JP2005337943A - 三次元計測装置 - Google Patents

三次元計測装置 Download PDF

Info

Publication number
JP2005337943A
JP2005337943A JP2004158651A JP2004158651A JP2005337943A JP 2005337943 A JP2005337943 A JP 2005337943A JP 2004158651 A JP2004158651 A JP 2004158651A JP 2004158651 A JP2004158651 A JP 2004158651A JP 2005337943 A JP2005337943 A JP 2005337943A
Authority
JP
Japan
Prior art keywords
light
luminance
measurement
imaging
light component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004158651A
Other languages
English (en)
Other versions
JP4011561B2 (ja
Inventor
Naohiro Arima
尚洋 在間
Hiroyuki Ishigaki
裕之 石垣
Kohei Yamazaki
耕平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CKD Corp
Original Assignee
CKD Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CKD Corp filed Critical CKD Corp
Priority to JP2004158651A priority Critical patent/JP4011561B2/ja
Publication of JP2005337943A publication Critical patent/JP2005337943A/ja
Application granted granted Critical
Publication of JP4011561B2 publication Critical patent/JP4011561B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

【課題】計測対象物の三次元形状を計測するに際し、計測に要する時間の短縮を図るとともに、計測精度の向上を図ることの可能な三次元計測装置を提供する。
【解決手段】印刷状態検査装置1は、基準面に対して照明装置3により斜め上方から複数の光成分パターンを照射し、CCDカメラ4により撮像された画像から、位置座標毎の輝度を得る。そして、制御装置7は、各位置座標と光成分パターンの輝度の相互関係値とを対応させて基準テーブルに記憶する。さらに、クリームハンダHの印刷されてなるプリント基板Kに対して、同様の光成分パターンを照射するとともに、計測位置座標における輝度の相互関係値を求める。計測位置座標における輝度の相互関係値から基準テーブルを参照し、基準面において輝度の相互関係値が同一の基準位置座標を取得する。基準位置座標及び計測位置座標に基づき、クリームハンダHの高さを三角測量の原理により演算する。
【選択図】 図1

Description

本発明は、測定対象物の三次元形状等を計測する三次元計測装置に関するものである。
一般に、プリント基板上に電子部品を実装する場合、まずプリント基板上に配設された所定の電極パターン上にクリームハンダが印刷される。次に、該クリームハンダの粘性に基づいてプリント基板上に電子部品が仮止めされる。その後、前記プリント基板がリフロー炉へ導かれ、所定のリフロー工程を経ることでハンダ付けが行われる。昨今では、リフロー炉に導かれる前段階においてクリームハンダの印刷状態を検査する必要があり、かかる検査に際して三次元計測装置が用いられることがある。
近年、光を用いたいわゆる非接触式の三次元計測装置が種々提案されており、中でも位相シフト法を用いた三次元計測装置に関する技術が提案されている(例えば、特許文献1参照)。
上記技術における三次元計測装置においては、光源と正弦波パターンのフィルタとの組み合わせからなる照射手段により、縞状の光強度分布を有する光成分パターンを測定物体(この場合プリント基板)に照射する。そして、基板上の点を真上に配置したCCDカメラを用いて観測する。この場合、画面上の点Pの光の強度Iは下式で与えられる。
I=e+f・cosφ
[但し、e:直流光ノイズ(オフセット成分)、f:正弦波のコントラスト(反射率)、φ:物体の凹凸により与えられる位相]
このとき、光成分パターンを移動させて、位相を4段階(φ、φ+π/2、φ+π、φ+3π/2)に変化させ、これらに対応する強度分布I0、I1、I2、I3をもつ画像を取り込み、下記式に基づいて位置情報θを求める。
θ=arctan{(I3−I1)/(I0−I2)}
この位置情報θを用いて、プリント基板(クリームハンダ)上の点Pの3次元座標(X,Y,Z)が求められ、もってクリームハンダの三次元形状、特に高さが計測される。
特許第2711042号公報
しかしながら、実際に照射される光成分パターンの光強度分布を理想的な正弦波にさせることは、極めて困難である。すなわち、実際の光成分パターンの光強度分布は、図9(a),(b)に示すように、崩れてしまうおそれがある。このような崩れた光成分パターンを照射する場合であっても、上記技術においては高さの演算を行う際に、各光成分パターンの光強度分布を理想的な正弦波とみなして計算するため、得られる高さに誤差が生じてしまうおそれがある。
また、実際には各光成分パターンの位相を正確にπ/2ずつ変化させられないおそれもある。この場合には、前記位置情報θを求める計算式が非常に複雑となる。このため、計測処理に時間が掛かってしまうといった問題が生じる。
本発明は、上記事情に鑑みてなされたものであり、計測対象物の三次元形状を計測するに際し、計測に要する時間の短縮を図るとともに、計測精度の向上を図ることの可能な三次元計測装置を提供することにある。
以下、上記目的等を解決するのに適した各手段につき項分けして説明する。なお、必要に応じて対応する手段に特有の作用効果等を付記する。
手段1.少なくとも計測対象物及び基準面に対し、位置により異なる光強度分布を有する光成分パターンを照射可能な照射手段と、前記光成分パターンの照射された計測対象物及び基準面からの反射光を撮像可能な撮像手段と、前記撮像手段にて、前記基準面からの反射光を撮像して得られた位置座標毎の輝度に関するデータと、前記計測対象物からの反射光を撮像して得られた所定の計測位置座標における輝度に関するデータとに基づき、前記基準面において、前記照射手段にて照射された光のうち、前記計測位置座標へ照射された光線と同一の光線が照射された基準位置座標を求めることで、少なくとも前記計測対象物の高さを三角測量の原理により演算する演算手段とを備えたことを特徴とする三次元計測装置。
手段1によれば、少なくとも計測対象物及び基準面に対し、照射手段によって、位置により光強度分布の異なる光成分パターンが照射される。また、光成分パターンの照射された計測対象物及び基準面からの反射光が撮像手段によって撮像される。そして、演算手段によって、基準面における基準位置座標が求められることで、少なくとも計測対象物の高さが三角測量の原理により演算される。前記基準位置座標は、照射手段にて照射された光のうち、所定の計測位置座標へ照射された光線と同一の光線が照射された基準面上の位置座標である。このため、基準位置座標と計測位置座標とにおける反射光を撮像して得られた輝度に関するデータが、ほぼ一致することとなる。従って、基準面における位置座標毎の輝度に関するデータと、計測位置座標における輝度に関するデータとに基づき、基準位置座標を求めることが可能となる。さらに、基準面の各位置座標に対応してそれぞれ存在する輝度に関するデータを用いるため、光成分パターンの位置により異なる光強度分布を計算式で表現する必要が無い。このため、位置と光強度分布の関係を計算式から求めていた従来技術と異なり、計算式を用いることがなく、実際の光強度分布と理想的な光強度分布との違いによる計算誤差が生じることもない。従って、演算が複雑になってしまうことによる遅延が生じずに、計測に要する時間の飛躍的な短縮を図ることができるとともに、計測対象物の三次元形状の計測精度を向上させることができる。また、光成分パターンの光強度分布を計算式に当てはめないため、前記光強度分布が計算式で表現可能な分布でなくともよい。例えば、光強度分布が理想的な正弦波状の縞でなくてもよく、周期的に変化しなくてもよい。従って、光成分パターンを形成するための照射手段を比較的容易に構成できる。なお、「光成分パターン」は、所定の波長成分を有する光であってもよいし、複数の波長成分を有する光や白色光等であってもよい。また、「照射手段」は、1つの光成分パターンのみ照射可能なものであってもよいし、互いに異なる波長成分を有する複数の光成分パターンを照射可能なものであってもよい。
手段2.少なくとも計測対象物及び基準面に対し、位置により異なる光強度分布を有する光成分パターンを照射可能な照射手段と、前記光成分パターンの照射された計測対象物及び基準面からの反射光を撮像可能な撮像手段と、前記撮像手段にて前記基準面からの反射光を撮像して得られた輝度に関するデータを位置座標毎に記憶するとともに、前記撮像手段にて前記計測対象物からの反射光を撮像して得られた所定の計測位置座標における輝度に関するデータを、前記基準面に関して記憶された前記輝度に関するデータと比較することで、前記基準面において、前記照射手段にて照射された光のうち、前記計測位置座標へ照射された光線と同一の光線が照射された基準位置座標を選択決定し、前記計測位置座標及び前記基準位置座標に基づき、少なくとも前記計測対象物の高さを三角測量の原理により演算する演算手段とを備えたことを特徴とする三次元計測装置。
手段2によれば、基本的に手段1と同様の作用効果が奏されるとともに、演算手段によって、基準面から得られた輝度に関するデータが位置座標毎に記憶されるようになっている。そして、所定の計測位置座標における輝度に関するデータが、基準面に関して記憶された輝度に関するデータと比較されることで、前記基準面の位置座標から、前記照射手段にて照射された光のうち、前記計測位置座標へ照射された光線と同一の光線が照射された基準位置座標が選択決定される。すなわち、データ同士を比較し、位置座標を選択決定するだけであるため、基準位置座標を求めるためにそれほど複雑な計算式を用いる必要がない。従って、演算が複雑になってしまうことによる遅延が生じずに、計測に要する時間の飛躍的な短縮を図ることができる。
手段3.少なくとも計測対象物及び基準面に対し、位置により異なる光強度分布を有する少なくとも2つの光成分パターンを照射可能な照射手段と、前記光成分パターンの照射された計測対象物及び基準面からの反射光を光成分パターン毎に撮像可能な撮像手段と、前記撮像手段にて前記基準面からの反射光を撮像して得られた少なくとも1通りの輝度に関するデータを位置座標毎に記憶するとともに、前記撮像手段にて前記計測対象物からの反射光を撮像して得られた所定の計測位置座標における輝度に関するデータを、前記基準面に関して記憶された前記輝度に関するデータと比較することで、前記基準面において、前記照射手段にて照射された光のうち、前記計測位置座標へ照射された光線と同一の光線が照射された基準位置座標を選択決定し、前記計測位置座標及び前記基準位置座標に基づき、少なくとも前記計測対象物の高さを三角測量の原理により演算する演算手段とを備えたことを特徴とする三次元計測装置。
手段3によれば、基本的に手段2と同様の作用効果が奏されるとともに、照射手段によって少なくとも2つ光成分パターンが照射される。また、撮像手段によって、光成分パターンの照射された計測対象物及び基準面からの反射光が光成分パターン毎に撮像される。このため、位置座標毎に、少なくとも2つの光成分パターン毎の輝度が得られる。そして、演算手段によって、基準面から得られた少なくとも1通りの輝度に関するデータが記憶される。前記輝度に関するデータとして、1通りの輝度に関するデータを用いる場合であっても、複数の光成分パターンの輝度から前記輝度に関するデータを作成することで、ひとつの光成分パターンの輝度をそのまま用いるよりも、計測対象物や基準面の色や外乱等による影響を受けにくい。このため、計測精度のより一層の向上を図ることができる。また、複数通りの輝度に関するデータを用いる場合には、1通りの輝度データを用いる場合よりも、計測精度の更なる向上を図ることができる。なお、「少なくとも2つの光成分パターン」は、互いに異なる波長成分を有するものであってもよいし、位相や周期が異なる等によって、光強度分布が位置により異なっていれば、同じ波長成分を有するものでもよいし、それらが混在しても差し支えない。
手段4.少なくとも計測対象物及び基準面に対し、互いに異なる波長成分を有するとともに、位置により異なる光強度分布を有する少なくとも2つの光成分パターンを照射可能な照射手段と、前記光成分パターンの照射された計測対象物及び基準面からの反射光を光成分毎に分離して撮像可能な撮像手段と、前記撮像手段にて、前記基準面からの反射光を撮像して得られた位置座標毎の少なくとも1通りの輝度に関するデータと、前記計測対象物からの反射光を撮像して得られた所定の計測位置座標における輝度に関するデータとに基づき、前記基準面において、前記照射手段にて照射された光のうち、前記計測位置座標へ照射された光線と同一の光線が照射された基準位置座標を求めることで、少なくとも前記計測対象物の高さを三角測量の原理により演算する演算手段とを備えたことを特徴とする三次元計測装置。
手段4によれば、基本的に手段1と同様の作用効果が奏されるとともに、照射手段によって照射される光成分パターンは、少なくとも2つあり、互いに異なる波長成分を有するとともに、位置により異なる光強度分布を有している。また、撮像手段によって、光成分パターンの照射された計測対象物及び基準面からの反射光が光成分毎に分離して撮像される。このため、位置座標毎に、少なくとも2つの光成分パターン毎の輝度が得られる。そして、演算手段によって、基準面から得られた少なくとも1通りの輝度に関するデータと、計測位置座標における輝度に関するデータとに基づき、基準位置座標が求められる。前記輝度に関するデータとして、1通りの輝度に関するデータを用いる場合であっても、複数の光成分パターンの輝度から前記輝度に関するデータを作成することで、ひとつの光成分パターンの輝度をそのまま用いるよりも、計測対象物や基準面の色や外乱等による影響を受けにくい。このため、計測精度のより一層の向上を図ることができる。また、複数通りの輝度に関するデータを用いる場合には、1通りの輝度データを用いる場合よりも、計測精度の更なる向上を図ることができる。
手段5.少なくとも計測対象物及び基準面に対し、互いに異なる波長成分を有するとともに、位置により異なる光強度分布を有する少なくとも2つの光成分パターンを照射可能な照射手段と、前記光成分パターンの照射された計測対象物及び基準面からの反射光を光成分毎に分離して撮像可能な撮像手段と、前記撮像手段にて前記基準面からの反射光を撮像して得られた少なくとも1通りの輝度に関するデータを位置座標毎に記憶するとともに、前記撮像手段にて前記計測対象物からの反射光を撮像して得られた所定の計測位置座標における輝度に関するデータを、前記基準面に関して記憶された前記輝度に関するデータと比較することで、前記基準面において、前記照射手段にて照射された光のうち、前記計測位置座標へ照射された光線と同一の光線が照射された基準位置座標を選択決定し、前記計測位置座標及び前記基準位置座標に基づき、少なくとも前記計測対象物の高さを三角測量の原理により演算する演算手段とを備えたことを特徴とする三次元計測装置。
手段5によれば、基本的に手段2及び手段4と同様の作用効果が奏される。
手段6.前記互いに異なる波長成分を有する光成分パターンは、赤色、緑色、青色、赤外線、紫外線のうちのいずれかであることを特徴とする手段4または5に記載の三次元計測装置。
手段6によれば、各光成分パターンの波長域がオーバーラップしにくい。このため、撮像手段における光成分毎の分離を比較的容易に行うことができるとともに、比較的容易に照射手段を構成することができる。
手段7.前記輝度に関するデータは、少なくとも2通りの光成分パターンの輝度に基づき所定の四則演算により求められる光成分パターンの輝度の相互関係値であることを特徴とする手段3乃至6のいずれかに記載の三次元計測装置。
手段7によれば、少なくとも2通りの光成分パターンの輝度に基づき所定の四則演算により求められる光成分パターンの輝度の相互関係値が、輝度に関するデータとして用いられる。このため、ひとつの光成分パターンの輝度をそのまま用いるよりも計測対象物や基準面の色や外乱等による影響を受けにくい。従って、計測精度のより一層の向上を図ることができる。
手段8.前記相互関係値は、異なる光成分パターンの輝度の比であることを特徴とする手段7に記載の三次元計測装置。
手段8によれば、異なる光成分パターンの輝度の比が、相互関係値、すなわち、輝度に関するデータとして用いられる。このため、電圧の変化等により照射手段の光源の明るさが経時的に変化して、測定される輝度が変化してしまうような場合にも、輝度に関するデータの値が変わってしまうといった事態が抑制される。従って、計測対象物の三次元形状の計測精度をより向上させることができる。
手段9.前記演算手段は、少なくとも撮像手段にて得られる可能性のある前記各光成分パターンの各輝度と、前記相互関係値とを対応させた輝度相互関係テーブルを備えることを特徴とする手段7または8に記載の三次元計測装置。
手段9によれば、演算手段に備えられた輝度相互関係テーブルが用いられることで、四則演算することなく、前記輝度相互関係テーブルを参照するだけで、輝度から相互関係値が求められることとなる。このため、時間を要する演算が省略でき、計測に要する時間の一層の短縮を図ることができる。
手段10.前記演算手段は、所定の基準テーブルに、前記各位置座標と、前記基準面から得られた前記相互関係値とを対応させて記憶し、少なくとも前記計測位置座標を撮像して得られる可能性のある前記各光成分パターンの各輝度から前記基準テーブルの相互関係値に関するデータを参照可能な参照テーブルを備えるとともに、前記計測位置座標における輝度に基づき、前記参照テーブル及び前記基準テーブルを順に参照することで、前記基準位置座標を取得することを特徴とする手段7乃至9のいずれかに記載の三次元計測装置。
手段10によれば、演算手段によって、所定の基準テーブルに各位置座標と基準面から得られた輝度に関するデータとが対応させられて、記憶される。そして、計測位置座標における輝度に基づき参照テーブルが参照されることで、前記基準テーブルの相互関係値に関するデータが参照され、基準位置座標が求められる。このため、計測位置座標における相互関係値を求める演算に代えて、参照テーブルを参照すればよく、時間を要する演算が省略できる。従って、計測に要する時間のより一層の短縮を図ることができる。
手段11.前記光成分パターンは、縞状の光強度分布を有するとともに、複数の前記光成分パターンを照射する場合には、前記各光成分パターンの前記光強度分布の位相が互いに異なっていることを特徴とする手段1乃至10のいずれかに記載の三次元計測装置。
手段11によれば、光成分パターンは、縞状の光強度分布を有し、複数の前記光成分パターンが照射される場合には、各光成分パターンの光強度分布の位相が互いに異なっている。このため、位置により各光成分パターンの輝度のバランスが変化することとなり、位置座標による輝度に関するデータの違いがより顕著に表れやすい。これにより、三次元計測の測定分解能が向上し、計測精度をより一層向上させることができる。なお、前記「位相が互いに異なっている」に代えて、「周期が互いに異なっている」としても、同様の作用効果が得られる。
手段12.前記演算手段は、所定の基準テーブルに、前記各位置座標と、前記基準面から得られた輝度に関するデータとを対応させて記憶するとともに、前記計測位置座標における輝度に関するデータに基づき、前記基準テーブルを参照することで前記基準位置座標を取得することを特徴とする手段1乃至11のいずれかに記載の三次元計測装置。
手段12によれば、演算手段によって、各位置座標と、基準面から得られた輝度に関するデータとが対応させられて、所定の基準テーブルに記憶される。そして、計測位置座標における輝度に関するデータに基づき基準テーブルが参照されて、基準位置座標が取得される。このため、それほど複雑な計算式を用いる必要がなく、基準テーブルを参照するだけで基準位置座標が求められる。従って、計測に要する時間のより一層の短縮を図ることができる。
手段13.前記所定の基準テーブルは、前記輝度に関するデータの値をインデックスとし、前記データの値毎に位置座標を格納するものであることを特徴とする手段12に記載の三次元計測装置。
手段13によれば、基準テーブルには、前記輝度に関するデータの値をインデックスとし、前記データの値毎に位置座標が格納されるようになっている。このため、基準位置座標を求める際に、位置座標をインデックスとしたテーブルを用いて位置座標毎に輝度に関するデータを確認するよりも、前記基準テーブルを用いて直接輝度に関するデータから位置座標を参照する方が、素早く処理を行うことができる。従って、計測に要する時間のより一層の短縮を図ることができる。
手段14.前記演算手段は、前記基準面と前記計測対象物との色合いの違い等による反射率の影響を補正するために、前記基準面及び前記計測対象物から得られた光成分毎の輝度に基づき、前記計測位置座標における輝度に関するデータを補正したうえで、少なくとも前記計測対象物の高さを三角測量の原理により演算することを特徴とする手段1乃至13のいずれかに記載の三次元計測装置。
手段14によれば、前記演算手段によって、基準面及び計測対象物から得られた光成分毎の輝度に基づき、計測位置座標における輝度に関するデータが補正される。このため、所定の波長成分の光成分パターンを照射した場合、計測対象物の色合い等によって、計測対象物と基準面との反射率が大きく相違する場合があるが、かかる場合でも反射率による影響を補正により相殺することができる。その結果、計測の精度の向上を図ることができる。なお、「前記基準面及び前記計測対象物から得られた光成分毎の輝度に基づき」に代えて、「前記基準面とほぼ同一の反射率を有する補正体及び前記計測対象物から得られた光成分毎の輝度に基づき」としてもよい。補正体は、面状をなさず、凹凸のあるものでもよい。
手段15.前記照射手段は、前記計測対象物に対して、少なくとも前記輝度に関するデータを得るための前記光成分パターンの波長成分を全て含む全照射可能であり、前記撮像手段は、前記光成分パターンの照射された計測対象物及び基準面からの反射光を光成分毎に分離して撮像可能であるとともに、前記演算手段は、前記基準面と前記計測対象物との色合いの違い等による反射率の影響を補正するために、前記計測対象物に対して全照射した際の反射光を撮像して得られる輝度に基づき、前記計測位置座標における輝度に関するデータを補正したうえで、少なくとも前記計測対象物の高さを三角測量の原理により演算することを特徴とする手段1乃至13のいずれかに記載の三次元計測装置。
手段15によれば、照射手段によって、計測対象物に対して、前記輝度に関するデータを得るための照射とは別途に、光成分パターンの波長成分を全て含む全照射が行われる。そして、前記演算手段によって、前記全照射の際に計測対象物から得られた光成分毎の輝度に基づき、計測位置座標における輝度に関するデータが補正される。このため、所定の波長成分の光成分パターンを照射した場合、計測対象物の色合い等によって、計測対象物と基準面との反射率が大きく相違する場合があるが、かかる場合でも反射率による影響を補正により相殺することができる。その結果、計測の精度の向上を図ることができる。
手段16.前記照射手段は、光源からの光を、所定の波長成分について位置により異なる遮光率で遮るとともに、残りの波長成分について全面的に透光を許容するフィルタを用いて、互いに異なる波長成分を有する光成分パターンを同時に照射可能なフィルタ機構を備えていることを特徴とする手段1乃至15のいずれかに記載の三次元計測装置。
手段16によれば、フィルタ機構が備えられており、互いに異なる波長成分を有する光成分パターンを同時に照射できる。このため、光成分毎に分離して撮像可能な撮像手段を用いる場合には、1回の照射によって複数の光成分毎の画像をまとめて撮像することができる。このため、1つのポイントに関し照射及び撮像に要する時間が著しく短縮でき、もって、計測に要する時間の飛躍的な短縮を図ることができる。また、照明装置を比較的簡素に構成することもできる。
手段17.前記照射手段は、光源からの光を、互いに異なる波長成分を有し、位置により光強度分布の異なる光成分パターンに一旦分離した上で合成して照射可能な液晶プロジェクタ機構を備えていることを特徴とする手段1乃至15のいずれかに記載の三次元計測装置。
手段17によれば、基本的に、手段16と同様の作用効果が奏される。また、光成分パターンの光強度分布を電気的に制御することができるとともに、適切な光強度分布とすることもできる。これにより、三次元計測の測定分解能が向上する。さらに、手段15に記載の全照射を行なう場合にも、電気的に制御し、光強度分布を変更するだけでよい。かかる意味で、別途の全照射用の照明装置等を用意しなくても済むというメリットも生じる。
手段18.前記計測対象物がプリント基板上に印刷されたクリームハンダであり、該クリームハンダの少なくとも高さ、体積、形状または面積から印刷状態の良否を判定する判定手段を設けたことを特徴とする手段1乃至17のいずれかに記載の三次元計測装置。
手段18によれば、プリント基板上に印刷されたクリームハンダの領域と高さが計測される。また、その計測値から、体積、形状または面積の算出も可能となる。そして、判定手段によって、これら高さ、体積、形状または面積に基づいて良否判定が行われる。このため、クリームハンダの計測に際して上記各作用効果が奏され、しかも精度よく良否判定を行うことができる。
手段19.前記計測対象物がプリント基板上に設けられたハンダバンプであり、該ハンダバンプの少なくとも高さ、体積、形状または面積からハンダバンプの形状の良否を判定する判定手段を設けたことを特徴とする手段1乃至17のいずれかに記載の三次元計測装置。
手段19によれば、プリント基板上に設けられたハンダバンプの領域と高さが計測される。また、その計測値から、体積、形状または面積の算出も可能となる。そして、判定手段によって、これら高さ、体積、形状または面積に基づいて良否判定が行われる。このため、ハンダバンプの計測に際して上記各作用効果が奏され、しかも精度よく良否判定を行うことができる。
以下、一実施の形態について、図面を参照しつつ説明する。図1は、本実施の形態における三次元計測装置を具備する印刷状態検査装置1を模式的に示す概略構成図である。同図に示すように、印刷状態検査装置1は、計測対象物としてのクリームハンダHの印刷されてなるプリント基板Kを載置するためのテーブル2と、プリント基板Kの表面に対し斜め上方から所定の光成分パターンを照射するための照射手段を構成する照明装置3と、プリント基板K上の前記照射された部分を撮像するための撮像手段を構成するCCDカメラ4とを備えている。なお、本実施の形態におけるクリームハンダHは、平面をなすプリント基板K上に設けられた銅箔からなる電極パターン上に印刷形成されている。また、プリント基板Kは、電極パターンの配線部分以外にクリームハンダHがのらないように、レジストコーティングされている。
テーブル2には、モータ5,6が設けられており、該モータ5,6によって、テーブル2上に載置されたプリント基板Kが任意の方向(X軸方向及びY軸方向)へスライドさせられるようになっている。
本実施形態における照明装置3からは、赤、緑、青の光成分パターンが照射されるようになっている。より詳しくは、図2に示すように、照明装置3は、光源11と、光源11からの光を集める集光レンズ12と、照射レンズ13と、両レンズ12,13間に配設されたフィルタ機構を構成する赤、緑、青のフィルタ格子縞板14,15,16とを備えている。赤色フィルタ格子縞板14は、部位に応じて赤色の度合いが略正弦波状(縞状)に変化しており、赤色の成分についてのみ縞状に遮光(透光)させ他の波長域の全透光を許容するようになっている。また、緑色フィルタ格子縞板15は、部位に応じて緑色の度合いが略正弦波状(縞状)に変化しており、緑色の成分についてのみ縞状に遮光(透光)させ他の波長域の全透光を許容するようになっている。青色フィルタ格子縞板16は、部位に応じて青色の度合いが略正弦波状(縞状)に変化しており、青色の成分についてのみ縞状に遮光(透光)させ他の波長域の全透光を許容するようになっている。前記フィルタ格子縞板14,15,16を通して照射される各光成分パターンの光強度分布は、略正弦波状の縞となる。また、各光成分パターンの縞は、互いに位相がずらされている。つまり、これら赤、緑、青色のフィルタ格子縞板14,15,16は、互いに位相がずれた状態で張り合わされている(勿論、相互に離間していても差し支えない)。
そして、光源11から放たれた光は、集光レンズ12、前記各色フィルタ格子縞板14,15,16、及び照射レンズ13を経て縞状の光成分パターンとしてプリント基板K上に照射されるようになっている。
また、前記CCDカメラ4は、第1〜第3のダイクロイックミラー21,22,23及びそれらに対応する第1〜第3の撮像部24,25,26を備えている。すなわち、第1のダイクロイックミラー21は、所定の波長域内(赤色光に対応)の光を反射(それ以外の波長の光を透過)し、第1の撮像部24はその反射光を撮像する。また、第2のダイクロイックミラー22は、所定の波長域内(緑色光に対応)の光を反射(それ以外の波長の光を透過)し、第2の撮像部25はその反射光を撮像する。さらに、第3のダイクロイックミラー(通常のミラーを用いてもよい)23は、所定の波長域内(青色光に対応)の光を反射(それ以外の波長の光を透過)し、第3の撮像部26はその反射光を撮像する。なお、CCDカメラ4は、所定の画素数を有すると共に、画素毎に、1024階調で輝度レベルを認識可能になっている。
本実施形態においては、図1,2に示すように、前記CCDカメラ4、照明装置3、及び、モータ5,6を駆動制御するとともに、CCDカメラ4により撮像された撮像データに基づき種々の演算を実行するための演算手段を構成する制御装置7が設けられている。すなわち、プリント基板Kがテーブル2上に載置されると、制御装置7は、まずモータ5,6を駆動制御して所定の位置に移動させ、プリント基板Kを初期位置に移動させる。この初期位置は、例えばCCDカメラ4の視野の大きさを1単位としてプリント基板Kの表面を予め分割しておいた中の1つの位置である。
また、制御装置7は、照明装置3を駆動制御して光成分パターンの照射を開始する。さらに、このようにして各光成分パターンの位相がずらされた一斉照射が行われている間に、制御装置7はCCDカメラ4を駆動制御して、これら波長域毎に(撮像部24〜26ごとに)検査エリア部分を一斉に撮像し、3画面分の画像データとして光成分パターン毎の輝度データを得る。制御装置7は画像メモリを備えており、前記画像データを順次記憶する。この記憶した画像データに基づいて、制御装置7は各種画像処理を行う。
かかる画像処理が行われている間に、制御装置7は、モータ5,6を駆動制御してテーブル2を次の検査エリアへと移動せしめる。制御装置7は、ここでの画像データについても画像メモリへ格納する。一方、画像メモリでの画像処理が一旦終了した場合、すでに画像メモリには次の画像データが記憶されているので、速やかに制御装置7は次の画像処理を行うことができる。つまり、検査は、一方で次なる検査エリア(m+1番目)への移動及び画像入力を行い、他方ではm番目の画像処理及び比較判定を行う。以降、全ての検査エリアでの検査が完了するまで、交互に同様の上記並行処理が繰り返し行われる。このように、本実施の形態の印刷状態検査装置1においては、制御装置7の制御により検査エリアを移動しながら、順次画像処理を行うことにより、プリント基板K上のクリームハンダHの印刷状態を高速かつ確実に検査することができるようになっている。
さて、印刷状態検査装置1によって、クリームハンダHの印刷状態を検査する手順を制御装置7の行う処理を含めて説明する。はじめに、高さの基準を定めるためのキャリブレーションを行う。図3は、キャリブレーションの手順を示すフローチャートである。まず、プリント基板Kとは別途に高さ位置0、かつ、平面をなす基準面を用意する。基準面は、計測対象物であるクリームハンダHと同じ色をなしている。すなわち、クリームハンダHと各光成分パターンの反射率が等しくなっている。そして、ステップS11において、基準面に対して、光成分パターンの照射を行う。次に、ステップS12において、制御装置7は、3画面分の画像データとして、各画素をそれぞれ所定の位置座標と対応させ、各位置座標における各光成分パターンの輝度を得る。図4(a)は、3画面分の画像データの一例であり、各光成分パターンの位置座標における輝度を示している。なお、本図では説明を簡単にするため、仮に1画面に記録される画素が7×3画素(位置座標21箇所)、輝度が1から3までの3階調のみの場合を示している。
ステップS13において、制御装置7は、前記輝度データから位置座標毎の各光成分パターンの輝度の相互関係を求める。本実施形態では、該相互関係値として、割り算により光成分パターンの輝度の比を算出する。より詳しくは、前記基準面を撮像して得た全ての位置座標(Xa,Yb)における赤色の輝度R0と緑色の輝度G0との相互関係値V10、緑色の輝度G0と青色の輝度B0との相互関係値V20、青色の輝度B0と赤色の輝度R0との相互関係値V30は、下式(1),(2),(3)により算出される。
V10=R0/G0 ・・・(1)
V20=G0/B0 ・・・(2)
V30=B0/R0 ・・・(3)
なお、輝度は1024階調で得られるため、各相互関係値V10,V20,V30は、理論的には1024×1024通り弱となる(例えば、輝度の比が2/1024の場合と1/512の場合とでは相互関係値V10,V20,V30は同一である。すなわち、図4(a)のように3階調の場合には、相互関係値V10,V20,V30は、3×3通りでなく、1/1,2/2,3/3が重複するため、7通りの値が得られることとなる。)。
そして、ステップS14において、各光成分パターンの相互関係が、赤と緑との相互関係値V10に対する位置座標を示す第1テーブル、緑と青との相互関係値V20に対する位置座標を示す第2テーブル、及び、青と赤との相互関係値V30に対する位置座標を示す第3テーブルの3種類のテーブルに分けて記憶される。各テーブルには、相互関係値V10,V20,V30の値をインデックスとして、当該値の等しい位置座標(Xa,Yb)がまとめて格納されるようになっている。図4(a)に示す輝度R0,G0から算出された相互関係値V10に基づき、第1テーブルに位置座標を格納すると、図4(b)に示すようなテーブルが得られる。相互関係値V20,V30についてもそれぞれ位置座標の格納された第2テーブル、第3テーブルが得られる。これら3種類のテーブルを得て、キャリブレーションを終了する。
次に、図5に示すプリント基板Kの高さ計測処理を行う。まず、ステップS21において、プリント基板Kに対して、照明装置3により前記キャリブレーション時と同様に光成分パターンの照射を行う。そして、ステップS22において、前記プリント基板Kを撮像して得た3画面分の画像データから、計測位置座標hにおける赤色の輝度Rh、緑色の輝度Gh及び青色の輝度Bhを得る。
続いて、ステップS23において、前記キャリブレーション時と同様に、計測位置座標hにおける輝度データに基づき、各光成分パターンの輝度の相互関係を求める。より詳しくは、計測位置座標hにおける赤色の輝度Rhと緑色の輝度Ghとの相互関係値V1h、緑色の輝度Ghと青色の輝度Bhとの相互関係値V2h、青色の輝度Bhと赤色の輝度Rhとの相互関係値V3hは、下式(4),(5),(6)により算出される。
V1h=Rh/Gh ・・・(4)
V2h=Gh/Bh ・・・(5)
V3h=Bh/Rh ・・・(6)
さらに、ステップS24において、前記基準面の位置座標のうち、光成分パターンそれぞれに関して計測位置座標hにおける輝度の相互関係と同一の相互関係を有する候補座標を取得する。より詳しくは、算出された相互関係値V1h,V2h,V3hに基づき、第1〜第3テーブルを参照し、各テーブルから候補座標を取得する。すなわち、第1テーブルの相互関係値V10の値のうち、相互関係値V1hと等しい値に対応して格納されている位置座標を全て取得する。同様に、相互関係値V2hに基づき第2テーブルから候補座標を取得し、相互関係値V3hに基づき第3テーブルから候補座標を取得する。
そして、ステップS25において、前記取得した候補座標から各テーブルに共通する共通位置座標を基準位置座標jとして求める。該基準位置座標jは、照明装置3によって照射された光成分パターンのうち計測位置座標hに照射された光線と同一の光線が照射された基準面上の位置座標である。なお、複数の共通位置座標が得られる場合には、所定の条件付けを実施し、共通位置座標から基準位置座標jを選択決定する。例えば、本実施形態では、照射される各光成分パターンの光強度分布が略正弦波状の縞であるため、図6に示すように、複数の共通位置座標kが求められる場合がある。このような場合には、前記共通位置座標kのうち、計測位置座標hに交差し、縞に直交するライン上、かつ、縞の周期1サイクル内の位置座標が基準位置座標jとして決定される。
ステップS26において、このように求められた基準位置座標jから計測位置座標hにおける高さを三角測量の原理に基づき演算する。ここで、前記三角測量の原理を用いた高さ演算方法について簡単に説明する。例えば、各光成分パターンの縞が、X軸方向に直交し、かつ、Y軸方向に平行に照射される際に、計測位置座標hにおける高さZを求める場合には、下式に基づいて計測位置座標hの高さZを求める。図7に示すように、照明装置3の鉛直線と、照明装置3から計測位置座標hに向けて照射したときの照射光線とのなす角をεとすると、当該角εは、基準位置座標jのX座標Xjに基づく関数式(7)により表される。
ε=f(Xj) ・・(7)
そして、高さZは、下式(8)に従って導き出される。
Z=Lh−Lpc/tanε+Xh/tanε ・・(8)
(但し、Lh:照明装置3の基準面からの高さ、Lpc:CCDカメラ4と照明装置3とのX軸方向の距離、Xh:計測位置座標hのX座標。)
このようにしてプリント基板Kの計測位置座標hにおける高さデータを得る。ステップS22からステップS25を繰り返すことで、検査エリア全体について位置座標毎の高さデータを得ることができる。得られた高さデータは、制御装置7のメモリに格納される。
さらに、制御装置7は、前述のようにして得られた高さデータに基づき、クリームハンダHの印刷状態の判定処理を行う。各部の高さデータに基づいて、検査エリア内での基準面に対するハンダ領域の高さを積分することにより、印刷されたクリームハンダHの体積、形状、面積等が算出される。そして、クリームハンダHの高さ、体積、形状、面積等のデータが予め記憶されている基準データと比較判定され、この比較結果が許容範囲内にあるか否かによって、その検査エリアにおけるクリームハンダHの印刷状態の良否が判定されるのである。
以上詳述したように、本実施形態によれば、基準面の各光成分パターンの輝度の相互関係を位置座標毎に求め、位置座標毎のデータから直接、計測対象物であるプリント基板Kにおける各光成分パターンの輝度の相互関係と一致する基準位置座標jを求めることとした。このため、各光成分パターンの光強度分布を理想的な正弦波状の縞とみなして正弦波の計算式を用いていた従来技術と異なり、複雑な計算式を用いることがなく、実際の光強度分布と正弦波との違いによる計算誤差が生じることもない。従って、演算が複雑になってしまうことによる遅延が生じずに、計測に要する時間の飛躍的な短縮を図ることができるとともに、計測対象物の三次元形状の計測精度を向上させることができる。
また、各光成分パターンの光強度分布を計算式に当てはめないため、前記光強度分布が計算式で表現可能な分布でなくともよい。すなわち、光強度分布が理想的な正弦波状の縞でなくてもよく、正弦波が崩れたような波形でもよいし、周期的に変化しなくてもよい。従って、各光成分パターンを形成するために高精度なフィルタ格子縞板14,15,16を用いる必要がなく、フィルタ格子縞板14,15,16や照明装置3の設計の簡素化を図ることができる。
さらに、計測対称物の各計測位置座標hにおける各光成分パターンの相互関係と同一となる基準面の基準位置座標jを、第1〜第3テーブルを参照して得た候補座標から選択決定できる。このため、基準位置座標jを求めるためにそれほど複雑な計算式を用いる必要がない。そのため、演算が複雑になってしまうことによる遅延が生じずに、計測に要する時間の飛躍的な短縮を図ることができる。
加えて、基準位置座標jを求めるために、3種類の光成分パターンの輝度の相互関係を用いている。このため、1種類の相互関係や、単なる輝度に基づき基準位置座標jを求める場合よりも、計測対象物の色や外乱等の影響を受けにくい。従って、計測精度のより一層の向上を図ることができる。
併せて、3種類の光成分パターンの波長成分が赤色、緑色、青色であるため、波長域がオーバーラップしにくい。このため、CCDカメラ4において光成分毎の分離を比較的容易に行うことができる。また、フィルタ格子縞板14,15,16を比較的容易に構成することができる。
また、光成分パターンは、略正弦波状(縞状)の光強度分布をなし、互いに位相が異なっている。このため、位置により各光成分パターンの輝度のバランスが変化することとなり、位置座標による輝度の相互関係の違いがより顕著に表れやすい。これにより、三次元計測の測定分解能が向上し、計測精度をより一層向上させることができる。
さらに、各光成分パターンの相互関係として、輝度の比を相互関係値として用いている。このため、電圧の変化等により光源11の明るさが経時的に変化して、測定される輝度が変化してしまうような場合にも、相互関係値が変わってしまうといった事態が抑制される。従って、計測対象物の三次元形状の計測精度をより向上させることができる。
加えて、照明装置3により複数の光成分パターンを1度に照射し、CCDカメラ4による複数の画面の画像データを1度の撮像することとした。このため、光成分パターン毎に撮像を行う必要がなく、1つのポイントに関して要する照射時間及び撮像時間が著しく短縮が図られることとなる。その結果、計測に要する時間の飛躍的な短縮を図ることができる。
以上説明した実施の形態において、例えば、次のように構成の一部を適宜変更して実施することも可能である。勿論、以下において例示しない他の変更例も当然可能である。
(a)上記実施形態では、キャリブレーション時に用いる基準面と同じ色のクリームハンダHを計測対象物としているが、基準面と異なる色(反射率)の計測対象物の三次元計測にも応用できる。例えば、基準面における輝度に基づき、計測位置座標hにおける輝度Rh,Gh,Bhを補正して、該補正により得られた補正輝度Rc,Gc,Bcに基づき各光成分パターンの輝度の相互関係を求めてもよい。前記補正輝度Rc,Gc,Bcは、下式(11)〜(16)により求められる。
Rr=R0a/Rn ・・・(11)
Gr=G0a/Gn ・・・(12)
Br=B0a/Bn ・・・(13)
Rc=Rh×Rr ・・・(14)
Gc=Gh×Gr ・・・(15)
Bc=Bh×Br ・・・(16)
[但し、Rr,Gr,Br:補正係数、Rn,Gn,Bn:計測対象物の計測エリアの輝度の平均値、R0a,G0a,B0a:計測対象物の計測エリアと同一エリアにおける基準面の輝度の平均値]
このようにして演算された補正輝度Rc,Gc,Bcに基づき各光成分パターンの輝度の相互関係を求めることで、基準位置座標jを決定することができる。また、基準面の輝度の平均値R0a,G0a,B0aに代えて、基準面とは別途の補正体を撮像して得た補正体の輝度の平均値を用いてもよい。なお、該補正体は、基準面と同色であればよく、平面をなしていなくても差し支えない。
(b)さらに、基準面と異なる色(反射率)の計測対象物の三次元計測を行う際には、計測対象物に対して別途の照射を行って得た画像データを用いて、補正を行なってもよい。前記別途の照射には、少なくとも計測のために照射する光成分パターンの波長を全て含む全照射を行う。例えば、上記実施形態のような赤色、緑色、青色の光成分パターンを照射する場合には、白色の全照射を行う。計測対象物に関して、計測位置座標hにおける白色の全照射した際の輝度Rw,Gw,Bwに基づき、光成分パターン照射時の輝度Rh,Gh,Bhを補正してもよい。この場合、補正輝度Rd,Gd,Bdは、下式(17),(18),(19)により求められる。
Rd=Rh/Rw×(Rw+Gw+Bw) ・・・(17)
Gd=Gh/Gw×(Rw+Gw+Bw) ・・・(18)
Bd=Bh/Bw×(Rw+Gw+Bw) ・・・(19)
このようにして演算された補正輝度Rd,Gd,Bdに基づき各光成分パターンの輝度の相互関係を求めることで、基準位置座標jを決定することができる。
(c)キャリブレーションの際には、全ての位置座標における輝度の相互関係を記憶するようになっているが、必ずしも全ての位置座標について記憶する必要はない。上記実施形態では、光成分パターンが縞状をなしているため、縞に直交する方向の所定の1列の位置座標に関してのみ記憶することとしてもよい。また、縞に平行な方向に関する輝度の相互関係を同一とみなすことで、全ての位置座標における輝度の相互関係を把握可能である。この場合、第1〜第3テーブルを参照して得られる位置座標を少なくすることができるため、キャリブレーション処理だけでなく、計測処理の高速化をも図ることができる。
(d)上記実施形態では、計測位置座標hにおける相互関係値V1h,V2h,V3hを計算してから第1〜第3テーブルを参照しているが、当該計算に代えて別途のテーブル参照処理を行うことで、時間を要する演算が省略でき、さらなる計測処理の高速化を図ることができる。例えば、予め輝度と第1〜第3テーブルにおける相互関係値V10,V20,V30の格納された相互関係番号との関係をテーブル化する。例えば、輝度Rh、Ghと図4(b)の第1テーブルの相互関係番号と対応させると図8のような高速化テーブルとなる。そして、計測位置座標hにおけるRh,Gh,Bhに基づき参照テーブルとして前記高速化テーブルを参照することで、第1〜第3テーブルにおける各相互関係番号が得られる。従って、計算することなく、第1〜第3テーブルが参照可能となる。
(e)上記実施形態では、各光成分パターンの輝度の相互関係値として、2つの波長の輝度の比を用いているが、他の計算により相互関係値を求めても差し支えない。例えば、2つの波長の輝度を加算、減算または乗算した値を相互関係値としてもよい。特に、減算した値を相互関係値とする場合には、外乱光の影響をキャンセルすることができる。
(f)また、輝度の相互関係は必ずしも3種類の相互関係を使用する必要はなく、1種類でもよいし、2種類または4種類以上使用してもよい。例えば、赤色の輝度Rhと緑色の輝度Ghとの相互関係値V1hのみから、基準位置座標jを求めてもよいし、相互関係値V1h,V2h,V3hと別途の相互関係値とから基準位置座標jを求めてもよい。
(g)さらに、各光成分パターンの輝度の相互関係を用いず、輝度に基づき基準位置座標jを求めてもよい。
(h)上記実施形態では、各光成分パターンは、互いに異なる波長成分を有しているが、同じ波長成分であっても、位置により光強度分布が異なるものであればよい。また、同じ波長成分を有する複数の光成分パターンを適用する場合には、光成分パターン毎に照射し、該照射のたびに撮像を行うことで、光成分パターン毎の撮像が可能となる。
(i)光成分パターンの各波長域が、赤色、緑色、青色となっていることにより、同時に撮像しても、波長域毎の分離撮像が容易になっているが、別の分離撮像の容易な波長域を用いてもよい。例えば、赤外線、紫外線等でもよい。さらには、3つの光成分ではなく、2つ又は4つ以上の光成分を照射するようにしてもよい。
(j)照明装置3によって照射される各光成分パターンは、互いに異なる相互関係が得られればよく、略正弦波に限定されない。例えば、三角波状、矩形波状、のこぎり波状、ランプ波状、また、位置に比例して輝度が変わるもの(例えば、徐々に明るくなるもの)でもよい。各波形は、崩れていても差し支えなく、周期が不正確でもよい。
(k)また、上記実施形態の各光成分パターンは、互いに位相がずらされているが、これに限定されず、位置による光強度分布が互いに異なればよいのであって、例えば、位相に関係なく、周期が互いに異なるものでもよい。もちろん、決まった周期の無い光成分パターンであっても差し支えない。
(l)フィルタ格子縞板14,15,16は、上記実施形態に限定されず、複数の光成分パターンが照射できればよい。例えば、1枚のフィルタのみによって構成してもよい。また、フィルタ格子縞板14,15,16に代えて、液晶素子を用いた液晶プロジェクタ機構を適用してもよい。この場合、光成分パターンの光強度分布を電気的に制御することができるとともに、適切な光強度分布とすることもできる。これにより、三次元計測の測定分解能が向上する。
(m)上記実施形態では、基準面のデータを輝度の相互関係値をインデックスとして各位置座標を第1〜第3テーブルに格納しているが、位置座標をインデックスとして前記相互関係値を格納したテーブルとしてもよい。
(n)上記実施形態ではプリント基板Kに印刷形成されたクリームハンダHの高さ等を計測する場合に具体化したが、他にもICパッケージ(例えばリード)に印刷形成されたクリームハンダの高さ等を計測する場合にも具体化できる。さらに、他の計測対象物の高さ等を計測する場合に具体化してもよい。他の計測対象物としては、基板上に印刷された印刷物、積層体等が挙げられる。
(o)また、上記実施形態をハンダバンプの検査装置として、ハンダバンプの高さ、形状、体積を算出し、検査をする場合にも具体化できる。
(p)さらに、印刷状態検査装置1を適用可能なプリント基板としては、所謂プリント基板のほか、半導体ウエハー、LCD(Liquid Crystal Display:液晶ディスプレイ)、CCD(charge Coupled Devices:電化結合素子)を含む。
一実施の形態における三次元計測装置を具備する印刷状態検査装置を模式的に示す概略斜視図である。 一実施の形態におけるより詳細な三次元計測装置の構成を模式的に示す概略構成図である。 キャリブレーションの処理を示すフローチャートである。 (a)はキャリブレーション時の各光成分パターンの位置座標毎の輝度の一例を示す表であって、(b)は(a)に示す赤色の輝度と緑色の輝度とに基づいて位置座標が格納された第1テーブルである。 高さ測定処理を示すフローチャートである。 複数の候補座標から基準位置座標を選択する場合を説明するための模式図である。 三角測量の原理を用いた高さ演算方法を説明するための照明装置や計測位置座標等の位置関係を示す図である。 別の形態において、輝度の相互関係に関して図4(a)の相互関係番号を用いてテーブル化した場合を示す高速化テーブルである。 (a)及び(b)は実際の光成分パターンの光強度分布である。
符号の説明
1…印刷状態検査装置、3…照明手段としての照明装置、4…撮像手段としてのCCDカメラ、7…演算手段を構成する制御装置、14,15,16…フィルタ機構を構成するフィルタ格子縞板、h…計測位置座標、j…基準位置座標、H…計測対象物としてのクリームハンダ。

Claims (19)

  1. 少なくとも計測対象物及び基準面に対し、位置により異なる光強度分布を有する光成分パターンを照射可能な照射手段と、
    前記光成分パターンの照射された計測対象物及び基準面からの反射光を撮像可能な撮像手段と、
    前記撮像手段にて、前記基準面からの反射光を撮像して得られた位置座標毎の輝度に関するデータと、
    前記計測対象物からの反射光を撮像して得られた所定の計測位置座標における輝度に関するデータとに基づき、
    前記基準面において、前記照射手段にて照射された光のうち、前記計測位置座標へ照射された光線と同一の光線が照射された基準位置座標を求めることで、少なくとも前記計測対象物の高さを三角測量の原理により演算する演算手段とを備えたことを特徴とする三次元計測装置。
  2. 少なくとも計測対象物及び基準面に対し、位置により異なる光強度分布を有する光成分パターンを照射可能な照射手段と、
    前記光成分パターンの照射された計測対象物及び基準面からの反射光を撮像可能な撮像手段と、
    前記撮像手段にて前記基準面からの反射光を撮像して得られた輝度に関するデータを位置座標毎に記憶するとともに、
    前記撮像手段にて前記計測対象物からの反射光を撮像して得られた所定の計測位置座標における輝度に関するデータを、前記基準面に関して記憶された前記輝度に関するデータと比較することで、
    前記基準面において、前記照射手段にて照射された光のうち、前記計測位置座標へ照射された光線と同一の光線が照射された基準位置座標を選択決定し、
    前記計測位置座標及び前記基準位置座標に基づき、少なくとも前記計測対象物の高さを三角測量の原理により演算する演算手段とを備えたことを特徴とする三次元計測装置。
  3. 少なくとも計測対象物及び基準面に対し、位置により異なる光強度分布を有する少なくとも2つの光成分パターンを照射可能な照射手段と、
    前記光成分パターンの照射された計測対象物及び基準面からの反射光を光成分パターン毎に撮像可能な撮像手段と、
    前記撮像手段にて前記基準面からの反射光を撮像して得られた少なくとも1通りの輝度に関するデータを位置座標毎に記憶するとともに、
    前記撮像手段にて前記計測対象物からの反射光を撮像して得られた所定の計測位置座標における輝度に関するデータを、前記基準面に関して記憶された前記輝度に関するデータと比較することで、
    前記基準面において、前記照射手段にて照射された光のうち、前記計測位置座標へ照射された光線と同一の光線が照射された基準位置座標を選択決定し、
    前記計測位置座標及び前記基準位置座標に基づき、少なくとも前記計測対象物の高さを三角測量の原理により演算する演算手段とを備えたことを特徴とする三次元計測装置。
  4. 少なくとも計測対象物及び基準面に対し、互いに異なる波長成分を有するとともに、位置により異なる光強度分布を有する少なくとも2つの光成分パターンを照射可能な照射手段と、
    前記光成分パターンの照射された計測対象物及び基準面からの反射光を光成分毎に分離して撮像可能な撮像手段と、
    前記撮像手段にて、前記基準面からの反射光を撮像して得られた位置座標毎の少なくとも1通りの輝度に関するデータと、
    前記計測対象物からの反射光を撮像して得られた所定の計測位置座標における輝度に関するデータとに基づき、
    前記基準面において、前記照射手段にて照射された光のうち、前記計測位置座標へ照射された光線と同一の光線が照射された基準位置座標を求めることで、少なくとも前記計測対象物の高さを三角測量の原理により演算する演算手段とを備えたことを特徴とする三次元計測装置。
  5. 少なくとも計測対象物及び基準面に対し、互いに異なる波長成分を有するとともに、位置により異なる光強度分布を有する少なくとも2つの光成分パターンを照射可能な照射手段と、
    前記光成分パターンの照射された計測対象物及び基準面からの反射光を光成分毎に分離して撮像可能な撮像手段と、
    前記撮像手段にて前記基準面からの反射光を撮像して得られた少なくとも1通りの輝度に関するデータを位置座標毎に記憶するとともに、
    前記撮像手段にて前記計測対象物からの反射光を撮像して得られた所定の計測位置座標における輝度に関するデータを、前記基準面に関して記憶された前記輝度に関するデータと比較することで、
    前記基準面において、前記照射手段にて照射された光のうち、前記計測位置座標へ照射された光線と同一の光線が照射された基準位置座標を選択決定し、
    前記計測位置座標及び前記基準位置座標に基づき、少なくとも前記計測対象物の高さを三角測量の原理により演算する演算手段とを備えたことを特徴とする三次元計測装置。
  6. 前記互いに異なる波長成分を有する光成分パターンは、赤色、緑色、青色、赤外線、紫外線のうちのいずれかであることを特徴とする請求項4または5に記載の三次元計測装置。
  7. 前記輝度に関するデータは、少なくとも2通りの光成分パターンの輝度に基づき所定の四則演算により求められる光成分パターンの輝度の相互関係値であることを特徴とする請求項3乃至6のいずれかに記載の三次元計測装置。
  8. 前記相互関係値は、異なる光成分パターンの輝度の比であることを特徴とする請求項7に記載の三次元計測装置。
  9. 前記演算手段は、少なくとも撮像手段にて得られる可能性のある前記各光成分パターンの各輝度と、前記相互関係値とを対応させた輝度相互関係テーブルを備えることを特徴とする請求項7または8に記載の三次元計測装置。
  10. 前記演算手段は、所定の基準テーブルに、前記各位置座標と、前記基準面から得られた前記相互関係値とを対応させて記憶し、
    少なくとも前記計測位置座標を撮像して得られる可能性のある前記各光成分パターンの各輝度から前記基準テーブルの相互関係値に関するデータを参照可能な参照テーブルを備えるとともに、
    前記計測位置座標における輝度に基づき、前記参照テーブル及び前記基準テーブルを順に参照することで、前記基準位置座標を取得することを特徴とする請求項7乃至9のいずれかに記載の三次元計測装置。
  11. 前記光成分パターンは、縞状の光強度分布を有するとともに、
    複数の前記光成分パターンを照射する場合には、前記各光成分パターンの前記光強度分布の位相が互いに異なっていることを特徴とする請求項1乃至10のいずれかに記載の三次元計測装置。
  12. 前記演算手段は、所定の基準テーブルに、前記各位置座標と、前記基準面から得られた輝度に関するデータとを対応させて記憶するとともに、
    前記計測位置座標における輝度に関するデータに基づき、前記基準テーブルを参照することで前記基準位置座標を取得することを特徴とする請求項1乃至11のいずれかに記載の三次元計測装置。
  13. 前記所定の基準テーブルは、前記輝度に関するデータの値をインデックスとし、前記データの値毎に位置座標を格納するものであることを特徴とする請求項12に記載の三次元計測装置。
  14. 前記演算手段は、前記基準面と前記計測対象物との色合いの違い等による反射率の影響を補正するために、前記基準面及び前記計測対象物から得られた光成分毎の輝度に基づき、前記計測位置座標における輝度に関するデータを補正したうえで、少なくとも前記計測対象物の高さを三角測量の原理により演算することを特徴とする請求項1乃至13のいずれかに記載の三次元計測装置。
  15. 前記照射手段は、前記計測対象物に対して、少なくとも前記輝度に関するデータを得るための前記光成分パターンの波長成分を全て含む全照射可能であり、
    前記撮像手段は、前記光成分パターンの照射された計測対象物及び基準面からの反射光を光成分毎に分離して撮像可能であるとともに、
    前記演算手段は、前記基準面と前記計測対象物との色合いの違い等による反射率の影響を補正するために、前記計測対象物に対して全照射した際の反射光を撮像して得られる輝度に基づき、前記計測位置座標における輝度に関するデータを補正したうえで、少なくとも前記計測対象物の高さを三角測量の原理により演算することを特徴とする請求項1乃至13のいずれかに記載の三次元計測装置。
  16. 前記照射手段は、光源からの光を、所定の波長成分について位置により異なる遮光率で遮るとともに、残りの波長成分について全面的に透光を許容するフィルタを用いて、互いに異なる波長成分を有する光成分パターンを同時に照射可能なフィルタ機構を備えていることを特徴とする請求項1乃至15のいずれかに記載の三次元計測装置。
  17. 前記照射手段は、光源からの光を、互いに異なる波長成分を有し、位置により光強度分布の異なる光成分パターンに一旦分離した上で合成して照射可能な液晶プロジェクタ機構を備えていることを特徴とする請求項1乃至15のいずれかに記載の三次元計測装置。
  18. 前記計測対象物がプリント基板上に印刷されたクリームハンダであり、該クリームハンダの少なくとも高さ、体積、形状または面積から印刷状態の良否を判定する判定手段を設けたことを特徴とする請求項1乃至17のいずれかに記載の三次元計測装置。
  19. 前記計測対象物がプリント基板上に設けられたハンダバンプであり、該ハンダバンプの少なくとも高さ、体積、形状または面積からハンダバンプの形状の良否を判定する判定手段を設けたことを特徴とする請求項1乃至17のいずれかに記載の三次元計測装置。
JP2004158651A 2004-05-28 2004-05-28 三次元計測装置 Expired - Fee Related JP4011561B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004158651A JP4011561B2 (ja) 2004-05-28 2004-05-28 三次元計測装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004158651A JP4011561B2 (ja) 2004-05-28 2004-05-28 三次元計測装置

Publications (2)

Publication Number Publication Date
JP2005337943A true JP2005337943A (ja) 2005-12-08
JP4011561B2 JP4011561B2 (ja) 2007-11-21

Family

ID=35491681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004158651A Expired - Fee Related JP4011561B2 (ja) 2004-05-28 2004-05-28 三次元計測装置

Country Status (1)

Country Link
JP (1) JP4011561B2 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008035765A1 (fr) * 2006-09-21 2008-03-27 I-Pulse Kabushiki Kaisha Appareil d'inspection
JP2008170281A (ja) * 2007-01-11 2008-07-24 Nikon Corp 形状測定装置及び形状測定方法
KR100903346B1 (ko) 2006-12-28 2009-06-22 (주) 인텍플러스 광학식 입체 형상 검사 방법
US20100177192A1 (en) * 2009-01-14 2010-07-15 Ckd Corporation Three-dimensional measuring device
JP2010532871A (ja) * 2007-07-12 2010-10-14 カールツァイス アーゲー 物体の表面を光学検査するための方法および装置
JP2010243508A (ja) * 2006-01-26 2010-10-28 Koh Young Technology Inc 3次元形状測定方法
JP2010276607A (ja) * 2009-05-27 2010-12-09 Koh Young Technology Inc 3次元形状測定装置および測定方法
KR101073212B1 (ko) 2007-12-17 2011-10-12 올림푸스 가부시키가이샤 레이저 주사형 현미경 장치 및 그 표면 형상의 측정 방법
KR101192332B1 (ko) 2012-08-30 2012-10-17 함상민 솔더 볼의 비전 검사장치
KR101361537B1 (ko) * 2011-11-25 2014-02-13 주식회사 미르기술 적외선패턴조사부를 구비하는 비전검사장치
WO2019090315A1 (en) * 2017-11-06 2019-05-09 Rudolph Technologies, Inc. Laser triangulation sensor system and method for wafer inspection
JP2020134249A (ja) * 2019-02-15 2020-08-31 株式会社キーエンス 画像処理装置
US11578967B2 (en) 2017-06-08 2023-02-14 Onto Innovation Inc. Wafer inspection system including a laser triangulation sensor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7164461B2 (ja) 2019-02-15 2022-11-01 株式会社キーエンス 画像処理装置
JP2020134250A (ja) 2019-02-15 2020-08-31 株式会社キーエンス 画像処理装置

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010243508A (ja) * 2006-01-26 2010-10-28 Koh Young Technology Inc 3次元形状測定方法
WO2008035765A1 (fr) * 2006-09-21 2008-03-27 I-Pulse Kabushiki Kaisha Appareil d'inspection
KR100903346B1 (ko) 2006-12-28 2009-06-22 (주) 인텍플러스 광학식 입체 형상 검사 방법
JP2008170281A (ja) * 2007-01-11 2008-07-24 Nikon Corp 形状測定装置及び形状測定方法
JP2010532871A (ja) * 2007-07-12 2010-10-14 カールツァイス アーゲー 物体の表面を光学検査するための方法および装置
KR101073212B1 (ko) 2007-12-17 2011-10-12 올림푸스 가부시키가이샤 레이저 주사형 현미경 장치 및 그 표면 형상의 측정 방법
JP2010164350A (ja) * 2009-01-14 2010-07-29 Ckd Corp 三次元計測装置
US20100177192A1 (en) * 2009-01-14 2010-07-15 Ckd Corporation Three-dimensional measuring device
KR101121691B1 (ko) * 2009-01-14 2012-03-09 시케이디 가부시키가이샤 삼차원 계측 장치
JP2010276607A (ja) * 2009-05-27 2010-12-09 Koh Young Technology Inc 3次元形状測定装置および測定方法
US8878929B2 (en) 2009-05-27 2014-11-04 Koh Young Technology Inc. Three dimensional shape measurement apparatus and method
KR101361537B1 (ko) * 2011-11-25 2014-02-13 주식회사 미르기술 적외선패턴조사부를 구비하는 비전검사장치
KR101192332B1 (ko) 2012-08-30 2012-10-17 함상민 솔더 볼의 비전 검사장치
US11578967B2 (en) 2017-06-08 2023-02-14 Onto Innovation Inc. Wafer inspection system including a laser triangulation sensor
WO2019090315A1 (en) * 2017-11-06 2019-05-09 Rudolph Technologies, Inc. Laser triangulation sensor system and method for wafer inspection
JP2020134249A (ja) * 2019-02-15 2020-08-31 株式会社キーエンス 画像処理装置
JP7231433B2 (ja) 2019-02-15 2023-03-01 株式会社キーエンス 画像処理装置

Also Published As

Publication number Publication date
JP4011561B2 (ja) 2007-11-21

Similar Documents

Publication Publication Date Title
JP3878033B2 (ja) 三次元計測装置
JP3878023B2 (ja) 三次元計測装置
JP4744610B2 (ja) 三次元計測装置
US8199335B2 (en) Three-dimensional shape measuring apparatus, three-dimensional shape measuring method, three-dimensional shape measuring program, and recording medium
KR101121691B1 (ko) 삼차원 계측 장치
JP4011561B2 (ja) 三次元計測装置
JP6109255B2 (ja) 三次元計測装置
JP3723057B2 (ja) 三次元計測装置
EP3686550A1 (en) Three-dimensional shape measuring apparatus
JP2005140584A (ja) 三次元計測装置
JP4808072B2 (ja) フィルタ格子縞板、三次元計測装置及び照明手段
JP4947559B2 (ja) 三次元計測装置
JP3723139B2 (ja) 三次元計測装置
JP6027204B1 (ja) 三次元計測装置
JP7000380B2 (ja) 三次元計測装置及び三次元計測方法
JP3906990B2 (ja) 外観検査装置及び三次元計測装置
JP6126640B2 (ja) 三次元計測装置及び三次元計測方法
JP2002081924A (ja) 三次元計測装置
CN113966457A (zh) 三维测量装置和三维测量方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070905

R150 Certificate of patent or registration of utility model

Ref document number: 4011561

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140914

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees