましい。前記絶縁膜上に該バリア層を形成する方法も特に限定されず、例えば、スパッタリング法(例えば、DCマグネトロンスパッタリング法)や化学蒸着法(CVD法)などが挙げられる。   Furthermore, a barrier layer can be formed on the insulating film in which the buried wiring trench or connection hole is formed as shown in FIG. As described above, the barrier layer is a film that prevents Al in the Al-based metal formed on the barrier layer from diffusing into the insulating film. As the film, a TaN film, a TiN film, or the like is formed. be able to. In the examples described later, tantalum nitride (TaN) is formed as the barrier layer. TaN is a ceramic, which is preferable because it hardly reacts with Al, and Al diffusion into the TaN film hardly occurs even when a high temperature treatment of, for example, about 700 ° C. is performed. A method for forming the barrier layer on the insulating film is not particularly limited, and examples thereof include a sputtering method (for example, a DC magnetron sputtering method) and a chemical vapor deposition method (CVD method).

前記バリア層を形成する場合、その厚さは、Alが絶縁膜へ拡散するのを防止できる程度であれば良く、例えば5〜50nm程度とすることができる。但し、バリア層の膜厚を過度に厚くすることは、半導体装置の小型化にマイナスとなるので好ましくない。   When the barrier layer is formed, the thickness of the barrier layer is not limited as long as Al can be prevented from diffusing into the insulating film, and can be, for example, about 5 to 50 nm. However, it is not preferable to excessively increase the thickness of the barrier layer because it is negative for downsizing of the semiconductor device.

本発明では、Al系金属よりなる薄膜の形成を、上記条件を満たすスパッタリング法で行ない、その後に高温高圧処理を行なう必要があるが、その他の詳細な工程まで規定するものでなく、例えば下記A工程〜C工程を含む積層プロセスを任意回数行い、各C工程の後または少なくとも最終C工程の後に高温高圧処理を行なうことができる。   In the present invention, it is necessary to form a thin film made of an Al-based metal by a sputtering method that satisfies the above conditions, and then to perform a high-temperature and high-pressure treatment. However, other detailed processes are not specified. The lamination process including the steps C to C can be performed any number of times, and the high temperature and high pressure treatment can be performed after each C step or at least after the final C step.

・A工程…半導体基板上に、埋込配線用溝または接続孔を有する絶縁膜を形成する工程。
・B工程…該絶縁膜上にバリア層を形成する工程。
・C工程…該バリア層上にAl系金属膜を形成する工程。
A process: a process of forming an insulating film having a buried wiring trench or a connection hole on a semiconductor substrate.
B step: a step of forming a barrier layer on the insulating film.
C step: a step of forming an Al-based metal film on the barrier layer.

本発明では、上記スパッタリング時の成膜条件と併せて、前記高温高圧処理の条件を制御すれば、より確実にAl系金属膜を配線溝内部に埋め込むことができ、高品質の半導体装置用配線を実現できる。以下、高温高圧処理の条件について詳述する。   In the present invention, by controlling the conditions of the high-temperature and high-pressure treatment in addition to the film-forming conditions at the time of sputtering, the Al-based metal film can be more reliably embedded in the wiring trench, and a high-quality semiconductor device wiring Can be realized. Hereinafter, conditions for the high-temperature and high-pressure treatment will be described in detail.

<処理温度:400〜600℃>
高温高圧処理時の処理温度が低すぎると、Al系金属膜の高温流動性が増加せず、確実にAl系金属膜を配線溝内部に埋め込むことが難しい。よって、高温高圧処理時の処理温度は、400℃以上にまで高めることが望ましく、より好ましくは450℃以上である。一方、処理温度が高すぎても高温流動性の向上は一定以上望めず、また絶縁膜の特性劣化や変形をひきおこす可能性があるため、600℃以下に抑えることが好ましい。より好ましくは550℃以下である。
<Processing temperature: 400 to 600 ° C.>
If the processing temperature during the high-temperature and high-pressure processing is too low, the high-temperature fluidity of the Al-based metal film does not increase, and it is difficult to reliably embed the Al-based metal film inside the wiring trench. Therefore, it is desirable to increase the processing temperature during the high-temperature and high-pressure processing to 400 ° C. or higher, and more preferably 450 ° C. or higher. On the other hand, even if the processing temperature is too high, improvement in high-temperature fluidity cannot be expected beyond a certain level, and there is a possibility of causing characteristic deterioration or deformation of the insulating film. More preferably, it is 550 degrees C or less.

<処理圧力:100〜150MPa>
Al系金属膜の流動性を高めてより確実に配線溝内部に埋め込むには、上記の通り高温状態にすると共に高圧状態にすることが有効であり、本発明では、処理圧力を100MPa以上とすればよいことを見出した。より好ましくは120MPa以上である。一方、処理圧力を高めすぎても、高温流動性はさほど向上せず、また過度の高圧処理はコストアップを招くため150MPa以下に抑える。
<Processing pressure: 100 to 150 MPa>
In order to increase the fluidity of the Al-based metal film and more reliably embed it in the wiring groove, it is effective to set the temperature to a high temperature and a high pressure as described above. I found out that I should do it. More preferably, it is 120 MPa or more. On the other hand, even if the treatment pressure is increased too much, the high temperature fluidity is not improved so much, and excessive high pressure treatment increases the cost, so it is suppressed to 150 MPa or less.

<処理時間:15分以上>
高温高圧処理時間は、処理圧力や処理温度を考慮して定めれば良いが、Al系金属膜を完全に配線溝内部に埋め込むには、少なくとも上記高温高圧状態で15分間保持するのがよい。該温度・圧力での保持時間が短すぎると、Al系金属膜が配線溝内部に十分に埋め込まれないまま処理が終了するおそれがあるからである。より好ましくは30分以上保持する。一方、該高温・高圧状態での保持時間が長すぎても半導体装置の生産性が低下するので、該保持時間は120分以下に抑えることが好ましい。
<Processing time: 15 minutes or more>
The high temperature and high pressure treatment time may be determined in consideration of the treatment pressure and the treatment temperature. However, in order to completely embed the Al-based metal film in the wiring trench, it is preferable to hold at least the high temperature and high pressure state for 15 minutes. This is because if the holding time at the temperature and pressure is too short, the processing may end without the Al-based metal film being sufficiently embedded in the wiring trench. More preferably, hold for 30 minutes or more. On the other hand, since the productivity of the semiconductor device is lowered even if the holding time in the high temperature / high pressure state is too long, the holding time is preferably suppressed to 120 minutes or less.

上記高温高圧処理は、半導体基板上に、前記A工程、B工程およびC工程を含む積層プロセスを任意回数行い、各C工程の後または少なくとも最終C工程の後に行なうことができる。つまり、前記積層プロセスを1回行い、単層とする場合には、C工程の後に上記条件で高温高圧処理を行なえばよく、前記積層プロセスを2回以上行なって多層構造とする場合は、各C工程の後に夫々上記条件で高温高圧処理を行なうか、A〜C工程を含む積層プロセスを繰り返した後、最終C工程の後に、上記条件で高温高圧処理を行なえば良い。   The high-temperature and high-pressure treatment can be performed on the semiconductor substrate by performing the lamination process including the A step, the B step, and the C step any number of times, and after each C step or at least after the final C step. That is, when the lamination process is performed once to form a single layer, it is sufficient to perform high-temperature and high-pressure treatment under the above conditions after Step C. When the lamination process is performed twice or more to form a multilayer structure, After the C step, the high temperature and high pressure treatment may be performed under the above conditions, or after the lamination process including the A to C steps is repeated, the high temperature and high pressure treatment may be performed under the above conditions after the final C step.

この様に高温高圧処理を行なった後は、表面を研磨処理することによって半導体基板上に埋込式の配線が形成されるが、該研磨法についてもその詳細な条件等は限定されず、一般に半導体製造分野で採用されている化学機械的研磨法等を採用することができる。   After the high-temperature and high-pressure treatment is performed in this way, a buried wiring is formed on the semiconductor substrate by polishing the surface. However, the detailed conditions and the like of the polishing method are not limited and generally A chemical mechanical polishing method or the like employed in the semiconductor manufacturing field can be employed.

以下、具体例を示す実施例によって本発明を更に詳細に説明するが、本発明はもとより下記実施例によって制限されるものではなく、前・後記の趣旨に適合し得る範囲で変更実施することは、全て本発明の技術範囲に包含される。   Hereinafter, the present invention will be described in more detail with reference to specific examples, but the present invention is not limited to the following examples as a matter of course, and modifications may be made within a range that can meet the gist of the preceding and following descriptions. Are all included in the technical scope of the present invention.

<実施例1>
半導体装置における配線の形成は、図2に示す概略断面説明図の工程順に沿って行った。即ち、実施には、図2(a)に略示するように、直径8インチのシリコンウェハー1上に形成した絶縁膜(TEOS膜:SiOF膜)2に、直径:0.18μm、ピッチ:450nmのビア3を多数[図2(a)では1つのみを表示]設けた評価素子(TEG)を用いた。このTEGの表面に、純Taターゲットを用いて(Ar+N2)ガス雰囲気中で反応性スパッタリング法によりTaN薄膜を形成し、ビア3の底面及び側面に膜厚50nmのバリア層(TaN薄膜)4を形成した[図2(b)]。
<Example 1>
Wiring formation in the semiconductor device was performed in the order of steps in the schematic cross-sectional explanatory diagram shown in FIG. That is, in practice, as schematically shown in FIG. 2A, an insulating film (TEOS film: SiOF film) 2 formed on a silicon wafer 1 having a diameter of 8 inches is provided with a diameter: 0.18 μm and a pitch: 450 nm. The evaluation element (TEG) provided with a large number of vias 3 (only one is shown in FIG. 2A) was used. A TaN thin film is formed on the surface of the TEG by reactive sputtering in a gas atmosphere using a pure Ta target in an (Ar + N 2 ) gas atmosphere, and a barrier layer (TaN thin film) 4 having a thickness of 50 nm is formed on the bottom and side surfaces of the via 3. It formed [FIG.2 (b)].

続いてこのTEGに対し、純Alターゲットを用いてArガス雰囲気中でスパッタリング法によりAl薄膜(膜厚:7500Å)5を形成し、図2(c)に示す通りビア3の開口部をAl薄膜5で完全にブリッジングした。尚、該Al薄膜5の成膜は、放電パワー密度と基板温度を下記一定値とし、Arガス圧を0.5〜20mTorrの範囲で変化させて行なった。
放電パワー密度:5W/cm2
基板温度:100℃
Subsequently, an Al thin film (film thickness: 7500 mm) 5 is formed on the TEG by sputtering in a Ar gas atmosphere using a pure Al target, and the opening of the via 3 is formed in the Al thin film as shown in FIG. 5 for complete bridging. The Al thin film 5 was formed by changing the discharge power density and the substrate temperature to the following constant values and changing the Ar gas pressure in the range of 0.5 to 20 mTorr.
Discharge power density: 5 W / cm 2
Substrate temperature: 100 ° C

次に、この様にビア3の開口部がAl薄膜5でブリッジングされたTEGに高温高圧処理を施した。詳細には、神戸製鋼所製の高温高圧処理装置「HiPA HIP mini−820」を用いて、処理圧力:100MPa、処理温度:500℃、処理時間:15分の条件で図2(d)に示す通り高温高圧処理を施した。尚、加圧にはArガスを使用した。   Next, the high temperature and high pressure treatment was applied to the TEG in which the opening of the via 3 was bridged with the Al thin film 5 in this way. Specifically, using a high-temperature and high-pressure treatment apparatus “HiPA HIP mini-820” manufactured by Kobe Steel, the treatment pressure is 100 MPa, the treatment temperature is 500 ° C., and the treatment time is 15 minutes. High temperature and high pressure treatment was applied. Ar gas was used for pressurization.

この様に高温高圧処理まで行なった試料では、Alのビア内部への埋込が確認された。これに対し、TEGのビア開口部をAl薄膜で完全にブリッジングしたのみで高温高圧処理を施していない試料の場合には、ビア内部にAlがほとんど埋め込まれていないことを断面観察で確認した。   Thus, it was confirmed that Al was embedded in the via in the sample that had been subjected to the high-temperature and high-pressure treatment. On the other hand, in the case of a sample in which the TEG via opening was completely bridged with an Al thin film and not subjected to high-temperature and high-pressure treatment, it was confirmed by cross-sectional observation that Al was hardly embedded in the via. .

そして高温高圧処理後のTEGに対して、それぞれ15個以上のビア部の断面が露出する様にダイシングソーで切断し、切断面をFIB装置で平滑になるよう加工し、該ビア部の断面をFIB装置のSIM像で観察してビア部へのAlの埋め込み状態を調べた。   Then, the TEG after the high-temperature and high-pressure treatment is cut with a dicing saw so that the cross-sections of 15 or more via portions are exposed, and the cut surface is processed to be smooth with an FIB apparatus. Observation was performed with a SIM image of the FIB apparatus, and the state of Al filling in the via portion was examined.

この埋込特性を定量的に評価するため、ビア部の断面SIM像を画像解析し、ビアの断面積に対してAlが埋め込まれている断面積の割合を百分率で求めた埋込率(%)(以下、単に「Al埋込率」ということがある)を評価指標とし、15個のビア部のAl埋込率の平均値を求めた。   In order to quantitatively evaluate the embedding characteristic, the cross-section SIM image of the via portion is subjected to image analysis, and the embedding rate (%) is obtained by calculating the ratio of the cross-sectional area in which Al is embedded to the cross-sectional area of the via. ) (Hereinafter, simply referred to as “Al filling rate”) was used as an evaluation index, and an average value of Al filling rates of 15 via portions was obtained.

上記実験結果として、Alガス圧(スパッタリングガス圧)とAl埋込率との関係を図3に示す。図3から、Al埋込率はスパッタリング時のArガス圧(スパッタリングガス圧)に依存しており、Arガス圧:1.0mTorr以下で成膜することでAlはビア内部に完全に埋め込まれることがわかる。尚、Arガス圧が0.5mTorrを下回ると、Arプラズマが連続して生じずグロー放電が途切れ易くなり、成膜が安定して行えなかった。   As a result of the experiment, FIG. 3 shows the relationship between the Al gas pressure (sputtering gas pressure) and the Al filling rate. From FIG. 3, the Al filling rate depends on the Ar gas pressure (sputtering gas pressure) at the time of sputtering, and Al is completely buried inside the via by forming the film at Ar gas pressure: 1.0 mTorr or less. I understand. When the Ar gas pressure was less than 0.5 mTorr, Ar plasma was not continuously generated and the glow discharge was easily interrupted, and the film formation could not be performed stably.

<実施例2>
前記実施例1に記載した方法と同様の方法で、TEGのビア3の底面と側面に膜厚50nmのバリア層(TaN薄膜)を形成した後、純Al薄膜(膜厚:7500Å)5をスパッタリング法で被覆して、ビア3の開口部をAl薄膜5で完全にブリッジングした。尚、上記Al薄膜5の成膜は、Arガス圧と基板温度を下記一定値とし、放電パワー密度を1〜10W/cm2の範囲で変化させて行なった。
Arガス圧:0.8mTorr
基板温度:100℃
<Example 2>
After a 50 nm-thickness barrier layer (TaN thin film) is formed on the bottom and side surfaces of the TEG via 3 by the same method as described in Example 1, a pure Al thin film (thickness: 7500 mm) 5 is sputtered. The opening of the via 3 was completely bridged with the Al thin film 5. The Al thin film 5 was formed by changing the Ar gas pressure and the substrate temperature to the following constant values and changing the discharge power density in the range of 1 to 10 W / cm 2 .
Ar gas pressure: 0.8 mTorr
Substrate temperature: 100 ° C

次に、このTEGに前記実施例1と同様の方法で高温高圧処理を施し、ビア3へのAl埋込率を求めた。放電パワー密度とAl埋込率との関係を図4に示す。該図4から、Al埋込率は成膜時の放電パワー密度に依存しており、放電パワー密度を3〜10W/cm2の範囲に制御すればAlがビア内部にほぼ完全に埋め込まれることがわかる。 Next, this TEG was subjected to a high-temperature and high-pressure treatment in the same manner as in Example 1, and the Al filling rate in the via 3 was obtained. FIG. 4 shows the relationship between the discharge power density and the Al filling rate. From FIG. 4, the Al filling rate depends on the discharge power density at the time of film formation, and Al is almost completely buried in the via if the discharge power density is controlled in the range of 3 to 10 W / cm 2. I understand.

<実施例3>
前記実施例1に記載した方法と同様の方法で、ビア3の底面と側面に膜厚50nmのバリア層(TaN薄膜)4を形成した後、純Al薄膜(膜厚:7500Å)5をスパッタリング法で形成して、ビア3の開口部をAl薄膜5で完全にブリッジングした。尚、該Al薄膜5の成膜は、Arガス圧と放電パワー密度を下記一定値とし、基板温度を室温〜300℃の範囲で変化させて行なった。
Arガス圧:0.8mTorr
放電パワー密度:5W/cm2
<Example 3>
After a barrier layer (TaN thin film) 4 having a film thickness of 50 nm is formed on the bottom and side surfaces of the via 3 by the same method as described in the first embodiment, a pure Al thin film (film thickness: 7500 mm) 5 is sputtered. The opening of the via 3 was completely bridged with the Al thin film 5. The Al thin film 5 was formed by changing the Ar gas pressure and the discharge power density to the following constant values and changing the substrate temperature in the range of room temperature to 300 ° C.
Ar gas pressure: 0.8 mTorr
Discharge power density: 5 W / cm 2

次に、このTEGに前記実施例1と同様の方法で高温高圧処理を施し、ビア3へのAl埋込率を求めた。Al薄膜成膜時の基板温度とAl埋込率の関係を図5に示す。この図5から、Al埋込率は成膜時の基板温度に依存しており、基板温度を100〜300℃の範囲に制御すればAlがビア内部にほぼ完全に埋め込まれることがわかる。   Next, this TEG was subjected to a high-temperature and high-pressure treatment in the same manner as in Example 1, and the Al filling rate in the via 3 was obtained. FIG. 5 shows the relationship between the substrate temperature and the Al burying rate when forming the Al thin film. As can be seen from FIG. 5, the Al filling rate depends on the substrate temperature at the time of film formation, and if the substrate temperature is controlled in the range of 100 to 300 ° C., Al is almost completely buried in the via.

<実施例4>
前記実施例1に記載した方法と同様の方法で、ビア3の底面と側面に膜厚50nmのバリア層(TaN薄膜)4を形成した後、純Al薄膜(膜厚:7500Å)5をスパッタリング法で形成して、ビア3の開口部をAl薄膜5で完全にブリッジングした。尚、該Al薄膜5の成膜は、Arガス圧、放電パワー密度および基板温度を下記の通り一定にして行なった。
Arガス圧:0.8mTorr
放電パワー密度:5W/cm2
基板温度:100℃
<Example 4>
After a barrier layer (TaN thin film) 4 having a film thickness of 50 nm is formed on the bottom and side surfaces of the via 3 by the same method as described in the first embodiment, a pure Al thin film (film thickness: 7500 mm) 5 is sputtered. The opening of the via 3 was completely bridged with the Al thin film 5. The Al thin film 5 was formed with the Ar gas pressure, the discharge power density, and the substrate temperature fixed as follows.
Ar gas pressure: 0.8 mTorr
Discharge power density: 5 W / cm 2
Substrate temperature: 100 ° C

次にこのTEGに対し、次の条件で高温高圧処理を施した。即ち、温度を室温〜500℃、圧力を0〜200MPaの範囲で変化させる以外は前記実施例1と同様の方法で高温高圧処理を施し、処理後のTEGのAl埋込率を求めた。その結果を表1に示す[尚、表1中の数値はAl埋込率(%)を示す]。   Next, this TEG was subjected to high-temperature and high-pressure treatment under the following conditions. That is, high temperature and high pressure treatment was performed in the same manner as in Example 1 except that the temperature was changed in the range of room temperature to 500 ° C. and the pressure in the range of 0 to 200 MPa, and the Al embedding rate of the TEG after the treatment was determined. The results are shown in Table 1 [note that the numerical values in Table 1 indicate the Al embedding rate (%)].

Figure 2005340640
Figure 2005340640

上記表1より、本発明の規定条件で成膜したAl薄膜に対して高温高圧処理を行なう場合には、該処理条件として、処理温度を400℃以上とし、かつ処理圧力を100MPa以上とすれば、ビア3にAlを完全に埋め込むことができる。   From Table 1 above, when the high temperature and high pressure treatment is performed on the Al thin film formed under the specified conditions of the present invention, the treatment condition is that the treatment temperature is 400 ° C. or more and the treatment pressure is 100 MPa or more. Al can be completely embedded in the via 3.

尚、比較例として、Al薄膜の成膜を規定外の条件で行なった場合についての実験結果を下記に示す。   In addition, as a comparative example, an experimental result in the case where the Al thin film is formed under unspecified conditions is shown below.

前記実施例1に記載した方法と同様の方法で、ビア3の底面と側面に膜厚50nmのバリア層(TaN薄膜)4を形成した後、純Al薄膜(膜厚:7500Å)5をスパッタリング法で形成して、ビア3の開口部をAl薄膜5で完全にブリッジングした。該Al薄膜5の成膜は、Arガス圧、放電パワー密度および基板温度を下記の通り一定にして行った。尚、下記成膜条件は、従来よりAl薄膜をスパッタリング法で形成する際に一般に採用されている条件である。
Arガス圧:2.0mTorr
放電パワー密度:2.5W/cm2
基板温度:室温
After a barrier layer (TaN thin film) 4 having a film thickness of 50 nm is formed on the bottom and side surfaces of the via 3 by the same method as described in the first embodiment, a pure Al thin film (film thickness: 7500 mm) 5 is sputtered. The opening of the via 3 was completely bridged with the Al thin film 5. The Al thin film 5 was formed at a constant Ar gas pressure, discharge power density, and substrate temperature as follows. In addition, the following film-forming conditions are conditions generally employed when forming an Al thin film by sputtering.
Ar gas pressure: 2.0 mTorr
Discharge power density: 2.5 W / cm 2
Substrate temperature: room temperature

次に、Al薄膜の形成されたTEGに対し、次の条件で高温高圧処理を施した。即ち、温度を室温〜500℃、圧力を0〜200MPaの範囲で変化させる以外は前記実施例1と同様の方法で高温高圧処理を施し、処理後のTEGのAl埋込率を求めた。その結果を表2に示す[尚、表2中の数値はAl埋込率(%)を示す]。   Next, the TEG on which the Al thin film was formed was subjected to high temperature and high pressure treatment under the following conditions. That is, high temperature and high pressure treatment was performed in the same manner as in Example 1 except that the temperature was changed in the range of room temperature to 500 ° C. and the pressure in the range of 0 to 200 MPa, and the Al embedding rate of the TEG after the treatment was determined. The results are shown in Table 2 [note that the numerical values in Table 2 indicate the Al embedding rate (%)].

Figure 2005340640
Figure 2005340640

表2より、規定外の条件で成膜したAl薄膜に高温高圧処理を施す場合、Alを完全に埋め込むには、処理温度を400℃以上、処理圧力を150MPa以上と、上記本発明の規定条件でAl薄膜を成膜した場合と比較して、高温高圧処理時の条件範囲が狭まることがわかる。   From Table 2, when the high temperature and high pressure treatment is applied to the Al thin film formed under the conditions other than specified, in order to completely embed Al, the processing temperature is 400 ° C. or higher and the processing pressure is 150 MPa or higher. It can be seen that the condition range during the high-temperature and high-pressure treatment is narrower than when the Al thin film is formed.

<実施例5>
前記実施例4と同様の方法で、ビア3の底面と側面に膜厚50nmのバリア層(TaN薄膜)4を形成した後、純Al薄膜(膜厚:7500Å)5をスパッタリング法で形成して、ビア3の開口部を純Al薄膜5で完全にブリッジングした。
<Example 5>
After a barrier layer (TaN thin film) 4 having a film thickness of 50 nm is formed on the bottom and side surfaces of the via 3 in the same manner as in Example 4, a pure Al thin film (film thickness: 7500 mm) 5 is formed by sputtering. The opening of the via 3 was completely bridged with the pure Al thin film 5.

尚、純Al薄膜5の成膜は、Arガス圧、放電パワー密度および基板温度を下記の通り一定にして行った。
Arガス圧:0.8mTorr
放電パワー密度:5W/cm2
基板温度:100℃
The pure Al thin film 5 was formed with the Ar gas pressure, the discharge power density, and the substrate temperature fixed as follows.
Ar gas pressure: 0.8 mTorr
Discharge power density: 5 W / cm 2
Substrate temperature: 100 ° C

次に、Al薄膜の形成されたTEGに対し、次の条件で高温高圧処理を施した。即ち、処理温度を500℃、処理圧力を100MPaとし、処理時間を0〜120分の範囲で変化させる以外は前記実施例1と同様の方法で高温高圧処理を施し、処理後のTEGのAl埋込率を求めた。処理時間とAl埋込率の関係を図6に示す。図6より、上記本発明の規定を満たす条件で成膜したAl薄膜を用いて、高温高圧処理を行なう場合には、処理時間を15分以上とすれば完全にAlが埋め込まれることがわかる。   Next, the TEG on which the Al thin film was formed was subjected to high temperature and high pressure treatment under the following conditions. That is, high-temperature and high-pressure treatment was performed in the same manner as in Example 1 except that the treatment temperature was 500 ° C., the treatment pressure was 100 MPa, and the treatment time was changed in the range of 0 to 120 minutes. Squeeze rate. FIG. 6 shows the relationship between the processing time and the Al filling rate. From FIG. 6, it can be seen that when high-temperature and high-pressure treatment is performed using an Al thin film formed under the conditions satisfying the above-mentioned provisions of the present invention, Al is completely buried if the treatment time is 15 minutes or longer.

本発明に係る配線の形成方法を示す概念図である。It is a conceptual diagram which shows the formation method of the wiring which concerns on this invention. 半導体装置の製法の一例を工程順に示す概略断面説明図である。It is a schematic cross-sectional explanatory drawing which shows an example of the manufacturing method of a semiconductor device in order of a process. 実施例1における成膜時のArガス圧とAl埋込率との関係を示すグラフである。4 is a graph showing the relationship between Ar gas pressure and Al filling rate during film formation in Example 1. 実施例2における成膜時の放電パワー密度とAl埋込率との関係を示すグラフである。6 is a graph showing the relationship between the discharge power density and the Al burying rate during film formation in Example 2. 実施例3における成膜時の基板温度とAl埋込率との関係を示すグラフである。6 is a graph showing the relationship between the substrate temperature during film formation and the Al filling rate in Example 3. 実施例5における高温高圧処理時の処理時間とAl埋込率との関係を示すグラフである。It is a graph which shows the relationship between the process time at the time of the high temperature / high pressure process in Example 5, and Al embedding rate.

符号の説明Explanation of symbols

1 半導体基板(シリコンウエハー)
2 絶縁膜
3 ビア
4 バリア層
5 Al系金属膜(純Al薄膜)
6 トレンチ

1 Semiconductor substrate (silicon wafer)
2 Insulating film 3 Via 4 Barrier layer 5 Al metal film (pure Al thin film)
6 Trench

Claims (3)

基板上に形成された凹部を有する絶縁膜の表面に、AlまたはAl合金(以下「Al系金属」という)よりなる薄膜をスパッタリング法で形成した後、高温高圧処理を施して該Al系金属を上記凹部内に充填して半導体装置の配線を形成する方法であって、上記スパッタリングを下記条件で行なうことを特徴とする半導体装置のAl系合金配線形成方法。
スパッタリングガス圧:0.5〜1.1mTorr
放電パワー密度:3〜15W/cm2
基板温度:100〜300℃
A thin film made of Al or an Al alloy (hereinafter referred to as “Al-based metal”) is formed on the surface of the insulating film having a recess formed on the substrate by sputtering, and then subjected to a high-temperature and high-pressure treatment to form the Al-based metal. A method for forming a wiring of a semiconductor device by filling the recess, wherein the sputtering is performed under the following conditions.
Sputtering gas pressure: 0.5 to 1.1 mTorr
Discharge power density: 3 to 15 W / cm 2
Substrate temperature: 100-300 ° C
前記スパッタリングを下記条件で行なう請求項1に記載の半導体装置のAl系合金配線形成方法。
スパッタリングガス圧:0.5〜1.0mTorr
放電パワー密度:5〜10W/cm2
基板温度:100〜200℃
The method for forming an Al-based alloy wiring of a semiconductor device according to claim 1, wherein the sputtering is performed under the following conditions.
Sputtering gas pressure: 0.5 to 1.0 mTorr
Discharge power density: 5-10 W / cm 2
Substrate temperature: 100-200 ° C
前記高温高圧処理を下記条件で行なう請求項1または2に記載の半導体装置のAl系合金配線形成方法。
処理温度:400〜600℃
処理圧力:100〜150MPa
処理時間:15分以上

The method for forming an Al-based alloy wiring of a semiconductor device according to claim 1 or 2, wherein the high-temperature and high-pressure treatment is performed under the following conditions.
Processing temperature: 400-600 ° C
Processing pressure: 100-150 MPa
Processing time: 15 minutes or more

JP2004159627A 2004-05-28 2004-05-28 Method for forming Al-based alloy wiring of semiconductor device Expired - Fee Related JP4646547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004159627A JP4646547B2 (en) 2004-05-28 2004-05-28 Method for forming Al-based alloy wiring of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004159627A JP4646547B2 (en) 2004-05-28 2004-05-28 Method for forming Al-based alloy wiring of semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008212944A Division JP2008277870A (en) 2008-08-21 2008-08-21 METHOD FOR FORMING Al-BASED ALLOY WIRING IN SEMICONDUCTOR DEVICE

Publications (2)

Publication Number Publication Date
JP2005340640A true JP2005340640A (en) 2005-12-08
JP4646547B2 JP4646547B2 (en) 2011-03-09

Family

ID=35493836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004159627A Expired - Fee Related JP4646547B2 (en) 2004-05-28 2004-05-28 Method for forming Al-based alloy wiring of semiconductor device

Country Status (1)

Country Link
JP (1) JP4646547B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0936230A (en) * 1995-05-15 1997-02-07 Sony Corp Manufacture of semiconductor device
JPH09115866A (en) * 1995-10-17 1997-05-02 Mitsubishi Electric Corp Semiconductor device manufacturing method
JP2000164706A (en) * 1998-11-26 2000-06-16 Fujitsu Ltd Manufacture of semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0936230A (en) * 1995-05-15 1997-02-07 Sony Corp Manufacture of semiconductor device
JPH09115866A (en) * 1995-10-17 1997-05-02 Mitsubishi Electric Corp Semiconductor device manufacturing method
JP2000164706A (en) * 1998-11-26 2000-06-16 Fujitsu Ltd Manufacture of semiconductor device

Also Published As

Publication number Publication date
JP4646547B2 (en) 2011-03-09

Similar Documents

Publication Publication Date Title
US7718524B2 (en) Method of manufacturing semiconductor device
JP4832807B2 (en) Semiconductor device
KR100688002B1 (en) Method for fabricating copper-based interconnections for semiconductor device
JP5501586B2 (en) Manufacturing method of semiconductor device
US6306732B1 (en) Method and apparatus for simultaneously improving the electromigration reliability and resistance of damascene vias using a controlled diffusivity barrier
US7199045B2 (en) Metal-filled openings for submicron devices and methods of manufacture thereof
US7799681B2 (en) Method for forming a ruthenium metal cap layer
US7071100B2 (en) Method of forming barrier layer with reduced resistivity and improved reliability in copper damascene process
JP3586605B2 (en) Method for etching silicon nitride film and method for manufacturing semiconductor device
JP2010278330A (en) Semiconductor device and method of manufacturing semiconductor device
US6465376B2 (en) Method and structure for improving electromigration of chip interconnects
JP2004214654A (en) Wiring of semiconductor device having double capping film and its forming method
EP2162906B1 (en) A method for producing a copper contact
KR20100130551A (en) Copper interconnect structure with amorphous tantalum iridium diffusion barrier
JP4740004B2 (en) Method for manufacturing Cu alloy wiring in semiconductor device
JP4485466B2 (en) Metal thin film for wiring of semiconductor device and wiring for semiconductor device
JP2007220744A (en) Semiconductor device and manufacturing method thereof
JP3816091B1 (en) Semiconductor device and manufacturing method thereof
JP2005038999A (en) Method of manufacturing semiconductor device
JP4646547B2 (en) Method for forming Al-based alloy wiring of semiconductor device
JP2008277870A (en) METHOD FOR FORMING Al-BASED ALLOY WIRING IN SEMICONDUCTOR DEVICE
JP2016111047A (en) METHOD FOR FORMING Cu WIRING AND MANUFACTURING METHOD OF SEMICONDUCTOR DEVICE
JP2006245268A (en) Method of manufacturing semiconductor device
JP2007194566A (en) Semiconductor device, and its process for fabrication
JP2012009617A (en) Semiconductor device manufacturing method, copper alloy for wiring, and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Written amendment

Effective date: 20080422

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20080624

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Effective date: 20080821

Free format text: JAPANESE INTERMEDIATE CODE: A523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081007

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20081128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101207

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20131217

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees