JP2005337262A - Driving device, lens driving device and camera - Google Patents

Driving device, lens driving device and camera Download PDF

Info

Publication number
JP2005337262A
JP2005337262A JP2005182946A JP2005182946A JP2005337262A JP 2005337262 A JP2005337262 A JP 2005337262A JP 2005182946 A JP2005182946 A JP 2005182946A JP 2005182946 A JP2005182946 A JP 2005182946A JP 2005337262 A JP2005337262 A JP 2005337262A
Authority
JP
Japan
Prior art keywords
shape memory
memory alloy
bending
alloy member
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005182946A
Other languages
Japanese (ja)
Other versions
JP4353921B2 (en
Inventor
Noriyuki Komori
教之 小守
Ichihiro Abe
委千弘 阿部
Hiroyuki Miyake
博之 三宅
Hideki Kunishio
英記 國塩
Yuji Tadano
祐次 只野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005182946A priority Critical patent/JP4353921B2/en
Publication of JP2005337262A publication Critical patent/JP2005337262A/en
Application granted granted Critical
Publication of JP4353921B2 publication Critical patent/JP4353921B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To enlarge the displacement amount in the longitudinal direction of a wire made of a shape memory alloy. <P>SOLUTION: This driving device includes: a bendable wire made of a shape memory alloy; an energizing means for producing tensile force in the longitudinal direction of the wire; a bending means having a plurality of abutting parts abutting on the wire for bending the wire; and an exciting means for applying an electric current through the wire through the abutting parts, wherein the plurality of abutting parts are abutted on the wire, and the wire is displaced in the longitudinal direction by the energizing means. In the wire of the respective sections determined by the abutting parts adjacent to each other, the abutting parts to which the electric current is applied are determined so that the sections are different in amount of electric current flowing through the wire. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、駆動装置に関し、特に形状記憶合金の特性を利用して駆動力を発生させる駆動装置に関する。   The present invention relates to a driving device, and more particularly to a driving device that generates a driving force by utilizing the characteristics of a shape memory alloy.

従来より、例えば特開2000−310181号公報(第2頁、図11参照)及び特開平5−224136号公報(第3頁、図3参照)に開示されているように、ワイヤ状の形状記憶合金部材を利用した駆動装置が知られている。このような駆動装置では、形状記憶合金部材が変態温度よりも高い温度に加熱されると記憶された形状に変化し、変態温度よりも低い温度に冷却されると元の形状に変化することを利用している。形状記憶合金部材の変位量は、全長の数%であるため、駆動装置として十分な出力(変位量)を得るためには、形状記憶合金部材の全長を長くする必要がある。しかしながら、形状記憶合金部材を直線状に配置したのでは、大きなスペースが必要になる。   Conventionally, as disclosed in, for example, Japanese Patent Application Laid-Open No. 2000-310181 (see page 2, FIG. 11) and Japanese Patent Application Laid-Open No. 5-224136 (see page 3, FIG. 3), wire shape memory A drive device using an alloy member is known. In such a drive device, when the shape memory alloy member is heated to a temperature higher than the transformation temperature, it changes to the memorized shape, and when it is cooled to a temperature lower than the transformation temperature, it changes to the original shape. We are using. Since the displacement amount of the shape memory alloy member is several percent of the total length, it is necessary to lengthen the total length of the shape memory alloy member in order to obtain a sufficient output (displacement amount) as the driving device. However, if the shape memory alloy members are arranged linearly, a large space is required.

そこで、近年、形状記憶合金部材を巻回部材の周囲に巻き付けることにより、全長の長い形状記憶合金部材を小さいスペースに配置できるようにした駆動装置が提案されている。このような駆動装置は、例えば、特開2000−310181号公報(第6頁、図1参照)、特開平8−226376号公報(第3−5頁、図1参照)、特開平10−148174号公報(第2−3頁、図1参照)及び特開平8−77674号公報(第5頁、図5参照)に開示されている。   Therefore, in recent years, a drive device has been proposed in which a shape memory alloy member having a long overall length can be arranged in a small space by winding the shape memory alloy member around a winding member. Such driving devices are disclosed in, for example, Japanese Patent Laid-Open No. 2000-310181 (see page 6, FIG. 1), Japanese Patent Laid-Open No. 8-226376 (see page 3-5, FIG. 1), and Japanese Patent Laid-Open No. 10-148174. No. 2 (page 2-3, see FIG. 1) and Japanese Patent Application Laid-Open No. 8-77774 (see page 5, FIG. 5).

しかしながら、これらの文献に記載されているように形状記憶合金部材を巻回部材の周囲に巻き付けると、形状記憶合金部材を直線状に配置した場合に比較して、形状記憶合金部材の変位量が小さくなるという問題がある。   However, as described in these documents, when the shape memory alloy member is wound around the winding member, the displacement amount of the shape memory alloy member is smaller than when the shape memory alloy member is linearly arranged. There is a problem of becoming smaller.

本発明は、上述した問題点を解消するためになされたものであり、その目的は、形状記憶合金部材を直線状に配置した駆動装置と比較した場合の変位量の低下を抑制し、小さいスペースに配置可能な(すなわち、スペース効率を向上することができる)駆動装置を提供することにある。   The present invention has been made to solve the above-described problems, and its purpose is to suppress a decrease in the amount of displacement when compared with a drive device in which shape memory alloy members are arranged in a straight line, and a small space. It is an object of the present invention to provide a drive device that can be disposed in the space (that is, space efficiency can be improved).

本発明による駆動装置は、
形状記憶合金からなる屈曲可能な線材と、
前記線材の長手方向に張力を生じさせる付勢手段と、
前記線材に当接する複数の当接部を有し、前記線材を屈曲させる屈曲手段と、
前記当接部を介し前記線材に電流を流す通電手段と、
を備え、
前記複数の当接部が前記線材に当接すると共に、前記付勢手段により前記線材を前記長手方向に変位させるように構成され、
互いに隣接する前記当接部で定まる各区間の前記線材において、前記線材に流れる電流量が異なる前記区間が存在するように、電流を流す前記当接部を決定すること
としたものである。
The drive device according to the present invention comprises:
A bendable wire made of shape memory alloy;
Urging means for generating tension in the longitudinal direction of the wire,
A plurality of abutting portions that abut against the wire, and bending means for bending the wire;
Energization means for passing current through the wire through the contact portion;
With
The plurality of contact portions are in contact with the wire, and are configured to displace the wire in the longitudinal direction by the urging means,
In the wire rod in each section determined by the contact sections adjacent to each other, the contact section through which current flows is determined so that the section in which the amount of current flowing through the wire is different exists.

本発明の駆動装置によれば、形状記憶合金からなる線材の長手方向の変位量を大きくすることが可能となる。   According to the drive device of the present invention, it is possible to increase the amount of displacement in the longitudinal direction of a wire made of a shape memory alloy.

実施の形態1.
図1及び図2は、本発明の実施の形態1に係る駆動装置1を示す平面図及び斜視図である。図1及び図2に示すように、駆動装置1の基台6は、載置面6aとこれに略垂直な壁面6bとを有している。載置面6a上において、壁面6bから所定距離だけ離れた位置には、ピン状の屈曲部材5が立設されている。形状記憶合金部材2は、その一端(固定端)が壁面6bに固定され、屈曲部材5の周面に巻き付け角θが180度となるように巻き付けられた状態で、他端(可動端)が移動体3の一方の側に取り付けられている。なお、巻き付け角が180度とは、形状記憶合金部材2が屈曲部材5に当接して180度屈曲されていることを意味する。引っ張りコイルバネで形成された弾性部材4は、所定の張力が生じるやや伸長した状態で、一端が壁面6bに固定され、且つ他端が移動体3の他方の側(形状記憶合金部材2に取付けられた側とは反対の側)に固定されている。
Embodiment 1 FIG.
1 and 2 are a plan view and a perspective view showing a driving apparatus 1 according to Embodiment 1 of the present invention. As shown in FIG.1 and FIG.2, the base 6 of the drive device 1 has the mounting surface 6a and the wall surface 6b substantially perpendicular | vertical to this. On the mounting surface 6a, a pin-shaped bending member 5 is erected at a position away from the wall surface 6b by a predetermined distance. One end (fixed end) of the shape memory alloy member 2 is fixed to the wall surface 6b, and the other end (movable end) is wound around the peripheral surface of the bending member 5 so that the winding angle θ is 180 degrees. It is attached to one side of the moving body 3. The winding angle of 180 degrees means that the shape memory alloy member 2 is in contact with the bending member 5 and bent 180 degrees. The elastic member 4 formed of a tension coil spring has one end fixed to the wall surface 6b and a second end attached to the other side of the movable body 3 (attached to the shape memory alloy member 2) in a state where a predetermined tension is generated and slightly stretched. It is fixed to the opposite side).

駆動装置1では、形状記憶合金部材2の固定端と弾性部材4の固定端(壁面6bに固定された方の端部)との間に通電回路7を用いて直流電流を流し、形状記憶合金部材2の電気抵抗による発熱(ジュール熱)を利用して形状記憶合金部材2を加熱するようになっており、そのため弾性部材4及び移動体3には導電性材料が用いられている。但し、形状記憶合金部材2の加熱する方法は、この方法に限るものではない。移動体3は載置面6aに接触していてもよいが、この場合には移動体3の移動時に載置面6aとの間で生じる摩擦は、形状記憶合金部材2に生じている張力に対して無視できる程度のものとする。   In the driving device 1, a direct current is passed between the fixed end of the shape memory alloy member 2 and the fixed end of the elastic member 4 (the end fixed to the wall surface 6 b) using the energizing circuit 7, and the shape memory alloy The shape memory alloy member 2 is heated using heat generated by the electric resistance of the member 2 (Joule heat), and therefore, the elastic member 4 and the moving body 3 are made of a conductive material. However, the method of heating the shape memory alloy member 2 is not limited to this method. The moving body 3 may be in contact with the mounting surface 6a. In this case, the friction generated between the moving body 3 and the mounting surface 6a during the movement of the moving body 3 is caused by the tension generated in the shape memory alloy member 2. However, it should be negligible.

ここで、屈曲部材5は、形状記憶合金部材2を屈曲させる屈曲手段を構成している。屈曲部材5の周面の形状記憶合金部材2に当接する部分は、屈曲手段において形状記憶合金部材2に当接する当接部を構成している。基台6は、屈曲部材5を保持する保持手段を構成している。   Here, the bending member 5 constitutes a bending means for bending the shape memory alloy member 2. The portion of the peripheral surface of the bending member 5 that contacts the shape memory alloy member 2 constitutes a contact portion that contacts the shape memory alloy member 2 in the bending means. The base 6 constitutes a holding means for holding the bending member 5.

以上のように構成された駆動装置1では、通電回路7によって形状記憶合金部材2に所定の直流電流(例えば100mA)を流すと、形状記憶合金部材2が加熱されて収縮し、移動体3が弾性部材4の付勢力に抗して矢印A方向に移動する。形状記憶合金部材2への通電を停止すると、その温度が低下し、元の長さに伸びるため、移動体3が弾性部材4の付勢力により矢印B方向に移動する。   In the drive device 1 configured as described above, when a predetermined direct current (for example, 100 mA) is passed through the shape memory alloy member 2 by the energization circuit 7, the shape memory alloy member 2 is heated and contracts, and the moving body 3 It moves in the direction of arrow A against the urging force of the elastic member 4. When the energization to the shape memory alloy member 2 is stopped, the temperature decreases and the length of the shape memory alloy member 2 increases to the original length, so that the moving body 3 moves in the arrow B direction by the urging force of the elastic member 4.

図3は、本実施の形態に係る駆動装置に対する比較例であって、形状記憶合金部材101を直線状に配置した駆動装置100を示す平面図である。形状記憶合金部材101の一端は、固定壁104aに固定され、他端は移動体102の一方の側(図中右側)に固定されている。移動体102の他方の側(図中左側)は、弾性部材103の一端に固定され、弾性部材103の他端は固定壁104bに固定されている。弾性部材103の付勢力により、形状記憶合金部材101の長手方向に張力が生じ、弛むことなく直線状に配置されている。形状記憶合金部材101の加熱は、通電回路105による通電により行われる。通電回路105により形状記憶合金部材101に通電することにより、形状記憶合金部材101が収縮して移動体102が矢印Aで示す方向に移動し、通電を停止すると移動体102が矢印Bで示す方向に移動する。しかしながら、この駆動装置100では、形状記憶合金部材101を直線状に配置しているため、その長手方向における装置寸法を小さくすることが難しい。   FIG. 3 is a plan view showing a driving device 100 in which the shape memory alloy members 101 are linearly arranged as a comparative example to the driving device according to the present embodiment. One end of the shape memory alloy member 101 is fixed to the fixed wall 104a, and the other end is fixed to one side (right side in the figure) of the moving body 102. The other side (left side in the figure) of the moving body 102 is fixed to one end of the elastic member 103, and the other end of the elastic member 103 is fixed to the fixed wall 104b. Tension is generated in the longitudinal direction of the shape memory alloy member 101 by the urging force of the elastic member 103, and the shape memory alloy member 101 is linearly arranged without loosening. The shape memory alloy member 101 is heated by energization by the energization circuit 105. When the shape memory alloy member 101 is energized by the energization circuit 105, the shape memory alloy member 101 contracts and the moving body 102 moves in the direction indicated by the arrow A. When the energization is stopped, the moving body 102 moves in the direction indicated by the arrow B. Move to. However, in this drive device 100, since the shape memory alloy member 101 is linearly arranged, it is difficult to reduce the device size in the longitudinal direction.

図4は、本実施の形態に係る駆動装置に対する別の比較例であって、形状記憶合金部材101を、大径(例えば直径10mm)の円筒状の巻回部材106の周囲に約360度巻き付けた駆動装置110を示す図である。形状記憶合金部材101を巻回部材106に約360度巻き付けることにより、全長の長い形状記憶合金部材101を小さいスペースに収めることができる(すなわちスペース効率を向上する)ことができるが、図3に示した駆動装置100に比べて移動体102の変位量が小さくなる。   FIG. 4 shows another comparative example for the drive device according to the present embodiment, in which the shape memory alloy member 101 is wound around a cylindrical winding member 106 having a large diameter (for example, a diameter of 10 mm) by about 360 degrees. FIG. By winding the shape memory alloy member 101 around the winding member 106 by about 360 degrees, the shape memory alloy member 101 having a long overall length can be accommodated in a small space (that is, space efficiency is improved). The displacement amount of the moving body 102 becomes smaller than that of the driving device 100 shown.

これら比較例の駆動装置100,110に関する実験結果について説明する。図5に、形状記憶合金部材101を直線状に配置した場合(図3の駆動装置100に対応)についての実験方法を示す。線径約60μmで長さ50mmのワイヤ状の形状記憶合金部材101の両端にそれぞれ圧着端子120を取り付け、一方の圧着端子120を固定ピン121aに固定し、他方の圧着端子120を弾性部材103の一端に固定する。弾性部材103の他端は、固定ピン121bに固定する。形状記憶合金部材101と弾性部材103とを結合する圧着端子120の変位量を測定することにより、移動体102(図3)の変位量を評価する。なお、弾性部材103(引張りコイルバネ)は、形状記憶合金部材101の非通電状態では1mm伸びている。弾性部材103は、1mm伸びた状態で約49×10−3Nの張力を生じ、更に1mm伸びる(すなわち形状記憶合金部材2が1mm縮む)ことにより約98×10−3Nの張力を生じるものである。 Experimental results regarding the driving devices 100 and 110 of these comparative examples will be described. FIG. 5 shows an experimental method when the shape memory alloy member 101 is linearly arranged (corresponding to the driving device 100 of FIG. 3). Crimp terminals 120 are attached to both ends of a wire-shaped shape memory alloy member 101 having a wire diameter of about 60 μm and a length of 50 mm, one crimp terminal 120 is fixed to the fixing pin 121 a, and the other crimp terminal 120 is connected to the elastic member 103. Secure to one end. The other end of the elastic member 103 is fixed to the fixing pin 121b. The displacement amount of the moving body 102 (FIG. 3) is evaluated by measuring the displacement amount of the crimp terminal 120 that couples the shape memory alloy member 101 and the elastic member 103. The elastic member 103 (tensile coil spring) extends 1 mm when the shape memory alloy member 101 is not energized. The elastic member 103 generates a tension of about 49 × 10 −3 N when extended by 1 mm, and further generates a tension of about 98 × 10 −3 N by extending 1 mm (ie, the shape memory alloy member 2 contracts by 1 mm). It is.

また、図6(a)及び(b)に示すように、POM(ポリオキシメチレン)又はABS(アクリロニトリル−ブタジエン−スチレン樹脂)により形成した直径10mmの円筒状の巻回部材106にワイヤ状の形状記憶合金部材101を約180度巻き付けて同様の実験を行った。形状記憶合金部材101の巻回部材106から両方の圧着端子120までの長さCは17.1mmとした。また、図7(a)及び(b)に示すように、巻回部材106に形状記憶合金部材101を360度巻き付けて同様の実験を行った。形状記憶合金部材101の巻回部材106から両方の圧着端子120までの長さC1,C2はいずれも9.3mmとした。さらに、図8(a)及び(b)に示すように、巻回部材106に形状記憶合金部材101を450度巻き付けて同様の実験を行った。形状記憶合金部材101の巻回部材106から圧着端子120までの長さCは11mmとした。   Further, as shown in FIGS. 6A and 6B, a wire-like shape is formed on a cylindrical winding member 106 having a diameter of 10 mm formed of POM (polyoxymethylene) or ABS (acrylonitrile-butadiene-styrene resin). A similar experiment was conducted with the memory alloy member 101 wound about 180 degrees. The length C from the winding member 106 of the shape memory alloy member 101 to both the crimp terminals 120 was 17.1 mm. Further, as shown in FIGS. 7A and 7B, the same experiment was performed by winding the shape memory alloy member 101 around the winding member 106 by 360 degrees. The lengths C1 and C2 from the winding member 106 of the shape memory alloy member 101 to both the crimp terminals 120 were both 9.3 mm. Further, as shown in FIGS. 8A and 8B, the same experiment was performed by winding the shape memory alloy member 101 around the winding member 106 by 450 degrees. The length C from the winding member 106 of the shape memory alloy member 101 to the crimp terminal 120 was 11 mm.

実験の結果、図5に示すように形状記憶合金部材101を直線状に配置した場合には、形状記憶合金部材101の端部の変位量は1.6mmであった。これに対し、図6に示すように、直径10mmの巻回部材106に形状記憶合金部材101を約180度巻き付けた実験では、巻回部材106がPOM,ABSのいずれの場合も、変位量は約1.0mmであった。また、図7に示すように形状記憶合金部材101を約360度巻き付けた実験では、変位量は0.5mm(巻回部材106がPOMの場合)及び1.0mm(巻回部材106がABSの場合)であった。また、図8に示すように形状記憶合金部材101を約450度巻き付けた実験では、変位量は0.3mm(巻回部材106がPOMの場合)及び0.6mm(巻回部材106がABSの場合)であった。すなわち、形状記憶合金部材101を直線状に配置した場合(図5)と比較して、形状記憶合金部材101の変位量は、巻き付け角が180度のときには約62%、巻き付け角が360度のときには約35%(POM)及び約61%(ABS)、巻き付け角が450度のときには約20%(POM)及び約36%(ABS)に低下することが分かった。   As a result of the experiment, when the shape memory alloy member 101 was linearly arranged as shown in FIG. 5, the displacement amount of the end portion of the shape memory alloy member 101 was 1.6 mm. On the other hand, as shown in FIG. 6, in the experiment in which the shape memory alloy member 101 is wound about 180 degrees around the winding member 106 having a diameter of 10 mm, the displacement amount is the same regardless of whether the winding member 106 is POM or ABS. About 1.0 mm. Further, in the experiment in which the shape memory alloy member 101 is wound about 360 degrees as shown in FIG. 7, the displacement amount is 0.5 mm (when the winding member 106 is POM) and 1.0 mm (the winding member 106 is made of ABS). If). Further, in the experiment in which the shape memory alloy member 101 is wound about 450 degrees as shown in FIG. 8, the displacement amount is 0.3 mm (when the winding member 106 is POM) and 0.6 mm (the winding member 106 is made of ABS). If). That is, as compared with the case where the shape memory alloy member 101 is linearly arranged (FIG. 5), the displacement amount of the shape memory alloy member 101 is about 62% when the winding angle is 180 degrees and the winding angle is 360 degrees. It has been found that sometimes it is reduced to about 35% (POM) and about 61% (ABS), and to about 20% (POM) and about 36% (ABS) when the winding angle is 450 degrees.

次に、本実施の形態(図1及び図2)に係る駆動装置1に関する同様の実験結果について説明する。実験は、図5に示した実験方法と同様の方法で行った。屈曲部材5は、金属製の直径1mmのピン状部材であり、形状記憶合金部材2は、線径約60μmで長さ50mmのワイヤ状に形成されている。また、移動体3(圧着端子)からピン5までの形状記憶合金部材2の長さは、非通電時で11.8mmである。更に、弾性部材4は、通常時は1mm伸びた状態で約49×10−3Nの張力を生じ、更に1mm伸びる(すなわち形状記憶合金部材2が1mm縮む)ことにより約98×10−3Nの張力を生じるものとする。 Next, similar experimental results regarding the driving apparatus 1 according to the present embodiment (FIGS. 1 and 2) will be described. The experiment was performed in the same manner as the experiment method shown in FIG. The bending member 5 is a metal pin-shaped member having a diameter of 1 mm, and the shape memory alloy member 2 is formed in a wire shape having a wire diameter of about 60 μm and a length of 50 mm. The length of the shape memory alloy member 2 from the moving body 3 (crimp terminal) to the pin 5 is 11.8 mm when not energized. Further, the elastic member 4 normally generates a tension of about 49 × 10 −3 N in a state of being extended by 1 mm, and further extends by 1 mm (that is, the shape memory alloy member 2 is contracted by 1 mm), so that the elastic member 4 is about 98 × 10 −3 N. The tension of

本実施の形態に係る駆動装置1を用いた実験では、形状記憶合金部材2に100mAの直流電流を流し、形状記憶合金部材2を加熱して収縮させた時の端部の変位量は1.5mmであった。すなわち、形状記憶合金部材を直線状に配置した場合の変位量(1.6mm)に対して約94%の変位量が得られている。つまり、屈曲部材5(ここでは直径1mmの金属ピン)によってワイヤ状の形状記憶合金部材2を屈曲させることにより、形状記憶合金部材2を直線状に配置した場合の約94%の変位量を得ることができることが分かった。   In the experiment using the driving apparatus 1 according to the present embodiment, the displacement amount of the end when the shape memory alloy member 2 is heated and contracted by applying a 100 mA direct current to the shape memory alloy member 2 is 1. It was 5 mm. That is, a displacement amount of about 94% is obtained with respect to the displacement amount (1.6 mm) when the shape memory alloy members are arranged linearly. That is, by bending the wire-shaped shape memory alloy member 2 with the bending member 5 (here, a metal pin having a diameter of 1 mm), a displacement amount of about 94% when the shape memory alloy member 2 is arranged in a straight line is obtained. I found out that I could do it.

以上説明したように、本実施の形態による駆動装置1によれば、形状記憶合金部材2を屈曲部材5により屈曲させ、この形状記憶合金部材2の長手方向に張力が生ずるようにしたので、移動体3の変位量の低下を抑制しつつ、より小さいスペースに全長の長い形状記憶合金部材2を配置することが可能になる、すなわちスペース効率を向上することができる。   As described above, according to the driving device 1 according to the present embodiment, the shape memory alloy member 2 is bent by the bending member 5 and tension is generated in the longitudinal direction of the shape memory alloy member 2. The shape memory alloy member 2 having a long overall length can be disposed in a smaller space while suppressing a decrease in the displacement amount of the body 3, that is, space efficiency can be improved.

実施の形態2.
図9は、本発明の実施の形態2に係る駆動装置11を示す平面図である。この駆動装置11は、上述した実施の形態1の駆動装置1(図1、図2)に対し、屈曲部材12をさらに追加して形状記憶合金部材2を2箇所で屈曲させるようにし、及び基台13に2つの壁部13b,13cを設けた点で異なるものである。この駆動装置11において、実施の形態1の駆動装置1と共通する部分には、同符号を付す。
Embodiment 2. FIG.
FIG. 9 is a plan view showing the drive device 11 according to Embodiment 2 of the present invention. The drive device 11 is configured such that the shape memory alloy member 2 is bent at two locations by further adding a bending member 12 to the drive device 1 (FIGS. 1 and 2) of the first embodiment described above. The difference is that the base 13 is provided with two wall portions 13b and 13c. In this drive device 11, parts that are common to the drive device 1 of Embodiment 1 are given the same reference numerals.

この駆動装置11では、基台13の両側に壁部13b,13cが設けられている。基台13の載置面13a上には、上述した屈曲部材5に加え、この屈曲部材5の壁部13b側に、屈曲部材12が立設されている。形状記憶合金部材2は、一端(固定端)が壁部13cに固定され、屈曲部材5,12にそれぞれ巻き付け角が略180度になるように巻き付けられ、他端(可動端)が移動体3に取り付けられている。   In the drive device 11, wall portions 13 b and 13 c are provided on both sides of the base 13. On the mounting surface 13 a of the base 13, the bending member 12 is erected on the wall portion 13 b side of the bending member 5 in addition to the bending member 5 described above. The shape memory alloy member 2 has one end (fixed end) fixed to the wall portion 13c, wound around the bending members 5 and 12 so that the winding angle is approximately 180 degrees, and the other end (movable end) is the moving body 3. Is attached.

屈曲部材12は、屈曲部材5で屈曲され折り返された形状記憶合金部材2の対向部2a,2bが略平行になり、且つ移動体3の移動を妨げないような位置に配置されている。具体的な寸法例としては、対向部2a,2bの延在方向(移動体3の移動方向)において、移動体3と屈曲部材5との間隔C2が12.6mm、屈曲部材5,12の間隔C3が10mm、屈曲部12と壁部13cとの間隔C4が22.5mmとする。また、対向部2a,2bの延在方向に直交する方向における屈曲部材5,12の間隔C1は、5mmとする。   The bending member 12 is disposed at a position where the facing portions 2 a and 2 b of the shape memory alloy member 2 bent and turned back by the bending member 5 are substantially parallel and do not hinder the movement of the moving body 3. As a specific dimension example, in the extending direction of the facing portions 2a and 2b (moving direction of the moving body 3), the distance C2 between the moving body 3 and the bending member 5 is 12.6 mm, and the distance between the bending members 5 and 12 is C3 is 10 mm, and the distance C4 between the bent portion 12 and the wall portion 13c is 22.5 mm. The interval C1 between the bending members 5 and 12 in the direction orthogonal to the extending direction of the facing portions 2a and 2b is 5 mm.

ここで、2つの屈曲部材5,12は、形状記憶合金部材2を屈曲させる屈曲手段を構成している。屈曲部材5,12の外周面の形状記憶合金部材2に当接する部分は、屈曲手段において形状記憶合金部材2に当接する当接部を構成している。基台13は、屈曲部材5,12を保持する保持手段を構成している。   Here, the two bending members 5 and 12 constitute bending means for bending the shape memory alloy member 2. The portions of the outer peripheral surfaces of the bending members 5 and 12 that contact the shape memory alloy member 2 constitute contact portions that contact the shape memory alloy member 2 in the bending means. The base 13 constitutes holding means for holding the bending members 5 and 12.

以上の構成において、実施の形態1において図5を参照して説明した実験を行なう。この場合、金属性の直径1mmのピン状の屈曲部材5,12を用い、その他の測定条件は図5を参照して説明した条件と同じとする。通電回路7によって形状記憶合金部材2に100mAの直流電流を流し、形状記憶合金部材2を加熱して収縮させたときの移動体3の変位量は、約1.3mmであった。   In the above configuration, the experiment described with reference to FIG. 5 in the first embodiment is performed. In this case, metallic bending pins 5 and 12 having a diameter of 1 mm are used, and other measurement conditions are the same as those described with reference to FIG. The displacement amount of the moving body 3 when a current of 100 mA was applied to the shape memory alloy member 2 by the energization circuit 7 and the shape memory alloy member 2 was heated and contracted was about 1.3 mm.

すなわち、移動体3の変位量は、形状記憶合金部材2を直線状に配置した場合の変位量に対して約81%程度となり、スペース効率の向上に伴う変位量の低下が抑制されることが分かった。   That is, the displacement amount of the moving body 3 is about 81% with respect to the displacement amount when the shape memory alloy member 2 is linearly arranged, and the decrease in the displacement amount due to the improvement in space efficiency is suppressed. I understood.

以上説明したように、本実施の形態による駆動装置によれば、ピン状の2本の屈曲部材5,12により形状記憶合金部材2を2回屈曲させることにより、移動体3の変位量の低下を抑制しつつ、スペース効率を向上することができることができる。また、2本の屈曲部材5,12を用いているため、これらを例えば図9において両壁部13b,13cを更に近づけるように配置することも可能となり、スペース効率をさらに向上することができる。   As described above, according to the drive device according to the present embodiment, the displacement amount of the moving body 3 is reduced by bending the shape memory alloy member 2 twice by the two pin-shaped bending members 5 and 12. Space efficiency can be improved while suppressing the above. Further, since the two bending members 5 and 12 are used, it is possible to arrange them so that both the wall portions 13b and 13c are closer to each other in FIG. 9, for example, and the space efficiency can be further improved.

実施の形態3.
図10は、本発明の実施の形態3に係る駆動装置21を示す斜視図である。この駆動装置21は、実施の形態1の駆動装置1(図1、図2)に対し、屈曲部材の数を2つにし、各屈曲部材23,24に形状記憶合金部材22を屈曲させる部分(案内溝)を複数形成した点で異なるものである。この駆動装置21において、実施の形態1の駆動装置1と共通する部分には同符号を付す。
Embodiment 3 FIG.
FIG. 10 is a perspective view showing a drive device 21 according to Embodiment 3 of the present invention. The drive device 21 is a portion where the number of bending members is two compared to the drive device 1 (FIGS. 1 and 2) of the first embodiment and the shape memory alloy member 22 is bent by the bending members 23 and 24 ( This is different in that a plurality of guide grooves) are formed. In this drive device 21, the same reference numerals are given to portions common to the drive device 1 of the first embodiment.

この駆動装置21では、基台6上には、壁部6bに近い方から順に、2つの屈曲部材24,23が立設されている。屈曲部材23の外周面には、その軸方向に間隔を開けて4つの案内溝23aが形成されている。屈曲部材24の外周面には、その軸方向に間隔を開けて3つの案内溝24aが形成されている。形状記憶合金部材22の一端(固定端)は壁部6bに固定され、他端(可動端)は移動体3に取り付けられている。形状記憶合金部材22は、屈曲部材23の4つの案内溝23a及び屈曲部材24の3つの案内溝24aにそれぞれ巻き付け角が略180度となるように巻き付けられている。すなわち、2つの屈曲部材23,24は、形状記憶合金部材22に当接してこれを屈曲させる合計7箇所の当接部を有することになる。本実施の形態では、形状記憶合金部材22の短絡を避けるため、屈曲部材23,24は絶縁性材料等により形成されている。   In the driving device 21, two bending members 24 and 23 are erected on the base 6 in order from the side closer to the wall portion 6 b. Four guide grooves 23 a are formed on the outer peripheral surface of the bending member 23 at intervals in the axial direction. Three guide grooves 24 a are formed on the outer peripheral surface of the bending member 24 at intervals in the axial direction thereof. One end (fixed end) of the shape memory alloy member 22 is fixed to the wall portion 6 b, and the other end (movable end) is attached to the moving body 3. The shape memory alloy member 22 is wound around the four guide grooves 23a of the bending member 23 and the three guide grooves 24a of the bending member 24 so that the winding angle is about 180 degrees. That is, the two bending members 23 and 24 have a total of seven contact portions that contact the shape memory alloy member 22 and bend it. In the present embodiment, the bending members 23 and 24 are made of an insulating material or the like in order to avoid a short circuit of the shape memory alloy member 22.

ここで、2つの屈曲部材23,24は、形状記憶合金部材22を屈曲させる屈曲手段を構成している。各案内溝23a,24aの形状記憶合金部材22に当接する部分は、屈曲手段において形状記憶合金部材2に当接する当接部を構成している。基台6は、屈曲部材23,24を保持する保持手段を構成している。弾性部材4は、形状記憶合金部材22を付勢する付勢手段を構成している。   Here, the two bending members 23 and 24 constitute bending means for bending the shape memory alloy member 22. The portion of each guide groove 23a, 24a that contacts the shape memory alloy member 22 constitutes a contact portion that contacts the shape memory alloy member 2 in the bending means. The base 6 constitutes holding means for holding the bending members 23 and 24. The elastic member 4 constitutes a biasing means that biases the shape memory alloy member 22.

以上の構成において、実施の形態1の場合と同様に、通電回路7によって形状記憶合金部材22に所定の直流電流(例えば100mA)を流し、形状記憶合金部材22を加熱して収縮させることにより、移動体3を変位させることができる。   In the above configuration, as in the case of the first embodiment, by passing a predetermined direct current (for example, 100 mA) to the shape memory alloy member 22 by the energization circuit 7 and heating the shape memory alloy member 22 to contract, The moving body 3 can be displaced.

以上説明したように、本実施の形態に係る駆動装置21によれば、より長い形状記憶合金部材22を効率よく配置することができるため、移動体3の変位量の低下を抑制しつつ、スペース効率をさらに向上することができる。   As described above, according to the driving device 21 according to the present embodiment, the longer shape memory alloy member 22 can be efficiently arranged, so that the space 3 can be reduced while suppressing the decrease in the displacement amount of the moving body 3. Efficiency can be further improved.

また、各屈曲部材23,24に案内溝23a,24aを設けることにより、形状記憶合金部材22の張り回しが容易になり、且つ、形状記憶合金部材22の巻き付け位置のずれを防止することができ、また形状記憶合金部材22に通電する際の短絡を防止することができる。   Further, by providing the guide grooves 23a and 24a in the bending members 23 and 24, the shape memory alloy member 22 can be easily wound and the winding position of the shape memory alloy member 22 can be prevented from being shifted. Moreover, it is possible to prevent a short circuit when the shape memory alloy member 22 is energized.

実施の形態4.
図11は、本発明の実施の形態4に係る駆動装置31を示す斜視図である。この駆動装置31は、実施の形態1の駆動装置1(図1,2)に対し、4つのピン状の屈曲部材33,34,35,36を有している点で異なるものである。駆動装置31において、実施の形態1の駆動装置1と共通する部分には同符号を付す。
Embodiment 4 FIG.
FIG. 11 is a perspective view showing a drive device 31 according to Embodiment 4 of the present invention. This drive device 31 is different from the drive device 1 (FIGS. 1 and 2) of the first embodiment in that it has four pin-shaped bending members 33, 34, 35, and 36. In the driving device 31, the same reference numerals are given to portions common to the driving device 1 of the first embodiment.

この駆動装置31では、基台6の載置面6aには、四角形の4隅に相当する位置に4つのピン状の屈曲部材33〜36が立設されている。形状記憶合金部材32は、その一端(固定端)が壁部6bに固定され、4つの屈曲部材33〜36に、それぞれの巻き付け角が90度となるように約2周半に亘って巻き付けられ、他端(可動端)が移動体3に取り付けられている。すなわち、形状記憶合金部材32は、屈曲部材34,35については、軸方向に離れた3箇所にそれぞれ巻き付けられ、屈曲33,36については、軸方向に離れた2箇所にそれぞれ巻き付けられている。すなわち、4つの屈曲部材33〜36は、形状記憶合金部材32に当接してこれを屈曲させる合計10箇所の当接部を有していることになる。尚、本実施の形態では、形状記憶合金部材32の短絡を避けるため、屈曲部材33〜36に例えば絶縁材料で構成されている。また、屈曲部材33,36に、実施の形態3で説明したような案内溝(図10の案内溝23a,24a)を設けてもよい。   In this driving device 31, four pin-shaped bending members 33 to 36 are erected on the mounting surface 6 a of the base 6 at positions corresponding to the four corners of a quadrangle. One end (fixed end) of the shape memory alloy member 32 is fixed to the wall portion 6b, and is wound around the four bending members 33 to 36 over about two and a half rounds so that the winding angle is 90 degrees. The other end (movable end) is attached to the movable body 3. In other words, the shape memory alloy member 32 is wound around the bending members 34 and 35 at three locations separated in the axial direction, and the bending memories 33 and 36 are wound at two locations separated in the axial direction. That is, the four bending members 33 to 36 have a total of 10 contact portions that contact the shape memory alloy member 32 and bend it. In the present embodiment, the bending members 33 to 36 are made of, for example, an insulating material in order to avoid a short circuit of the shape memory alloy member 32. In addition, the bending members 33 and 36 may be provided with guide grooves (guide grooves 23a and 24a in FIG. 10) as described in the third embodiment.

ここで、4つの屈曲部材33〜36は、形状記憶合金部材32を屈曲させるための屈曲手段を構成している。屈曲部材33〜36の形状記憶合金部材32に当接する部分は、屈曲手段において形状記憶合金部材32に当接する当接部を構成している。基台6は、屈曲部材33〜36を保持する保持手段を構成している。   Here, the four bending members 33 to 36 constitute bending means for bending the shape memory alloy member 32. The portions of the bending members 33 to 36 that contact the shape memory alloy member 32 constitute contact portions that contact the shape memory alloy member 32 in the bending means. The base 6 constitutes holding means for holding the bending members 33 to 36.

以上の構成において、実施の形態1の場合と同様に、通電回路7によって形状記憶合金部材32に所定の直流電流(例えば100mA)を流し、形状記憶合金部材32を加熱して収縮させることにより、移動体3を変位させることができる。   In the above configuration, as in the case of the first embodiment, a predetermined direct current (for example, 100 mA) is passed through the shape memory alloy member 32 by the energization circuit 7 and the shape memory alloy member 32 is heated and contracted. The moving body 3 can be displaced.

尚、ここでは、屈曲部材33,36が四角形の頂点に位置するよう配置されているが、形状記憶合金部材32に当接する当接部が閉路に沿って配列されていれば、屈曲部材の個数及び配置は適宜変更することができる。また、この例では4つの屈曲部材33〜36が合計10箇所の当接部を有するように形成したが、これについても適宜変更することができる。   Here, the bending members 33 and 36 are arranged so as to be positioned at the vertices of the quadrangle, but if the contact portions that contact the shape memory alloy member 32 are arranged along the closed path, the number of the bending members And arrangement | positioning can be changed suitably. Further, in this example, the four bending members 33 to 36 are formed so as to have a total of 10 contact portions, but this can be changed as appropriate.

以上説明したように、本実施の形態の駆動装置31によれば、より長い形状記憶合金材32を小さいスペースに効率よく配置することができるため、移動体3の変位量の低下を抑制しつつ、スペース効率を向上することができる。   As described above, according to the driving device 31 of the present embodiment, since the longer shape memory alloy material 32 can be efficiently arranged in a small space, a decrease in the displacement amount of the moving body 3 is suppressed. , Space efficiency can be improved.

実施の形態5.
図12は、本発明の実施の形態5に係る駆動装置41を示す平面図である。この駆動装置41は、実施の形態1の駆動装置1(図1、図2)に対し、筐体44の角部から突出する突出部44a,44bに形状記憶合金部材42をそれぞれ巻き付け角が90度となるように巻き付けている点で異なるものである。駆動装置41において、実施の形態1の駆動装置1と共通する部分には同符号を付す。
Embodiment 5 FIG.
FIG. 12 is a plan view showing a drive device 41 according to Embodiment 5 of the present invention. In the drive device 41, the shape memory alloy member 42 is wound around the projecting portions 44a and 44b projecting from the corner portions of the housing 44, respectively, with respect to the drive device 1 (FIGS. 1 and 2) of the first embodiment. It is different in that it is wound to a degree. In the driving device 41, the same reference numerals are given to the portions common to the driving device 1 of the first embodiment.

駆動装置41では、基台43の載置面43aには、例えば直方体形状の筐体44が設けられている。この筐体44の壁部43bから遠い側の2つの角部には、突出部44a,44bが突出形成されている。これら突出部44a,44bは、互いに略直交する方向に突出しており、形状記憶合金部材42が巻き付けられる当接面(例えば円筒面)を有している。形状記憶合金部材42は、突出部44a,44bの各当接面に、巻き付け角(屈曲角に相当)がそれぞれ90度となるように巻き付けられるようになっている。   In the drive device 41, for example, a rectangular parallelepiped housing 44 is provided on the mounting surface 43 a of the base 43. Protrusions 44 a and 44 b are formed to project at two corners far from the wall 43 b of the housing 44. These projecting portions 44a and 44b project in directions substantially orthogonal to each other, and have contact surfaces (for example, cylindrical surfaces) around which the shape memory alloy member 42 is wound. The shape memory alloy member 42 is wound around the contact surfaces of the protrusions 44a and 44b so that the winding angle (corresponding to a bending angle) is 90 degrees.

形状記憶合金部材42は、一端(固定端)が基台43の壁部43bに固定され、突出部44a,44bにそれぞれ巻き付け角が90度となるように巻き付けられると共に、他端(可動端)が移動体3に取り付けられている。   The shape memory alloy member 42 has one end (fixed end) fixed to the wall 43b of the base 43, and is wound around the protrusions 44a and 44b so that the winding angle is 90 degrees, and the other end (movable end). Is attached to the moving body 3.

ここで、2つの突出部44a,44bを有する筐体(構造体)44は、形状記憶合金部材42を屈曲させる屈曲手段を構成している。各突出部44a,44bの形状記憶合金部材42に当接する部分は、屈曲手段において形状記憶合金部材42に当接する当接部を構成している。基台43は、屈曲突部44a,44bを有する筐体44を保持する保持手段を構成している。   Here, the housing (structure) 44 having the two protrusions 44 a and 44 b constitutes a bending means for bending the shape memory alloy member 42. The portions of the protrusions 44a and 44b that contact the shape memory alloy member 42 constitute contact portions that contact the shape memory alloy member 42 in the bending means. The base 43 constitutes a holding means for holding the housing 44 having the bent protrusions 44a and 44b.

以上の構成において、実施の形態1の場合と同様に、通電回路7によって形状記憶合金部材42に所定の直流電流(例えば100mA)を流し、形状記憶合金部材42を加熱して収縮させることにより、移動体3を変位させることができる。   In the above configuration, as in the case of the first embodiment, by passing a predetermined direct current (for example, 100 mA) to the shape memory alloy member 42 by the energization circuit 7 and heating the shape memory alloy member 42 to contract, The moving body 3 can be displaced.

尚、本実施の形態では、筐体44の角部に突出部44a,44bを突出形成したが、これに限定されるものではなく、筐体44において設計上適切な部分に形成することができる。また、本実施の形態では、弾性部材4の一端及び形状記憶合金部材42の一端(固定端)を基台43の壁部43bに固定したが、これに限定されるものではなく、筐体44に固定してもよい。さらに、形状記憶合金部材42の巻き付け角も、90度に限定されるものではない。   In the present embodiment, the protrusions 44a and 44b are formed to protrude at the corners of the housing 44. However, the present invention is not limited to this, and the housing 44 can be formed at an appropriate design part. . In the present embodiment, one end of the elastic member 4 and one end (fixed end) of the shape memory alloy member 42 are fixed to the wall 43b of the base 43. However, the present invention is not limited to this. It may be fixed to. Further, the winding angle of the shape memory alloy member 42 is not limited to 90 degrees.

また、突出部44a,44bには、実施の形態3で説明したような案内溝23a,24a(図10)を形成しても良い。あるいは、図13に示すように、形状記憶合金部材42を巻き付ける位置に段差44cを設けることにより、形状記憶合金部材42の巻き付けを容易にすることもできる。   Further, the guide grooves 23a and 24a (FIG. 10) as described in the third embodiment may be formed in the protrusions 44a and 44b. Alternatively, as shown in FIG. 13, the shape memory alloy member 42 can be easily wound by providing a step 44 c at a position where the shape memory alloy member 42 is wound.

以上説明したように、本実施の形態の駆動装置41によれば、形状記憶合金部材42が一対の突出部44a,44bにより2回屈曲(各90度)されるため、より長い形状記憶合金材42を効率よく配置することができ、また、駆動装置41の一部をなす筐体44を利用することができるため、スペース効率をさらに向上することができる。   As described above, according to the drive device 41 of the present embodiment, since the shape memory alloy member 42 is bent twice (90 degrees each) by the pair of protrusions 44a and 44b, a longer shape memory alloy material is used. 42 can be efficiently arranged, and since the housing 44 that forms a part of the drive device 41 can be used, the space efficiency can be further improved.

実施の形態6.
図14は、本発明の実施の形態6に係る駆動装置51を示す斜視図である。この駆動装置51は、実施の形態2の駆動装置11(図9)に対し、外周面に凸部を有する屈曲部材54を設けた点で異なるものである。駆動装置51において、実施の形態2の駆動装置11と共通する部分には同符号を付す。
Embodiment 6 FIG.
FIG. 14 is a perspective view showing a drive device 51 according to Embodiment 6 of the present invention. This driving device 51 is different from the driving device 11 (FIG. 9) of the second embodiment in that a bending member 54 having a convex portion on the outer peripheral surface is provided. In the driving device 51, the same reference numerals are given to portions common to the driving device 11 of the second embodiment.

図14に示すように、基台の載置面13aには、外周面に微小な凸部を有する略円筒状の屈曲部材54が設けられている。屈曲部材54の微小な凸部は、形状記憶合金部材2に当接する当接部54aとなる。屈曲部材54の当接部54aは、屈曲部材54の軸方向に長く、円周方向に多数配列されている。   As shown in FIG. 14, the mounting surface 13a of the base is provided with a substantially cylindrical bending member 54 having minute convex portions on the outer peripheral surface. The minute convex portion of the bending member 54 becomes an abutting portion 54 a that abuts on the shape memory alloy member 2. The contact portions 54a of the bending member 54 are long in the axial direction of the bending member 54 and are arranged in a large number in the circumferential direction.

形状記憶合金部材2は、その一端(固定端)が壁部13cに固定され、屈曲部材54を一周するように、すなわち各当接部54aでの巻き付け角の合計が360度となるように巻き付けられ、他端(可動端)が移動体3の一方の側に固定されている。移動体3の他方の側には、弾性部材4の一端が固定され、弾性部材4の他端は壁部13bに固定されている。   The shape memory alloy member 2 is wound so that one end (fixed end) thereof is fixed to the wall portion 13c and goes around the bending member 54, that is, the total winding angle at each contact portion 54a is 360 degrees. The other end (movable end) is fixed to one side of the moving body 3. One end of the elastic member 4 is fixed to the other side of the moving body 3, and the other end of the elastic member 4 is fixed to the wall portion 13b.

ここで、屈曲部材54は、形状記憶合金部材2を屈曲させる屈曲手段を構成している。
当接部54aは、屈曲手段において形状記憶合金部材2に当接する当接部(凸部)を構成している。基台13は、屈曲部材54を保持する保持手段を構成している。
Here, the bending member 54 constitutes a bending means for bending the shape memory alloy member 2.
The contact portion 54a constitutes a contact portion (convex portion) that contacts the shape memory alloy member 2 in the bending means. The base 13 constitutes a holding means for holding the bending member 54.

以上の構成において、実施の形態1の場合と同様に、通電回路7によって形状記憶合金部材2に所定の直流電流(例えば100mA)を流し、形状記憶合金部材2を加熱して収縮させることにより、移動体3を変位させることができる。   In the above configuration, as in the case of the first embodiment, by passing a predetermined direct current (for example, 100 mA) to the shape memory alloy member 2 by the energization circuit 7 and heating and contracting the shape memory alloy member 2, The moving body 3 can be displaced.

次に、本実施の形態に係る駆動装置51についての実験について説明する。ここでは、前記した図5〜図8で示した実験と同様に、圧着端子120と固定ピン121を用い、図15乃至図17に示すように配置する。   Next, an experiment on the driving device 51 according to the present embodiment will be described. Here, similarly to the experiments shown in FIGS. 5 to 8 described above, the crimp terminals 120 and the fixing pins 121 are used and arranged as shown in FIGS. 15 to 17.

まず、図15(a)及び(b)に示すように、POM又はABSにより形成した直径10mmの円筒状の屈曲部材54(当接部54aを有する)にワイヤ状の形状記憶合金部材2を約180度巻き付ける。形状記憶合金部材2の一端の圧着端子120は固定ピン121に固定し、他端の圧着端子120は弾性部材4を介して別の固定ピン121に取り付ける。形状記憶合金部材2の屈曲部材54から両端の圧着端子120までの長さCは17.1mmとする。また、図16(a)及び(b)に示すように、屈曲部材54に形状記憶合金部材2を360度巻き付けて同様に実験を行う。形状記憶合金部材2の屈曲部材54から両端の圧着端子120までの長さC1,C2はいずれも9.3mmとする。さらに、図17(a)及び(b)に示すように、屈曲部材54に形状記憶合金部材2を450度巻き付けて同様に実験を行う。形状記憶合金部材2の屈曲部材54から圧着端子120までの長さCは11mmとする。   First, as shown in FIGS. 15A and 15B, a wire-shaped shape memory alloy member 2 is approximately placed on a cylindrical bending member 54 (having a contact portion 54a) having a diameter of 10 mm formed by POM or ABS. Wrap 180 degrees. The crimp terminal 120 at one end of the shape memory alloy member 2 is fixed to the fixing pin 121, and the crimp terminal 120 at the other end is attached to another fixing pin 121 through the elastic member 4. The length C from the bending member 54 of the shape memory alloy member 2 to the crimp terminals 120 at both ends is 17.1 mm. Further, as shown in FIGS. 16A and 16B, the experiment is similarly performed by winding the shape memory alloy member 2 360 degrees around the bending member 54. The lengths C1 and C2 from the bending member 54 of the shape memory alloy member 2 to the crimp terminals 120 at both ends are both set to 9.3 mm. Further, as shown in FIGS. 17A and 17B, the shape memory alloy member 2 is wound 450 degrees around the bending member 54 and the experiment is similarly performed. The length C from the bending member 54 to the crimp terminal 120 of the shape memory alloy member 2 is 11 mm.

図18(a)は、各実験で使用する屈曲部材54の概略形状を示す斜視図であり、図18(b)〜(d)は、各実験で使用する3種類の形状の屈曲部材54を示す平面図である。屈曲部材54は、直径Dが10mmの略円筒状の部材であって、その周面に1.56mmのピッチ(P)で20本の当接部54aを形成したものである。各当接部54aは、断面が半径5mmの円弧状である。当接部54aの幅W1は、それぞれ、1.05mm(図18(b))、0.78mm(図18(c))及び0.52mm(図18(d))とする。また、隣り合う当接部54aの間の溝幅W2は、それぞれ、0.52mm(図18(b))、0.78mm(図18(c))及び1.05mm(図18(d))とする。
他の測定条件については実施の形態1の場合と同様とし、通電回路7によって形状記憶合金部材2に100mAの直流電流を流し、形状記憶合金部材2を加熱して収縮させたときの可動端の変位量を測定する。測定結果を、表1及び表2に示す。表1は、ABSからなる屈曲部材54を用いた場合であり、表2は、POMからなる屈曲部材54を用いた場合である。
FIG. 18A is a perspective view showing a schematic shape of the bending member 54 used in each experiment, and FIGS. 18B to 18D show three types of bending members 54 used in each experiment. FIG. The bending member 54 is a substantially cylindrical member having a diameter D of 10 mm, and 20 contact portions 54a are formed on the peripheral surface thereof at a pitch (P) of 1.56 mm. Each contact portion 54a has an arc shape having a radius of 5 mm in cross section. The width W1 of the contact portion 54a is 1.05 mm (FIG. 18B), 0.78 mm (FIG. 18C), and 0.52 mm (FIG. 18D), respectively. Further, the groove width W2 between the adjacent contact portions 54a is 0.52 mm (FIG. 18B), 0.78 mm (FIG. 18C), and 1.05 mm (FIG. 18D), respectively. And
The other measurement conditions are the same as those in the first embodiment, and a 100 mA direct current is passed through the shape memory alloy member 2 by the energization circuit 7 to heat and contract the shape memory alloy member 2 to move the movable end. Measure the displacement. The measurement results are shown in Tables 1 and 2. Table 1 shows a case where a bending member 54 made of ABS is used, and Table 2 shows a case where a bending member 54 made of POM is used.

Figure 2005337262
Figure 2005337262

Figure 2005337262
Figure 2005337262

図19は、屈曲部材54としてABSを使用した場合の実験結果を示すグラフであり、表1に対応している。図20は、屈曲部材54としてPOMを使用した場合の実験結果を示すグラフであり、表2に対応している。図19及び図20において、縦軸は、測定された移動体3の変位量の、形状記憶合金部材2を直線状に配置した場合の変位量に対する割合、すなわち変位比率H(%)を示す。横軸は、当接部54aの配設ピッチP(1.56mm)に対する当接部54aの幅W1の比率、すなわち接触比率S(%)である。例えば当接部54aの幅W1が0.52mm(図18(d))の場合は、接触比率Sは100×0.52mm/1.56mm=33%となる。また、図19及び図20において、符号a,b,cは、それぞれ形状記憶合金部材2の屈曲部材54に対する巻き付け角が450度、360度及び180度のときのデータを示している。   FIG. 19 is a graph showing experimental results when ABS is used as the bending member 54, and corresponds to Table 1. FIG. 20 is a graph showing experimental results when POM is used as the bending member 54, and corresponds to Table 2. 19 and 20, the vertical axis represents the ratio of the measured displacement amount of the moving body 3 to the displacement amount when the shape memory alloy member 2 is linearly arranged, that is, the displacement ratio H (%). The horizontal axis represents the ratio of the width W1 of the contact portion 54a to the arrangement pitch P (1.56 mm) of the contact portion 54a, that is, the contact ratio S (%). For example, when the width W1 of the contact portion 54a is 0.52 mm (FIG. 18D), the contact ratio S is 100 × 0.52 mm / 1.56 mm = 33%. Further, in FIGS. 19 and 20, symbols a, b, and c indicate data when the winding angle of the shape memory alloy member 2 around the bending member 54 is 450 degrees, 360 degrees, and 180 degrees, respectively.

図19及び図20(表1及び表2)より、移動体3の変位比率Hは、当接部54aの幅W1が小さくなるほど100%(すなわち形状記憶合金部材2を直線状に配置した場合の変位量)に近づく。また、当接部54aの幅W1が小さくなるほど、巻き付け角の違いや屈曲部材54の材料の違い(ABSかPOMか)による変位量の差が少なくなる。特に、当接部54aの幅W1が配設ピッチPの3分の1(接触比率Sが約35%)になると、変位比率Hがより100%に近づき、さらに、巻き付け角の違いや屈曲部材54の材料の違い(ABSかPOMか)による変位量の差が殆どなくなる。上述した図6〜図8の構成では、巻回部材106の材料の違いや、形状記憶合金部材2の巻き付け角の違いにより、移動体3の変位量が大きく変化したのに対し、本実施の形態では、形状記憶合金部材2の巻き付け角の違いや屈曲部材54の材料の違いによる変位量のばらつきを抑制することができる。従って、スペース効率を向上すると共に、駆動装置の構成を簡単にすることが可能となり、製造時の作業効率を改善することができる。   19 and 20 (Tables 1 and 2), the displacement ratio H of the moving body 3 is 100% as the width W1 of the contact portion 54a is reduced (that is, when the shape memory alloy member 2 is linearly arranged). (Displacement amount). Further, the smaller the width W1 of the contact portion 54a, the smaller the difference in displacement due to the difference in winding angle and the material of the bending member 54 (ABS or POM). In particular, when the width W1 of the contact portion 54a is one third of the arrangement pitch P (contact ratio S is about 35%), the displacement ratio H approaches 100%, and further, the difference in winding angle and the bending member The difference in displacement due to the difference in material (ABS or POM) is almost eliminated. In the configuration of FIGS. 6 to 8 described above, the displacement amount of the moving body 3 has changed greatly due to the difference in the material of the winding member 106 and the difference in the winding angle of the shape memory alloy member 2. In the embodiment, it is possible to suppress variation in displacement due to a difference in winding angle of the shape memory alloy member 2 and a difference in material of the bending member 54. Therefore, it is possible to improve the space efficiency and simplify the configuration of the driving device, thereby improving the working efficiency during the manufacturing.

尚、本実施の形態では、当接部54aを、図21(a)に示すような当接部材54の略円形の外周に沿って形成したが、これに限定されるものではなく、例えば、図21(b)及び(c)に示すように、丸みを帯びた略三角形状や楕円形状の外周など、閉路(閉じた図形の外周)に沿って形成されたものであればよい。   In the present embodiment, the contact portion 54a is formed along the substantially circular outer periphery of the contact member 54 as shown in FIG. 21A. However, the present invention is not limited to this. For example, As shown in FIGS. 21B and 21C, it may be formed along a closed path (the outer periphery of a closed figure) such as a rounded substantially triangular shape or an elliptical outer periphery.

実施の形態7.
図22は、本発明の実施の形態7に係る駆動装置61を示す平面図である。この駆動装置61は、実施の形態1の駆動装置1(図1)に対し、形状記憶合金部材62がコイルバネ状に形成されている点において異なるものである。駆動装置61において、実施の形態1の駆動装置1と共通する部分には同符号を付す。
Embodiment 7 FIG.
FIG. 22 is a plan view showing a drive device 61 according to Embodiment 7 of the present invention. This drive device 61 is different from the drive device 1 of the first embodiment (FIG. 1) in that the shape memory alloy member 62 is formed in a coil spring shape. In the driving device 61, the same reference numerals are given to the portions common to the driving device 1 of the first embodiment.

図22に示すように、形状記憶合金部材62は、コイルバネ状に形成されており、基台6の載置面6aに立設されたピン状の屈曲部材63に、巻き付け角が180度となるように巻き付けられている。形状記憶合金部材62の一端は壁部6bに固定されており、他端は移動体3に取り付けられている。   As shown in FIG. 22, the shape memory alloy member 62 is formed in a coil spring shape, and the winding angle is 180 degrees around the pin-shaped bending member 63 erected on the mounting surface 6 a of the base 6. It is wound like so. One end of the shape memory alloy member 62 is fixed to the wall portion 6 b and the other end is attached to the moving body 3.

ここで、ピン状の屈曲部材63は、形状記憶合金部材62を屈曲させる屈曲手段を構成している。屈曲部材63の周面の形状記憶合金部材62に当接する部分は、屈曲手段において形状記憶合金部材62に当接する当接部を構成している。基台6は、屈曲部材63を保持する保持手段を構成している。   Here, the pin-shaped bending member 63 constitutes a bending means for bending the shape memory alloy member 62. The portion of the peripheral surface of the bending member 63 that contacts the shape memory alloy member 62 constitutes a contact portion that contacts the shape memory alloy member 62 in the bending means. The base 6 constitutes a holding means for holding the bending member 63.

以上の構成において、前記した実施の形態1の場合と同様に、通電回路7によって形状記憶合金部材62に所定の直流電流(例えば100mA)を流し、形状記憶合金部材62を加熱して収縮させることにより、移動体3を変位させることができる。このとき、形状記憶合金部材62がコイルバネ状であるため、形状記憶合金部材62の伸縮量が大きくなり、その結果、移動体3の変位量を大幅に増加させることができる。   In the above configuration, as in the case of the first embodiment, a predetermined direct current (for example, 100 mA) is passed through the shape memory alloy member 62 by the energizing circuit 7 and the shape memory alloy member 62 is heated and contracted. Thus, the moving body 3 can be displaced. At this time, since the shape memory alloy member 62 has a coil spring shape, the amount of expansion / contraction of the shape memory alloy member 62 is increased, and as a result, the displacement amount of the movable body 3 can be significantly increased.

尚、本実施の形態では、屈曲部材63をピン状としているが、特にピン状に限定されるものではなく、コイルバネ状の形状記憶合金部材62に対して設計上適した屈曲部材63の形状を選択することができる。   In this embodiment, the bending member 63 has a pin shape. However, the bending member 63 is not particularly limited to the pin shape, and the shape of the bending member 63 suitable for design with respect to the coil spring-like shape memory alloy member 62 is used. You can choose.

以上のように、本実施の形態に係る駆動装置61によれば、形状記憶合金部材62をコイルバネ状に形成しているため、形状記憶合金部材62の伸縮量が大きくなり、移動体3の変位量を大幅に増加させることができる。従って、スペース効率をさらに向上し、駆動装置61の小型化を実現することができる。   As described above, according to the driving device 61 according to the present embodiment, since the shape memory alloy member 62 is formed in a coil spring shape, the amount of expansion and contraction of the shape memory alloy member 62 is increased, and the displacement of the moving body 3 is increased. The amount can be increased significantly. Therefore, the space efficiency can be further improved, and the drive device 61 can be downsized.

実施の形態8.
図23は、本発明の実施の形態8に係る駆動装置71を示す斜視図である。この駆動装置71は、実施の形態1の駆動装置1(図1、図2)に対し、帯状の形状記憶合金部材72を用いた点で異なるものである。駆動装置71において、実施の形態1の駆動装置1と共通する部分には同符号を付す。
Embodiment 8 FIG.
FIG. 23 is a perspective view showing a drive device 71 according to Embodiment 8 of the present invention. This drive device 71 is different from the drive device 1 of the first embodiment (FIGS. 1 and 2) in that a band-shaped shape memory alloy member 72 is used. In the driving device 71, the same reference numerals are given to portions common to the driving device 1 of the first embodiment.

駆動装置71では、形状記憶合金部材72は、ワイヤ状ではなく帯状に形成されており、基台6上に立設されたピン状の屈曲部材5に、巻き付け角が180度となるように巻き付けられている。形状記憶合金部材72の一端は壁部6bに固定され、他端は移動体3に取り付けられている。   In the driving device 71, the shape memory alloy member 72 is formed in a band shape instead of a wire shape, and is wound around the pin-shaped bending member 5 standing on the base 6 so that the winding angle is 180 degrees. It has been. One end of the shape memory alloy member 72 is fixed to the wall 6 b and the other end is attached to the moving body 3.

ここで、ピン状の屈曲部材5は、形状記憶合金部材72を屈曲させる屈曲手段を構成している。屈曲部材5の外周面の形状記憶合金部材72に当接する部分は、屈曲手段において形状記憶合金部材72に当接する当接部を構成している。基台6は、屈曲部材5を保持する保持手段を構成している。   Here, the pin-shaped bending member 5 constitutes a bending means for bending the shape memory alloy member 72. The portion of the outer peripheral surface of the bending member 5 that contacts the shape memory alloy member 72 constitutes a contact portion that contacts the shape memory alloy member 72 in the bending means. The base 6 constitutes a holding means for holding the bending member 5.

以上の構成において、通電回路7によって形状記憶合金部材72に所定の直流電流(例えば100mA)を流し、形状記憶合金部材72を加熱して収縮させることにより、移動体3を変位させることができる。   In the above configuration, the movable body 3 can be displaced by causing a predetermined direct current (for example, 100 mA) to flow through the shape memory alloy member 72 by the energizing circuit 7 and heating the shape memory alloy member 72 to contract.

尚、本実施の形態では、屈曲部材5をピン状としているが、特にピン状に限定されるものではなく、帯状の形状記憶合金部材72に対して設計上適した屈曲部材5の形状を選択することができる。   In this embodiment, the bending member 5 has a pin shape. However, the bending member 5 is not particularly limited to a pin shape, and the shape of the bending member 5 that is suitable for design with respect to the band-shaped shape memory alloy member 72 is selected. can do.

以上のように、本実施の形態に係る駆動装置71によれば、スペース効率を向上することができるという実施の形態1と同様の効果に加え、形状記憶合金部材72を帯状に形成しているため、より大きな力を発生することが可能になり、移動体3を大きな力で移動させることが可能になる。   As described above, according to the driving device 71 according to the present embodiment, the shape memory alloy member 72 is formed in a band shape in addition to the same effect as that of the first embodiment that the space efficiency can be improved. Therefore, it becomes possible to generate a greater force, and the moving body 3 can be moved with a greater force.

実施の形態9.
図24(a)及び(b)は、本発明の実施の形態9に係る駆動装置81を示す正面図及び側面図である。図24(a)及び(b)に示すように、基台83は、相対する一対の固定壁83a,83bを有している。形状記憶合金部材2の両端部は、一方の固定壁83aに固定されている。形状記憶合金部材2の中央部分は、略円筒状の屈曲部材84に、巻き付け角が約900度となるように複数回(2.5周)巻き付けられている。この屈曲部材84は、周面に複数の当接部54aを有する上述した屈曲部材54(図14)に回転軸84aを設けたものであり、この回転軸84aの両端部は、保持枠85によって回転自在に保持されている。保持枠85の連結部85aの中心部と基台83の固定壁83bと間には、弾性部材4が張架されており、形状記憶合金部材2が弛まない状態に保たれている。以上の構成によって、形状記憶合金部材2は弛むことなく、また屈曲部材84は安定して位置決めされる。
Embodiment 9 FIG.
24 (a) and 24 (b) are a front view and a side view showing a drive device 81 according to Embodiment 9 of the present invention. As shown in FIGS. 24A and 24B, the base 83 has a pair of opposing fixed walls 83a and 83b. Both end portions of the shape memory alloy member 2 are fixed to one fixed wall 83a. The central portion of the shape memory alloy member 2 is wound around the substantially cylindrical bending member 84 a plurality of times (2.5 rounds) so that the winding angle is about 900 degrees. This bending member 84 is obtained by providing a rotating shaft 84a on the above-described bending member 54 (FIG. 14) having a plurality of contact portions 54a on the peripheral surface, and both ends of the rotating shaft 84a are held by holding frames 85. It is held rotatably. The elastic member 4 is stretched between the central portion of the connecting portion 85a of the holding frame 85 and the fixed wall 83b of the base 83, and the shape memory alloy member 2 is maintained in a state in which it does not loosen. With the above configuration, the shape memory alloy member 2 is not loosened, and the bending member 84 is stably positioned.

ここで、屈曲部材84は、形状記憶合金部材2を屈曲させる屈曲手段を構成している。
屈曲部材84の周面の形状記憶合金部材2に当接する部分は、屈曲手段において形状記憶合金部材2に当接する当接部を構成している。基台83は、屈曲部材84を保持する保持手段を構成している。
Here, the bending member 84 constitutes a bending means for bending the shape memory alloy member 2.
The portion of the peripheral surface of the bending member 84 that contacts the shape memory alloy member 2 constitutes a contact portion that contacts the shape memory alloy member 2 in the bending means. The base 83 constitutes holding means for holding the bending member 84.

以上の構成において、通電回路7から形状記憶合金部材2に通電すると、形状記憶合金部材2が加熱されて収縮し、弾性部材4の付勢力に抗して屈曲部材84(及び保持枠85)が矢印C方向に変位する。形状記憶合金部材2の通電を停止すると、形状記憶合金部材2が元の長さに伸び、弾性部材4の付勢力により屈曲部材84(及び保持枠85)が矢印D方向に変位する。以上のようにして、移動体としての屈曲部材84又は保持枠85を変位させることが可能となる。なお、ここでは、矢印C,Dで示す移動体(屈曲部材83又は保持枠85)の移動方向を重力方向とするが、移動体3が矢印C,Dで示す方向に円滑に移動できるように構成されていれば、必ずしも重力方向と一致している必要はない。また、本実施の形態では、屈曲部材84として、略円筒部材の外周面に線状の当接部54aを設けたものを用いたが、図21(実施の形態6)を参照して説明したように、屈曲部材84の形状は、楕円形状や丸みを帯びた三角形状等、駆動装置81の設定条件に応じて自由に設計することができる。   In the above configuration, when the shape memory alloy member 2 is energized from the energization circuit 7, the shape memory alloy member 2 is heated and contracts, and the bending member 84 (and the holding frame 85) resists the urging force of the elastic member 4. Displacement in the direction of arrow C. When energization of the shape memory alloy member 2 is stopped, the shape memory alloy member 2 extends to its original length, and the bending member 84 (and the holding frame 85) is displaced in the direction of arrow D by the urging force of the elastic member 4. As described above, the bending member 84 or the holding frame 85 as the moving body can be displaced. Here, the moving direction of the moving body (bending member 83 or holding frame 85) indicated by arrows C and D is the direction of gravity, but the moving body 3 can move smoothly in the directions indicated by arrows C and D. If configured, it does not necessarily need to coincide with the direction of gravity. In the present embodiment, the bending member 84 is provided with a linear contact portion 54a provided on the outer peripheral surface of the substantially cylindrical member. However, the bending member 84 has been described with reference to FIG. 21 (Embodiment 6). Thus, the shape of the bending member 84 can be freely designed according to the setting conditions of the driving device 81, such as an elliptical shape or a rounded triangular shape.

以上のように、本実施の形態の駆動装置81によれば、移動体(屈曲部材84及び保持枠85)の変位量の低下を抑制し、全長の長い形状記憶合金部材2を使用することで、大きな駆動力を得ると共に、駆動装置81の小型化を実現することができる。   As described above, according to the driving device 81 of the present embodiment, it is possible to suppress a decrease in the displacement amount of the moving body (the bending member 84 and the holding frame 85) and to use the shape memory alloy member 2 having a long overall length. In addition, a large driving force can be obtained, and the driving device 81 can be downsized.

実施の形態10.
図25(a)及び(b)は、本発明の実施の形態10に係る駆動装置91を互いに異なる方向から見た斜視図である。この駆動装置91は、実施の形態5の駆動装置41(図12、13)に対し、筐体44に、突出部44a,44bのほか、形状記憶合金部材92をさらに屈曲させるピン93を設けた点で異なるものである。駆動装置91において、実施の形態5の駆動装置41と共通する部分には同符号を付す。
Embodiment 10 FIG.
FIGS. 25A and 25B are perspective views of the driving device 91 according to the tenth embodiment of the present invention as seen from different directions. This drive device 91 is provided with a pin 93 for further bending the shape memory alloy member 92 in addition to the projecting portions 44a and 44b in the housing 44 in contrast to the drive device 41 (FIGS. 12 and 13) of the fifth embodiment. It is different in point. In the driving device 91, the same reference numerals are given to the portions common to the driving device 41 of the fifth embodiment.

図25(a)に示すように、筐体44は、例えば基台43の載置面43a上に設けられている。この筐体44の角部には、実施の形態5で説明した突出部44a,44bが形成されている。さらに、図25(b)に示すように、筐体44の側面には、ピン(突起)93が立設されている。   As shown in FIG. 25A, the housing 44 is provided on the mounting surface 43 a of the base 43, for example. Projections 44 a and 44 b described in the fifth embodiment are formed at the corners of the housing 44. Further, as shown in FIG. 25B, a pin (projection) 93 is erected on the side surface of the housing 44.

形状記憶合金部材92は、その一端(固定端)が基台43の壁部43bに固定され、突出部44b,44aにそれぞれ巻き付け角が90度となるように巻き付けられた後、ピン93で180度屈曲され、再び突出部44a、44bにそれぞれ巻き付け角が90度となるように巻き付けられている。形状記憶合金部材92の他端(可動端)は、移動体3に取り付けられている。   One end (fixed end) of the shape memory alloy member 92 is fixed to the wall 43b of the base 43, and is wound around the protrusions 44b and 44a so that the winding angle is 90 degrees. And is wound around the protrusions 44a and 44b so that the winding angle is 90 degrees. The other end (movable end) of the shape memory alloy member 92 is attached to the moving body 3.

ここで、突出部44a,44bを有する筐体44は、形状記憶合金部材92を屈曲させる屈曲手段を構成している。突出部44a,44bの周面の形状記憶合金部材92に当接する部分は、屈曲手段において形状記憶合金部材92に当接する当接部を構成している。
ピン93は、筐体44から突出し、形状記憶合金部材92をさらに屈曲させる突起を構成している。基台43は、突出部44a,44bを有する筐体44を保持する保持手段を構成している。
Here, the housing 44 having the protrusions 44 a and 44 b constitutes a bending means for bending the shape memory alloy member 92. The portions that contact the shape memory alloy member 92 on the peripheral surfaces of the protrusions 44a and 44b constitute contact portions that contact the shape memory alloy member 92 in the bending means.
The pin 93 protrudes from the housing 44 and constitutes a protrusion that further bends the shape memory alloy member 92. The base 43 constitutes a holding means for holding the casing 44 having the protruding portions 44a and 44b.

以上の構成において、通電回路7によって形状記憶合金部材92に電流を流し、形状記憶合金部材92を加熱して収縮させることにより、移動体3を変位させることができる。   In the above configuration, the movable body 3 can be displaced by causing the current-carrying circuit 7 to pass a current through the shape memory alloy member 92 to heat and contract the shape memory alloy member 92.

本実施の形態に係る駆動装置91は、ピン93と突出部44a,44bとを共に有していることにより、形状記憶合金部材92が一対の突出部44a,44bとピン93とで5回屈曲(90度及び180度)されるため、小さいスペースに全長の長い形状記憶合金部材92を配設することができる。加えて、駆動装置91を構成する筐体44の一部を利用することができるため、移動体3の変位量の低下を抑制しつつ、スペース効率をより一層向上し、駆動装置の小型化を実現することができる。   The drive device 91 according to the present embodiment includes both the pin 93 and the protrusions 44a and 44b, so that the shape memory alloy member 92 is bent five times by the pair of protrusions 44a and 44b and the pin 93. (90 degrees and 180 degrees), the shape memory alloy member 92 having a long overall length can be disposed in a small space. In addition, since a part of the housing 44 constituting the driving device 91 can be used, the space efficiency is further improved and the driving device is reduced in size while suppressing a decrease in the displacement amount of the moving body 3. Can be realized.

実施の形態11.
図26は、本発明の実施の形態11に係る駆動装置151を示す斜視図である。この駆動装置151は、実施の形態5の駆動装置41(図12,13)に対し、筐体152の突出部152a,152bの外周面に微小な凸部153を設けた点で異なるものである。駆動装置151において、実施の形態5の駆動装置41と共通する部分には同符号を付す。
Embodiment 11 FIG.
FIG. 26 is a perspective view showing drive device 151 according to Embodiment 11 of the present invention. This driving device 151 is different from the driving device 41 (FIGS. 12 and 13) of the fifth embodiment in that a minute convex portion 153 is provided on the outer peripheral surface of the projecting portions 152a and 152b of the housing 152. . In the driving device 151, the same reference numerals are given to portions common to the driving device 41 of the fifth embodiment.

駆動装置41では、筐体152は、例えば基台43の載置面43a上に設けられている。筐体152の角部には、互いに略90度異なる方向に突出する突出部152a,152bが形成されている。突出部152a,152bの外周面には、それぞれ上下方向に延在する微小な凸部153が形成されている。形状記憶合金部材42は、その一端(可動端)が基台43の壁部43bに固定され、突出部152b,152aの凸部153と接触しながら、それぞれ巻き付け角が90度となるように巻き付けられ、他端(固定端)が移動体3に取り付けられている。   In the drive device 41, the housing 152 is provided on the mounting surface 43 a of the base 43, for example. Protruding portions 152 a and 152 b that protrude in directions different from each other by approximately 90 degrees are formed at corner portions of the casing 152. Small protrusions 153 extending in the vertical direction are formed on the outer peripheral surfaces of the protrusions 152a and 152b. One end (movable end) of the shape memory alloy member 42 is fixed to the wall 43b of the base 43, and is wound so that the winding angle is 90 degrees while contacting the convex portion 153 of the protrusions 152b and 152a. The other end (fixed end) is attached to the moving body 3.

ここで、突出部152a,152bを有する筐体152は、形状記憶合金部材42を屈曲させる屈曲手段を構成している。突出部152a,152bの凸部153は、屈曲手段において形状記憶合金部材42に当接する当接部を構成している。基台43は、曲体152を保持する保持手段を構成している。   Here, the casing 152 having the protrusions 152 a and 152 b constitutes a bending means for bending the shape memory alloy member 42. The protrusions 153 of the protrusions 152a and 152b constitute contact portions that contact the shape memory alloy member 42 in the bending means. The base 43 constitutes holding means for holding the curved body 152.

以上の構成において、通電回路7によって形状記憶合金部材42に電流を流し、形状記憶合金部材42を加熱して収縮させることにより、移動体3を変位させることができる。   In the above configuration, the moving body 3 can be displaced by causing the current-carrying circuit 7 to pass a current through the shape memory alloy member 42 to heat and contract the shape memory alloy member 42.

形状記憶合金部材42を屈曲させる場合、急激な変化による応力集中を避け、曲がり癖などをつけないようにして信頼性を向上させる必要がある。そのためには、突出部152a,152bを断面円弧状とした場合の直径は、形状記憶合金部材42の線径の約20倍から40倍が好ましいと言われている。しかしながら、この場合、形状記憶合金部材42が突出部152a,152bに当接する当接長さが長くなるため、形状記憶合金部材42を直線状に配置した場合に比べて変位量が低下する可能性がある。   When the shape memory alloy member 42 is bent, it is necessary to improve reliability by avoiding stress concentration due to abrupt changes and avoiding bending creases. For that purpose, it is said that the diameter when the projecting portions 152a and 152b are arcuate in cross section is preferably about 20 to 40 times the wire diameter of the shape memory alloy member 42. However, in this case, since the contact length at which the shape memory alloy member 42 contacts the protrusions 152a and 152b becomes longer, the displacement amount may be reduced as compared with the case where the shape memory alloy member 42 is arranged linearly. There is.

これに対し、本実施の形態では、突出部152a,152bに、形状記憶合金部材42の巻き付け方向に対して略直交する凸部153を形成することにより、形状記憶合金部材42と突出部152a,152b(凸部153)との当接長さを短くしている。これにより、突出部152a,152bの直径を大きくした場合であっても、形状記憶合金部材42の変位量の低下を抑制することができる。   On the other hand, in the present embodiment, the shape memory alloy member 42 and the protrusions 152a, 152b are formed on the protrusions 152a, 152b by forming the protrusions 153 substantially orthogonal to the winding direction of the shape memory alloy member 42. The contact length with 152b (convex portion 153) is shortened. Thereby, even if it is a case where the diameter of protrusion part 152a, 152b is enlarged, the fall of the displacement amount of the shape memory alloy member 42 can be suppressed.

図27は、凸部153を設けることによる効果を確認するための実験方法を示す平面図である。この実験では、図27に示すように、両端に圧着端子120を取り付けた形状記憶合金部材2を屈曲部材155aに360度巻き付け、一端(可動端)の圧着端子120を弾性部材4に取り付け、他端(固定端)の圧着端子120を固定ピン121(図7(a))に取り付ける。弾性部材4の他端は、別の固定ピン121(図7(a))に取り付ける。2つの固定ピン121には、通電回路105により通電を行う(図7(a))。形状記憶合金部材2の長さは50mm、線径は60μmとし、屈曲部材155aから固定端側の固定ピン121までの長さCは約8mmとした。また、形状記憶合金部材2には、通常時(非通電状態)に約392×10−3Nの張力が生じるようにする。このような条件で、形状記憶合金部材2に140mAの直流電流を流したときの、形状記憶合金部材2の可動端の変位量(例えば弾性部材4と接続した圧着端子120の変位量)を測定する。 FIG. 27 is a plan view showing an experimental method for confirming the effect of providing the convex portion 153. In this experiment, as shown in FIG. 27, the shape memory alloy member 2 with the crimp terminals 120 attached to both ends is wound 360 degrees around the bending member 155a, and the crimp terminal 120 at one end (movable end) is attached to the elastic member 4. The crimp terminal 120 at the end (fixed end) is attached to the fixed pin 121 (FIG. 7A). The other end of the elastic member 4 is attached to another fixing pin 121 (FIG. 7A). The two fixing pins 121 are energized by the energization circuit 105 (FIG. 7A). The length of the shape memory alloy member 2 was 50 mm, the wire diameter was 60 μm, and the length C from the bending member 155a to the fixed pin 121 on the fixed end side was about 8 mm. Further, the shape memory alloy member 2 is caused to have a tension of about 392 × 10 −3 N in a normal state (non-energized state). Under such conditions, the displacement amount of the movable end of the shape memory alloy member 2 (for example, the displacement amount of the crimp terminal 120 connected to the elastic member 4) when a 140 mA direct current is passed through the shape memory alloy member 2 is measured. To do.

屈曲部材155aは、正方形断面を有する角柱部材の四隅に、断面円弧状の突出部156を形成したものである。この突出部156は、実施の形態11に係る駆動装置151(図26)の突出部152a,152bに対応するものであり、突出部156の形状を種々に替えたときの各々の変位量を測定することによって、各形状を突出部152a,152b(図26)に採用したときの変位量の変化の傾向を知ることができる。   The bending member 155a is formed by forming protrusions 156 having a circular arc cross section at four corners of a prismatic member having a square cross section. This protrusion 156 corresponds to the protrusions 152a and 152b of the driving device 151 (FIG. 26) according to Embodiment 11, and measures the amount of displacement when the shape of the protrusion 156 is changed variously. By doing this, it is possible to know the tendency of change in the displacement amount when each shape is adopted in the protrusions 152a and 152b (FIG. 26).

図28(a)〜(d)は、この実験で用いた屈曲部材155a〜155dの各形状を示す平面図である。尚、これらの屈曲部材155a〜155dは、POMにより構成されている。   28A to 28D are plan views showing the shapes of the bending members 155a to 155d used in this experiment. The bending members 155a to 155d are configured by POM.

図28(a)に示す屈曲部材155aは、断面が略正方形の四角柱の四隅に、半径Rが3.3mmの突出部156を形成し、各突出部156の間に、深さtが0.2mmの凹部を形成したものである。屈曲部材155aの全周に対し、4つの突出部156が形状記憶合金部材2と当接する長さの比、すなわち接触比率は66%である。なお、各突出部156の断面形状は、中心角θが90度の扇状とした。この屈曲部材155aを用いた実験では、形状記憶合金部材2の可動端の変位量は1.16mmであり、形状記憶合金部材2を直線状に配置した場合の同条件での変位量(2.1mm)に対する比(すなわち変位比率)は55.2%であった。   A bending member 155a shown in FIG. 28A has protrusions 156 having a radius R of 3.3 mm at the four corners of a quadrangular prism having a substantially square cross section, and the depth t is 0 between the protrusions 156. .2 mm recesses are formed. The ratio of the length at which the four protrusions 156 contact the shape memory alloy member 2 with respect to the entire circumference of the bending member 155a, that is, the contact ratio is 66%. In addition, the cross-sectional shape of each protrusion 156 was a fan shape with a central angle θ of 90 degrees. In the experiment using the bending member 155a, the displacement amount of the movable end of the shape memory alloy member 2 is 1.16 mm, and the displacement amount under the same condition when the shape memory alloy member 2 is arranged linearly (2. 1 mm) (ie, the displacement ratio) was 55.2%.

図28(b)に示す屈曲部材155bは、断面が略正方形の四角柱の四隅に、半径Rが1.6mmの突出部156を形成し、各突出部156の間に、深さtが0.2mmの凹部を形成したものである。屈曲部材155bの全周に対し、4つの突出部156が形状記憶合金部材2と当接する長さの比(接触比率)は33%である。この屈曲部材155bを用いた実験では、形状記憶合金部材2の可動端の変位量は1.48mmであり、形状記憶合金部材2を直線状に配置した場合の変位量(2.1mm)に対する変位比率は70.5%であった。   A bending member 155b shown in FIG. 28B has protrusions 156 having a radius R of 1.6 mm at the four corners of a quadrangular prism having a substantially square cross section, and the depth t is 0 between the protrusions 156. .2 mm recesses are formed. The ratio (contact ratio) of the length at which the four protrusions 156 contact the shape memory alloy member 2 with respect to the entire circumference of the bending member 155b is 33%. In the experiment using the bending member 155b, the displacement amount of the movable end of the shape memory alloy member 2 is 1.48 mm, and the displacement with respect to the displacement amount (2.1 mm) when the shape memory alloy member 2 is linearly arranged. The ratio was 70.5%.

図28(c)に示す屈曲部材155cは、図28(a)の屈曲部材155aの各突出部156に、さらに深さtが0.2mmの2つの凹部を設けて各々3つの凸部156aを形成したものである。屈曲部材155cの全周に対し、4つの突出部156の凸部156aが形状記憶合金部材2と当接する長さの比(接触比率)は33%である。この屈曲部材155cを用いた実験では、形状記憶合金部材2の可動端の変位量は1.38mmであり、形状記憶合金部材2を直線状に配置した場合(変位量2.1mm)に対する変位比率は65.7%であった。   The bending member 155c shown in FIG. 28 (c) is provided with two protrusions 156a of the bending member 155a of FIG. Formed. The ratio (contact ratio) of the length at which the protrusions 156a of the four protrusions 156 contact the shape memory alloy member 2 with respect to the entire circumference of the bending member 155c is 33%. In the experiment using the bending member 155c, the displacement amount of the movable end of the shape memory alloy member 2 is 1.38 mm, and the displacement ratio with respect to the case where the shape memory alloy member 2 is arranged linearly (displacement amount 2.1 mm). Was 65.7%.

図28(d)に示す屈曲部材155dは、図28(a)の屈曲部材155aの各突出部156に、深さtが0.2mmの4つの凹部を設けて各々5つの凸部156bを形成したものである。屈曲部材155dの全周に対し、4つの突出部156の凸部156bが形状記憶合金部材2と当接する長さの比(接触比率)は33%である。この屈曲部材155dを用いた実験では、形状記憶合金部材2の可動端の変位量は1.42mmであり、形状記憶合金部材2を直線状に配置した場合の変位量(2.1mm)に対する変位比率は67.6%であった。   In the bending member 155d shown in FIG. 28 (d), four protrusions 156b are formed by providing each protrusion 156 of the bending member 155a in FIG. 28 (a) with four recesses having a depth t of 0.2 mm. It is a thing. The ratio (contact ratio) of the length at which the protrusions 156b of the four protrusions 156 contact the shape memory alloy member 2 is 33% with respect to the entire circumference of the bending member 155d. In the experiment using the bending member 155d, the displacement amount of the movable end of the shape memory alloy member 2 is 1.42 mm, and the displacement with respect to the displacement amount (2.1 mm) when the shape memory alloy member 2 is linearly arranged. The ratio was 67.6%.

表3及び図29に、以上の実験結果を示す。なお、図29において、縦軸は、変位比率H(%)を示す。横軸の符号a,b,c,dは、それぞれ屈曲部材155a,155b,155c,155d(図28(a)〜(d))を用いた場合の実験結果を示す。   Table 3 and FIG. 29 show the above experimental results. In FIG. 29, the vertical axis represents the displacement ratio H (%). Symbols a, b, c, and d on the horizontal axis indicate experimental results when the bending members 155a, 155b, 155c, and 155d (FIGS. 28A to 28D) are used, respectively.

Figure 2005337262
Figure 2005337262

表3及び図29に示した実験結果から明らかなように、形状記憶合金部材の接触比率を小さくするほど、移動体(形状記憶合金部材2の可動端)の変位量が大きくなることがわかる。このことから、本実施の形態による駆動装置151(図26)において、突出部152a,152bに凸部153を形成し、形状記憶合金部材42に当接する当接部の全周に対する比率を小さくすることで、移動体3の変位量を大きくできることが分かる。   As is clear from the experimental results shown in Table 3 and FIG. 29, it can be seen that the smaller the contact ratio of the shape memory alloy member, the larger the displacement of the movable body (the movable end of the shape memory alloy member 2). For this reason, in the driving device 151 (FIG. 26) according to the present embodiment, the protrusions 152a and 152b are formed with the protrusions 153, and the ratio of the contact portion that contacts the shape memory alloy member 42 to the entire circumference is reduced. It turns out that the displacement amount of the mobile body 3 can be enlarged by this.

以上説明したように、本実施の形態に係る駆動装置151によれば、形状記憶合金部材42に当接する突出部152a,152bに微小な凸部153を形成し、接触比率を小さくすることにより、形状記憶合金部材42の可動端の変位量を大きくしつつ、形状記憶合金部材42の応力集中を回避し、曲がり癖などを抑制することが可能になる。   As described above, according to the drive device 151 according to the present embodiment, by forming the minute protrusions 153 on the protrusions 152a and 152b that contact the shape memory alloy member 42 and reducing the contact ratio, While increasing the amount of displacement of the movable end of the shape memory alloy member 42, it is possible to avoid stress concentration of the shape memory alloy member 42 and to suppress bending wrinkles and the like.

実施の形態12.
図30は、本発明の実施の形態12に係る駆動装置161を示す斜視図である。駆動装置161は、実施の形態6の駆動装置51(図14)に対し、突出部162bを有する屈曲部材162の形状が多角柱部材で形成されている点で異なるものである。駆動装置161において、実施の形態6の駆動装置51と共通する部分には同符号を付す。
Embodiment 12 FIG.
FIG. 30 is a perspective view showing a drive device 161 according to Embodiment 12 of the present invention. The drive device 161 is different from the drive device 51 (FIG. 14) of the sixth embodiment in that the shape of the bending member 162 having the protruding portion 162b is formed of a polygonal column member. In the driving device 161, the same reference numerals are given to the portions common to the driving device 51 of the sixth embodiment.

図30に示すように、基台13の載置面13aには、周面に複数の突出部(当接部)162bを有する屈曲部材162が立設されている。形状記憶合金部材2は、一端(固定端)が壁部13cに固定され、屈曲部材162の周面に各突出部162bでの巻き付け角の合計が360度となるように巻き付けられ、他端(可動端)が移動体3に取り付けられている。   As shown in FIG. 30, the mounting surface 13a of the base 13 is provided with a bending member 162 having a plurality of protruding portions (contact portions) 162b on the peripheral surface. One end (fixed end) of the shape memory alloy member 2 is fixed to the wall 13c, and is wound around the circumferential surface of the bending member 162 so that the total winding angle at each protrusion 162b is 360 degrees. The movable end) is attached to the moving body 3.

ここで、屈曲部材162は、形状記憶合金部材2を屈曲させる屈曲手段を構成している。突出部162bの周面の形状記憶合金部材2に当接する部分は、屈曲手段において形状記憶合金部材2に当接する当接部を構成している。基台13は、屈曲部材162を保持する保持手段を構成している。   Here, the bending member 162 constitutes a bending means for bending the shape memory alloy member 2. The portion of the peripheral surface of the protrusion 162b that contacts the shape memory alloy member 2 constitutes a contact portion that contacts the shape memory alloy member 2 in the bending means. The base 13 constitutes a holding unit that holds the bending member 162.

以上の構成において、通電回路7によって形状記憶合金部材2に電流を流し、形状記憶合金部材2を加熱して収縮させることにより、移動体3を変位させることができる。   In the above-described configuration, the moving body 3 can be displaced by causing a current to flow through the shape memory alloy member 2 by the energization circuit 7 and heating the shape memory alloy member 2 to contract.

上述した実施の形態6(図14〜図20)において、形状記憶合金部材2が屈曲部材54に当接する接触比率を小さくすることで形状記憶合金部材2の変位量低下を抑えることができることを示した。しかし、屈曲部材54を樹脂で作製した場合、突出部54aの当接幅(形状記憶合金部材に接触する長さ)が小さくなるほど、形状記憶合金部材2の発熱で融けやすくなる可能性がある。従って、屈曲部材54として樹脂等の耐熱特性のあまり高くない部材を採用する場合には、接触比率を小さくしつつ、一つの突出部54aの当接幅を大きくすることが望ましい。この点を踏まえ、種々の断面形状を有する屈曲部材を用いて行った実験について以下に説明する。   In Embodiment 6 (FIGS. 14 to 20) described above, it is shown that the reduction in the displacement of the shape memory alloy member 2 can be suppressed by reducing the contact ratio at which the shape memory alloy member 2 contacts the bending member 54. It was. However, when the bending member 54 is made of a resin, the shape memory alloy member 2 may be easily melted by the heat generation as the contact width of the protrusion 54a (the length contacting the shape memory alloy member) becomes smaller. Therefore, when a member having a very low heat resistance such as resin is employed as the bending member 54, it is desirable to increase the contact width of one protrusion 54a while reducing the contact ratio. Based on this point, experiments conducted using bending members having various cross-sectional shapes will be described below.

図31は、この実験装置の要部斜視図である。図31に示すように、この実験では、図5乃至図8で示した実験と同様に、形状記憶合金部材2の一端(固定端)に圧着端子120を取り付け、固定ピン121に固定する。形状記憶合金部材2の他端(可動端)にも圧着端子120を取り付け、弾性部材4を介して別の固定ピン121に固定する。形状記憶合金部材2は、長さが50mm、線径が60μmである。非通電状態で、形状記憶合金部材2には約392×10−3Nの張力が生じるようにする。形状記憶合金部材2に140mAの直流電流を流したときの、形状記憶合金部材2の可動端の変位量(例えば弾性部材4と結合された圧着端子120の変位量)を測定する。 FIG. 31 is a perspective view of a main part of this experimental apparatus. As shown in FIG. 31, in this experiment, similarly to the experiments shown in FIGS. 5 to 8, the crimp terminal 120 is attached to one end (fixed end) of the shape memory alloy member 2 and fixed to the fixing pin 121. A crimp terminal 120 is also attached to the other end (movable end) of the shape memory alloy member 2 and fixed to another fixing pin 121 via the elastic member 4. The shape memory alloy member 2 has a length of 50 mm and a wire diameter of 60 μm. In a non-energized state, a tension of about 392 × 10 −3 N is generated in the shape memory alloy member 2. The displacement amount of the movable end of the shape memory alloy member 2 (for example, the displacement amount of the crimp terminal 120 coupled to the elastic member 4) when a 140 mA direct current is passed through the shape memory alloy member 2 is measured.

図32(a)〜(d)は、4種類の屈曲部材162〜165を用いて行った実験を説明するための平面図である。図32(a)に示す実験では、略三角形状の断面を有する角柱部材の屈曲部材162を用い、図32(b)に示す実験では、略四角形状の断面を有する角柱部材の屈曲部材163を用い、図32(c)に示す実験では、略六角形状の断面を有する角柱部材の屈曲部材164を用い、図32(d)に示す実験では、略円形の断面を有する円柱部材の屈曲部材165を用いている。これらの屈曲部材162〜165は、POMにより形成されている。いずれの場合も、屈曲部材162〜165から形状記憶合金部材2の固定端までの距離Cは、約8mmである。   FIGS. 32A to 32D are plan views for explaining an experiment performed using four types of bending members 162 to 165. In the experiment shown in FIG. 32A, a prism member bending member 162 having a substantially triangular cross section is used, and in the experiment shown in FIG. 32B, a prism member bending member 163 having a substantially rectangular cross section is used. In the experiment shown in FIG. 32C, a prism member bending member 164 having a substantially hexagonal cross section is used, and in the experiment shown in FIG. 32D, a cylindrical member bending member 165 having a substantially circular cross section. Is used. These bending members 162 to 165 are formed of POM. In any case, the distance C from the bending members 162 to 165 to the fixed end of the shape memory alloy member 2 is about 8 mm.

また、図33〜図36は、上述した屈曲部材162〜165の具体的な断面形状を示す平面図である。   33 to 36 are plan views showing specific cross-sectional shapes of the bending members 162 to 165 described above.

図33(a)に示す屈曲部材162は、三角柱の各隅に半径Rが0.5mmの突出部162aを設けたものであり、接触比率は10%である。隣り合う突出部162aの間隔Sは9.4mmである。図33(b)に示す屈曲部材162は、三角柱の各隅に半径Rが1.6mmの突出部162bを設けたものであり、接触比率は33%である。隣り合う突出部162bの間隔Sは7.1mmである。図33(c)に示す屈曲部材162は、三角柱の各隅に半径Rが2.5mmの突出部162cを設けたものであり、接触比率は50%である。隣り合う突出部162cの間隔Sは5.2mmである。図33(d)に示す屈曲部材162は、三角柱の各隅に半径Rが3.3mmの突出部162dを設けたものであり、接触比率は66%である。隣り合う突出部162dの間隔Sは3.6mmである。なお、上述した図29及び図30は、図33(a)〜(d)に示す屈曲部材162を用いた場合の例を図示したものである。   The bending member 162 shown in FIG. 33 (a) is provided with a protrusion 162a having a radius R of 0.5 mm at each corner of a triangular prism, and the contact ratio is 10%. The interval S between the adjacent protrusions 162a is 9.4 mm. The bending member 162 shown in FIG. 33 (b) is provided with protrusions 162b having a radius R of 1.6 mm at each corner of a triangular prism, and the contact ratio is 33%. An interval S between adjacent protrusions 162b is 7.1 mm. A bending member 162 shown in FIG. 33 (c) is provided with a protrusion 162c having a radius R of 2.5 mm at each corner of a triangular prism, and the contact ratio is 50%. An interval S between adjacent protrusions 162c is 5.2 mm. The bending member 162 shown in FIG. 33 (d) is provided with a protrusion 162d having a radius R of 3.3 mm at each corner of a triangular prism, and the contact ratio is 66%. An interval S between adjacent protrusions 162d is 3.6 mm. Note that FIGS. 29 and 30 described above illustrate an example in which the bending member 162 illustrated in FIGS. 33A to 33D is used.

同様に、図34(a)に示す屈曲部材163は、四角柱の各隅に半径Rが0.5mmの突出部163aを設けたものであり、接触比率は10%である。隣り合う突出部163aの間隔Sは7.1mmである。図34(b)に示す屈曲部材163は、四角柱の各隅に半径Rが1.6mmの突出部163bを設けたものであり、接触比率は33%である。隣り合う突出部163aの間隔Sは5.3mmである。図34(c)に示す屈曲部材163は、四角柱の各隅に半径Rが2.5mmの突出部163cを有し、接触比率は50%である。隣り合う突出部163cの間隔Sは3.9mmである。図34(d)に示す屈曲部材163は、四角柱の各隅に半径Rが3.3mmの突出部163dを設けたものであり、接触比率は66%である。隣り合う突出部162dの間隔Sは2.7mmである。   Similarly, a bending member 163 shown in FIG. 34 (a) is provided with protrusions 163a having a radius R of 0.5 mm at each corner of a quadrangular prism, and the contact ratio is 10%. An interval S between adjacent protrusions 163a is 7.1 mm. A bending member 163 shown in FIG. 34 (b) is provided with protrusions 163b having a radius R of 1.6 mm at each corner of a quadrangular prism, and the contact ratio is 33%. An interval S between adjacent protrusions 163a is 5.3 mm. A bending member 163 shown in FIG. 34C has protrusions 163c having a radius R of 2.5 mm at each corner of the quadrangular prism, and the contact ratio is 50%. An interval S between adjacent protrusions 163c is 3.9 mm. A bending member 163 shown in FIG. 34 (d) has protrusions 163d having a radius R of 3.3 mm at each corner of a quadrangular prism, and the contact ratio is 66%. An interval S between adjacent projecting portions 162d is 2.7 mm.

同様に、図35(a)に示す屈曲部材164は、六角柱の各隅に半径Rが0.5mmの突出部164aを設けたものであり、接触比率は10%である。隣り合う突出部164aの間隔Sは4.7mmである。図35(b)に示す屈曲部材164は、六角柱の各隅に半径Rが1.6mmの突出部164bを設けたものであり、接触比率は33%である。隣り合う突出部164bの間隔Sは3.6mmである。図35(c)に示す屈曲部材164は、六角柱の各隅に半径Rが2.5mmの突出部164cを設けたものであり、接触比率は50%である。隣り合う突出部164cの間隔Sは2.6mmである。図35(d)に示す屈曲部材164は、六角柱の各隅に半径Rが3.3mmの突出部164dを設けたものであり、接触比率は66%である。隣り合う突出部164dの間隔Sは1.8mmである。   Similarly, the bending member 164 shown in FIG. 35 (a) is provided with protrusions 164a having a radius R of 0.5 mm at each corner of the hexagonal column, and the contact ratio is 10%. An interval S between adjacent protrusions 164a is 4.7 mm. A bending member 164 shown in FIG. 35 (b) is provided with protrusions 164b having a radius R of 1.6 mm at each corner of the hexagonal column, and the contact ratio is 33%. An interval S between adjacent protrusions 164b is 3.6 mm. The bending member 164 shown in FIG. 35 (c) is provided with protrusions 164c having a radius R of 2.5 mm at each corner of the hexagonal column, and the contact ratio is 50%. An interval S between adjacent protrusions 164c is 2.6 mm. A bending member 164 shown in FIG. 35 (d) has protrusions 164d having a radius R of 3.3 mm at each corner of the hexagonal column, and the contact ratio is 66%. An interval S between adjacent protrusions 164d is 1.8 mm.

図36(a)に示す屈曲部材165は、直径Dが10mmの円柱であり、接触比率は100%である。図36(b)に示す屈曲部材165は、直径Dが10mmの円柱の円周に沿って、1.56mmの配設ピッチPで、幅W1が0.52mmの20本の突出部165bを設けたものであり、接触比率は33%である。隣り合う突出部165bの間の溝幅W2は1.05mmである。図36(c)に示す屈曲部材165は、直径Dが10mmの円柱の円周に沿って、1.56mmの配設ピッチPで、幅W1が0.78mmの20本の突出部165cを設けたものであり、接触比率は50%である。隣り合う突出部165bの間の溝幅W2は0.78mmである。図36(d)に示す屈曲部材165は、直径Dが10mmの円柱の円周に沿って、1.56mmの配設ピッチPで、幅W1が1.05mmの20本の突出部165dを設けたものであり、接触比率は66%である。隣り合う突出部165dの間の溝幅W2は0.52mmである。   The bending member 165 shown in FIG. 36A is a cylinder having a diameter D of 10 mm, and the contact ratio is 100%. The bending member 165 shown in FIG. 36 (b) is provided with 20 protrusions 165b having a disposition pitch P of 1.56 mm and a width W1 of 0.52 mm along the circumference of a cylinder having a diameter D of 10 mm. The contact ratio is 33%. The groove width W2 between the adjacent protrusions 165b is 1.05 mm. The bending member 165 shown in FIG. 36 (c) is provided with 20 protrusions 165c having a disposition pitch P of 1.56 mm and a width W1 of 0.78 mm along the circumference of a cylinder having a diameter D of 10 mm. The contact ratio is 50%. The groove width W2 between the adjacent protrusions 165b is 0.78 mm. A bending member 165 shown in FIG. 36 (d) is provided with 20 protrusions 165d having a pitch P of 1.56 mm and a width W1 of 1.05 mm along the circumference of a cylinder having a diameter D of 10 mm. The contact ratio is 66%. The groove width W2 between the adjacent protrusions 165d is 0.52 mm.

これら屈曲部材162〜165を用い、図32(a)〜(d)に示したように、形状記憶合金部材2の可動端の変位を測定した。結果を表4及び図37に示す。なお、図37において、縦軸は変位比率H(%)を示し、横軸は接触比率S(%)を示す。また、図37において、符号a、b、c、dは、それぞれ、図32(a)、(b)、(c)及び(d)に示した実験の結果を示す。   Using these bending members 162 to 165, the displacement of the movable end of the shape memory alloy member 2 was measured as shown in FIGS. 32 (a) to 32 (d). The results are shown in Table 4 and FIG. In FIG. 37, the vertical axis represents the displacement ratio H (%), and the horizontal axis represents the contact ratio S (%). In FIG. 37, symbols a, b, c, and d indicate the results of the experiment shown in FIGS. 32 (a), (b), (c), and (d), respectively.

Figure 2005337262
Figure 2005337262

表4及び図37から、形状記憶合金部材2の変位量は、屈曲部材162〜165の形状(三角柱、四角柱等)ではなく、接触比率Sによって変化することが分かる。また、接触比率Sが小さいほど、変位量が大きくなることが分かる。このことから、形状記憶合金部材2の変位量を大きくし、且つ当接部の幅を大きくする(形状記憶合金部材2の発熱による溶融を抑制するため)ためには、辺数の少ない断面三角形状の屈曲部材162(図33)を選択することが好ましいことが理解される。   From Table 4 and FIG. 37, it can be seen that the displacement amount of the shape memory alloy member 2 varies depending on the contact ratio S, not the shape of the bending members 162 to 165 (triangular prism, quadrangular prism, etc.). It can also be seen that the smaller the contact ratio S, the larger the displacement. Therefore, in order to increase the amount of displacement of the shape memory alloy member 2 and increase the width of the contact portion (in order to suppress melting due to heat generation of the shape memory alloy member 2), a cross-sectional triangle with a small number of sides It will be appreciated that it is preferable to select a shaped bending member 162 (FIG. 33).

以上のように、本実施の形態の駆動装置161(図30)によれば、屈曲部材の形状を略多角柱としているため、移動体3の変位量の低下を抑制しつつ、溶融を防止できる突出部の当接幅を選択することが可能になる。すなわち、屈曲部材の突出部の溶融を防止すると共に、移動体3の変位量の低下を抑え、スペース効率を向上することができる。すなわち、駆動装置の小型化を実現することができる。   As described above, according to the driving device 161 (FIG. 30) of the present embodiment, since the shape of the bending member is a substantially polygonal column, melting can be prevented while suppressing a decrease in the displacement amount of the moving body 3. It is possible to select the contact width of the protrusion. That is, it is possible to prevent melting of the protruding portion of the bending member, suppress a decrease in the amount of displacement of the moving body 3, and improve space efficiency. That is, the drive device can be downsized.

実施の形態13.
図38及び図39は、本発明の実施の形態13に係る形状記憶合金部材202と圧着端子208との固定方法(かしめ方法)を説明するための図である。圧着端子208は、形状記憶合金部材202の一端を弾性部材(例えば図1に示す弾性部材4)や固定ピン等に固定するために用いることができるものである。
Embodiment 13 FIG.
FIGS. 38 and 39 are views for explaining a fixing method (caulking method) between the shape memory alloy member 202 and the crimp terminal 208 according to the thirteenth embodiment of the present invention. The crimp terminal 208 can be used to fix one end of the shape memory alloy member 202 to an elastic member (for example, the elastic member 4 shown in FIG. 1), a fixing pin, or the like.

図38(a)に示すように、圧着端子208は、金属製の板状部材により構成されており、略長方形状の基部208bと、この基部208bの長手方向一端に形成された環状部208cと、基部208bの短手方向両側に形成されたかしめ部208aとを有している。形状記憶合金部材202の一端を、圧着端子208の基部208bの略中央に位置させ、図38(b)に示すようにかしめ部208aを折り曲げることにより、形状記憶合金部材202と圧着端子208とを固定する(かしめる)ことができる。また、図38(c)に示すように、形状記憶合金部材202を一方のかしめ部208aに巻き付け、そののち図38(d)に示すようにかしめ部208aを折り曲げてもよい。   As shown in FIG. 38 (a), the crimp terminal 208 is constituted by a metal plate-like member, and includes a substantially rectangular base portion 208b and an annular portion 208c formed at one end in the longitudinal direction of the base portion 208b. , And caulking portions 208a formed on both sides of the base portion 208b in the short direction. One end of the shape memory alloy member 202 is positioned approximately at the center of the base portion 208b of the crimp terminal 208, and the crimp portion 208a is bent as shown in FIG. Can be fixed (caulked). Further, as shown in FIG. 38 (c), the shape memory alloy member 202 may be wound around one caulking portion 208a, and then the caulking portion 208a may be bent as shown in FIG. 38 (d).

本実施の形態では、さらに、図39に示すように、圧着端子208と形状記憶合金部材202との間に、通電回路207により電流を流す。通電回路207は、圧着端子208の任意の位置(形状記憶合金部材202の圧着端子208に固定された部分202bも含む)と、形状記憶合金部材202上の圧着端子208に近い位置202aとに接続する。
ここでは、通電回路207により、形状記憶合金部材202に、形状記憶合金部材202が記憶している形状を消失する温度まで加熱されるような電流(過電流)を流す。これにより、形状記憶合金部材202の上記位置202aよりも圧着端子208側の部分は、形状記憶を消失する。
In the present embodiment, further, as shown in FIG. 39, a current is passed between the crimp terminal 208 and the shape memory alloy member 202 by the energizing circuit 207. The energization circuit 207 is connected to an arbitrary position of the crimp terminal 208 (including a portion 202b fixed to the crimp terminal 208 of the shape memory alloy member 202) and a position 202a near the crimp terminal 208 on the shape memory alloy member 202. To do.
Here, a current (overcurrent) that causes the shape memory alloy member 202 to be heated to a temperature at which the shape stored in the shape memory alloy member 202 disappears is caused to flow through the energization circuit 207. As a result, the portion of the shape memory alloy member 202 closer to the crimp terminal 208 than the position 202a loses the shape memory.

本実施の形態の作用効果は以下の通りである。形状記憶合金部材202を圧着端子208に単に固定するだけでは、形状記憶合金部材202が通電(又は環境温度変化)による加熱冷却に伴って伸縮を繰り返すことにより、形状記憶合金部材202とかしめ部208aとの固定部分における信頼性が低下し、形状記憶合金部材202がかしめ部208aから抜け、あるいは切断される可能性がある。本実施の形態では、形状記憶合金が一定温度以上に加熱されると記憶していた形状を消失する性質を利用し、形状記憶合金部材202の圧着端子208に固定された部分202bの形状記憶を消失させることにより、当該部分202bが伸縮動作を行わないようにしている。その結果、形状記憶合金部材202と圧着端子208との結合の信頼性が向上し、形状記憶合金部材202が圧着端子208から抜け、あるいは切断されることを防止することができる。   The effect of this Embodiment is as follows. By simply fixing the shape memory alloy member 202 to the crimping terminal 208, the shape memory alloy member 202 repeatedly expands and contracts with heating and cooling due to energization (or environmental temperature change), whereby the shape memory alloy member 202 and the caulking portion 208a. There is a possibility that the reliability at the fixed portion decreases and the shape memory alloy member 202 comes off from the caulked portion 208a or is cut. In the present embodiment, the shape memory of the portion 202b fixed to the crimp terminal 208 of the shape memory alloy member 202 is obtained by utilizing the property that the stored shape disappears when the shape memory alloy is heated above a certain temperature. By erasing, the portion 202b is prevented from expanding and contracting. As a result, the reliability of the connection between the shape memory alloy member 202 and the crimp terminal 208 is improved, and the shape memory alloy member 202 can be prevented from being disconnected or cut off from the crimp terminal 208.

実施の形態14.
図40は、本発明の実施の形態14に係る駆動装置211を示す斜視図である。図40に示す駆動装置211は、基台216上に、四角形の4つの頂点に位置するように立設されたピン状の屈曲部材215a,215b,215c,215dを備えている。基台216上において、屈曲部材215a,215dの間には、屈曲部材215aに近い方から順に、固定ピン219a,219bが立設されている。ワイヤ状の形状記憶合金部材212は、屈曲部材215a,215b,215c,215dに巻き付けられている。形状記憶合金部材212の一端(固定端)には圧着端子218aが取り付けられ、この圧着端子218aは固定ピン219aに固定されている。また、形状記憶合金部材212の他端(自由端)には圧着端子218bが取り付けられ、この圧着端子218bは弾性部材214の一端に固定されている。弾性部材214の他端は、固定ピン219bに固定されている。
通電回路217は、屈曲部材215a〜215dのうち、形状記憶合金212の固定端(圧着端子218a)に一番近い屈曲部材215aと、可動端(圧着端子218b)に一番近い屈曲部材215dとに接続されている。その他の構成は、実施の形態1と同様である。
Embodiment 14 FIG.
FIG. 40 is a perspective view showing a drive device 211 according to Embodiment 14 of the present invention. The drive device 211 shown in FIG. 40 includes pin-shaped bending members 215a, 215b, 215c, and 215d that are erected on the base 216 so as to be positioned at four vertices of a quadrangle. On the base 216, between the bending members 215a and 215d, fixing pins 219a and 219b are erected in order from the side closer to the bending member 215a. The wire-shaped shape memory alloy member 212 is wound around the bending members 215a, 215b, 215c, and 215d. A crimp terminal 218a is attached to one end (fixed end) of the shape memory alloy member 212, and the crimp terminal 218a is fixed to the fixing pin 219a. A crimp terminal 218 b is attached to the other end (free end) of the shape memory alloy member 212, and the crimp terminal 218 b is fixed to one end of the elastic member 214. The other end of the elastic member 214 is fixed to the fixing pin 219b.
Among the bending members 215a to 215d, the energization circuit 217 includes a bending member 215a closest to the fixed end (crimp terminal 218a) of the shape memory alloy 212 and a bending member 215d closest to the movable end (crimp terminal 218b). It is connected. Other configurations are the same as those in the first embodiment.

ここで、屈曲部材215a〜215dは、形状記憶合金部材212を屈曲させる屈曲手段を構成している。屈曲部材215a〜215dの周面の形状記憶合金部材212に当接する部分は、屈曲手段において形状記憶合金部材212に当接する当接部を構成している。基台216は、屈曲部材215a〜215dを保持する保持手段を構成している。   Here, the bending members 215 a to 215 d constitute bending means for bending the shape memory alloy member 212. The portions that contact the shape memory alloy member 212 on the peripheral surfaces of the bending members 215a to 215d constitute contact portions that contact the shape memory alloy member 212 in the bending means. The base 216 constitutes a holding unit that holds the bending members 215a to 215d.

以上の構成において、通電回路217によって屈曲部材215a,215bを介して形状記憶合金部材212に電流を流し、形状記憶合金部材212を加熱して収縮させることにより、移動体(ここでは圧着端子218b)を変位させることができる。このとき、電流は、形状記憶合金部材212のうち、屈曲部材215aから屈曲部材215dまでの間を流れ、形状記憶合金部材212の両端の圧着端子218a,218bには流れない。そのため、形状記憶合金部材212において圧着端子218a,218bの各かしめ部218cに固定された部分は伸縮せず、その結果、圧着端子218a,218bと形状記憶合金部材212との結合の信頼性が向上する。   In the above configuration, a current is passed through the shape memory alloy member 212 via the bending members 215a and 215b by the energization circuit 217, and the shape memory alloy member 212 is heated and contracted to thereby move the movable body (here, the crimp terminal 218b). Can be displaced. At this time, the current flows from the bending member 215a to the bending member 215d in the shape memory alloy member 212, and does not flow to the crimp terminals 218a and 218b at both ends of the shape memory alloy member 212. Therefore, the portion of the shape memory alloy member 212 fixed to the crimping portions 218c of the crimp terminals 218a and 218b does not expand and contract, and as a result, the reliability of the coupling between the crimp terminals 218a and 218b and the shape memory alloy member 212 is improved. To do.

本実施の形態による効果を説明するため、図41(a)に示す比較例について説明する。この駆動装置211aは、両端に圧着端子218a,218bを取り付けた形状記憶合金部材212を直線状に配置したものである。一方の圧着端子218aは、基台216上に立設された固定ピン219aに取り付けられ、他方の圧着端子218bは、弾性部材214の一端に取り付けられている。弾性部材214の他端は、基台216に立設された固定ピン219bに固定されている。通電回路217の配線部217a(例えばケーブル)は、形状記憶合金部材212の固定端(圧着端子218a)と、可動端(圧着端子218b)とに接続される。通電回路217により形状記憶合金部材212に電流を流すことにより、移動体(圧着端子218b)が変位する。   In order to explain the effect of the present embodiment, a comparative example shown in FIG. The drive device 211a is configured by linearly arranging shape memory alloy members 212 having crimp terminals 218a and 218b attached to both ends. One crimp terminal 218 a is attached to a fixing pin 219 a erected on the base 216, and the other crimp terminal 218 b is attached to one end of the elastic member 214. The other end of the elastic member 214 is fixed to a fixing pin 219 b erected on the base 216. A wiring portion 217a (for example, a cable) of the energization circuit 217 is connected to a fixed end (crimp terminal 218a) and a movable end (crimp terminal 218b) of the shape memory alloy member 212. When a current is passed through the shape memory alloy member 212 by the energization circuit 217, the movable body (crimp terminal 218b) is displaced.

しかしながら、このような駆動装置211aでは、通電回路217の配線部217aが接続された圧着端子218bが移動するため、配線部217aから不要な外力が移動体(圧着端子218b)にかからないよう、配線部217aの周囲等にスペースを取る必要がある。また、配線部材217aと圧着端子218bとの例えば半田による電気的接合の信頼性が低下する可能性もある。   However, in such a driving device 211a, the crimping terminal 218b to which the wiring part 217a of the energization circuit 217 is connected moves, so that an unnecessary external force is not applied to the moving body (crimping terminal 218b) from the wiring part 217a. It is necessary to leave a space around 217a. In addition, the reliability of electrical connection between the wiring member 217a and the crimp terminal 218b by, for example, solder may be lowered.

また、図41(b)に示す駆動装置211bでは、形状記憶合金部材212をV字形状に折り曲げ、その両端に取り付けた圧着端子218を基台216に立設した2つの固定ピン219aにそれぞれ固定し、V字の折り曲げ部に移動体213を取り付けている。移動体213は、弾性体214の一端に固定されており、弾性体214の他端は、基台216に立設された固定ピン219bに固定されている。通電回路217は、2つの固定ピン219aに接続されており、固定ピン219a及び圧着端子218を介して形状記憶合金部材212に電流を供給する。   41B, the shape memory alloy member 212 is bent into a V shape, and the crimp terminals 218 attached to both ends thereof are fixed to the two fixing pins 219a erected on the base 216, respectively. The moving body 213 is attached to the V-shaped bent portion. The moving body 213 is fixed to one end of the elastic body 214, and the other end of the elastic body 214 is fixed to a fixing pin 219 b erected on the base 216. The energization circuit 217 is connected to the two fixing pins 219 a and supplies current to the shape memory alloy member 212 via the fixing pins 219 a and the crimp terminals 218.

しかしながら、このような駆動装置211bでは、圧着端子218に電流が流れるため、形状記憶合金部材212の圧着端子218に固定されている部分が伸縮を繰り返すこととなり、結合部分の信頼性が低下し、圧着端子218から形状記憶合金部材212が抜け、あるいは形状記憶合金部材212が切断されるなどの問題が発生し易い。   However, in such a driving device 211b, since a current flows through the crimp terminal 218, the portion fixed to the crimp terminal 218 of the shape memory alloy member 212 repeatedly expands and contracts, and the reliability of the joint portion decreases. Problems such as the shape memory alloy member 212 coming off from the crimp terminal 218 or the shape memory alloy member 212 being cut easily occur.

これに対し、本実施の形態に係る駆動装置211では、通電回路217の配線部を屈曲部材215a,215dに接続することができるため、配線部の影響が移動体(ここでは圧着端子218b)に及ぶことを防止することができる。従って、配線部の周囲等にスペースを確保する必要がなくなり、駆動装置211の構成を簡単にし、小型化することが可能になる。また、圧着端子218a,218bには電流が流れないため、形状記憶合金部材212の圧着端子218a,218bに固定された部分は伸縮を行わず、従って圧着端子218a,218bと形状記憶合金部材212との結合の信頼性が向上する。   On the other hand, in the driving device 211 according to the present embodiment, since the wiring part of the energization circuit 217 can be connected to the bending members 215a and 215d, the influence of the wiring part is exerted on the moving body (here, the crimp terminal 218b). Can be prevented. Therefore, it is not necessary to secure a space around the wiring portion, and the configuration of the driving device 211 can be simplified and downsized. Further, since no current flows through the crimp terminals 218a and 218b, the portion of the shape memory alloy member 212 fixed to the crimp terminals 218a and 218b does not expand and contract, and therefore the crimp terminals 218a and 218b and the shape memory alloy member 212 The reliability of coupling is improved.

実施の形態15.
図42は、本発明の実施の形態15に係る駆動装置221aの構成を示す斜視図である。上述した実施の形態14(図40)では、形状記憶合金部材212の可動端及び固定端にそれぞれ最も近い屈曲部材215d,215aから電流を供給したが、本実施の形態では、形状記憶合金部材222の固定端(圧着端子228a)に最も近い屈曲部材225aに電位V1を与え、隣接する屈曲部材225bを接地し、さらに隣接する屈曲部材225cに電位V2を与え、可動端(圧着端子228b)に最も近い屈曲部材225dを接地している。圧着端子228aを固定しているピン229aには電位V1を与え、圧着端子228aに電流が流れないようにする。他の構成は、実施の形態14と同様である。
ここで、屈曲部材225a〜225dは、形状記憶合金部材222を屈曲させる屈曲手段を構成している。屈曲部材225a〜225dの周面の形状記憶合金部材222に当接する部分は、屈曲手段において形状記憶合金部材222に当接する当接部を構成している。基台226は、屈曲部材225a〜225dを保持する保持手段を構成している。
Embodiment 15 FIG.
FIG. 42 is a perspective view showing the configuration of the drive device 221a according to Embodiment 15 of the present invention. In the fourteenth embodiment (FIG. 40) described above, current is supplied from the bending members 215d and 215a closest to the movable end and the fixed end of the shape memory alloy member 212, but in the present embodiment, the shape memory alloy member 222 is provided. The potential V1 is applied to the bending member 225a closest to the fixed end (crimp terminal 228a), the adjacent bending member 225b is grounded, the potential V2 is applied to the adjacent bending member 225c, and the movable end (crimp terminal 228b) is the most. The near bending member 225d is grounded. A potential V1 is applied to the pin 229a fixing the crimp terminal 228a so that no current flows through the crimp terminal 228a. Other configurations are the same as those in the fourteenth embodiment.
Here, the bending members 225 a to 225 d constitute bending means for bending the shape memory alloy member 222. The portions that contact the shape memory alloy member 222 on the peripheral surfaces of the bending members 225a to 225d constitute contact portions that contact the shape memory alloy member 222 in the bending means. The base 226 constitutes a holding unit that holds the bending members 225a to 225d.

以上の構成において、電流は、形状記憶合金部材222の屈曲部材225cから屈曲部材225bまでの区間、屈曲部材225cから屈曲部材225dまでの区間、及び、屈曲部材225aから屈曲部材225bまでの区間を流れる。その結果、形状記憶合金部材222の各区間が加熱されて収縮し、移動体(ここでは圧着端子228b)が変位する。   In the above configuration, the current flows through the section of the shape memory alloy member 222 from the bending member 225c to the bending member 225b, the section from the bending member 225c to the bending member 225d, and the section from the bending member 225a to the bending member 225b. . As a result, each section of the shape memory alloy member 222 is heated and contracts, and the movable body (here, the crimp terminal 228b) is displaced.

すなわち、電流は、形状記憶合金部材222の全体に一律に流れるのではなく、区間毎に独立に流れることになる。形状記憶合金部材222の各区間を流れる電流の抵抗値は、一律に電流が流れる場合と比較して小さくなるため、実施の形態14と同様の電流値を得る場合であっても、必要な電圧を小さく抑えることができる。   That is, the current does not flow uniformly throughout the shape memory alloy member 222 but flows independently for each section. Since the resistance value of the current flowing through each section of the shape memory alloy member 222 is uniformly smaller than when the current flows uniformly, the necessary voltage is obtained even when the same current value as in the fourteenth embodiment is obtained. Can be kept small.

また、例えば屈曲部材225aに与える電位を0とすることにより、形状記憶合金部材222の2辺(屈曲部材225b,225c間及び屈曲部材225c,225d間)にのみ電流を流すなど、電流を流す部分を選択することも可能になる。このようにすれば、形状記憶合金部材222のうち、電流が流れた部分だけが伸縮することになるため、移動体(ここでは圧着端子228b)の変位量を選択することが可能になる。   Further, for example, by setting the electric potential to be applied to the bending member 225a to 0, the current flows such that the current flows only to two sides of the shape memory alloy member 222 (between the bending members 225b and 225c and between the bending members 225c and 225d). Can also be selected. In this way, only the portion of the shape memory alloy member 222 where the current flows expands and contracts, so that it is possible to select the displacement amount of the moving body (here, the crimp terminal 228b).

形状記憶合金部材の長手方向に部分的に電流を流すことにより変位量を可変とする構成において、形状記憶合金部材をピンなどの給電部材(ここでは屈曲部材225a〜225d)に当接させて給電する方法は有効である。他の方法としては、形状記憶合金部材に給電用のリード線を取り付ける方法が考えられるが、変位量の選択種類を多くするためには多数のリード線を取り付けなければならない。そのため、形状記憶合金部材に外力の影響等が及ばないようにするには、リード線を配線する大きな空間が必要となり、駆動装置の小型化が困難となる。また、形状記憶合金部材の半田付けの信頼性が高くない場合には圧着端子等を使用することになるが、数が多くなるとやはり大きな空間が必要になるという問題が生じる。これに対し、本実施の形態のように、形状記憶合金部材222をピン状の屈曲部材225a〜225dに当接させて給電する方法であれば、多数のリード線を取り付ける必要がなく、従って、変位量を選択可能にしつつ駆動装置を小型化することができる。   In a configuration in which the amount of displacement is variable by flowing a current partially in the longitudinal direction of the shape memory alloy member, the shape memory alloy member is brought into contact with a power supply member such as a pin (here, bending members 225a to 225d) to supply power. How to do is effective. As another method, a method of attaching a lead wire for power feeding to the shape memory alloy member is conceivable, but in order to increase the number of types of displacement to be selected, a large number of lead wires must be attached. For this reason, in order to prevent the shape memory alloy member from being affected by external force, a large space for wiring the lead wires is required, and it is difficult to reduce the size of the drive device. In addition, when the reliability of soldering of the shape memory alloy member is not high, a crimp terminal or the like is used. However, when the number increases, there is a problem that a large space is required. On the other hand, as in the present embodiment, if the power is supplied by bringing the shape memory alloy member 222 into contact with the pin-shaped bending members 225a to 225d, there is no need to attach a large number of lead wires. The drive device can be reduced in size while making it possible to select the amount of displacement.

本実施の形態では、ピン状の屈曲部材225a〜225d(給電部材)に形状記憶合金部材222を略90度巻き付けているが、巻き付け角は略90度に限らず、屈曲部材225a〜225dもピン状に限らない。また、バネ接点のような他の接点を用いて形状記憶合金部材222と給電部材とを当接させて給電してもよい。このようにしても、駆動装置の小型化を実現することができる。   In this embodiment, the shape memory alloy member 222 is wound about 90 degrees around the pin-shaped bending members 225a to 225d (power feeding members), but the winding angle is not limited to about 90 degrees, and the bending members 225a to 225d are also pins. It is not limited to the shape. Further, the shape memory alloy member 222 and the power supply member may be brought into contact with each other using another contact such as a spring contact to supply power. Even in this way, it is possible to achieve downsizing of the driving device.

また、図43に示すように、屈曲部材225a〜225dに形状記憶合金部材222を複数回巻き付けた場合でも、同じ区間(例えば、屈曲部材225a,225bの間)の形状記憶合金部材222に並列に電流が流れるため、屈曲部材225a〜225dに形状記憶合金部材222を1回だけ巻き付けた場合(図42)と同様の電流供給が可能になる。
また、形状記憶合金部材222の全長を長くすることができるため、駆動装置221bを小型化しても、移動体(圧着端子228b)の十分な変位量を得ることができる。
43, even when the shape memory alloy member 222 is wound around the bending members 225a to 225d a plurality of times, the shape memory alloy member 222 in the same section (for example, between the bending members 225a and 225b) is arranged in parallel. Since the current flows, the same current supply as when the shape memory alloy member 222 is wound only once around the bending members 225a to 225d (FIG. 42) becomes possible.
In addition, since the total length of the shape memory alloy member 222 can be increased, a sufficient amount of displacement of the moving body (crimp terminal 228b) can be obtained even if the drive device 221b is downsized.

以上説明したように、本実施の形態によれば、電流を形状記憶合金部材222に区間毎に流すことにより、電圧を低く抑えることが可能になり、また、移動体の変位量を選択することも可能になる。特に、携帯電話装置などの携帯端末装置では、使用できる電圧が低く限定されている場合が多いため、低電圧での駆動が可能で且つ小型化に適している本実施の形態に係る駆動装置は、きわめて有用である。   As described above, according to the present embodiment, it is possible to keep the voltage low by flowing the current to the shape memory alloy member 222 for each section, and to select the displacement amount of the moving body. Will also be possible. In particular, in portable terminal devices such as mobile phone devices, the usable voltage is often limited to a low level. Therefore, the driving device according to this embodiment that can be driven at a low voltage and is suitable for downsizing is provided. Is very useful.

実施の形態16.
図44は、本発明の実施の形態16に係る駆動装置231aを示す斜視図である。上述した実施の形態14では、形状記憶合金部材212の全長に亘って一律に電流を流していたのに対し、本実施の形態では、形状記憶合金部材232に、区間毎に異なる電流を流すようにしている。これは、形状記憶合金部材232には、弾性部材234の付勢力の他に屈曲部材との摩擦負荷が加わるが、その摩擦負荷の大きさは形状記憶合金部材232の長手方向の位置によって異なることを考慮したものである。
Embodiment 16 FIG.
FIG. 44 is a perspective view showing drive device 231a according to Embodiment 16 of the present invention. In the fourteenth embodiment described above, the current is made to flow uniformly over the entire length of the shape memory alloy member 212, whereas in the present embodiment, a different current is passed through the shape memory alloy member 232 for each section. I have to. This is because the shape memory alloy member 232 is subjected to a friction load with the bending member in addition to the biasing force of the elastic member 234, but the magnitude of the friction load varies depending on the position of the shape memory alloy member 232 in the longitudinal direction. Is taken into account.

まず、本実施の形態の前提となる実験について説明する。図45に示す実験では、接触比率が33%の円筒形状の屈曲部材235にワイヤ状の形状記憶合金部材232を巻き付け、形状記憶合金部材232の直線部分(屈曲部材235に巻かれていない部分)のみに通電回路237により電流を流している。形状記憶合金部材232の通電部分の長さは、50mmとする。形状記憶合金部材232の通電部分の一端(固定端)は、固定ピン239aに固定し、通電部分の他端(可動端233)の変位量を測定する。なお、弾性部材の代わりに、形状記憶合金部材232の変位により負荷量が変化しないよう、重さ30gの重り234aを形状記憶合金部材232の可動端に取り付けている。屈曲部材235は、POMにより形成され、図36(b)で示したように接触比率33%で直径10mmの略円筒状部材である。形状記憶合金部材232を屈曲部材235に巻き付けることによる摩擦負荷の影響を評価するため、形状記憶合金部材232を円筒部材235に1周(360度)、2周(720度)及び3週(1080度)巻き付けてそれぞれ実験を行う。巻き付け数が多いほど、摩擦負荷が大きいことになる。表5及び図46には、電流値を60mAから180mAまで変化させ、上記可動端233の変位量Rを測定した結果を示す。なお、図46では、縦軸は形状記憶合金部材232の上記可動端233の変位量R(mm)を示し、横軸は形状記憶合金部材232に流す電流I(mA)を示す。また、符号a,b,cは、それぞれ、形状記憶合金部材232を1周(360度)、2周(720度)及び3週(1080度)巻いた場合のデータに対応する。   First, an experiment that is a premise of the present embodiment will be described. In the experiment shown in FIG. 45, a wire-shaped shape memory alloy member 232 is wound around a cylindrical bending member 235 having a contact ratio of 33%, and a straight portion of the shape memory alloy member 232 (a portion not wound around the bending member 235). Only through the energization circuit 237 is a current passed. The length of the energized portion of the shape memory alloy member 232 is 50 mm. One end (fixed end) of the energized portion of the shape memory alloy member 232 is fixed to the fixed pin 239a, and the displacement amount of the other end (movable end 233) of the energized portion is measured. Instead of the elastic member, a weight 234 a having a weight of 30 g is attached to the movable end of the shape memory alloy member 232 so that the load does not change due to the displacement of the shape memory alloy member 232. The bending member 235 is formed of POM and is a substantially cylindrical member having a contact ratio of 33% and a diameter of 10 mm as shown in FIG. In order to evaluate the influence of the frictional load caused by winding the shape memory alloy member 232 around the bending member 235, the shape memory alloy member 232 is placed on the cylindrical member 235 once (360 degrees), twice (720 degrees), and three weeks (1080). Degree) Wrap it up and perform each experiment. The greater the number of windings, the greater the friction load. Table 5 and FIG. 46 show the results of measuring the displacement amount R of the movable end 233 by changing the current value from 60 mA to 180 mA. In FIG. 46, the vertical axis represents the displacement amount R (mm) of the movable end 233 of the shape memory alloy member 232, and the horizontal axis represents the current I (mA) passed through the shape memory alloy member 232. Symbols a, b, and c correspond to data when the shape memory alloy member 232 is wound once (360 degrees), twice (720 degrees), and three weeks (1080 degrees), respectively.

Figure 2005337262
Figure 2005337262

表5及び図46から、形状記憶合金部材232を1周巻いた場合(a)には、電流Iが80mAの付近に極値点があり、80mA以上電流を流しても変位量Rは大きく変化しないことが分かる。また、形状記憶合金部材232を2周巻いた場合(b)には、電流Iが100mAの付近に極値点があり、100mA以上電流を流しても変位量Rは大きく変化しないことが分かる。形状記憶合金部材232を3周巻いた場合(c)には、電流Iが160mA付近に極値点があり、160mA以上電流を流しても変位量Rは大きく変化しないことが分かる。この結果から、摩擦力に応じて最適な電流を選択することで、駆動装置231の消費電力を抑えつつ、ほぼ最大の変位量を得ることができることが分かる。   From Table 5 and FIG. 46, when the shape memory alloy member 232 is wound once (a), the current I has an extreme point in the vicinity of 80 mA, and the displacement amount R changes greatly even when a current of 80 mA or more flows. I understand that I don't. When the shape memory alloy member 232 is wound twice (b), it can be seen that there is an extreme point in the vicinity of the current I of 100 mA, and the displacement amount R does not change greatly even when a current of 100 mA or more is passed. When the shape memory alloy member 232 is wound three times (c), it can be seen that the current I has an extreme point in the vicinity of 160 mA, and the displacement amount R does not change greatly even when a current of 160 mA or more flows. From this result, it can be seen that by selecting an optimal current according to the frictional force, it is possible to obtain a substantially maximum amount of displacement while suppressing the power consumption of the drive device 231.

この結果を踏まえ、本実施の形態に係る駆動装置231aについて説明する。図44に示すように、本実施の形態に係る駆動装置231aでは、基台236上には、四角形の各頂点をなす位置に、4本の屈曲部材235a,235b,235c,235dがそれぞれ配置されている。屈曲部材235a〜235dの内側には、4本の屈曲部材235e,235f,235g,235hが配置され、更にその内側に、4本の屈曲部材235i,235j,235k,235lが配置されている。基板236の略中央部には、13本目の屈曲部材235m及び固定ピン239bが配置されている。   Based on this result, the drive device 231a according to the present embodiment will be described. As shown in FIG. 44, in the driving device 231a according to the present embodiment, four bending members 235a, 235b, 235c, and 235d are arranged on the base 236 at positions that form the vertices of a quadrangle. ing. Four bending members 235e, 235f, 235g, and 235h are arranged inside the bending members 235a to 235d, and further, four bending members 235i, 235j, 235k, and 235l are arranged inside the bending members 235a to 235d. A thirteenth bending member 235 m and a fixing pin 239 b are disposed at a substantially central portion of the substrate 236.

ワイヤ状の形状記憶合金部材232は、基台236上の合計13本の屈曲部材235a〜235mに巻き付けられている。すなわち、形状記憶合金部材232は、最外側の屈曲部材235a〜235dを1周したのち、その内側の屈曲部材235e〜235hを1周し、さらに内側の屈曲部材235i〜235lを1周し、屈曲部材235mで屈曲されている。屈曲部材235mで屈曲された形状記憶合金部材232の一端(固定端)には圧着端子239dが取り付けられ、この圧着端子239dが固定ピン239bに固定されている。形状記憶合金部材232の他端(可動端)には圧着端子239cが取り付けられ、この圧着端子239cは、基台236の外周近傍において、弾性部材234の一端に固定されている。弾性部材234の他端は、基台236上に立設された固定ピン239aに固定されている。   The wire-shaped shape memory alloy member 232 is wound around a total of 13 bending members 235 a to 235 m on the base 236. That is, the shape memory alloy member 232 makes one round of the outermost bending members 235a to 235d, then makes one round of the inner bending members 235e to 235h, and further makes one round of the inner bending members 235i to 235l. It is bent by the member 235m. A crimp terminal 239d is attached to one end (fixed end) of the shape memory alloy member 232 bent by the bending member 235m, and the crimp terminal 239d is fixed to the fixing pin 239b. A crimp terminal 239 c is attached to the other end (movable end) of the shape memory alloy member 232, and the crimp terminal 239 c is fixed to one end of the elastic member 234 in the vicinity of the outer periphery of the base 236. The other end of the elastic member 234 is fixed to a fixing pin 239 a erected on the base 236.

尚、屈曲部材235a〜235mは、形状記憶合金部材232を屈曲させる屈曲手段を構成している。屈曲部材235a〜235mの周面の形状記憶合金部材232に当接する部分は、屈曲手段において形状記憶合金部材232に当接する当接部を構成している。基台236は、屈曲部材235a〜235mを保持する保持手段を構成している。   The bending members 235a to 235m constitute bending means for bending the shape memory alloy member 232. The portions that contact the shape memory alloy member 232 on the peripheral surfaces of the bending members 235a to 235m constitute contact portions that contact the shape memory alloy member 232 in the bending means. The base 236 constitutes a holding unit that holds the bending members 235a to 235m.

形状記憶合金部材232の可動端に一番近い屈曲部材235aには電位Vaを与え、形状記憶合金部材232が屈曲部材235aから1周巻かれた位置の屈曲部材235eを接地する。さらに、形状記憶合金部材232が屈曲部材235aから2周巻かれた位置の屈曲部材235iには電位Vbを与え、2周半巻かれた位置の屈曲部材235kを接地する。形状記憶合金部材232の固定端に最も近い屈曲部材235mには電位Vcを与える。
これにより、形状記憶合金部材232の屈曲部材235aから屈曲部材235eまでの区間を電流Iaが流れ、屈曲部材235iから屈曲部材235eまでの区間を電流Ibが流れる。また、屈曲部材235iから屈曲部材235kまでの区間を電流Icが流れ、屈曲部材235mから屈曲部材235kまでの区間を電流Idが流れる。なお、弾性部材234として導電性のコイルバネを用い、固定ピン239aに屈曲部材235aと同じ電圧(Va)を与えることにより、圧着端子239cに電流が流れないようにしている。また、固定ピン239bに屈曲部材235mと同じ電圧(Vc)を与えることにより、圧着端子239dにも電流が流れないようにしている。圧着端子239c,239dに電流が流れないため、上述したように圧着端子239c,239dのかしめ部239eにおいて形状記憶合金部材232が伸縮せず、結合の信頼性が向上する。
A potential Va is applied to the bending member 235a closest to the movable end of the shape memory alloy member 232, and the bending member 235e at the position where the shape memory alloy member 232 is wound around the bending member 235a by one turn is grounded. Further, a potential Vb is applied to the bending member 235i at the position where the shape memory alloy member 232 is wound twice from the bending member 235a, and the bending member 235k at the position wound twice and a half is grounded. A potential Vc is applied to the bending member 235m closest to the fixed end of the shape memory alloy member 232.
As a result, the current Ia flows in the section from the bending member 235a to the bending member 235e of the shape memory alloy member 232, and the current Ib flows in the section from the bending member 235i to the bending member 235e. Further, the current Ic flows through the section from the bending member 235i to the bending member 235k, and the current Id flows through the section from the bending member 235m to the bending member 235k. Note that a conductive coil spring is used as the elastic member 234, and the same voltage (Va) as that of the bending member 235a is applied to the fixing pin 239a, so that no current flows through the crimp terminal 239c. Further, the same voltage (Vc) as that of the bending member 235m is applied to the fixing pin 239b so that no current flows through the crimp terminal 239d. Since no current flows through the crimp terminals 239c and 239d, the shape memory alloy member 232 does not expand and contract at the crimped portion 239e of the crimp terminals 239c and 239d as described above, and the reliability of the coupling is improved.

形状記憶合金部材232では、可動端(圧着端子239c)に近いほど、通電時の摩擦負荷が小さい。また、電流が流れる区間の長さが長ければ、同一電流に対する変位量も大きいため、摩擦負荷が同程度であっても必要な電流値は小さくて済む。屈曲部材235eから屈曲部材235iまでの区間(電流Ibが流れる区間)は、屈曲部材235aから屈曲部材235eまでの区間(電流Iaが流れる区間)と比較して、摩擦負荷が大きく区間長さが若干短いため、電流Ibは電流Iaよりも大きく設定する。図46の実験結果を参照し、電流Iaは例えば80mAに設定し、電流Ibは例えば100mAに設定する。また、屈曲部材235iから屈曲部材235kまでの区間(電流Icが流れる区間)は、屈曲部材235eから屈曲部材235iまでの区間(電流Ibが流れる区間)と比較して、摩擦負荷が大きく区間長も短いため、電流Icは電流Ibよりも大きく設定する。屈曲部材235mから屈曲部材235kまでの区間(電流Idが流れる区間)は、屈曲部材235iから屈曲部材235kまでの区間(電流Icが流れる区間)と比較して、摩擦負荷が若干大きく区間長は同じであるため、電流Idは電流Icよりも大きく、あるいはほぼ同じに設定する。電流Ic,Idは、図46の実験結果から、例えば160mAに設定する。   In the shape memory alloy member 232, the closer to the movable end (crimp terminal 239c), the smaller the friction load during energization. Further, if the length of the section through which the current flows is long, the amount of displacement with respect to the same current is large, so that the necessary current value is small even if the friction load is the same. The section from the bending member 235e to the bending member 235i (section in which the current Ib flows) has a larger friction load than the section from the bending member 235a to the bending member 235e (section in which the current Ia flows), and the section length is slightly longer. Since it is short, the current Ib is set larger than the current Ia. With reference to the experimental result of FIG. 46, the current Ia is set to 80 mA, for example, and the current Ib is set to 100 mA, for example. The section from the bending member 235i to the bending member 235k (section in which the current Ic flows) has a larger friction load and the section length than the section from the bending member 235e to the bending member 235i (section in which the current Ib flows). Since it is short, the current Ic is set larger than the current Ib. The section from the bending member 235m to the bending member 235k (section in which the current Id flows) has a slightly larger friction load and the same section length than the section from the bending member 235i to the bending member 235k (section in which the current Ic flows). Therefore, the current Id is set larger than or substantially the same as the current Ic. The currents Ic and Id are set to 160 mA, for example, based on the experimental results of FIG.

以上のように、形状記憶合金部材232の巻き付け位置に応じて、摩擦負荷を考慮して、形状記憶合金部材232に流れる電流値を変えることにより、消費電力を少なく抑えながら、最大限の変位量を得ることができる。   As described above, the maximum amount of displacement can be achieved while reducing the power consumption by changing the value of the current flowing through the shape memory alloy member 232 in consideration of the friction load according to the winding position of the shape memory alloy member 232. Can be obtained.

なお、図44に示した構成では、形状記憶合金部材232の可動端239c(及び弾性部材234)を最外側に配置しているが、固定端239dを最外側に配置し、可動端239cを最内側に配置することもできる。但し、可動端239cを最外側に配置した方が、低い消費電力で大きな変位が得られる。これは、可動端239cを最外側に配置した方が、形状記憶合金部材232の外周部分の長さが長くなるため変位量が大きくなる上、弾性部材234による負荷及び屈曲部材との摩擦負荷の総和が(変位量に対して)相対的に小さくなるため、所望の変位量を得るために必要な電流値が小さくて済むためである。   44, the movable end 239c (and the elastic member 234) of the shape memory alloy member 232 is disposed on the outermost side, but the fixed end 239d is disposed on the outermost side and the movable end 239c is disposed on the outermost side. It can also be placed inside. However, if the movable end 239c is arranged on the outermost side, a large displacement can be obtained with low power consumption. This is because when the movable end 239c is arranged on the outermost side, the length of the outer peripheral portion of the shape memory alloy member 232 becomes longer, so the amount of displacement increases, and the load of the elastic member 234 and the friction load with the bending member are increased. This is because the total sum is relatively small (relative to the amount of displacement), so that a current value necessary to obtain a desired amount of displacement can be small.

図47は、本実施の形態における他の電圧付与例を示す斜視図である。図47に示す例では、屈曲部材235aを接地し、形状記憶合金部材232が半周巻かれた位置の屈曲部材235cに電位Vaを与える。同様に、形状記憶合金部材232が一周巻かれた位置の屈曲部材235eを接地し、一周半巻かれた位置の屈曲部材235gに電位Vbを与える。さらに、形状記憶合金部材232が二周巻かれた位置の屈曲部材235iを接地し、二周半巻かれた位置の屈曲部材235kに電位Vcを付与し、三周巻かれた位置の屈曲部材235mを接地する。これにより、屈曲部材235cから屈曲部材235aに電流Iaが流れ、屈曲部材235cから屈曲部材235eに電流Ibが流れる。また、屈曲部材235gから屈曲部材235eに電流Icが流れ、屈曲部材235gから屈曲部材235iに電流Idが流れる。さらに、屈曲部材235kから屈曲部材235iに電流Ieが流れ、屈曲部材235kから屈曲部材235mに電流Ifが流れる。各電流値は、Ia≦Ib≦Ic≦Id≦Ie≦Ifと設定することができ、例えば、図46の実験結果から電流Ia及び電流Ibは約80mA、電流Ic及び電流Idは約100mA、電流Ie及び電流Ifは約160mAに設定することができる。なお、図47に示した構成例では、電源回路として、定電圧回路及び定電流回路のいずれも選択可能である。   FIG. 47 is a perspective view showing another example of voltage application in the present embodiment. In the example shown in FIG. 47, the bending member 235a is grounded, and the electric potential Va is applied to the bending member 235c at the position where the shape memory alloy member 232 is wound half a turn. Similarly, the bending member 235e at the position where the shape memory alloy member 232 is wound once is grounded, and the potential Vb is applied to the bending member 235g at the position where it is wound half a turn. Further, the bending member 235i at the position where the shape memory alloy member 232 is wound twice is grounded, the potential Vc is applied to the bending member 235k at the position where the shape memory alloy member 232 is wound twice, and the bending member 235m at the position where the shape memory alloy member 232 is wound three times. Is grounded. As a result, the current Ia flows from the bending member 235c to the bending member 235a, and the current Ib flows from the bending member 235c to the bending member 235e. Further, a current Ic flows from the bending member 235g to the bending member 235e, and a current Id flows from the bending member 235g to the bending member 235i. Further, the current Ie flows from the bending member 235k to the bending member 235i, and the current If flows from the bending member 235k to the bending member 235m. Each current value can be set as Ia ≦ Ib ≦ Ic ≦ Id ≦ Ie ≦ If. For example, from the experimental results of FIG. 46, current Ia and current Ib are about 80 mA, current Ic and current Id are about 100 mA, current Ie and current If can be set to about 160 mA. In the configuration example shown in FIG. 47, either a constant voltage circuit or a constant current circuit can be selected as the power supply circuit.

また、電流Ia〜Ifの全ての電流を流す代わりに、選択的に電流を流すようにしてもよい。形状記憶合金部材232の全長に対し、電流を流す部分(伸縮させる部分)と流さない部分(伸縮させない部分)とを選択可能にすることにより、形状記憶合金部材232の変位量を可変とすることができる。   Further, instead of supplying all the currents Ia to If, a current may be selectively passed. The displacement amount of the shape memory alloy member 232 can be made variable by making it possible to select a portion through which an electric current flows (a portion that expands and contracts) and a portion that does not flow (a portion that does not expand and contract) with respect to the entire length of the shape memory alloy member 232. Can do.

図48は、本実施の形態に係る駆動装置231cを示す斜視図である。通電回路237cは、定電流回路238a,238b,238cを有している。定電流回路238aは、一方の端子が屈曲部材235mに接続され、他方の端子が屈曲部材235aに接続されている。定電流回路238bは、一方の端子が屈曲部材235mに接続され、他方の端子が屈曲部材235eに接続されている。定電流回路238cは、一方の端子が屈曲部材235mに接続され、他方の端子が屈曲部材235iに接続されている。屈曲部材235mと屈曲部材235iとの間には、定電流回路238a,238b,238cにより、電流Ia+Ib+Icが流れる。また、屈曲部材235iと屈曲部材235eとの間には、定電流回路238a,238bにより、電流Ia+Ibが流れる。また、屈曲部材235eと屈曲部材235aとの間には、定電流回路238aにより、電流Iaが流れる。すなわち、形状記憶合金部材232のうち、屈曲部材235mと屈曲部材235iとの間を流れる電流が最も多く、次に屈曲部材235iと屈曲部材235eとの間を流れる電流が多く、屈曲部材235eと屈曲部材235aとの間を流れる電流が最も少なくなる。具体的には、図46の実験結果を考慮し、最も大きい電流(Ia+Ib+Ic)を160mAとし、次に大きい電流(Ia+Ib)を100mAとし、最も小さい電流(Ia)を80mAとすることができる。この場合、電流Ibを20mAとし、電流Icを60mAと設定することができる。   FIG. 48 is a perspective view showing drive device 231c according to the present embodiment. The energization circuit 237c includes constant current circuits 238a, 238b, and 238c. In the constant current circuit 238a, one terminal is connected to the bending member 235m, and the other terminal is connected to the bending member 235a. In the constant current circuit 238b, one terminal is connected to the bending member 235m, and the other terminal is connected to the bending member 235e. The constant current circuit 238c has one terminal connected to the bending member 235m and the other terminal connected to the bending member 235i. A current Ia + Ib + Ic flows between the bending member 235m and the bending member 235i by the constant current circuits 238a, 238b, 238c. In addition, a current Ia + Ib flows between the bending member 235i and the bending member 235e by the constant current circuits 238a and 238b. Further, a current Ia flows between the bending member 235e and the bending member 235a by the constant current circuit 238a. That is, among the shape memory alloy members 232, the most current flows between the bending member 235m and the bending member 235i, and then the most current flows between the bending member 235i and the bending member 235e, and the bending member 235e and the bending member 235e are bent. The current flowing between the member 235a is minimized. Specifically, considering the experimental result of FIG. 46, the largest current (Ia + Ib + Ic) can be set to 160 mA, the next largest current (Ia + Ib) can be set to 100 mA, and the smallest current (Ia) can be set to 80 mA. In this case, the current Ib can be set to 20 mA, and the current Ic can be set to 60 mA.

図49は、図48に示した通電回路237cのブロック図である。図49に示すように、形状記憶合金部材232の全長L(ここでは、屈曲部材235aから屈曲部材235mまでの長さ)を15mmとし、形状記憶合金部材232の屈曲部材235a,235e間の長さL3、屈曲部材235e,235i間の長さL2、及び屈曲部材235i,235m間の長さL1を各々5mmとし、形状記憶合金部材232の抵抗値を0.5Ω/mmとする。形状記憶合金部材232の屈曲部材235mと屈曲部材235iとの間に電流Ia+Ib+Ic(160mA)が流れ、屈曲部材235iと屈曲部材235eとの間に電流Ia+Ib(100mA)が流れ、屈曲部材235eと屈曲部材235aとの間に電流Ia(80mA)が流れると、全体の消費電力は0.105Wとなる。これに対し、図50に比較例として示すブロック図のように、形状記憶合金部材232の全長L(15mm)に亘って一定の電流160mAを流した場合の消費電力は0.192Wとなる。この結果から、図49に示したように電流を分離して供給することにより、消費電力を55%に低減できることが分かる。   FIG. 49 is a block diagram of the energization circuit 237c shown in FIG. As shown in FIG. 49, the total length L of the shape memory alloy member 232 (here, the length from the bending member 235a to the bending member 235m) is 15 mm, and the length between the bending members 235a and 235e of the shape memory alloy member 232 is as shown in FIG. L3, the length L2 between the bending members 235e and 235i, and the length L1 between the bending members 235i and 235m are each 5 mm, and the resistance value of the shape memory alloy member 232 is 0.5 Ω / mm. The current Ia + Ib + Ic (160 mA) flows between the bending member 235m and the bending member 235i of the shape memory alloy member 232, the current Ia + Ib (100 mA) flows between the bending member 235i and the bending member 235e, and the bending member 235e and the bending member. When a current Ia (80 mA) flows between 235a and the entire power consumption, it becomes 0.105W. In contrast, as shown in the block diagram of FIG. 50 as a comparative example, the power consumption when a constant current of 160 mA is passed over the entire length L (15 mm) of the shape memory alloy member 232 is 0.192 W. From this result, it can be seen that the power consumption can be reduced to 55% by supplying the current separately as shown in FIG.

図51は、図48に示した定電流回路238a〜238cを説明するための回路図である。定電流回路238cにおいて、抵抗238d(R0)は、電流値検出抵抗である。この抵抗238d(R0)に電流238e(Ic)を流すと、抵抗238d(R0)の両端にIc×R0の電位差が生じる。この電位差はオペアンプ238fのマイナス入力端子238gへの入力電圧となる。また、抵抗238h(R1)及び可変抵抗238i(VR)により、オペアンプ238fのプラス入力端子238jへの入力電圧(基準電圧)が設定される。オペアンプ238fは、FET(電界効果トランジスタ)238kのG端子238lの電位を変化させ、D端子238mからS端子238nに流れる電流を調整し、オペアンプ238fのマイナス入力端子238gの電位をプラス入力端子238jの電位と一致させるように動作する。その結果、オペアンプ238fのマイナス入力端子238gの電位は一定となり、形状記憶合金部材232の抵抗値とは無関係に電流(Ic=V/R0)238eは一定となる。定電流回路238a,238bも、定電流回路238cと同様に動作する。   FIG. 51 is a circuit diagram for explaining the constant current circuits 238a to 238c shown in FIG. In the constant current circuit 238c, the resistor 238d (R0) is a current value detection resistor. When a current 238e (Ic) is passed through the resistor 238d (R0), a potential difference of Ic × R0 is generated at both ends of the resistor 238d (R0). This potential difference becomes an input voltage to the negative input terminal 238g of the operational amplifier 238f. Further, an input voltage (reference voltage) to the plus input terminal 238j of the operational amplifier 238f is set by the resistor 238h (R1) and the variable resistor 238i (VR). The operational amplifier 238f changes the potential of the G terminal 238l of the FET (field effect transistor) 238k, adjusts the current flowing from the D terminal 238m to the S terminal 238n, and changes the potential of the negative input terminal 238g of the operational amplifier 238f to the positive input terminal 238j. Operates to match the potential. As a result, the potential of the negative input terminal 238g of the operational amplifier 238f becomes constant, and the current (Ic = V / R0) 238e becomes constant regardless of the resistance value of the shape memory alloy member 232. The constant current circuits 238a and 238b operate in the same manner as the constant current circuit 238c.

なお、ここでは、定電流回路238a〜238cを吸い込み型の定電流回路として説明したが、これに限定されるものではなく、吐き出し方の定電流回路を用いることも可能である。この場合には、形状記憶合金部材2の固定端に最も近い屈曲部材235mに接地電位を与え、各電流Ia,Ib,Icの向きは、図49とは逆になる。   Here, the constant current circuits 238a to 238c have been described as the suction type constant current circuit, but the present invention is not limited to this, and a discharge constant current circuit may be used. In this case, a ground potential is applied to the bending member 235m closest to the fixed end of the shape memory alloy member 2, and the directions of the currents Ia, Ib, and Ic are opposite to those in FIG.

以上説明したように、本実施の形態によれば、形状記憶合金部材232の各部分に摩擦負荷等に応じた電流を適宜流すようにすることで、少ない消費電力で、大きな変位量を得ることが可能になる。   As described above, according to the present embodiment, a large amount of displacement can be obtained with low power consumption by appropriately supplying a current corresponding to a friction load or the like to each part of the shape memory alloy member 232. Is possible.

実施の形態17.
図52は、本発明の実施の形態17に係る駆動装置241aの構成を示す斜視図である。上述した実施の形態14〜16では、形状記憶合金部材をピン状の複数の屈曲部材に巻き付け、その屈曲部材を介して形状記憶合金部材に電流を流していたが、本実施の形態では、さらに、ピン状の屈曲部材を電子回路基板に機械的かつ電気的に接合するようにしたものである。
Embodiment 17. FIG.
FIG. 52 is a perspective view showing the configuration of the drive device 241a according to Embodiment 17 of the present invention. In Embodiments 14 to 16 described above, the shape memory alloy member is wound around a plurality of pin-shaped bending members, and an electric current is passed through the shape memory alloy member through the bending members. The pin-shaped bending member is mechanically and electrically joined to the electronic circuit board.

図52に示すように、駆動装置241aでは、電子回路基板249上に、ピン状の屈曲部材245a,245b,245c,245dが機械的に接合された状態で立設されている。さらに、屈曲部材245a〜245dのうち、少なくとも屈曲部材245a,245dは、電子回路基板249に電気的にも接合されている。また、屈曲部材245a,245dの間には、屈曲部材245aに近い方から順に、固定ピン249a,249bが立設されている。   As shown in FIG. 52, in the driving device 241a, pin-shaped bending members 245a, 245b, 245c, and 245d are erected on an electronic circuit board 249 in a mechanically joined state. Further, among the bending members 245 a to 245 d, at least the bending members 245 a and 245 d are electrically joined to the electronic circuit board 249. In addition, fixing pins 249a and 249b are erected between the bending members 245a and 245d in order from the side closer to the bending member 245a.

形状記憶合金部材242は、その一端(固定端)が圧着端子248aを介して固定ピン249aに固定されており、屈曲部材245a,245b,245c,245dにそれぞれ略90度ずつ巻き付けられている。形状記憶合金部材242の他端(可動端)は、圧着端子248bを介して弾性部材244の一端に固定されており、弾性部材244の他端は固定ピン249bに固定されている。その他の構成は、実施の形態14と同様である。   One end (fixed end) of the shape memory alloy member 242 is fixed to the fixing pin 249a via the crimp terminal 248a, and is wound around the bending members 245a, 245b, 245c, and 245d by approximately 90 degrees. The other end (movable end) of the shape memory alloy member 242 is fixed to one end of the elastic member 244 via the crimp terminal 248b, and the other end of the elastic member 244 is fixed to the fixing pin 249b. Other configurations are the same as those in the fourteenth embodiment.

尚、屈曲部材245a〜245dは、形状記憶合金部材242を屈曲させる屈曲手段を構成している。屈曲部材245a〜245dの周面の形状記憶合金部材242に当接する部分は、屈曲手段において形状記憶合金部材242に当接する当接部を構成している。電子回路基板249は、屈曲部材245a〜245dを保持する保持手段を構成している。   The bending members 245a to 245d constitute bending means for bending the shape memory alloy member 242. The portions that contact the shape memory alloy member 242 on the peripheral surfaces of the bending members 245a to 245d constitute contact portions that contact the shape memory alloy member 242 in the bending means. The electronic circuit board 249 constitutes a holding unit that holds the bending members 245a to 245d.

以上の構成において、電子回路基板249によって屈曲部材245a,245dを介して形状記憶合金部材242に電流を流し、形状記憶合金部材242を加熱して収縮させることにより、移動体(ここでは圧着端子248b)を変位させることができる。   In the above configuration, the electronic circuit board 249 causes a current to flow through the shape memory alloy member 242 via the bending members 245a and 245d, and the shape memory alloy member 242 is heated and contracted to thereby move the movable body (here, the crimp terminal 248b). ) Can be displaced.

本実施の形態によれば、屈曲部材245a〜245dを電子回路基板249で保持しているため、独立した基台が不用になり、その結果、部品点数を削減することができ、駆動装置の小型化が容易になる。特に、この駆動装置241aを、上述した実施の形態14〜16(図40,42〜44,47〜48)に適用すれば、通電回路(例えば図40の通電回路217や図48の通電回路237c)を電子回路基板249上に形成することができるため、屈曲部材215,225,235(図40、42〜44、47〜48)への給電を容易に行うことができる。また、これら屈曲部材を保持する基台216,226,236(図40、42〜44、47〜48)を電子回路基板249で形成することができるため、部品点数を削減することができ、且つ駆動装置の小型化が容易になる。   According to the present embodiment, since the bending members 245a to 245d are held by the electronic circuit board 249, an independent base becomes unnecessary, and as a result, the number of parts can be reduced and the size of the driving device can be reduced. It becomes easy. In particular, if this drive device 241a is applied to the above-described fourteenth to sixteenth embodiments (FIGS. 40, 42 to 44, 47 to 48), an energization circuit (for example, the energization circuit 217 in FIG. 40 or the energization circuit 237c in FIG. 48). ) Can be formed on the electronic circuit board 249, so that power can be easily supplied to the bending members 215, 225, and 235 (FIGS. 40, 42 to 44, and 47 to 48). Moreover, since the bases 216, 226, and 236 (FIGS. 40, 42 to 44, and 47 to 48) for holding these bending members can be formed on the electronic circuit board 249, the number of components can be reduced, and The drive device can be easily downsized.

図53は、本実施の形態における駆動装置の他の構成例を示す斜視図である。図53に示す駆動装置241bでは、基台246上に、屈曲部材245a,245b,245c,245dが立設されている。屈曲部材245a,245dの間には、屈曲部材245aに近い方から順に、固定ピン249a,249bが立設されている。形状記憶合金部材242は、その一端(固定端)が圧着端子248aを介して固定ピン249aに固定されており、屈曲部材245a,245b,245c,245dにそれぞれ略90度ずつ巻き付けられている。形状記憶合金部材242の他端(可動端)は、圧着端子248bを介して弾性部材244の一端に固定されており、弾性部材244の他端は固定ピン249bに固定されている。   FIG. 53 is a perspective view showing another configuration example of the drive device according to the present embodiment. In the drive device 241b shown in FIG. 53, bending members 245a, 245b, 245c, and 245d are erected on a base 246. Fixing pins 249a and 249b are erected between the bending members 245a and 245d in order from the side closer to the bending member 245a. One end (fixed end) of the shape memory alloy member 242 is fixed to the fixing pin 249a via the crimp terminal 248a, and is wound around the bending members 245a, 245b, 245c, and 245d by approximately 90 degrees. The other end (movable end) of the shape memory alloy member 242 is fixed to one end of the elastic member 244 via the crimp terminal 248b, and the other end of the elastic member 244 is fixed to the fixing pin 249b.

図53に示した駆動装置241bでは、さらに、形状記憶合金部材242に対して基台246と反対の側に、電子回路基板249が配置されている。電子回路基板249には、屈曲部材245a〜245dが機械的に接合されている。ここでは、電子回路基板249に穿孔された4つの貫通孔に、ピン状の屈曲部材245a〜245dがそれぞれ嵌合している。また、屈曲部材245a〜245dのうち、形状記憶合金部材242の通電に必要な屈曲部材245a,245dは、電子回路基板249に電気的に接合されている。なお、全ての屈曲部材245a〜245dを電子回路基板249に電気的及び機械的に接合してもよい。   In the drive device 241b shown in FIG. 53, an electronic circuit board 249 is further arranged on the side opposite to the base 246 with respect to the shape memory alloy member 242. Bending members 245a to 245d are mechanically joined to the electronic circuit board 249. Here, the pin-shaped bending members 245a to 245d are fitted into the four through holes formed in the electronic circuit board 249, respectively. Of the bending members 245a to 245d, the bending members 245a and 245d necessary for energizing the shape memory alloy member 242 are electrically joined to the electronic circuit board 249. Note that all the bending members 245a to 245d may be electrically and mechanically joined to the electronic circuit board 249.

上述した図52の駆動装置241aでは、屈曲部材245a〜245dを電子回路基板249に接合しているため、形状記憶合金部材242の伸縮に伴って発生する駆動力が比較的小さい場合には屈曲部材245a〜245dを安定して保持することができるが、駆動力が大きく屈曲部材245a〜245dにかかる負荷が大きい場合には、屈曲部材245a〜245dを安定して固定することが難しく、電気的接合の信頼性を低下させる場合が考えられる。これに対し、図53に示した駆動装置241bによれば、屈曲部材245a〜245dの固定を基台246で行なっているため、この基台246を屈曲部材245a〜245dにかかる負荷に応じて設計することで、安定した保持が可能となる。また、電子回路基板249と屈曲部材245a〜245dとの機械的接合により、電子回路基板249が屈曲部材25a〜245dを保持する補助を行うようになっているため、屈曲部材245a〜245dにかかる負荷が大きい場合であっても、屈曲部材245をより安定して保持することができる。また、電子回路基板249を、形状記憶合金部材242を挟んで基台246と反対の側に設けることにより、形状記憶合金部材242が屈曲部材245から脱落することを防止することもできる。   In the drive device 241a shown in FIG. 52 described above, the bending members 245a to 245d are joined to the electronic circuit board 249. Therefore, when the driving force generated with the expansion and contraction of the shape memory alloy member 242 is relatively small, the bending member 245a to 245d can be stably held, but when the driving force is large and the load applied to the bending members 245a to 245d is large, it is difficult to stably fix the bending members 245a to 245d. It is conceivable to reduce the reliability of the. On the other hand, according to the driving device 241b shown in FIG. 53, since the bending members 245a to 245d are fixed by the base 246, the base 246 is designed according to the load applied to the bending members 245a to 245d. By doing so, stable holding becomes possible. Further, since the electronic circuit board 249 assists in holding the bending members 25a to 245d by mechanical joining between the electronic circuit board 249 and the bending members 245a to 245d, the load applied to the bending members 245a to 245d. Even if this is large, the bending member 245 can be held more stably. In addition, by providing the electronic circuit board 249 on the side opposite to the base 246 with the shape memory alloy member 242 interposed therebetween, the shape memory alloy member 242 can be prevented from falling off the bending member 245.

駆動装置241bの場合、回路基板249に強度が必要とされないため、シート状のフレキシブル基板、いわゆるFPC(Flexible Printed Circuit)基板を使用することも可能である。   In the case of the driving device 241b, strength is not required for the circuit board 249. Therefore, a sheet-like flexible board, that is, a so-called FPC (Flexible Printed Circuit) board can be used.

実施の形態18.
図54は、本発明の実施の形態18に係る駆動装置251の構成を示す斜視図である。
上述した実施の形態14〜17では、ピン状の屈曲部材(例えば図40における屈曲部材215a〜215d)に形状記憶合金部材を巻き付けていたのに対し、本実施の形態に係る駆動装置251では、非導電性部材(例えばプラスチック)からなる構造物に導電性部材を形成してなる屈曲部材252に形状記憶合金部材252を巻き付けている。
Embodiment 18 FIG.
FIG. 54 is a perspective view showing the configuration of the driving apparatus 251 according to Embodiment 18 of the present invention.
In Embodiments 14 to 17 described above, the shape memory alloy member is wound around the pin-shaped bending members (for example, the bending members 215a to 215d in FIG. 40), whereas in the driving device 251 according to the present embodiment, A shape memory alloy member 252 is wound around a bending member 252 formed by forming a conductive member on a structure made of a non-conductive member (for example, plastic).

図54に示すように、駆動装置251は、プラスチックなどの非導電性部材により形成された例えば四角柱状の構造物255eの四隅に沿って略円筒状の4つの突出部255a〜255dを突出形成してなる屈曲部材255を有している。屈曲部材255の突出部255a,255d間の側面には、突出部255aに近い側から順に、固定部材258b,258aが形成されている。形状記憶合金部材252は、その一端(固定端)が、屈曲部材255の固定部材258bに固定され、突出部255a,255b,255c,255dに90度ずつ巻き付けられている。形状記憶合金部材252の他端(可動端)は、移動体253を介して弾性部材254の一端に取り付けられており、弾性部材254の他端は、固定部材258aに固定されている。   As shown in FIG. 54, the driving device 251 projects four substantially cylindrical projecting portions 255a to 255d along the four corners of, for example, a square columnar structure 255e formed of a non-conductive member such as plastic. The bending member 255 is formed. Fixing members 258b and 258a are formed on the side surface between the projecting portions 255a and 255d of the bending member 255 in order from the side closer to the projecting portion 255a. One end (fixed end) of the shape memory alloy member 252 is fixed to the fixing member 258b of the bending member 255, and is wound around the protrusions 255a, 255b, 255c, and 255d by 90 degrees. The other end (movable end) of the shape memory alloy member 252 is attached to one end of the elastic member 254 via the moving body 253, and the other end of the elastic member 254 is fixed to the fixed member 258a.

屈曲部材255は、形状記憶合金部材252の固定端に最も近い突出部255aに導電性部材259aを有し、可動端に最も近い突出部255dに導電性部材259bを有している。これら導電性部材259a,259bには、通電回路257が接続されている。通電回路257により、導電性部材259a,259bを介して形状記憶合金部材252に電流を流すことによって、形状記憶合金部材252が加熱され、その可動端に取り付けられた移動体253が変位する。図54では、通電回路257を屈曲部材255から離間して示すが、通電回路257を屈曲部材255の表面に形成し、立体回路基板を構成することができる。   The bending member 255 has a conductive member 259a at the protrusion 255a closest to the fixed end of the shape memory alloy member 252, and a conductive member 259b at the protrusion 255d closest to the movable end. An energization circuit 257 is connected to these conductive members 259a and 259b. By passing a current through the shape memory alloy member 252 through the conductive members 259a and 259b by the energization circuit 257, the shape memory alloy member 252 is heated, and the moving body 253 attached to the movable end thereof is displaced. In FIG. 54, the energization circuit 257 is shown separated from the bending member 255, but the energization circuit 257 can be formed on the surface of the bending member 255 to constitute a three-dimensional circuit board.

ここで、突出部255a〜255dを有する屈曲部材255は、形状記憶合金部材252を屈曲させる屈曲手段を構成している。突出部255a〜255dの周面の形状記憶合金部材252に当接する部分は、屈曲手段において形状記憶合金部材252に当接する当接部を構成している。屈曲部材255は、突出部255a〜255dを保持する保持手段を構成している。   Here, the bending member 255 having the projecting portions 255 a to 255 d constitutes a bending means for bending the shape memory alloy member 252. The portions of the peripheral surfaces of the protrusions 255a to 255d that contact the shape memory alloy member 252 constitute contact portions that contact the shape memory alloy member 252 in the bending means. The bending member 255 constitutes a holding unit that holds the protruding portions 255a to 255d.

以上の構成において、通電回路257によって屈曲部材259a,259bを介して形状記憶合金部材252に電流を流し、形状記憶合金部材252を加熱して収縮させることにより、移動体253を変位させることができる。   In the above-described configuration, the moving body 253 can be displaced by causing the current-carrying circuit 257 to pass current through the bending members 259a and 259b to the shape memory alloy member 252 and to heat and contract the shape memory alloy member 252. .

本実施の形態によれば、屈曲部材255に一体形成された当接部258a〜258dに形状記憶合金部材252を巻き付けているため、当接部258a〜258dの剛性を向上することができる。従って、当接部258a〜258dに加わる負荷が大きい場合にも、当接部258a〜258dの変形を抑制し、導電性部材259a,259bと通電回路257との電気的接続の信頼性を向上することができる。特に、形状記憶合金部材252をピン状の屈曲部材に巻き付けた場合(例えば図52)と比較しても、通電回路257と導電性部材259a,259bとの機械的接合の強度が高く、電気的接合の信頼性が高い。
また、通電回路257を屈曲部材255上に形成して立体回路基板を構成することにより、図53に示したように基台246と電子回路基板249とでピン状の屈曲部材245a〜245dを挟み込む構成にする必要もなく、その結果、上述した電気的接合及び機械的接合の信頼性等を維持しながら、駆動装置を小型化することができる。
According to the present embodiment, since the shape memory alloy member 252 is wound around the contact portions 258a to 258d formed integrally with the bending member 255, the rigidity of the contact portions 258a to 258d can be improved. Therefore, even when the load applied to the contact portions 258a to 258d is large, the deformation of the contact portions 258a to 258d is suppressed, and the reliability of the electrical connection between the conductive members 259a and 259b and the energization circuit 257 is improved. be able to. In particular, even when the shape memory alloy member 252 is wound around a pin-shaped bending member (for example, FIG. 52), the strength of the mechanical connection between the energization circuit 257 and the conductive members 259a and 259b is high. High reliability of bonding.
Further, the energization circuit 257 is formed on the bending member 255 to form a three-dimensional circuit board, so that the pin-shaped bending members 245a to 245d are sandwiched between the base 246 and the electronic circuit board 249 as shown in FIG. As a result, the drive device can be reduced in size while maintaining the reliability of the electrical and mechanical joining described above.

実施の形態19.
図55は、本発明の実施の形態19に係る駆動装置261aの構成を示す斜視図である。図55に示す駆動装置261aでは、外周面に微小な凸部265eを有する略円筒状の屈曲部材265aが、基台266上に回転可能に支持されている。形状記憶合金部材262は、その一端(固定端)が、基台266上に設けられた固定ピン269aに固定され、屈曲部材265aの凸部265eに当接しながら、屈曲部材265aに約180度巻き付けられている。形状記憶合金部材262の他端(可動端)は、移動体263を介して、弾性部材264の一端に取り付けられており、弾性部材264の他端は、基台266上に設けられた固定ピン269bに固定されている。通電回路267は、固定ピン269a,269bに接続されている。他の構成は、実施の形態1と同様である。
Embodiment 19. FIG.
FIG. 55 is a perspective view showing a configuration of drive apparatus 261a according to Embodiment 19 of the present invention. In the driving device 261a shown in FIG. 55, a substantially cylindrical bending member 265a having a minute convex portion 265e on the outer peripheral surface is rotatably supported on a base 266. One end (fixed end) of the shape memory alloy member 262 is fixed to a fixing pin 269a provided on the base 266, and is wound about 180 degrees around the bending member 265a while abutting the convex portion 265e of the bending member 265a. It has been. The other end (movable end) of the shape memory alloy member 262 is attached to one end of the elastic member 264 via the moving body 263, and the other end of the elastic member 264 is a fixed pin provided on the base 266. It is fixed to 269b. The energization circuit 267 is connected to the fixing pins 269a and 269b. Other configurations are the same as those in the first embodiment.

尚、屈曲部材265aは、形状記憶合金部材262を屈曲させる屈曲手段を構成している。屈曲部材265aの凸部265eの形状記憶合金部材262に当接する部分は、屈曲手段において形状記憶合金部材262に当接する当接部を構成している。基台266は、屈曲部材265aを保持する保持手段を構成している。   The bending member 265a constitutes a bending means for bending the shape memory alloy member 262. A portion of the convex portion 265e of the bending member 265a that contacts the shape memory alloy member 262 constitutes a contact portion that contacts the shape memory alloy member 262 in the bending means. The base 266 constitutes a holding unit that holds the bending member 265a.

以上の構成において、通電回路267によって固定ピン269a,269bを介して形状記憶合金部材262に電流を流し、形状記憶合金部材262を加熱して収縮させることにより、移動体263を変位させることができる。   In the above configuration, the moving body 263 can be displaced by causing a current to flow through the shape memory alloy member 262 via the fixing pins 269a and 269b by the energizing circuit 267 and heating the shape memory alloy member 262 to contract. .

図56(a)〜(c)は、駆動装置261aの効果についての実験装置261b,261c,261dを示す斜視図である。図56(a)に示す実験装置261bでは、凸部を有さない回転不能の直径10mmの円筒形状の屈曲部材265bにワイヤ状の形状記憶合金部材262を巻き付けたものである。形状記憶合金部材262の一端(固定端)は固定ピン269aに固定され、他端(可動端)には50gの重り264aが取り付けられている。形状記憶合金部材262の屈曲部材265bに巻き付けられた部分を含む範囲に、通電回路267により140mAの直流電流を流し、形状記憶合金部材262の可動端の変位量を測定する。図56(b)に示す実験装置261cでは、凸部を有さない直径10mmの円筒形状の屈曲部材265cが基台266上で回転可能に支持されており、その他の条件は図56(a)の実験装置261bと同様である。図56(c)に示す実験装置261dでは、外周面に凸部265eを有する外径10mmの屈曲部材265dが基台266上に回転可能に支持されており、その他の条件は図56(b)の実験装置261bと同様である。屈曲部材25の接触比率(凸部265eが形状記憶合金部材262と接触する長さの、屈曲部材265dの全周に対する比)は33%である。図56(a)〜(c)に示した屈曲部材261b,261c,261dはいずれもPOMにより形成されている。   56 (a) to 56 (c) are perspective views showing experimental devices 261b, 261c, and 261d regarding the effect of the driving device 261a. In the experimental apparatus 261b shown in FIG. 56 (a), a wire-shaped shape memory alloy member 262 is wound around a cylindrical bending member 265b having a diameter of 10 mm that does not have a convex portion and cannot be rotated. One end (fixed end) of the shape memory alloy member 262 is fixed to the fixed pin 269a, and a 50 g weight 264a is attached to the other end (movable end). A 140 mA direct current is passed by the energizing circuit 267 in a range including the portion wound around the bending member 265b of the shape memory alloy member 262, and the displacement amount of the movable end of the shape memory alloy member 262 is measured. In the experimental apparatus 261c shown in FIG. 56 (b), a cylindrical bending member 265c having a diameter of 10 mm, which does not have a convex portion, is rotatably supported on the base 266, and other conditions are shown in FIG. 56 (a). This is the same as the experimental apparatus 261b. In the experimental apparatus 261d shown in FIG. 56 (c), a bending member 265d having an outer diameter of 10 mm having a convex portion 265e is rotatably supported on a base 266, and other conditions are shown in FIG. 56 (b). This is the same as the experimental apparatus 261b. The contact ratio of the bending member 25 (the ratio of the length at which the convex portion 265e contacts the shape memory alloy member 262 to the entire circumference of the bending member 265d) is 33%. The bending members 261b, 261c, and 261d shown in FIGS. 56A to 56C are all formed of POM.

図56(a)〜(c)に示した実験装置を用い、形状記憶合金部材262の巻き付け角を360度(1周)、450度(1周半)、720度(2周)と替えて、形状記憶合金部材262の可動端の変位量を測定した。また、図56(c)に示した実験装置261dに加え、屈曲部材265dの回転を固定した場合についても同様の実験を行った。その結果を、表6及び図57に示す。なお、図57において、縦軸は変位比率H(%)であり、横軸は巻き付け角θ(度)である。また、図57において、符号aは、回転しない円筒状の屈曲部材265b(図56(a))を用いた場合のデータである。符号bは、回転可能な円筒状の屈曲部材265c(図56(b))を用いた場合のデータである。符号cは、回転せず接触比率が33%の屈曲部材(図示せず)を用いた場合のデータである。符号dは、回転可能で接触比率が33%の屈曲部材265d(図56(c))を用いた場合のデータである。   Using the experimental apparatus shown in FIGS. 56A to 56C, the wrapping angle of the shape memory alloy member 262 is changed to 360 degrees (one turn), 450 degrees (one and a half turns), and 720 degrees (two turns). The displacement amount of the movable end of the shape memory alloy member 262 was measured. Further, in addition to the experimental apparatus 261d shown in FIG. 56 (c), the same experiment was performed when the rotation of the bending member 265d was fixed. The results are shown in Table 6 and FIG. In FIG. 57, the vertical axis represents the displacement ratio H (%), and the horizontal axis represents the winding angle θ (degrees). In FIG. 57, symbol a is data when a cylindrical bending member 265b that does not rotate (FIG. 56A) is used. The symbol b is data when a rotatable cylindrical bending member 265c (FIG. 56B) is used. Symbol c is data when a bending member (not shown) that does not rotate and has a contact ratio of 33% is used. The symbol d is data when a bending member 265d (FIG. 56 (c)) that can rotate and has a contact ratio of 33% is used.

Figure 2005337262
Figure 2005337262

図57から、回転しない円筒状の屈曲部材265b(符号a)の代わりに、回転可能な屈曲部材265c(符号b)を用いることで、形状記憶合金部材262の変位量は約1.2〜1.5倍に増加することが分かる。さらに、回転可能で接触比率が33%の屈曲部材265d(符号d)を用いると、形状記憶合金部材262の変位量は約2.7〜3.2倍に増加することが分かる。   From FIG. 57, the displacement amount of the shape memory alloy member 262 is about 1.2 to 1 by using the rotatable bending member 265c (reference symbol b) instead of the non-rotating cylindrical bending member 265b (reference symbol a). It can be seen that it increases 5 times. Furthermore, it can be seen that when the bending member 265d (symbol d) that can rotate and has a contact ratio of 33% is used, the amount of displacement of the shape memory alloy member 262 increases by about 2.7 to 3.2 times.

以上の結果から、本実施の形態によれば、回転可能で且つ外周面に凸部を有する屈曲部材261aを用いることで、移動体263の変位量をより大きくすることができることが分かる。ワイヤ形状の形状記憶合金部材を滑車に巻き付ける駆動装置としては、特開平8−776743号公報及び特開平10−148174号公報に開示されたものがあるが、これらの滑車に凸部を形成して接触比率を小さくすることで、より大きな変位量を得ることが可能になる。   From the above results, according to the present embodiment, it is understood that the displacement amount of the moving body 263 can be increased by using the bending member 261a that is rotatable and has a convex portion on the outer peripheral surface. As drive devices for winding wire shape memory alloy members around pulleys, there are those disclosed in Japanese Patent Application Laid-Open Nos. 8-777433 and 10-148174, and a convex portion is formed on these pulleys. By reducing the contact ratio, a larger displacement amount can be obtained.

また、回転可能な屈曲部材は、円筒状に限るものではなく、実施の形態12で説明したような三角柱状等の多角柱状であってもよく、あるいは、閉路に沿って配置された複数のピンであってもよい。   The rotatable bending member is not limited to a cylindrical shape, and may be a polygonal column shape such as a triangular column shape as described in the twelfth embodiment, or a plurality of pins arranged along a closed path. It may be.

実施の形態20.
図58は、本発明の実施の形態20に係る駆動装置271aの構成を示す斜視図である。本実施の形態に係る駆動装置271aは、実施の形態19に係る駆動装置261a(図55)に対し、屈曲部材275aの外周面に突出形成したピン279cに形状記憶合金部材272を巻き付けた点が異なるものである。
Embodiment 20. FIG.
FIG. 58 is a perspective view showing a configuration of drive device 271a according to Embodiment 20 of the present invention. The driving device 271a according to the present embodiment is different from the driving device 261a (FIG. 55) according to the nineteenth embodiment in that the shape memory alloy member 272 is wound around the pin 279c formed to protrude from the outer peripheral surface of the bending member 275a. Is different.

図58に示すように、駆動装置271aは、外周面に多数の微小な凸部275eが形成された略円筒形状の回転可能な屈曲部材275aを有している。この屈曲部材275aの外周面には、凸部275eのほか、屈曲部材275aの半径方向に突出するピン(突起)279cが設けられている。ワイヤ状の形状記憶合金部材272は、一端(固定端)が、圧着端子278bを介して基台276上の固定ピン279bに固定され、屈曲部材275aに例えば360度巻き付けられている。さらに、形状記憶合金部材272は、屈曲部材275aに巻き付けられている途中で、ピン279cにも例えば360度巻き付けられている。形状記憶合金部材272の他端(可動端)は、圧着端子278aを介して弾性部材274の一端に固定されており、弾性部材274の他端は、基台276に形成された固定ピン279aに固定されている。   As shown in FIG. 58, the drive device 271a has a substantially cylindrical rotatable bending member 275a having a large number of minute convex portions 275e formed on the outer peripheral surface. In addition to the convex portion 275e, a pin (projection) 279c protruding in the radial direction of the bending member 275a is provided on the outer peripheral surface of the bending member 275a. One end (fixed end) of the wire-shaped shape memory alloy member 272 is fixed to the fixing pin 279b on the base 276 via the crimp terminal 278b, and is wound around the bending member 275a, for example, 360 degrees. Further, the shape memory alloy member 272 is wound around the pin 279c, for example, 360 degrees while being wound around the bending member 275a. The other end (movable end) of the shape memory alloy member 272 is fixed to one end of the elastic member 274 via a crimp terminal 278a. The other end of the elastic member 274 is fixed to a fixed pin 279a formed on the base 276. It is fixed.

尚、屈曲部材275aは、形状記憶合金部材272を屈曲させる屈曲手段を構成している。ピン279cは、屈曲部材275aから突出し、形状記憶合金部材272をさらに屈曲させる突起を構成している。屈曲部材275aの凸部275eの形状記憶合金部材272に当接する部分は、屈曲手段において形状記憶合金部材272に当接する当接部を構成している。基台276は、屈曲部材275aを保持する保持手段を構成している。
以上の構成において、通電回路277によって形状記憶合金部材272に電流を流し、形状記憶合金部材272を加熱して収縮させることにより、移動体(圧着端子278a)を変位させることができる。また、これに伴い、屈曲部材275aも回転する。形状記憶合金部材272の通電を停止すると、形状記憶合金部材272が冷却されて元の長さに伸び、移動体(圧着端子278a)が元の位置に戻ると共に、屈曲部材275aも元の回転位置に戻る。
The bending member 275a constitutes bending means for bending the shape memory alloy member 272. The pin 279c protrudes from the bending member 275a and constitutes a protrusion that further bends the shape memory alloy member 272. The portion that contacts the shape memory alloy member 272 of the convex portion 275e of the bending member 275a constitutes the contact portion that contacts the shape memory alloy member 272 in the bending means. The base 276 constitutes a holding unit that holds the bending member 275a.
In the above configuration, the moving body (crimp terminal 278a) can be displaced by causing a current to flow through the shape memory alloy member 272 by the energization circuit 277 and heating and contracting the shape memory alloy member 272. Along with this, the bending member 275a also rotates. When energization of the shape memory alloy member 272 is stopped, the shape memory alloy member 272 is cooled and extended to the original length, the movable body (crimp terminal 278a) returns to the original position, and the bending member 275a also returns to the original rotational position. Return to.

上述した実施の形態19(図55)は、滑車のように屈曲部材265の回転位置が任意でよい場合に有効であるが、本実施の形態は、屈曲部材275aの回転位置が制限されている場合に有効である。   The above-described nineteenth embodiment (FIG. 55) is effective when the rotational position of the bending member 265 may be arbitrary as in a pulley, but in this embodiment, the rotational position of the bending member 275a is limited. It is effective in the case.

図59は、実施の形態20による駆動装置271aにおける移動体の変位量を測定するための実験装置271bを示す斜視図である。実験装置271bは、外周面に凸部及びピン279cを有する屈曲部材275bを、基台276上に回転可能に設けたものであり、屈曲部材275bの接触比率は33%である。形状記憶合金部材272の一端(固定端)は、基台276上に設けられた固定ピン279bに圧着端子278bにより固定されている。この形状記憶合金部材272は、屈曲部材275bに約360度巻き付けられたのち、ピン279cに360度巻き付けられ、さらに屈曲部材275bに約360度巻き付けられている。形状記憶合金部材272の他端(可動端)は、圧着端子278aにより、コイルバネからなる弾性部材274の一端に取り付けられ、弾性部材274の他端は、基台276上に立設した固定ピン279aに固定されている。通電回路277は、固定ピン279a,279bに接続され、これら固定ピン279a,279bを介して形状記憶合金部材272に電流を流す。なお、形状記憶合金部材272の直径は約60μmで、長さは約83mmとする。形状記憶合金部材272に通電されていない状態で、弾性部材274の付勢力は約392×10−3Nである。通電回路277により形状記憶合金部材272に流れる電流値は140mAである。形状記憶合金部材272の屈曲部材275bから圧着端子278aまでの長さcは、約1.5mmである。 FIG. 59 is a perspective view showing an experimental apparatus 271b for measuring the displacement amount of the moving body in the driving apparatus 271a according to the twentieth embodiment. In the experimental apparatus 271b, a bending member 275b having a convex portion and a pin 279c on the outer peripheral surface is rotatably provided on the base 276, and the contact ratio of the bending member 275b is 33%. One end (fixed end) of the shape memory alloy member 272 is fixed to a fixing pin 279b provided on the base 276 by a crimp terminal 278b. The shape memory alloy member 272 is wound around the bending member 275b by about 360 degrees, wound around the pin 279c, and further wound around the bending member 275b by about 360 degrees. The other end (movable end) of the shape memory alloy member 272 is attached to one end of an elastic member 274 made of a coil spring by a crimp terminal 278a, and the other end of the elastic member 274 is a fixed pin 279a erected on the base 276. It is fixed to. The energization circuit 277 is connected to the fixing pins 279a and 279b, and allows a current to flow through the shape memory alloy member 272 via the fixing pins 279a and 279b. The shape memory alloy member 272 has a diameter of about 60 μm and a length of about 83 mm. In a state where the shape memory alloy member 272 is not energized, the biasing force of the elastic member 274 is about 392 × 10 −3 N. The value of current flowing through the shape memory alloy member 272 by the energization circuit 277 is 140 mA. The length c of the shape memory alloy member 272 from the bending member 275b to the crimp terminal 278a is about 1.5 mm.

図59に示した実験装置271bを用い、通電回路277により通電を行ったときの圧着端子278aの変位量を測定する。加えて、形状記憶合金部材272をピン279cに巻き付けない場合、及び、屈曲部材275bの回転を固定した場合についても、変位量を測定する。その結果を、表7及び図60に示す。なお、図60において、縦軸は、変位比率H(%)である。横軸において、符号bは、図59に示すように形状記憶合金部材272をピン279cに巻き付けた場合のデータであり、符号aは、形状記憶合金部材272をピン279cに巻き付けない場合のデータである。符号cは、屈曲部材275bの回転を固定した場合(ピン279cには形状記憶合金部材272が巻き付けられていない)のデータである。   The displacement amount of the crimp terminal 278a when energized by the energization circuit 277 is measured using the experimental apparatus 271b shown in FIG. In addition, the amount of displacement is also measured when the shape memory alloy member 272 is not wound around the pin 279c and when the rotation of the bending member 275b is fixed. The results are shown in Table 7 and FIG. In FIG. 60, the vertical axis represents the displacement ratio H (%). In the horizontal axis, symbol b is data when the shape memory alloy member 272 is wound around the pin 279c as shown in FIG. 59, and symbol a is data when the shape memory alloy member 272 is not wound around the pin 279c. is there. The symbol c is data when the rotation of the bending member 275b is fixed (the shape memory alloy member 272 is not wound around the pin 279c).

Figure 2005337262
Figure 2005337262

図60より、形状記憶合金部材272をピン279cに巻き付けた場合(符号b)も巻き付けない場合(符号a)も、ほぼ同程度の変位量を得ることができることが分かる。また、いずれの場合(符号a,b)も、屈曲部材275bの回転を固定した場合(符号c)よりも大きな変位量が得られることが分かる。すなわち、形状記憶合金部材272をピン279cに巻き付ける(すなわち形状記憶合金部材272を屈曲部材275に対して固定する)ことによる変位量の低下はごく僅かであり、従って実施の形態19とほぼ同様の効果が得られることが分かる。   From FIG. 60, it can be seen that substantially the same amount of displacement can be obtained both when the shape memory alloy member 272 is wound around the pin 279c (symbol b) and when it is not wound (symbol a). Also, it can be seen that in either case (references a and b), a larger displacement can be obtained than when the rotation of the bending member 275b is fixed (reference c). That is, the decrease in the amount of displacement caused by winding the shape memory alloy member 272 around the pin 279c (that is, fixing the shape memory alloy member 272 to the bending member 275) is negligible, and is therefore almost the same as in the nineteenth embodiment. It turns out that an effect is acquired.

以上説明したように、本実施の形態によれば、屈曲部材275aの回転位置が制限されている(任意でない)場合であっても、実施の形態19の効果と同等の効果を得ることができる。   As described above, according to the present embodiment, even if the rotational position of the bending member 275a is limited (not arbitrary), the same effect as that of the nineteenth embodiment can be obtained. .

なお、回転可能な屈曲部材275aは、円筒状に限るものではなく、実施の形態12で説明したような三角柱状等の多角柱状であってもよく、同様の効果が得られる。   The rotatable bending member 275a is not limited to a cylindrical shape, and may be a polygonal column shape such as a triangular column shape as described in the twelfth embodiment, and the same effect is obtained.

実施の形態21.
図61(a)は実施の形態1乃至4に係る駆動装置1,11,21,31(図1〜2、9〜11)をカメラのレンズ駆動に適用した場合の構成例(駆動装置281aとする。)を示す斜視図である。この駆動装置281aが適用されるカメラは、円筒状の鏡筒286aと、この鏡筒286aに対して被写体とは反対の側(後方)に設けられた回路基板289dとを備えている。鏡筒286aの先端にはレンズ283e(図64(a))が取り付けられ、鏡筒286aの内側には、レンズ枠283aに保持されたレンズ283b(図64(a))が設けられている。レンズ枠283aは、案内軸283c,283d(図64(a))により、レンズ光軸Xに沿って移動可能に支持されている。レンズ枠283aの一部は、鏡筒286aに形成された軸方向溝を貫通して外部に突出している。また、回路基板289dは、レンズ283e,283bにより画像が結像する位置に固体撮像素子289c(図64(a))を有している。
Embodiment 21. FIG.
FIG. 61 (a) shows a configuration example (driving device 281a and driving device 281a) when the driving devices 1, 11, 21, 31 (FIGS. FIG. A camera to which the drive device 281a is applied includes a cylindrical barrel 286a and a circuit board 289d provided on the side (rear side) opposite to the subject with respect to the barrel 286a. A lens 283e (FIG. 64A) is attached to the tip of the lens barrel 286a, and a lens 283b (FIG. 64A) held by the lens frame 283a is provided inside the lens barrel 286a. The lens frame 283a is supported by the guide shafts 283c and 283d (FIG. 64A) so as to be movable along the lens optical axis X. A part of the lens frame 283a protrudes outside through an axial groove formed in the lens barrel 286a. The circuit board 289d has a solid-state image sensor 289c (FIG. 64A) at a position where an image is formed by the lenses 283e and 283b.

鏡筒286aの外周面には、複数のピン状の屈曲部材285が立設されている。これら屈曲部材285は、鏡筒286aの円周方向に間隔をあけて配列されている。屈曲部材285は、鏡筒286aの半径方向に突出する主部と、この主部から鏡筒286aの軸方向とほぼ平行に突出する直交部285iとを有している。   A plurality of pin-shaped bending members 285 are erected on the outer peripheral surface of the lens barrel 286a. These bending members 285 are arranged at intervals in the circumferential direction of the lens barrel 286a. The bending member 285 has a main portion protruding in the radial direction of the lens barrel 286a, and an orthogonal portion 285i protruding substantially parallel to the axial direction of the lens barrel 286a from the main portion.

ワイヤ状の形状記憶合金部材282は、その一端(固定端)が鏡筒286aの後端近傍に設けられた固定部材289bに固定され、上記複数の屈曲部材285に巻き付けられながら鏡筒286aをほぼ一周したのち、鏡筒286aの軸方向に延在する。形状記憶合金部材282の他端(可動端)は、上述したレンズ枠283aの後端に取り付けられている。レンズ枠283aの前端には、弾性部材284の一端が固定され、この弾性部材284の他端は、鏡筒286aの先端近傍に設けられた固定部材289aに固定されている。形状記憶合金部材282の両端には、通電回路287が接続されている。   One end (fixed end) of the wire-shaped shape memory alloy member 282 is fixed to a fixing member 289b provided in the vicinity of the rear end of the lens barrel 286a, and the lens barrel 286a is substantially wound while being wound around the plurality of bending members 285. After one round, it extends in the axial direction of the lens barrel 286a. The other end (movable end) of the shape memory alloy member 282 is attached to the rear end of the lens frame 283a. One end of an elastic member 284 is fixed to the front end of the lens frame 283a, and the other end of the elastic member 284 is fixed to a fixing member 289a provided near the tip of the lens barrel 286a. An energization circuit 287 is connected to both ends of the shape memory alloy member 282.

通電回路287により形状記憶合金部材282に電流を流して加熱することにより、形状記憶合金部材282が弾性部材284の付勢力に抗して収縮し、レンズ枠283aは後方(矢印A方向)に移動する。形状記憶合金部材282の通電を停止することにより、形状記憶合金部材282は冷却されて元の長さまで伸び、弾性部材284の付勢力によりレンズ枠283aは前方(図中B方向)に移動する。その結果、レンズ283b(図64(a))は光軸Xの方向に移動し、例えばズーム動作やフォーカス動作が行われる。   By applying current to the shape memory alloy member 282 by the energizing circuit 287 and heating it, the shape memory alloy member 282 contracts against the urging force of the elastic member 284, and the lens frame 283a moves backward (in the direction of arrow A). To do. By stopping energization of the shape memory alloy member 282, the shape memory alloy member 282 is cooled and extended to the original length, and the lens frame 283a moves forward (B direction in the figure) by the urging force of the elastic member 284. As a result, the lens 283b (FIG. 64A) moves in the direction of the optical axis X, and for example, a zoom operation or a focus operation is performed.

このように構成されているため、カメラの鏡筒286aの長さを長くすることなく、全長の長い(すなわち変位量が大きい)形状記憶合金部材282を鏡筒286aの周囲に配置することが可能となる。また、ピン状の屈曲部材285に形状記憶合金部材282を巻き付けているため、形状記憶合金部材282が屈曲部材285に接触する長さの鏡筒286aの全周に対する比(すなわち接触比率)を小さくすることができる。その結果、形状記憶合金部材282を直線状に配置した場合と比較して、変位量の低下を抑えることができる。   With this configuration, the shape memory alloy member 282 having a long overall length (that is, a large displacement) can be disposed around the lens barrel 286a without increasing the length of the camera lens barrel 286a. It becomes. Further, since the shape memory alloy member 282 is wound around the pin-shaped bending member 285, the ratio of the length of the shape memory alloy member 282 that contacts the bending member 285 to the entire circumference of the lens barrel 286a (that is, the contact ratio) is reduced. can do. As a result, a decrease in the amount of displacement can be suppressed as compared with the case where the shape memory alloy member 282 is arranged linearly.

図61(b)は、実施の形態6で説明した駆動装置51(図14)をカメラのレンズ駆動に適用した場合の構成例(駆動装置281bとする。)を示す斜視図である。この駆動装置281bでは、鏡筒286aの外周に、例えば実施の形態6において説明した凸部54a(図14)と同様の凸部285bが円周方向に多数形成されている。屈曲部材285aは、レンズ枠283aの後方に例えば一つのみ形成されている。形状記憶合金部材282は、その一端(固定端)が固定部材289bに固定され、凸部285bに当接しながら鏡筒286aをほぼ一周したのち、屈曲部材285aに約90度巻き付けられ、その他端(可動端)がレンズ枠283aに固定されている。なお、各凸部285bは、ここでは、鏡筒286aの軸方向に長い形状を有している。その他の構成は、図61(a)に示した駆動装置281aと同様である。   FIG. 61B is a perspective view showing a configuration example (referred to as a driving device 281b) when the driving device 51 (FIG. 14) described in the sixth embodiment is applied to lens driving of a camera. In the driving device 281b, a large number of convex portions 285b similar to the convex portions 54a (FIG. 14) described in the sixth embodiment are formed in the circumferential direction on the outer periphery of the lens barrel 286a. For example, only one bending member 285a is formed behind the lens frame 283a. One end (fixed end) of the shape memory alloy member 282 is fixed to the fixed member 289b. The shape memory alloy member 282 is wound around the bending member 285a by about 90 degrees after contacting the convex portion 285b, and then wound around the bending member 285a. The movable end) is fixed to the lens frame 283a. In addition, each convex part 285b has a shape long in the axial direction of the lens barrel 286a here. Other configurations are the same as those of the driving device 281a shown in FIG.

この駆動装置281bによっても、カメラの鏡筒286aの長さを長くすることなく、全長の長い(すなわち可動端の変位量が大きい)形状記憶合金部材282を鏡筒286aの周囲に配置することができる。また、屈曲部材285a及び凸部285bに形状記憶合金部材282を巻き付けているため、形状記憶合金部材282が屈曲部材285a及び凸部285bに接触する長さの鏡筒286aの全周に対する比(接触比率)を小さくすることができる。その結果、形状記憶合金部材282を直線状に配置した場合と比較して、変位量の低下を抑えることができる。   Even with this driving device 281b, the shape memory alloy member 282 having a long overall length (that is, the displacement amount of the movable end is large) can be arranged around the lens barrel 286a without increasing the length of the camera lens barrel 286a. it can. Further, since the shape memory alloy member 282 is wound around the bending member 285a and the convex portion 285b, the ratio (contact) of the length of the lens barrel 286a with which the shape memory alloy member 282 is in contact with the bending member 285a and the convex portion 285b Ratio) can be reduced. As a result, a decrease in the amount of displacement can be suppressed as compared with the case where the shape memory alloy member 282 is arranged linearly.

図62(a)は、実施の形態18の駆動装置261a(図55)をカメラのレンズ駆動に適用した場合の構成例(駆動装置281cとする。)を示す斜視図である。この駆動装置281cでは、鏡筒286aの外周面に、その円周方向に回転可能な円筒状リング285cを備えている。円筒状リング285cの外周面には、図61(b)を参照して説明した凸部285bが円周方向に間隔をあけて多数形成されている。形状記憶合金部材282は、その一端(固定端)が固定部材289bに固定され、凸部285bに当接しながら円筒状リング285cをほぼ一周したのち、屈曲部材285aに約90度巻き付けられ、その他端(可動端)がレンズ枠283aに固定されている。なお、円筒状リング285cは、回転したときに、固定部材289bと干渉しないようにするため、切欠き285fを有している。その他の構成は、図61(b)に示した駆動装置281bと同様である。   FIG. 62A is a perspective view showing a configuration example (referred to as a driving device 281c) when the driving device 261a (FIG. 55) according to the eighteenth embodiment is applied to lens driving of a camera. The driving device 281c includes a cylindrical ring 285c that is rotatable in the circumferential direction on the outer peripheral surface of the lens barrel 286a. A large number of convex portions 285b described with reference to FIG. 61 (b) are formed on the outer peripheral surface of the cylindrical ring 285c at intervals in the circumferential direction. One end (fixed end) of the shape memory alloy member 282 is fixed to the fixed member 289b. The shape memory alloy member 282 is wound about 90 degrees around the bending member 285a after substantially making a round of the cylindrical ring 285c while contacting the convex portion 285b. (Movable end) is fixed to the lens frame 283a. The cylindrical ring 285c has a notch 285f so as not to interfere with the fixing member 289b when rotated. The other configuration is the same as that of the driving device 281b shown in FIG.

この駆動装置281cによれば、接触比率が小さく、且つ円筒状リング285cが回転可能であるため、実施の形態18で説明したように、形状記憶合金部材282の変位量を大きくすることができる。   According to this drive device 281c, the contact ratio is small and the cylindrical ring 285c can rotate, so that the displacement amount of the shape memory alloy member 282 can be increased as described in the eighteenth embodiment.

図62(b)は、実施の形態19の駆動装置271a(図58)をカメラのレンズ駆動に適用した場合の構成例(駆動装置281dとする。)の構成を示す斜視図である。この駆動装置281dでは、円筒状リング285dの外周面に、鏡筒286aの外周面に立設された屈曲部材285aの略後方に位置するように、ピン状の屈曲部材285eが立設されている。形状記憶合金部材282は、凸部285bに巻き付けられて円筒状リング285cを約1/4週したのち、屈曲部材285eに巻き付けられ、さらに凸部285bに巻き付けられて円筒状リング285cをほぼ一周したのち、屈曲部材285aで約90度屈曲されている。その他の構成は、図62(a)に示した駆動装置281cと同様である。   FIG. 62B is a perspective view showing a configuration of a configuration example (referred to as a driving device 281d) when the driving device 271a (FIG. 58) of the nineteenth embodiment is applied to lens driving of a camera. In this driving device 281d, a pin-shaped bending member 285e is erected on the outer peripheral surface of the cylindrical ring 285d so as to be positioned substantially behind the bending member 285a erected on the outer peripheral surface of the lens barrel 286a. . The shape memory alloy member 282 is wound around the convex portion 285b and wound around the cylindrical ring 285c for about ¼ week, then wound around the bending member 285e, and further wound around the convex portion 285b so as to go around the cylindrical ring 285c. After that, it is bent about 90 degrees by the bending member 285a. Other configurations are the same as those of the driving device 281c shown in FIG.

この駆動装置281dによれば、円筒リング285dに設けたピン状の屈曲部材285eにより形状記憶合金部材282と円筒リング285dとの相対位置関係が規制されるため、形状記憶合金部材282が伸縮を繰り返しても、円筒リング285dの回転位置がずれていくことが無い。そのため、形状記憶合金部材282の固定端を固定している固定部材289bと、円筒リング285dの切欠き部285fとの位置関係を一定に保つことができる。   According to this driving device 281d, the relative positional relationship between the shape memory alloy member 282 and the cylindrical ring 285d is regulated by the pin-shaped bending member 285e provided on the cylindrical ring 285d, and therefore the shape memory alloy member 282 repeatedly expands and contracts. However, the rotational position of the cylindrical ring 285d does not shift. Therefore, the positional relationship between the fixed member 289b that fixes the fixed end of the shape memory alloy member 282 and the notch 285f of the cylindrical ring 285d can be kept constant.

図63(a)及び(b)は、実施の形態5,11の駆動装置41、151(図12,26)をカメラのレンズ駆動に適用した場合の構成例(駆動装置281eとする。)を示す斜視図及び正面図である。図63(c)は、図63(a)とは異なる方向から駆動装置281eを見た斜視図である。   63A and 63B show a configuration example (referred to as a driving device 281e) when the driving devices 41 and 151 (FIGS. 12 and 26) according to the fifth and eleventh embodiments are applied to lens driving of a camera. It is the perspective view and front view which show. FIG. 63 (c) is a perspective view of the drive device 281e viewed from a direction different from that in FIG. 63 (a).

図63(a)及び(b)に示すように、駆動装置281eは、鏡筒286aの前端近傍に形成された屈曲部材285gと、鏡筒286aの後端近傍に形成された屈曲部材285fとを有している。レンズ枠283aは、鏡筒286aの軸方向において、屈曲部材285g,285fの間に配置されている。また、鏡筒286aの外周面において、屈曲部材285gのさらに前方には、屈曲部材285hが突出形成されている。屈曲部材285g,285f,285hの外周面には、形状記憶合金部材282に当接する多数の微小な凸部が形成されている。鏡筒286aの外周面には、レンズ枠283aに対して、鏡筒286aの円周方向に位置をずらして固定部材289bが設けられている。レンズ枠283aと屈曲部材285gとの間には、固定部材289aが設けられている。固定部材289aとレンズ枠283aとの間には、弾性部材284が設けられている。   As shown in FIGS. 63A and 63B, the driving device 281e includes a bending member 285g formed near the front end of the lens barrel 286a and a bending member 285f formed near the rear end of the lens barrel 286a. Have. The lens frame 283a is disposed between the bending members 285g and 285f in the axial direction of the lens barrel 286a. Further, on the outer peripheral surface of the lens barrel 286a, a bending member 285h is formed to protrude further forward of the bending member 285g. On the outer peripheral surfaces of the bending members 285g, 285f, and 285h, a large number of minute convex portions that are in contact with the shape memory alloy member 282 are formed. A fixing member 289b is provided on the outer peripheral surface of the lens barrel 286a so as to be displaced in the circumferential direction of the lens barrel 286a with respect to the lens frame 283a. A fixing member 289a is provided between the lens frame 283a and the bending member 285g. An elastic member 284 is provided between the fixing member 289a and the lens frame 283a.

形状記憶合金部材282の一端(固定端)は、固定部材289b(図63(c))に固定されている。形状記憶合金部材282は、固定部材289bから鏡筒286aの軸方向にほぼ沿って前方に導かれ、鏡筒286aの前端近傍において屈曲部材285gにより約180度屈曲され、鏡筒286aの軸方向にほぼ沿って後方に導かれる。さらに、形状記憶合金部材282は、鏡筒286aの後端近傍において屈曲部材285fにより約180度屈曲され、鏡筒286aの軸方向にほぼ沿って前方に導かれる。形状記憶合金部材282の他端(可動端)は、レンズ枠283aに固定されている。なお、図63(b)に示すように、形状記憶合金部材282が屈曲部材285gにより180度屈曲される際には、屈曲部材285hにも当接することにより、鏡筒286aの外周面に接しないようになっている。   One end (fixed end) of the shape memory alloy member 282 is fixed to the fixed member 289b (FIG. 63 (c)). The shape memory alloy member 282 is guided forward substantially along the axial direction of the lens barrel 286a from the fixing member 289b, and is bent about 180 degrees by the bending member 285g in the vicinity of the front end of the lens barrel 286a. Guided almost along the rear. Further, the shape memory alloy member 282 is bent about 180 degrees by the bending member 285f in the vicinity of the rear end of the lens barrel 286a, and is guided forward substantially along the axial direction of the lens barrel 286a. The other end (movable end) of the shape memory alloy member 282 is fixed to the lens frame 283a. As shown in FIG. 63B, when the shape memory alloy member 282 is bent 180 degrees by the bending member 285g, the shape memory alloy member 282 does not contact the outer peripheral surface of the lens barrel 286a by contacting the bending member 285h. It is like that.

この駆動装置281eによれば、カメラの鏡筒286aの長さを長くすることなく、全長の長い(すなわち可動端の変位量が大きい)形状記憶合金部材282を鏡筒286aの周囲に配置することができる。また、外周面に微小な凸部を有する屈曲部材285h,285g,285fに形状記憶合金部材282を巻き付けているため、変位量の低下を抑えることができる。   According to this driving device 281e, the shape memory alloy member 282 having a long overall length (that is, the displacement amount of the movable end is large) is arranged around the lens barrel 286a without increasing the length of the lens barrel 286a of the camera. Can do. In addition, since the shape memory alloy member 282 is wound around the bending members 285h, 285g, and 285f having minute convex portions on the outer peripheral surface, it is possible to suppress a decrease in the amount of displacement.

上述した実施の形態12では、多角柱状の屈曲部材を用いる場合には、略三角柱(断面が略三角形)が好ましいことを説明したが、屈曲部材が多角柱状でない場合には、実施の形態3で示したように2つの屈曲部材に形状記憶合金部材を巻き回す構成が、一つの屈曲部材の形状記憶合金部材に対する接触長さを確保しながら、接触比率を小さくする(これにより変位量の低下を抑制する)ことができる点で有利である。上述した駆動装置281eは、このような構成をカメラのレンズ駆動に応用した例である。   In the twelfth embodiment described above, when a polygonal column-shaped bending member is used, it has been described that a substantially triangular column (a cross section is approximately triangular) is preferable. However, when the bending member is not a polygonal column, the third embodiment is described. As shown, the configuration in which the shape memory alloy member is wound around the two bending members reduces the contact ratio while securing the contact length of one bending member with respect to the shape memory alloy member (this reduces the displacement amount). This is advantageous in that it can be suppressed. The driving device 281e described above is an example in which such a configuration is applied to lens driving of a camera.

次に、本実施の形態に係る駆動装置の効果の理解を容易にするため、形状記憶合金部材を直線状に配置した駆動装置(図3)をカメラのレンズ駆動に用いた場合の構成例について説明する。   Next, in order to facilitate understanding of the effects of the drive device according to the present embodiment, a configuration example in the case where the drive device (FIG. 3) in which the shape memory alloy members are arranged linearly is used for driving the lens of the camera. explain.

図64(a)及び(b)は、形状記憶合金部材2を直線状に配置した駆動装置をカメラのレンズ駆動に用いた場合の構成例(駆動装置281fとする。)を示す側断面図及び斜視図である。この駆動装置281fでは、形状記憶合金部材282の一端(固定端)は、鏡筒286aの後端近傍に設けられた固定部材289bに固定され、形状記憶合金部材282の他端(可動端)は、レンズ枠283aに固定されている。鏡筒286aの前端近傍には、固定部材289aが設けられており、この固定部材289aとレンズ枠283aとの間には弾性部材284が設けられている。形状記憶合金部材282の両端には、通電回路287が接続されている。しかしながら、このような構成では、形状記憶合金部材282が鏡筒286aに直線状に配置されているため、鏡筒286aの光軸方向の長さが短いカメラでは、全長の短い形状記憶合金部材282しか配置することができない。また、全長の短い形状記憶合金部材282の長さを配置したのでは、形状記憶合金部材282の変位量は形状記憶合金部材282の全長に対して3〜5%程度であるため、レンズ283bの駆動距離が充分に得られないという問題がある。   FIGS. 64A and 64B are a side sectional view showing a configuration example (referred to as a driving device 281f) when a driving device in which the shape memory alloy members 2 are linearly arranged is used for driving a camera lens. It is a perspective view. In this drive device 281f, one end (fixed end) of the shape memory alloy member 282 is fixed to a fixed member 289b provided near the rear end of the lens barrel 286a, and the other end (movable end) of the shape memory alloy member 282 is fixed. The lens frame 283a is fixed. A fixing member 289a is provided near the front end of the lens barrel 286a, and an elastic member 284 is provided between the fixing member 289a and the lens frame 283a. An energization circuit 287 is connected to both ends of the shape memory alloy member 282. However, in such a configuration, since the shape memory alloy member 282 is linearly arranged on the lens barrel 286a, the shape memory alloy member 282 having a short overall length is used in a camera having a short length in the optical axis direction of the lens barrel 286a. Can only be placed. In addition, when the length of the shape memory alloy member 282 having a short total length is arranged, the displacement amount of the shape memory alloy member 282 is about 3 to 5% with respect to the total length of the shape memory alloy member 282. There is a problem that a sufficient driving distance cannot be obtained.

これに対し、本実施の形態に係る駆動装置281a(図61(a))及びその他の構成例に係る駆動装置281b〜281e(図61(b)〜図63(c))では、屈曲部材285(又は屈曲部材285a〜285h)を利用することにより、鏡筒286aの外周面に沿って全長の長い形状記憶合金部材282を巻き付けることができる。従って、小型カメラであっても、全長の長い形状記憶合金部材282を用いて、レンズ283bの十分な移動距離を確保することができるという効果を奏する。   In contrast, in the driving device 281a according to the present embodiment (FIG. 61A) and the driving devices 281b to 281e according to other configuration examples (FIGS. 61B to 63C), the bending member 285 is provided. By using (or the bending members 285a to 285h), the long shape memory alloy member 282 can be wound along the outer peripheral surface of the lens barrel 286a. Therefore, even if it is a small camera, there exists an effect that the sufficient movement distance of the lens 283b can be ensured using the shape memory alloy member 282 with a long full length.

尚、上述した実施の形態1乃至21では、形状記憶合金部材に直流電流を流すことにより、形状記憶合金部材を加熱させ、変形させているが、これに限定されるものではなく、直流電流の代わりに交流電流を流してもよい。また、特開平6−324740号公報に記載されているようにパルス電流を流して形状記憶合金を加熱してもよいし、特開平6−32296号公報に記載されているようにヒーターを用いて形状記憶合金部材を加熱してもよい。また、特開平5−224136号に記載されているように他の構成部品を応用して形状記憶合金部材を加熱してもよい。また、例えば、特開2000−318698号公報、特開平5−118272号公報、特開2003−28337号公報、特開平7−14376号公報、特開平8−179181号公報に記載されているように、環境温度の変化により形状記憶合金部材を加熱してもよい。   In Embodiments 1 to 21 described above, the shape memory alloy member is heated and deformed by passing a direct current through the shape memory alloy member. However, the present invention is not limited to this. Alternatively, an alternating current may be passed. Further, the shape memory alloy may be heated by flowing a pulse current as described in JP-A-6-324740, or using a heater as described in JP-A-6-32296. The shape memory alloy member may be heated. Further, as described in JP-A-5-224136, the shape memory alloy member may be heated by applying other components. Further, for example, as described in JP 2000-318698 A, JP 5-118272 A, JP 2003-28337 A, JP 7-14376 A, and JP 8-179181 A. The shape memory alloy member may be heated by a change in environmental temperature.

また、形状記憶合金部材を屈曲部材により屈曲させ、形状記憶合金部材を加熱することで変位量を得る構成においては、形状記憶合金部材と屈曲部材との接触部分が多いと変位量低下が大きく、接触部分が少ないと変位量低下が小さいことは、上述したとおりである。これは、形状記憶合金部材と屈曲部材との接触部分において、屈曲部材を介して形状記憶合金部材の熱が奪われ、形状記憶合金部材の温度上昇が抑制されてしまうためと考えられる。この点を考慮すると、形状記憶合金部材を通電により加熱することは、大きな変位量を得る上で極めて有効である。また、屈曲部材の温度上昇が遅い場合(形状記憶合金部材の熱が奪われにくい場合)には、環境温度の変化や外部ヒータ等を利用して形状記憶合金部材を加熱する方法も有効である。これに対し、形状記憶合金部材が巻回された部材を加熱し、熱伝達により形状記憶合金部材を間接的に加熱する構成(例えば特開平5−224136号に記載された構成)では十分な変位量は得られない。   In addition, in the configuration in which the shape memory alloy member is bent by the bending member and the displacement amount is obtained by heating the shape memory alloy member, if the contact portion between the shape memory alloy member and the bending member is large, the displacement amount decrease is large. As described above, the decrease in displacement is small when the number of contact portions is small. This is presumably because, at the contact portion between the shape memory alloy member and the bending member, the heat of the shape memory alloy member is removed via the bending member, and the temperature rise of the shape memory alloy member is suppressed. Considering this point, heating the shape memory alloy member by energization is extremely effective in obtaining a large amount of displacement. Further, when the temperature rise of the bending member is slow (when the heat of the shape memory alloy member is hard to be taken away), a method of heating the shape memory alloy member using an environmental heater or an external heater is also effective. . In contrast, a configuration in which a member around which a shape memory alloy member is wound is heated and the shape memory alloy member is indirectly heated by heat transfer (for example, a configuration described in Japanese Patent Laid-Open No. 5-224136) has sufficient displacement. The amount is not available.

また、形状記憶合金部材と屈曲部材との接触部分を少なくする以外に、屈曲部材(または形状記憶合金部材と当接する当接部)に熱伝導率の低い材料を使用することによっても、形状記憶合金部材の変位量の低下を抑制することができる。   In addition to reducing the contact portion between the shape memory alloy member and the bending member, the shape memory can also be obtained by using a material having low thermal conductivity for the bending member (or the contact portion that contacts the shape memory alloy member). A decrease in the amount of displacement of the alloy member can be suppressed.

また、上述した実施の形態1乃至21では、形状記憶合金部材を付勢するための弾性部材として、引っ張りコイルバネを使用したが、これに限定されるものではなく、圧縮コイルバネ、ねじりコイルバネ、板バネ、ゴム等を使用することができる。また、弾性部材の材質は、金属などの導電性のある材料に限るものではない。なお、弾性部材として導電性以外の材料を使用し、且つ形状記憶合金部材を通電により加熱する場合には、形状記憶合金部材の両端間に通電するようにすればよい。さらに、弾性部材を使用しなくても、形状記憶合金部材を付勢することができれば、例えば重力を利用して移動体を付勢するなど、種々の方法を採用することができる。   In Embodiments 1 to 21 described above, the tension coil spring is used as the elastic member for biasing the shape memory alloy member. However, the present invention is not limited to this, and the compression coil spring, the torsion coil spring, and the leaf spring are not limited thereto. Rubber, etc. can be used. The material of the elastic member is not limited to a conductive material such as metal. In addition, what is necessary is just to make it energize between both ends of a shape memory alloy member, when using materials other than electroconductivity as an elastic member and heating a shape memory alloy member by energization. Furthermore, if the shape memory alloy member can be urged without using an elastic member, various methods such as urging the moving body using gravity can be employed.

本発明の実施の形態1に係る駆動装置を示す平面図である。It is a top view which shows the drive device which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る駆動装置を示す斜視図である。It is a perspective view which shows the drive device which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に対する比較例に係る駆動装置を示す斜視図である。It is a perspective view which shows the drive device which concerns on the comparative example with respect to Embodiment 1 of this invention. 本発明の実施の形態1に対する他の比較例に係る駆動装置を示す斜視図である。It is a perspective view which shows the drive device which concerns on the other comparative example with respect to Embodiment 1 of this invention. 図3に示した駆動装置について行った実験を説明するための斜視図である。It is a perspective view for demonstrating the experiment conducted about the drive device shown in FIG. 図6(a)は、図4に示した駆動装置について行った実験を説明するための斜視図であり、図6(b)はその平面図である。FIG. 6A is a perspective view for explaining an experiment performed on the drive device shown in FIG. 4, and FIG. 6B is a plan view thereof. 図7(a)は、図4に示した駆動装置について、形状記憶合金部材の巻き方を変えて行った実験を説明するための斜視図であり、図7(b)はその平面図である。FIG. 7A is a perspective view for explaining an experiment performed on the drive device shown in FIG. 4 by changing the winding method of the shape memory alloy member, and FIG. 7B is a plan view thereof. . 図8(a)は、図4に示した駆動装置について、形状記憶合金部材の巻き方を変えて行った実験を説明するための斜視図であり、図8(b)はその平面図である。FIG. 8A is a perspective view for explaining an experiment performed by changing the winding method of the shape memory alloy member in the driving device shown in FIG. 4, and FIG. 8B is a plan view thereof. . 本発明の実施の形態2に係る駆動装置を示す平面図である。It is a top view which shows the drive device which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る駆動装置を示す斜視図である。It is a perspective view which shows the drive device which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る駆動装置を示す斜視図である。It is a perspective view which shows the drive device which concerns on Embodiment 4 of this invention. 本発明の実施の形態5に係る駆動装置を示す平面図である。It is a top view which shows the drive device which concerns on Embodiment 5 of this invention. 本発明の実施の形態5に係る駆動装置の別の構成例を示す斜視図である。It is a perspective view which shows another structural example of the drive device which concerns on Embodiment 5 of this invention. 本発明の実施の形態6に係る駆動装置を示す斜視図である。It is a perspective view which shows the drive device which concerns on Embodiment 6 of this invention. 図15(a)は、本発明の実施の形態6に係る駆動装置についての実験を説明するための斜視図であり、図15(b)はその平面図である。FIG. 15 (a) is a perspective view for explaining an experiment on the driving apparatus according to Embodiment 6 of the present invention, and FIG. 15 (b) is a plan view thereof. 図16(a)は、本発明の実施の形態6に係る駆動装置について、形状記憶合金部材の巻き付け角を変更して行なった実験を説明するための斜視図であり、図16(b)はその平面図である。FIG. 16 (a) is a perspective view for explaining an experiment performed by changing the winding angle of the shape memory alloy member in the driving apparatus according to Embodiment 6 of the present invention, and FIG. FIG. 図17(a)は、本発明の実施の形態6に係る駆動装置について、形状記憶合金部材の巻き付け角を更に変更して行なった実験を説明するための斜視図であり、図17(b)はその平面図である。FIG. 17 (a) is a perspective view for explaining an experiment performed by further changing the winding angle of the shape memory alloy member in the driving apparatus according to Embodiment 6 of the present invention, and FIG. Is a plan view thereof. 図18(a)は、本発明の実施の形態6における屈曲部材の形状を説明するための斜視図であり、図18(b)、(c)及び(d)は、屈曲部材の具体的な形状を示す平面図である。FIG. 18A is a perspective view for explaining the shape of the bending member according to the sixth embodiment of the present invention. FIGS. 18B, 18C, and 18D are specific views of the bending member. It is a top view which shows a shape. 接触比率と変位比率との関係を示すグラフであり、表1に対応するものである。It is a graph which shows the relationship between a contact ratio and a displacement ratio, and corresponds to Table 1. 接触比率と変位比率との関係を示すグラフであり、表2に対応するものである。3 is a graph showing a relationship between a contact ratio and a displacement ratio, and corresponds to Table 2. 図21(a)は、本発明の実施の形態6における屈曲部材の形状を示す平面図であり、図21(b)及び(c)は、屈曲部材の他の構成例を示す平面図である。FIG. 21A is a plan view showing the shape of the bending member in the sixth embodiment of the present invention, and FIGS. 21B and 21C are plan views showing other configuration examples of the bending member. . 本発明の実施の形態7に係る駆動装置を示す平面図である。It is a top view which shows the drive device which concerns on Embodiment 7 of this invention. 本発明の実施の形態8に係る駆動装置を示す斜視図である。It is a perspective view which shows the drive device which concerns on Embodiment 8 of this invention. 図24(a)は、本発明の実施の形態9に係る駆動装置を示す正面図であり、図24(b)はその側面図である。FIG. 24 (a) is a front view showing a driving apparatus according to Embodiment 9 of the present invention, and FIG. 24 (b) is a side view thereof. 図25(a)は、本発明の実施の形態10に係る駆動装置を示す斜視図であり、図25(b)は異なる方向から見た斜視図である。FIG. 25 (a) is a perspective view showing a driving apparatus according to Embodiment 10 of the present invention, and FIG. 25 (b) is a perspective view seen from a different direction. 本発明の実施の形態11に係る駆動装置を示す斜視図である。It is a perspective view which shows the drive device based on Embodiment 11 of this invention. 本発明の実施の形態11に係る駆動装置について行った実験を説明するための平面図である。It is a top view for demonstrating the experiment conducted about the drive device which concerns on Embodiment 11 of this invention. 図28(a)、(b)、(c)及び(d)は、図27に示した実験に用いた巻回部材をそれぞれ示す平面図である。28 (a), (b), (c) and (d) are plan views showing winding members used in the experiment shown in FIG. 本発明の実施の形態11に係る駆動装置について行った実験結果を示すグラフである。It is a graph which shows the experimental result done about the drive device which concerns on Embodiment 11 of this invention. 本発明の実施の形態12に係る駆動装置を示す斜視図である。It is a perspective view which shows the drive device based on Embodiment 12 of this invention. 本発明の実施の形態12に係る駆動装置について行った実験を説明するための斜視図である。It is a perspective view for demonstrating the experiment conducted about the drive device which concerns on Embodiment 12 of this invention. 図32(a)、(b)、(c)及び(d)は、異なる断面形状を有する屈曲部材を用いて行った実験をそれぞれ説明するための平面図である。32 (a), (b), (c) and (d) are plan views for explaining experiments conducted using bending members having different cross-sectional shapes, respectively. 図33(a)、(b)、(c)及び(d)は、略三角柱状の4種類の屈曲部材をそれぞれ示す平面図である。33 (a), (b), (c) and (d) are plan views showing four types of bending members each having a substantially triangular prism shape. 図34(a)、(b)、(c)及び(d)は、略四角柱状の4種類の屈曲部材をそれぞれ示す平面図である。FIGS. 34 (a), (b), (c) and (d) are plan views showing four types of bending members each having a substantially quadrangular prism shape. 図35(a)、(b)、(c)及び(d)は、略六角柱状の4種類の屈曲部材をそれぞれ示す平面図である。FIGS. 35 (a), (b), (c) and (d) are plan views showing four types of bending members each having a substantially hexagonal column shape. 図36(a)、(b)、(c)及び(d)は、略円柱状の4種類の屈曲部材をそれぞれ示す平面図である。36 (a), (b), (c) and (d) are plan views showing four types of substantially cylindrical bending members, respectively. 接触比率と変位比率との関係を示すグラフであり、表4に対応するものである。5 is a graph showing a relationship between a contact ratio and a displacement ratio, and corresponds to Table 4. 図38(a)及び(b)は、本発明の実施の形態13に係る形状記憶合金部材と圧着端子との固定方法の工程を説明するための図であり、図38(c)及び(d)は、他の工程の例を説明するための図である。FIGS. 38 (a) and 38 (b) are diagrams for explaining the steps of the method for fixing the shape memory alloy member and the crimp terminal according to Embodiment 13 of the present invention, and FIGS. 38 (c) and 38 (d). () Is a figure for demonstrating the example of another process. 図38(b)又は(d)に示した工程に続く工程を説明するための図である。It is a figure for demonstrating the process following the process shown in FIG.38 (b) or (d). 本発明の実施の形態14に係る駆動装置を示す斜視図である。It is a perspective view which shows the drive device based on Embodiment 14 of this invention. 図41(a)は、実施の形態14に対する比較例としての駆動装置を示す斜視図であり、図41(b)は、他の比較例としての駆動装置の構成例を示す斜視図である。FIG. 41A is a perspective view showing a drive device as a comparative example with respect to the fourteenth embodiment, and FIG. 41B is a perspective view showing a configuration example of a drive device as another comparative example. 本発明の実施の形態15に係る駆動装置を示す斜視図である。It is a perspective view which shows the drive device based on Embodiment 15 of this invention. 本発明の実施の形態15に係る駆動装置の他の構成例を示す斜視図である。It is a perspective view which shows the other structural example of the drive device which concerns on Embodiment 15 of this invention. 本発明の実施の形態16に係る駆動装置を示す斜視図である。It is a perspective view which shows the drive device based on Embodiment 16 of this invention. 本発明の実施の形態16に係る駆動装置について行った実験を説明するための斜視図である。It is a perspective view for demonstrating the experiment conducted about the drive device which concerns on Embodiment 16 of this invention. 図45に示した実験の結果を示すグラフであり、表5に対応するものである。46 is a graph showing the results of the experiment shown in FIG. 45 and corresponds to Table 5. FIG. 本発明の実施の形態16に係る駆動装置の他の構成例を示す斜視図である。It is a perspective view which shows the other structural example of the drive device which concerns on Embodiment 16 of this invention. 本発明の実施の形態16に係る駆動装置を示す斜視図である。It is a perspective view which shows the drive device based on Embodiment 16 of this invention. 本発明の実施の形態16に係る駆動装置の通電回路のブロック図である。It is a block diagram of the electricity supply circuit of the drive device concerning Embodiment 16 of this invention. 本発明の実施の形態16に対する比較例であって、形状記憶合金部材に一律に電流を流す場合の通電回路のブロック図である。It is a comparative example with respect to Embodiment 16 of this invention, Comprising: It is a block diagram of the electricity supply circuit in the case of supplying an electric current uniformly to a shape memory alloy member. 図49に示した通電回路の回路図である。FIG. 50 is a circuit diagram of the energization circuit shown in FIG. 49. 本発明の実施の形態17に係る駆動装置を示す斜視図である。It is a perspective view which shows the drive device based on Embodiment 17 of this invention. 本発明の実施の形態17に係る駆動装置の他の構成例を示す斜視図である。It is a perspective view which shows the other structural example of the drive device which concerns on Embodiment 17 of this invention. 本発明の実施の形態18に係る駆動装置を示す斜視図である。It is a perspective view which shows the drive device based on Embodiment 18 of this invention. 本発明の実施の形態19に係る駆動装置を示す斜視図である。It is a perspective view which shows the drive device based on Embodiment 19 of this invention. 図56(a)、(b)及び(c)は、本発明の実施の形態19に係る駆動装置に関する実験を行う3種類の実験装置の構成をそれぞれ示す斜視図である。56 (a), 56 (b), and 56 (c) are perspective views respectively showing the configurations of three types of experimental devices that conduct experiments related to the drive device according to Embodiment 19 of the present invention. 図56に示した実験装置による実験結果を示すグラフであり、表6に対応するものである。FIG. 57 is a graph showing an experimental result by the experimental apparatus shown in FIG. 56 and corresponds to Table 6. FIG. 本発明の実施の形態20に係る駆動装置を示す斜視図である。It is a perspective view which shows the drive device based on Embodiment 20 of this invention. 本発明の実施の形態20に係る駆動装置についての実験を行う実験装置を示す斜視図である。It is a perspective view which shows the experimental apparatus which performs the experiment about the drive device based on Embodiment 20 of this invention. 図59に示した実験装置による実験の結果を示すグラフであり、表7に対応するものである。FIG. 60 is a graph showing a result of an experiment by the experimental apparatus shown in FIG. 59 and corresponds to Table 7. FIG. 図61(a)は、本発明の実施の形態21に係る駆動装置を示す斜視図であり、図61(b)は、本発明の実施の形態21に係る駆動装置の別の構成例を示す斜視図である。FIG. 61 (a) is a perspective view showing a drive apparatus according to Embodiment 21 of the present invention, and FIG. 61 (b) shows another configuration example of the drive apparatus according to Embodiment 21 of the present invention. It is a perspective view. 図62(a)は、本発明の実施の形態21に係る駆動装置の他の構成例を示す斜視図であり、図62(b)は、本発明の実施の形態21に係る駆動装置の更に他の構成例を示す斜視図である。FIG. 62 (a) is a perspective view showing another configuration example of the driving apparatus according to Embodiment 21 of the present invention, and FIG. 62 (b) further shows the driving apparatus according to Embodiment 21 of the present invention. It is a perspective view which shows the other structural example. 図63(a)は、本発明の実施の形態21に係る駆動装置の更に他の構成例を示す斜視図であり、図63(b)はその正面図、図63(c)は別方向から見た斜視図である。FIG. 63 (a) is a perspective view showing still another configuration example of the drive device according to Embodiment 21 of the present invention, FIG. 63 (b) is a front view thereof, and FIG. 63 (c) is from another direction. FIG. 図64(a)及び(b)は、本発明の実施の形態21に対する比較例であって、従来の駆動装置をカメラのレンズ駆動に適用した場合の構成例を示す断面図及び斜視図である。64 (a) and 64 (b) are cross-sectional views and perspective views showing a configuration example when a conventional driving device is applied to lens driving of a camera, as a comparative example with respect to Embodiment 21 of the present invention. .

符号の説明Explanation of symbols

202 形状記憶合金部材、 202a 形状記憶合金部材上の圧着端子に近い位置、 202b 形状記憶合金部材の圧着端子に固定された部分、 208 圧着端子、 208a かしめ部、 208b 基部、 208c 環状部、 207 通電回路。



202 shape memory alloy member, 202a position near the crimp terminal on the shape memory alloy member, 202b portion fixed to the crimp terminal of the shape memory alloy member, 208 crimp terminal, 208a caulking part, 208b base part, 208c annular part, 207 energization circuit.



Claims (5)

形状記憶合金からなる屈曲可能な線材と、
前記線材の長手方向に張力を生じさせる付勢手段と、
前記線材に当接する複数の当接部を有し、前記線材を屈曲させる屈曲手段と、
前記当接部を介し前記線材に電流を流す通電手段と、
を備え、
前記複数の当接部が前記線材に当接すると共に、前記付勢手段により前記線材を前記長手方向に変位させるように構成され、
互いに隣接する前記当接部で定まる各区間の前記線材において、前記線材に流れる電流量が異なる前記区間が存在するように、電流を流す前記当接部を決定すること
を特徴とする駆動装置。
A bendable wire made of shape memory alloy;
Urging means for generating tension in the longitudinal direction of the wire,
A plurality of abutting portions that abut against the wire, and bending means for bending the wire;
Energization means for passing current through the wire through the contact portion;
With
The plurality of contact portions are in contact with the wire, and are configured to displace the wire in the longitudinal direction by the urging means,
The drive device according to claim 1, wherein the abutting portion for supplying a current is determined so that there is a section in which the amount of current flowing through the wire is different in each of the wires defined by the abutting portions adjacent to each other.
前記線材と前記当接部との間の摩擦力に基づいて、前記電流の電流量を決定したこと
を特徴とする請求項1に記載の駆動装置。
The driving device according to claim 1, wherein the amount of the current is determined based on a frictional force between the wire and the contact portion.
前記屈曲手段の一端と電子回路基板とを電気的に接続すること
を特徴とする請求項1または2に記載の駆動装置。
The driving device according to claim 1, wherein one end of the bending means is electrically connected to the electronic circuit board.
レンズと、
前記レンズを保持するレンズ枠と、
前記レンズ枠を内部に納める鏡筒と、
請求項1から3のいずれか1項に記載の駆動装置と、
を備え、
前記レンズ枠と前記線材の一端とを係止させたこと
を特徴とするレンズ駆動装置。
A lens,
A lens frame for holding the lens;
A lens barrel that houses the lens frame;
The drive device according to any one of claims 1 to 3,
With
A lens driving device characterized in that the lens frame and one end of the wire rod are locked.
請求項4に記載のレンズ駆動装置を備えるカメラ。
A camera comprising the lens driving device according to claim 4.
JP2005182946A 2003-05-12 2005-06-23 Driving device, lens driving device, and camera Expired - Fee Related JP4353921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005182946A JP4353921B2 (en) 2003-05-12 2005-06-23 Driving device, lens driving device, and camera

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003132506 2003-05-12
JP2003316444 2003-09-09
JP2005182946A JP4353921B2 (en) 2003-05-12 2005-06-23 Driving device, lens driving device, and camera

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005506014A Division JP3789467B2 (en) 2003-05-12 2004-04-30 Driving device, lens driving device, and camera

Publications (2)

Publication Number Publication Date
JP2005337262A true JP2005337262A (en) 2005-12-08
JP4353921B2 JP4353921B2 (en) 2009-10-28

Family

ID=35491069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005182946A Expired - Fee Related JP4353921B2 (en) 2003-05-12 2005-06-23 Driving device, lens driving device, and camera

Country Status (1)

Country Link
JP (1) JP4353921B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008138593A (en) * 2006-12-01 2008-06-19 Shonai Create Kogyo:Kk Actuator
EP1992817A2 (en) 2007-05-15 2008-11-19 Konica Minolta Opto, Inc. Drive apparatus and lens drive apparatus
JP2010262178A (en) * 2009-05-08 2010-11-18 Mitsumi Electric Co Ltd Lens drive device
JPWO2012023605A1 (en) * 2010-08-20 2013-10-28 株式会社青電舎 Shock-driven actuator
WO2016035397A1 (en) * 2014-09-02 2016-03-10 株式会社 村田製作所 Driving device
JP2021507308A (en) * 2017-12-23 2021-02-22 ホアウェイ・テクノロジーズ・カンパニー・リミテッド Lens position adjuster, camera module, information device, and camera drive method
CN115004072A (en) * 2020-01-06 2022-09-02 华为技术有限公司 Optical image stabilization system including shape memory alloy wire and method of making the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008138593A (en) * 2006-12-01 2008-06-19 Shonai Create Kogyo:Kk Actuator
EP1992817A2 (en) 2007-05-15 2008-11-19 Konica Minolta Opto, Inc. Drive apparatus and lens drive apparatus
US7688533B2 (en) 2007-05-15 2010-03-30 Konica Minolta Opto, Inc. Drive apparatus and lens drive apparatus
JP2010262178A (en) * 2009-05-08 2010-11-18 Mitsumi Electric Co Ltd Lens drive device
JPWO2012023605A1 (en) * 2010-08-20 2013-10-28 株式会社青電舎 Shock-driven actuator
JP5878869B2 (en) * 2010-08-20 2016-03-08 株式会社青電舎 Shock-driven actuator
WO2016035397A1 (en) * 2014-09-02 2016-03-10 株式会社 村田製作所 Driving device
JPWO2016035397A1 (en) * 2014-09-02 2017-04-27 株式会社村田製作所 Drive device
JP2021507308A (en) * 2017-12-23 2021-02-22 ホアウェイ・テクノロジーズ・カンパニー・リミテッド Lens position adjuster, camera module, information device, and camera drive method
JP7002659B2 (en) 2017-12-23 2022-01-20 ホアウェイ・テクノロジーズ・カンパニー・リミテッド Lens position adjuster, camera module, information device, and camera drive method
US11550117B2 (en) 2017-12-23 2023-01-10 Huawei Technologies Co., Ltd. Lens position adjustment device, camera module, information device, and camera driving method
CN115004072A (en) * 2020-01-06 2022-09-02 华为技术有限公司 Optical image stabilization system including shape memory alloy wire and method of making the same
CN115004072B (en) * 2020-01-06 2023-09-29 华为技术有限公司 Optical image stabilization system including shape memory alloy wire and method of making the same

Also Published As

Publication number Publication date
JP4353921B2 (en) 2009-10-28

Similar Documents

Publication Publication Date Title
JP3789467B2 (en) Driving device, lens driving device, and camera
JP4353921B2 (en) Driving device, lens driving device, and camera
US11199182B2 (en) Sensor shift structures in optical image stabilization suspensions
JP5296086B2 (en) Shape memory alloy drive unit
JP4862703B2 (en) DRIVE DEVICE, DRIVE MECHANISM, AND IMAGING DEVICE
US8228618B2 (en) Drive mechanism, drive device, and lens drive device
JP2011169446A (en) Plate spring and lens driving device
JP2011169443A (en) Plate spring and lens driving device
JP3892018B2 (en) Manufacturing method of wire, wire, manufacturing method of wire with stopper, wire with stopper
KR20090081855A (en) Lens displacement mechanism using shaped memory alloy
JP2009299487A (en) Shape memory alloy actuator
JP4298443B2 (en) Drive device
JP5321132B2 (en) Driving device and lens driving device
CN1788157B (en) Drive device
JP6156666B2 (en) Drive device
JP2005083291A (en) Driving device
US11592728B2 (en) Camera module
JP4711121B2 (en) LENS DEVICE AND IMAGING DEVICE HAVING LENS DEVICE
JP2008138593A (en) Actuator
JP6626729B2 (en) Lens drive
JP2011007825A (en) Lens drive device
JP2007215269A (en) Actuator and image pick-up apparatus
WO2022209627A1 (en) Image sensor drive device and camera module
WO2022219984A1 (en) Module driving device and optical device
GB2607269A (en) SMA actuator assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090728

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130807

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees