JP2005336569A - HIGH TOUGHNESS Al ALLOY CASTING - Google Patents

HIGH TOUGHNESS Al ALLOY CASTING Download PDF

Info

Publication number
JP2005336569A
JP2005336569A JP2004158760A JP2004158760A JP2005336569A JP 2005336569 A JP2005336569 A JP 2005336569A JP 2004158760 A JP2004158760 A JP 2004158760A JP 2004158760 A JP2004158760 A JP 2004158760A JP 2005336569 A JP2005336569 A JP 2005336569A
Authority
JP
Japan
Prior art keywords
casting
alloy casting
content
mass
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004158760A
Other languages
Japanese (ja)
Other versions
JP4238181B2 (en
Inventor
Yusuke Toyoda
裕介 豊田
Katsuhiro Shibata
勝弘 柴田
Takahiro Mizukami
貴博 水上
Ryoichi Murakashi
良一 村樫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2004158760A priority Critical patent/JP4238181B2/en
Publication of JP2005336569A publication Critical patent/JP2005336569A/en
Application granted granted Critical
Publication of JP4238181B2 publication Critical patent/JP4238181B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high toughness Al alloy casting in which tensile strength, 0.2% proof stress and elongation can be obtained at high levels in a well balance. <P>SOLUTION: The high toughness Al alloy casting has a composition comprising, by mass, 2 to 5% Si, 0.2 to 0.5% Mg, 0.4 to 0.8% Cu, 0.05 to 0.3% Ge, and the balance Al with inevitable impurities. The casting has the tensile strength of ≥280 MPa, the 0.2% proof stress of ≥220 MPa, and the elongation of ≥12%. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高靱性Al合金鋳物に係り、特に、種々の機械的特性に優れたAl合金鋳物に関する。   The present invention relates to a high toughness Al alloy casting, and more particularly to an Al alloy casting excellent in various mechanical properties.

Al合金鋳物は、車体、サスペンション部材、サブフレーム部材、各種継手部材、及びアルミホイール等のシャーシ構成部品等に使用して好適であり、このような合金については種々の技術が開示されている。   Al alloy castings are suitable for use in chassis components such as vehicle bodies, suspension members, subframe members, various joint members, and aluminum wheels, and various techniques are disclosed for such alloys.

このようなAl合金鋳物としては、伸び、衝撃値、引張強さ、耐力、及び耐食性を向上させることを目的として、質量比で、Si:1.65〜4.0%、Mg:0.2〜0.4%、Fe:0.2%以下であり、残部が実質的にAl及び不可避的不純物の組成からなり、Al基地中の共晶Siの面積率が15%以下、伸びが15%以上、且つ衝撃値が30〜40×10J/m以上である高靱性Al鋳物が提案されている(特許文献1参照)。この高靱性Al鋳物は、Si含有量を低く抑えた組成で、鋳造後、共晶温度近傍の高温に急冷する高温溶体化処理を行い、しかる後に時効処理を適切に施すことで、優れた伸び及び衝撃値を実現することができる。また、このAl鋳物は、同様に、高温溶体化処理を行い、しかる後に長時間時効処理を行うことで、優れた引張強さ、耐力、及び耐食性を実現することができる。このような技術によれば、部品の薄肉化に伴う軽量化を図ることでき、しかも低圧鋳造又は重力鋳造を適用することができるため、生産性を向上させることができる。 Such an Al alloy casting has a mass ratio of Si: 1.65 to 4.0% and Mg: 0.2 for the purpose of improving elongation, impact value, tensile strength, yield strength, and corrosion resistance. -0.4%, Fe: 0.2% or less, the balance is substantially composed of Al and inevitable impurities, the area ratio of eutectic Si in the Al base is 15% or less, and the elongation is 15%. As described above, a high toughness Al casting having an impact value of 30 to 40 × 10 4 J / m 2 or more has been proposed (see Patent Document 1). This high toughness Al casting has a composition with a low Si content, and after casting it is subjected to a high temperature solution treatment that is rapidly cooled to a high temperature close to the eutectic temperature, and then an aging treatment is appropriately applied to achieve excellent elongation. And impact values can be realized. In addition, this Al casting can be similarly subjected to a high-temperature solution treatment, and then an aging treatment for a long time, thereby realizing excellent tensile strength, yield strength, and corrosion resistance. According to such a technique, it is possible to reduce the weight accompanying the thinning of the parts, and to apply low-pressure casting or gravity casting, so that productivity can be improved.

また、優れた靱性を実現するとともに、金型への焼き付きの発生を防止することを目的として、質量比で、2%≦Si≦4%、0.2%≦Mg≦0.5%、0.4%≦Cu≦0.8%、0.2%≦Fe≦0.5%、0.1%≦Ti≦0.3%、及び不可避的不純物を含み、残部がAlであり、金属組織におけるα相の粒径dが50μm以下である高靱性Al合金鋳物が提案されている(特許文献2参照)。この技術では、高靱性Al鋳物の組成を上記特許文献1と同等の組成とした上で、Feの含有量を画期的な0.2質量%を超えるものとすることにより、優れた靱性と金型への焼き付き防止とを共に実現することができる。なお、特許文献2に記載の高靱性Al合金鋳物は、上記組成のAl合金溶湯を加圧下で金型のキャビティに充填し、次いで溶湯の凝固が完了するまで冷却速度を5℃/Sに制御して得られるものであり、靱性等の物性は、特許文献1に記載の鋳物と同等であるが、生産性がさらに改善されている。   Further, for the purpose of realizing excellent toughness and preventing the occurrence of seizure on the mold, the mass ratio is 2% ≦ Si ≦ 4%, 0.2% ≦ Mg ≦ 0.5%, 0 .4% ≦ Cu ≦ 0.8%, 0.2% ≦ Fe ≦ 0.5%, 0.1% ≦ Ti ≦ 0.3%, and unavoidable impurities, the balance being Al, There has been proposed a high toughness Al alloy casting in which the particle size d of the α phase is 50 μm or less (see Patent Document 2). In this technique, the composition of the high toughness Al casting is made the same composition as that of the above-mentioned Patent Document 1, and the excellent toughness is achieved by making the content of Fe more than epoch-making 0.2% by mass. Both prevention of seizing on the mold can be realized. In addition, in the high toughness Al alloy casting described in Patent Document 2, the molten aluminum alloy having the above composition is filled into the mold cavity under pressure, and then the cooling rate is controlled to 5 ° C./S until the solidification of the molten metal is completed. The physical properties such as toughness are equivalent to those of the casting described in Patent Document 1, but the productivity is further improved.

特開平9−272942号公報(要約書)Japanese Laid-Open Patent Publication No. 9-272942 (Abstract) 特願2003−420405号Japanese Patent Application No. 2003-420405

しかしながら、上記特許文献1、2に記載された技術では、得られる鋳物の機械的諸性質のうち、特に伸びや衝撃強度等の靱性について、十分な値が得られているとは言い難い。例えば、特許文献1の請求項4に記載の鋳物では、引張強さが240MPa以上であり、しかも0.2%耐力が140MPa以上であるが、衝撃値が19×10と低い。よって、近年においては、抗張力、0.2%耐力及び伸びの全てがバランス良く高いレベルで得られるAl合金鋳物の技術開発が要請されていた。 However, in the techniques described in Patent Documents 1 and 2, it is difficult to say that sufficient values are obtained for toughness such as elongation and impact strength among mechanical properties of the obtained casting. For example, in the casting according to claim 4 of Patent Document 1, the tensile strength is 240 MPa or more and the 0.2% proof stress is 140 MPa or more, but the impact value is as low as 19 × 10 4 . Therefore, in recent years, there has been a demand for the technical development of Al alloy castings in which all of tensile strength, 0.2% proof stress and elongation can be obtained at a high level with good balance.

本発明は、上記要請に鑑みてなされたものであり、抗張力、0.2%耐力及び伸びの全てがバランス良く高いレベルで得られる高靱性Al合金鋳物を提供することを目的としている。   This invention is made | formed in view of the said request | requirement, and aims at providing the high toughness Al alloy casting from which all of a tensile strength, 0.2% yield strength, and elongation are obtained with a high level with sufficient balance.

本発明者らは、上記のように、抗張力、0.2%耐力及び伸びが、バランス良く高いレベルで得られる、高靱性Al合金鋳物について、鋭意、研究を重ねた。その結果、上記特許文献2に示すように合金成分中のFe及びTi含有量を限定する代わりに、Ge含有量を限定することで、上記課題を解決することができるとの知見を得た。本発明は、このような知見に鑑みてなされたものである。   As described above, the present inventors diligently researched a high toughness Al alloy casting in which tensile strength, 0.2% proof stress and elongation can be obtained at a high level in a balanced manner. As a result, as shown in Patent Document 2, instead of limiting the Fe and Ti contents in the alloy components, the inventors have found that the above problem can be solved by limiting the Ge content. The present invention has been made in view of such knowledge.

即ち、本発明の高靱性Al合金鋳物は、質量比で、2%≦Si≦5%、0.2%≦Mg≦0.5%、0.4%≦Cu≦0.8%、0.05%≦Ge≦0.3%、及び不可避的不純物を含み、残部がAlであり、抗張力が280MPa以上、0.2%耐力が220MPa以上、且つ伸びが12%以上であることを特徴としている。   That is, the high toughness Al alloy casting of the present invention has a mass ratio of 2% ≦ Si ≦ 5%, 0.2% ≦ Mg ≦ 0.5%, 0.4% ≦ Cu ≦ 0.8%, 0.8%. 05% ≦ Ge ≦ 0.3% and containing inevitable impurities, the balance being Al, tensile strength is 280 MPa or more, 0.2% proof stress is 220 MPa or more, and elongation is 12% or more. .

また、このような高靱性Al合金鋳物においては、Zr、Ti、及びBの少なくとも1種が含有されていることが望ましい。なお、本発明の高靱性Al合金鋳物には、Sr、Na等の共晶微細化剤を添加することもできる。また、Fe含有量は0.2質量%以下とすることが好ましいが、粒径を制御することにより0.5質量%まで含有させることができる。   Further, in such a high toughness Al alloy casting, it is desirable that at least one of Zr, Ti, and B is contained. It should be noted that a eutectic refining agent such as Sr or Na may be added to the high toughness Al alloy casting of the present invention. The Fe content is preferably 0.2% by mass or less, but can be contained up to 0.5% by mass by controlling the particle size.

本発明の高靱性Al合金鋳物によれば、合金中のGe含有量の適正化を図ることで、Al合金鋳物の、優れた抗張力、0.2%耐力及び伸びをバランス良く高いレベルで実現することができる。   According to the high toughness Al alloy casting of the present invention, by optimizing the Ge content in the alloy, the excellent tensile strength, 0.2% proof stress and elongation of the Al alloy casting are realized at a high level in a balanced manner. be able to.

以下に、本発明の好適な実施形態を説明する。
本発明の高靱性Al合金鋳物は、質量比で、2%≦Si≦5%、0.2%≦Mg≦0.5%、0.4%≦Cu≦0.8%、0.05%≦Ge≦0.3%、及び不可避的不純物を含み、残部がAlであり、抗張力が280MPa以上、0.2%耐力が220MPa以上、且つ伸びが12%以上である。このような合金中の各元素の含有理由、及びその含有量限定理由は、以下のとおりである。
The preferred embodiments of the present invention will be described below.
The high toughness Al alloy casting of the present invention has a mass ratio of 2% ≦ Si ≦ 5%, 0.2% ≦ Mg ≦ 0.5%, 0.4% ≦ Cu ≦ 0.8%, 0.05%. ≦ Ge ≦ 0.3%, and inevitable impurities are contained, the balance is Al, the tensile strength is 280 MPa or more, the 0.2% proof stress is 220 MPa or more, and the elongation is 12% or more. The reasons for the inclusion of each element in such an alloy and the reasons for limiting its content are as follows.

Siは、溶湯の流動性を良好にし、またAl合金鋳物の機械的特性を向上させる効果を有する。但し、Si含有量が2質量%未満の場合には、溶湯の流動性が悪化するため、Al合金鋳物において鋳造欠陥の発生が著しく増大する。一方、Si含有量が5質量%を超える場合には、α−Al相の結晶粒界に分布するSi結晶の量が増大するため、Al合金鋳物の靱性が低下する。従って、Siの含有量は、2〜5質量%とした。   Si has the effect of improving the fluidity of the molten metal and improving the mechanical properties of the Al alloy casting. However, when the Si content is less than 2% by mass, the fluidity of the molten metal is deteriorated, so that the occurrence of casting defects is remarkably increased in the Al alloy casting. On the other hand, when the Si content exceeds 5% by mass, the amount of Si crystals distributed at the grain boundaries of the α-Al phase increases, so that the toughness of the Al alloy casting decreases. Therefore, the content of Si is set to 2 to 5% by mass.

Mgは、T6処理によりMgSiを微細に分散析出させてAl合金鋳物の強度を向上させる効果を有する。但し、Mg含有量が0.2質量%未満の場合には、上記効果が不十分である。一方、Mg含有量が0.5質量%を超える場合には、MgSiの析出量が過多となるため、Al合金鋳物の靱性が低下する。従って、Mgの含有量は、0.2〜0.5質量%とした。 Mg has the effect of improving the strength of the Al alloy casting by finely dispersing and precipitating Mg 2 Si by T6 treatment. However, when the Mg content is less than 0.2% by mass, the above effect is insufficient. On the other hand, when the Mg content exceeds 0.5% by mass, the amount of Mg 2 Si precipitated becomes excessive, and the toughness of the Al alloy casting is lowered. Therefore, the content of Mg is set to 0.2 to 0.5% by mass.

Cuは、Alへの高い固溶限に基づいてAl合金鋳物の金属組織を固溶強化し、また、T6処理による分散析出により上記金属組織を分散強化する効果を有する。但し、Cu含有量が0.4質量%未満の場合には、Al合金鋳物の強度向上効果が十分でない。一方、Cu含有量が0.8質量%を超える場合には、Al合金鋳物の耐応力腐食割れ性が低下するのみならず、耐食性も悪化する。従って、Cu含有量は、0.4〜0.8質量%とした。   Cu has the effect of solid-solution strengthening the metal structure of the Al alloy casting based on the high solid solubility limit in Al, and also has the effect of dispersion strengthening the metal structure by dispersion precipitation by T6 treatment. However, when the Cu content is less than 0.4% by mass, the effect of improving the strength of the Al alloy casting is not sufficient. On the other hand, when the Cu content exceeds 0.8% by mass, not only the stress corrosion cracking resistance of the Al alloy casting is lowered but also the corrosion resistance is deteriorated. Therefore, the Cu content is set to 0.4 to 0.8 mass%.

Geは、固溶限が0.5atm%以上であり、しかもAl、Si、Mg及びCuと、析出時に化合物を生成しないので、溶湯の流動性を悪化させることなく、靱性を向上させる効果を有する。但し、Geの含有量が0.05質量%未満の場合には、上記効果が不十分である。一方、Geの含有量が0.3質量%を超える場合には、Ge−Si−Mg系又はMgGeを生成し、伸びや強度が低下する。従って、Geの含有量は、0.05〜0.3質量%とした。なお、Geの奏する上記効果と同様の効果は、Geの他に、Zn、Ag、Li、Sc及びGaを含有させることによっても得られる。これらの元素は、Alとの原子半径比等が上記範囲にあるからである。なお、これらの元素の中でもLiを含有させることが特に好ましい。 Ge has a solid solubility limit of 0.5 atm% or more, and since Al, Si, Mg and Cu do not produce a compound during precipitation, it has the effect of improving toughness without deteriorating the fluidity of the molten metal. . However, when the Ge content is less than 0.05% by mass, the above effect is insufficient. On the other hand, when the content of Ge exceeds 0.3% by mass, a Ge—Si—Mg system or Mg 2 Ge is generated, and the elongation and strength are lowered. Therefore, the content of Ge is set to 0.05 to 0.3% by mass. In addition, the effect similar to the said effect which Ge shows can be acquired by containing Zn, Ag, Li, Sc, and Ga other than Ge. This is because these elements have an atomic radius ratio with Al in the above range. Among these elements, it is particularly preferable to contain Li.

以上は、本発明の高靱性Al合金鋳物に含有させる必須元素であるが、以下に、Al合金鋳物に副次的に含有させることが好ましい各元素の含有理由を述べる。
Feは、金型に対する溶湯の焼き付きを防止する効果を有する。但し、過度に含有させた場合には、高温でα−FeAlSiが晶出するため、Al合金鋳物の靱性の低下を招く。
The above are the essential elements to be contained in the high toughness Al alloy casting of the present invention. The reasons for the inclusion of each element that is preferably contained in the Al alloy casting as a subsidiary will be described below.
Fe has the effect of preventing the molten metal from sticking to the mold. However, if it is excessively contained, α-FeAlSi crystallizes at a high temperature, which causes a decrease in the toughness of the Al alloy casting.

Zr、Ti及びBは、結晶粒を微細化する効果を有する。但し、Zr又はTiを過度に含有させた場合には、ZrAl系高温晶出物であるAlZr又はTiAl系高温晶出物であるAlTiが生成されるため、溶湯の流動性が悪化して鋳造欠陥が生じ易くなる。なお、Bは、Zr又はTiと協働して複合微粒子化効果を発現すべく、Zr又はTiと併用すべき元素である。 Zr, Ti and B have an effect of refining crystal grains. However, when Zr or Ti is excessively contained, Al 3 Zr that is a ZrAl-based high-temperature crystallized product or Al 3 Ti that is a TiAl-based high-temperature crystallized product is generated, so that the fluidity of the molten metal deteriorates. As a result, casting defects are likely to occur. Note that B is an element that should be used in combination with Zr or Ti in order to develop a composite fine particle effect in cooperation with Zr or Ti.

さらに、本発明の高靱性Al合金鋳物の好適な製造方法について詳細に説明する。
即ち、上記高靱性Al合金鋳物の製造に際しては、質量比で、2%≦Si≦5%、0.2%≦Mg≦0.5%、0.4%≦Cu≦0.8%、0.05%≦Ge≦0.3%、及び不可避的不純物を含み、残部がAlであり、抗張力が280MPa以上、0.2%耐力が220MPa以上、且つ伸びが12%以上である高靱性Al合金鋳物を製造するにあたり、上記組成の合金を鋳造後、490〜540℃の高温熱処理を施した後、急冷処理を施し、次いで155〜190℃の温度で時効処理を施す。
Furthermore, the suitable manufacturing method of the high toughness Al alloy casting of this invention is demonstrated in detail.
That is, when manufacturing the above high toughness Al alloy casting, the mass ratio is 2% ≦ Si ≦ 5%, 0.2% ≦ Mg ≦ 0.5%, 0.4% ≦ Cu ≦ 0.8%, 0 .05% ≦ Ge ≦ 0.3%, containing inevitable impurities, balance is Al, tensile strength is 280 MPa or more, 0.2% proof stress is 220 MPa or more, and elongation is 12% or more In manufacturing a casting, after casting an alloy having the above composition, it is subjected to a high-temperature heat treatment at 490 to 540 ° C., followed by a rapid cooling treatment, and then an aging treatment at a temperature of 155 to 190 ° C.

各合金元素の含有理由、及びその含有量限定理由は、上記の場合と同様である。鋳造法としては、例えば、金型重力鋳造や一般的なダイカストを適用することができ、鋳造温度は720〜730℃、金型温度は金型重力鋳造では250℃〜300℃、ダイカストでは150℃〜250℃とすることが好ましい。   The reason for containing each alloy element and the reason for limiting its content are the same as in the above case. As the casting method, for example, die gravity casting or general die casting can be applied, the casting temperature is 720 to 730 ° C., the die temperature is 250 ° C. to 300 ° C. in die gravity casting, and 150 ° C. in die casting. It is preferable to set it to -250 degreeC.

上記高温熱処理(溶体化処理)温度が490℃未満では、強化相と核サイト原子との均質化が十分進まない一方、540℃を超える場合には、部分的にバーニングが発生し、粒界強度が著しく低下するので好ましくない。従って、熱処理温度は490〜540℃とした。なお、この高温熱処理時間は、製品の寸法によるが、概して4〜10時間で十分な均質化が実現される。   When the temperature of the high-temperature heat treatment (solution treatment) is less than 490 ° C., homogenization between the strengthening phase and the nucleus site atoms does not proceed sufficiently, whereas when it exceeds 540 ° C., partial burning occurs and the grain boundary strength Is not preferable because it significantly decreases. Therefore, the heat treatment temperature was set to 490 to 540 ° C. In addition, although this high temperature heat processing time is based on the dimension of a product, sufficient homogenization is generally implement | achieved in 4 to 10 hours.

また、時効処理温度が155℃未満では、強化相の析出が十分に得られないばかりでなく、処理時間が増大するため、経済的でない一方、190℃を超える場合には、析出時の強化相が成長し過ぎて、Geで微細化核サイトを形成した効果がなくなるので好ましくない。従って、時効処理温度は155〜190℃とした。なお、時効処理時間は、概して5〜14時間が好ましい。ちなみに、上記溶体化処理、急冷処理及び時効処理を順次行う処理は、いわゆるT6処理である。   Further, when the aging treatment temperature is less than 155 ° C., not only the precipitation of the strengthening phase is not sufficiently obtained, but also the treatment time increases, so that it is not economical. This is not preferable because the effect of forming fine nucleation sites with Ge is lost because of excessive growth. Therefore, the aging treatment temperature was set to 155 to 190 ° C. In general, the aging treatment time is preferably 5 to 14 hours. Incidentally, the process of sequentially performing the solution treatment, the rapid cooling process, and the aging process is a so-called T6 process.

以下、本発明を実施例により、さらに詳細に説明する。
Al−3Si−0.25Mg−0.6Cuの組成中に、Geを0、0.05、0.1、0.2、0.3及び0.4質量%それぞれ含有させて、T6処理(525℃で4時間の溶体化処理後、急冷処理し、次いで175℃で6時間の時効処理)により得られたAl合金鋳物の抗張力、0.2%耐力及び伸びを測定した。その結果を図1及び図2に示す。
Hereinafter, the present invention will be described in more detail with reference to examples.
In the composition of Al-3Si-0.25Mg-0.6Cu, Ge was added at 0, 0.05, 0.1, 0.2, 0.3, and 0.4% by mass, respectively, and T6 treatment (525 The tensile strength, 0.2% proof stress and elongation of the Al alloy casting obtained by solution treatment at 4 ° C. for 4 hours followed by rapid cooling and then aging at 175 ° C. for 6 hours were measured. The results are shown in FIGS.

図1及び図2から明らかなように、本発明の範囲即ち、0.05≦Ge≦0.3では、抗張力、0.2%耐力及び伸びのいずれについても、優れた結果が得られている。この理由は以下のとおりである。   As is clear from FIG. 1 and FIG. 2, excellent results were obtained for all of the tensile strength, 0.2% proof stress and elongation within the range of the present invention, that is, 0.05 ≦ Ge ≦ 0.3. . The reason for this is as follows.

即ち、一般に、T6熱処理が施されたAl合金部材には強化相が析出し、優れた強度及び耐力を得ることができる。しかしながら、強化相の析出が過剰である場合や、偏析がある場合には、靭性が低下する。Geを微量含有させると、鋳造時や溶体化処理時に、Geが基地のα−Al相の粒界内に固溶し、同様に固溶しているCu、Si及びMg等の強化元素が、時効熱処理時に析出の起点、即ち核となる。このため、A1CuやMgSi等の析出強化相の微細分散性が向上し、強度及び伸びが向上する。このような現象の下、図1及び図2から明らかなように、Geの含有量が0.05質量%以上では、強度(抗張力及び0.2%耐力)及び伸びの向上が見られ、0.2質量%を超えると、Ge特有の化合物が析出し始めるため、機械的特性が低下が始まり、0.4質量%を超えると、Geを含有させない場合に比して強度及び伸びが低下する。強度等の低下は、GeがSiと共析することで、Si/Ge−Mg化合物が生じ、MgSiの強化作用が低減するためである。以上により、本発明のGeの含有量についての限定根拠の有効性が実証された。 That is, generally, a strengthening phase is precipitated in an Al alloy member subjected to T6 heat treatment, and excellent strength and proof stress can be obtained. However, when the precipitation of the strengthening phase is excessive or when there is segregation, the toughness decreases. When a small amount of Ge is contained, during casting or solution treatment, Ge is solid-solved in the grain boundary of the base α-Al phase, and similarly strengthening elements such as Cu, Si and Mg, It becomes a starting point of precipitation, that is, a nucleus during aging heat treatment. For this reason, the fine dispersibility of precipitation strengthening phases, such as A1 2 Cu and Mg 2 Si, improves, and strength and elongation improve. Under such a phenomenon, as is clear from FIGS. 1 and 2, when the Ge content is 0.05% by mass or more, improvement in strength (tensile strength and 0.2% proof stress) and elongation are observed. When it exceeds 2% by mass, a compound peculiar to Ge starts to precipitate, so that the mechanical properties start to deteriorate, and when it exceeds 0.4% by mass, the strength and elongation decrease compared to the case where Ge is not contained. . The decrease in strength and the like is due to the fact that Ge / Si is co-deposited to produce a Si / Ge—Mg compound and the strengthening action of Mg 2 Si is reduced. From the above, the effectiveness of the grounds for limitation of the Ge content of the present invention was demonstrated.

さらに、本発明の高靱性Al合金鋳物の構成元素である、Si、Mg、及びCuについての好適範囲を実証する。
Al−0.4Mg−0.6Cuの組成中に、Siを1.5、2、3、5、6、及び7質量%それぞれ含有させて、T6処理(525℃で4時間の溶体化処理後、急冷処理し、次いで175℃で6時間の時効処理)により得られたAl合金鋳物の引張強度及びシャルピー衝撃値を測定した。その結果を図3に示す。図3から明らかなように、Si含有量が2質量%未満では、溶湯の流動性が悪化し、加圧鋳造時に欠陥が著しく増大して、優れた機械的特性が得られない。また、Si含有量が5質量%を超えると、Si結晶が多くなり、勒性が低下する。この際の靱性は、一般規格材である7質量%Si合金と同等レベルである。以上により、本発明のAl合金鋳物中のSi含有量の限定根拠の有効性が実証された。
Furthermore, the preferred range for Si, Mg, and Cu, which are constituent elements of the high toughness Al alloy casting of the present invention, will be demonstrated.
In the composition of Al-0.4Mg-0.6Cu, Si is contained in 1.5, 2, 3, 5, 6, and 7% by mass, respectively, and T6 treatment (after solution treatment at 525 ° C. for 4 hours) The tensile strength and Charpy impact value of the Al alloy castings obtained by quenching and then aging at 175 ° C. for 6 hours were measured. The result is shown in FIG. As is apparent from FIG. 3, when the Si content is less than 2% by mass, the fluidity of the molten metal is deteriorated, the defects are remarkably increased at the time of pressure casting, and excellent mechanical properties cannot be obtained. Moreover, when Si content exceeds 5 mass%, Si crystal | crystallization will increase and inertia will fall. The toughness at this time is equivalent to that of a 7 mass% Si alloy that is a general standard material. As described above, the effectiveness of the limitation basis of the Si content in the Al alloy casting of the present invention was proved.

Al−3Si−0.6Cuの組成中に、Mgを0.15、0.2、0.3、0.5、0.6、及び0.7質量%それぞれ含有させて、T6処理(525℃で4時間の溶体化処理後、急冷処理し、次いで175℃で6時間の時効処理)により得られたAl合金鋳物の引張強度及びシャルピー衝撃値を測定した。その結果を図4に示す。図4から明らかなように、Mg含有量が0.2質量%未満では、T6熱処時のMgSiの析出による強度向上の効果が得られていない。また、Mg含有量が0.5質量%を超えると、MgSiの析出量が増大し、靱性が低下する。以上により、本発明のAl合金鋳物中のMg含有量の限定根拠の有効性が実証された。 In the composition of Al-3Si-0.6Cu, Mg was added in an amount of 0.15, 0.2, 0.3, 0.5, 0.6, and 0.7% by mass, respectively, and T6 treatment (525 ° C. After the solution treatment for 4 hours, the aluminum alloy casting obtained by quenching treatment and then aging treatment at 175 ° C. for 6 hours was measured for tensile strength and Charpy impact value. The result is shown in FIG. As is clear from FIG. 4, when the Mg content is less than 0.2% by mass, the effect of improving the strength due to precipitation of Mg 2 Si during the T6 heat treatment is not obtained. Further, when the Mg content exceeds 0.5 wt%, it increases the amount of precipitation of Mg 2 Si, the toughness is lowered. Thus, the effectiveness of the grounds for limiting the Mg content in the Al alloy casting of the present invention has been demonstrated.

Al−3Si−0.4Mgの組成中に、Cuを0.3、0.4、0.6、0.8、0.9、及び1.1質量%それぞれ含有させて、T6処理(525℃で4時間の溶体化処理後、急冷処理し、次いで175℃で6時間の時効処理)により得られたAl合金鋳物の引張強度及びシャルピー衝撃値を測定した。その結果を図5に示す。Cuは、Al中の固溶限が高く、組織を固溶強化するだけでなく、溶体化処理と時効処理とを組み合わせて分散析出により強化を図る元素である。また、Cuは、ある程度の含有量までは、靱性をあまり低下させないので、機械的特性の向上に著しく寄与する元素である。しかしながら、一般に、耐食性を低下させる元素であり、足回り部品等には適合性が低いことが知られている。このような知見に基づき、図5から明らかなように、Cu含有量を0.4質量%未満とした場合には、引張強度及びシャルピー衝撃値の向上効果を十分に実現することができず、また0.8質量%を超える場合には、応力腐食等が発生するため好ましくない。以上により、本発明のAl合金鋳物中のCu含有量の限定根拠の有効性が実証された。   In the composition of Al-3Si-0.4Mg, 0.3, 0.4, 0.6, 0.8, 0.9, and 1.1% by mass of Cu were added, respectively, and T6 treatment (525 ° C. After the solution treatment for 4 hours, the aluminum alloy casting obtained by quenching treatment and then aging treatment at 175 ° C. for 6 hours was measured for tensile strength and Charpy impact value. The result is shown in FIG. Cu has a high solid solubility limit in Al and is an element that not only strengthens the structure by solid solution, but also strengthens it by dispersion precipitation by combining solution treatment and aging treatment. Further, Cu is an element that significantly contributes to the improvement of mechanical properties because it does not significantly reduce toughness up to a certain content. However, in general, it is an element that lowers corrosion resistance and is known to have low compatibility with undercarriage parts and the like. Based on such knowledge, as is clear from FIG. 5, when the Cu content is less than 0.4 mass%, the effect of improving the tensile strength and Charpy impact value cannot be sufficiently realized, On the other hand, if it exceeds 0.8 mass%, stress corrosion or the like occurs, which is not preferable. Thus, the effectiveness of the grounds for limiting the Cu content in the Al alloy casting of the present invention has been demonstrated.

以上説明したように、本発明の高靱性Al合金鋳物では、特に、Geの含有量の適正化を図ることにより、高靱性Al合金鋳物の、優れた抗張力、0.2%耐力及び伸びをバランス良く高いレベルで実現することができる。従って、本発明は、今後益々高度な機械的諸性質が要求されることが予想される、車体、サスペンション部材等に適用することができる点で、有用である。   As described above, the high toughness Al alloy casting of the present invention balances the excellent tensile strength, 0.2% proof stress and elongation of the high toughness Al alloy casting, particularly by optimizing the Ge content. It can be realized at a high level. Therefore, the present invention is useful in that it can be applied to a vehicle body, a suspension member, and the like, which are expected to require more advanced mechanical properties in the future.

Al合金鋳物の抗張力及び0.2%耐力と、Ge含有量との関係を示すグラフである。It is a graph which shows the relationship between the tensile strength and 0.2% yield strength of Al alloy casting, and Ge content. Al合金鋳物の伸びとGe含有量との関係を示すグラフである。It is a graph which shows the relationship between elongation of Al alloy casting, and Ge content. Al合金鋳物の引張強度及びシャルピー衝撃値と、Si含有量との関係を示すグラフである。It is a graph which shows the relationship between the tensile strength and Charpy impact value of Al alloy casting, and Si content. Al合金鋳物の引張強度及びシャルピー衝撃値と、Mg含有量との関係を示すグラフである。It is a graph which shows the relationship between the tensile strength and Charpy impact value of Al alloy casting, and Mg content. Al合金鋳物の引張強度及びシャルピー衝撃値と、Cu含有量との関係を示すグラフである。It is a graph which shows the relationship between the tensile strength and Charpy impact value of Al alloy casting, and Cu content.

Claims (2)

質量比で、2%≦Si≦5%、0.2%≦Mg≦0.5%、0.4%≦Cu≦0.8%、0.05%≦Ge≦0.3%、及び不可避的不純物を含み、残部がAlであり、抗張力が280MPa以上、0.2%耐力が220MPa以上、且つ伸びが12%以上であることを特徴とする高靱性Al合金鋳物。   In mass ratio, 2% ≦ Si ≦ 5%, 0.2% ≦ Mg ≦ 0.5%, 0.4% ≦ Cu ≦ 0.8%, 0.05% ≦ Ge ≦ 0.3%, and inevitable A high-toughness Al alloy casting characterized by containing a general impurity, the balance being Al, a tensile strength of 280 MPa or more, a 0.2% proof stress of 220 MPa or more, and an elongation of 12% or more. Zr、Ti、及びBの少なくとも1種が含有されていることを特徴とする請求項1に記載の高靱性Al合金鋳物。   The high toughness Al alloy casting according to claim 1, wherein at least one of Zr, Ti, and B is contained.
JP2004158760A 2004-05-28 2004-05-28 High toughness Al alloy casting Expired - Fee Related JP4238181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004158760A JP4238181B2 (en) 2004-05-28 2004-05-28 High toughness Al alloy casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004158760A JP4238181B2 (en) 2004-05-28 2004-05-28 High toughness Al alloy casting

Publications (2)

Publication Number Publication Date
JP2005336569A true JP2005336569A (en) 2005-12-08
JP4238181B2 JP4238181B2 (en) 2009-03-11

Family

ID=35490456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004158760A Expired - Fee Related JP4238181B2 (en) 2004-05-28 2004-05-28 High toughness Al alloy casting

Country Status (1)

Country Link
JP (1) JP4238181B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113667865A (en) * 2021-08-30 2021-11-19 合肥工业大学 Preparation process of hypoeutectic Al-Si-Mg-Ge casting alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113667865A (en) * 2021-08-30 2021-11-19 合肥工业大学 Preparation process of hypoeutectic Al-Si-Mg-Ge casting alloy

Also Published As

Publication number Publication date
JP4238181B2 (en) 2009-03-11

Similar Documents

Publication Publication Date Title
US7108042B2 (en) Aluminum diecasting alloy
US20110116966A1 (en) Aluminum alloy, method of casting aluminum alloy, and method of producing aluminum alloy product
EP2369025B1 (en) Magnesium alloy and magnesium alloy casting
WO2005098065A1 (en) Aluminum alloy casting material for heat treatment excelling in heat conduction and process for producing the same
KR101395276B1 (en) Mg-Al based alloys for high temperature casting
JPH0718364A (en) Heat resistant magnesium alloy
JP6229130B2 (en) Cast aluminum alloy and casting using the same
CN112301259A (en) High-strength die-casting aluminum alloy, and preparation method and application thereof
JP4145242B2 (en) Aluminum alloy for casting, casting made of aluminum alloy and method for producing casting made of aluminum alloy
JP5575028B2 (en) High strength aluminum alloy, high strength aluminum alloy casting manufacturing method and high strength aluminum alloy member manufacturing method
JP3479204B2 (en) Aluminum alloy casting for non-heat treatment and method for producing the same
JP4238181B2 (en) High toughness Al alloy casting
JPH09296245A (en) Aluminum alloy for casting
JP7459496B2 (en) Manufacturing method for aluminum alloy forgings
JP2006161103A (en) Aluminum alloy member and manufacturing method therefor
JP7438134B2 (en) Al-Mg-Si-Mn-Fe casting alloy
JP2021070871A (en) Aluminum alloy forging and production method thereof
JP4238180B2 (en) High toughness Al alloy casting and method for producing the same
JP2002060881A (en) Aluminum alloy for casting and forging, and method for producing casting and forging material
JP2022093992A (en) Aluminum alloy forging and method for producing the same
JP2006022385A (en) HIGH TOUGHNESS Al ALLOY CASTING AND ITS PRODUCTION METHOD
JP2012102369A (en) Aluminum alloy for casting
JP4292070B2 (en) High toughness Al alloy casting and method for producing the same
JP2022093989A (en) Aluminum alloy forging and method for producing the same
JPH11335765A (en) Aluminum squeeze-cast parts with high toughness, and their production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081219

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131226

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees