JP2005329462A - Fused flux for submerged arc welding - Google Patents

Fused flux for submerged arc welding Download PDF

Info

Publication number
JP2005329462A
JP2005329462A JP2005117587A JP2005117587A JP2005329462A JP 2005329462 A JP2005329462 A JP 2005329462A JP 2005117587 A JP2005117587 A JP 2005117587A JP 2005117587 A JP2005117587 A JP 2005117587A JP 2005329462 A JP2005329462 A JP 2005329462A
Authority
JP
Japan
Prior art keywords
mass
compound
content
flux
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005117587A
Other languages
Japanese (ja)
Other versions
JP4694245B2 (en
Inventor
Yoshihito Ishizaki
圭人 石▲崎▼
Shigeki Nishiyama
繁樹 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005117587A priority Critical patent/JP4694245B2/en
Publication of JP2005329462A publication Critical patent/JP2005329462A/en
Application granted granted Critical
Publication of JP4694245B2 publication Critical patent/JP4694245B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Nonmetallic Welding Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide fused flux for submerged arc welding which is excellent in the performance of high-speed two-side single-layer welding and also lessens oxygen content in weld metal without causing high basification. <P>SOLUTION: The fused flux for submerged arc welding contains, based on total mass of flux, 23-33 mass% SiO<SB>2</SB>, 5-25 mass% Ca compound (in Ca terms), 5-35 mass% Ba compound (in Ba terms), 1-14 mass% F compound (in F terms), 7-18 mass% MgO, 1-13 mass% Al<SB>2</SB>O<SB>3</SB>, 1-9 mass% MnO, 0.5-5.0 mass% ZrO<SB>2</SB>, 0.5-5.0 mass% FeO and TiO<SB>2</SB>limited to 8 mass% or less, with a total of Ca compound and Ba compound limited to 40 mass% or less, and the values of [M], [N] and [P] obtained from the following expressions are made to be 300 or less, more than 0, and 0 or less respectively:[M]=1,050-[SiO<SB>2</SB>]-19×[Ca]-12×[Ba]-5×[F]-15×[MgO]-5×[Al<SB>2</SB>O<SB>3</SB>]-5×[MnO]-3×[ZrO<SB>2</SB>]-5×[FeO]-3×[TiO<SB>2</SB>]. [N]=32.5-(3/4)×([Ca]×[Ba])-[F]. [P]=[Ca]-(20/3)×[MgO]+31. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ラインパイプ及び構造用パイプ等の大径鋼管の溶接に好適な高速サブマージアーク溶接に使用されるサブマージアーク溶接用溶融型フラックスに関する。   The present invention relates to a molten flux for submerged arc welding used for high-speed submerged arc welding suitable for welding large diameter steel pipes such as line pipes and structural pipes.

天然ガス及び石油等を輸送するパイプラインに使用される鋼管のシーム溶接においては、造管効率を向上させるために溶接速度の高速化が進められており、それに伴い、アンダーカット及びスラグ巻き込み等の溶接欠陥発生率が増大する等の問題が発生している。従来、このような大径の鋼管をシーム溶接する際には、高速溶接が可能な多電極サブマージアーク溶接法による両面一層溶接が適用されているが、この多電極サブマージアーク溶接法による両面一層溶接は、アンダーカット及びスラグ巻き込み等の溶接欠陥が発生しやすいという問題点がある。   In seam welding of steel pipes used in pipelines that transport natural gas and oil, etc., the welding speed has been increased in order to improve pipe making efficiency, and accordingly, undercuts and slag entrainment, etc. Problems such as an increased incidence of welding defects have occurred. Conventionally, when seam welding such a large-diameter steel pipe, double-sided single-layer welding by a multi-electrode submerged arc welding method capable of high-speed welding has been applied. However, there is a problem that welding defects such as undercut and slag entrainment are likely to occur.

そこで、鋼管の高速溶接における溶接欠陥の発生を軽減する方法が提案されている(例えば、特許文献1乃至7参照。)。特許文献1乃至6に記載の溶接方法では、多電極を使用し、溶接金属に磁気攪拌を与えながら溶接することにより、欠陥の軽減を図っている。また、特許文献7には、6本以上の電極を使用した高速サブマージアーク溶接法が提案されている。   Therefore, a method for reducing the occurrence of welding defects in high-speed welding of steel pipes has been proposed (see, for example, Patent Documents 1 to 7). In the welding methods described in Patent Documents 1 to 6, defects are reduced by using multiple electrodes and performing welding while applying magnetic stirring to the weld metal. Patent Document 7 proposes a high-speed submerged arc welding method using six or more electrodes.

また、近時、パイプラインに使用される鋼管には、操業圧力を増加させて輸送効率の向上及び低コスト化を図るため、高強度化される傾向にあり、更に、海底及び寒冷地等の厳しい環境での使用にも対応できるように、高靱性化も求められている。このため、溶接金属にも高強度化及び高靭性化が求められており、これらを同時に達成できる技術確立が望まれている。溶接金属を高強度化する方法としては、炭素当量を増加したり、適量のTi及びB等を複合添加等したりする方法が知られている。一方、これらの方法により、溶接金属の靱性もある程度は改善することができるが、近時の高靱性化の要求には不十分である。特に、サワー環境で使用されるパイプの溶接金属のように硬さに制約がある場合、これらの方法を適用することはできず、目的とする靱性が得られない。そこで、溶接金属の靱性を向上させる方法としては、フラックスの塩基性を高め、溶接金属中の酸素含有量を低減させる方法が適用されている。   In recent years, steel pipes used in pipelines tend to be strengthened in order to increase operating pressure to improve transport efficiency and reduce costs. High toughness is also required so that it can be used in harsh environments. For this reason, the weld metal is also required to have high strength and high toughness, and the establishment of a technology that can achieve these simultaneously is desired. As a method of increasing the strength of the weld metal, a method of increasing the carbon equivalent or adding a suitable amount of Ti, B or the like in combination is known. On the other hand, the toughness of the weld metal can be improved to some extent by these methods, but it is insufficient for the recent demand for higher toughness. In particular, when the hardness is limited like a weld metal of a pipe used in a sour environment, these methods cannot be applied and the intended toughness cannot be obtained. Therefore, as a method of improving the toughness of the weld metal, a method of increasing the basicity of the flux and reducing the oxygen content in the weld metal is applied.

また、従来、溶接金属の低温靭性を向上させるために、溶接材料の検討がなされている(例えば、特許文献8参照。)。特許文献8においては、フラックスの成分を規定することにより、高速サブマージアーク溶接に適用した場合でも、溶接作業性が良好で低温靭性が優れた溶接金属が得られるサブマージアーク溶接用溶融型フラックスが提案されている。   Conventionally, in order to improve the low temperature toughness of the weld metal, examination of welding materials has been made (see, for example, Patent Document 8). Patent Document 8 proposes a fusion flux for submerged arc welding that provides a weld metal with good welding workability and excellent low-temperature toughness even when applied to high-speed submerged arc welding by defining the components of the flux. Has been.

特開平9−85440号公報JP-A-9-85440 特開平9−277043号公報Japanese Patent Laid-Open No. 9-277043 特開平9−239536号公報JP 9-239536 A 特開平10−43859号公報JP 10-43859 A 特開平10−258363号公報JP-A-10-258363 特開平10−258364号公報JP-A-10-258364 特開平4−147770号公報JP-A-4-147770 特公平5−38677号公報Japanese Patent Publication No. 5-38677

しかしながら、前述の従来の技術には以下に示す問題点がある。先ず、特許文献1乃至6に記載の溶接方法は、溶接金属を磁気撹拌するための磁場を形成する設備が必要になるため、製造コストが増加するという問題点がある。また、特許文献7に記載の溶接方法においては、電極数を増やすことにより溶接速度の高速化は実現できるが、溶接欠陥発生の危険率の増大、設備費の増加及びオペレーションの複雑化等の問題が発生する。更に、特許文献1乃至7においては、溶接金属の靭性を向上させるための工夫がなされていない。   However, the conventional techniques described above have the following problems. First, the welding methods described in Patent Documents 1 to 6 require a facility for forming a magnetic field for magnetic stirring of the weld metal, which increases the manufacturing cost. In the welding method described in Patent Document 7, the welding speed can be increased by increasing the number of electrodes. However, there are problems such as an increased risk of occurrence of welding defects, an increase in equipment costs, and a complicated operation. Will occur. Furthermore, in Patent Documents 1 to 7, no contrivance for improving the toughness of the weld metal is made.

一方、低温靱性を向上させるためにフラックスの塩基性を高くすると、ポックマーク及びビード蛇行等が発生してビード外観が劣化しやすくなり、特に、高速溶接においてその傾向が顕著になる。また、フラックスの塩基性を高くすると、ビード中央部に収縮孔が断続的に発生しやすくなる。この収縮孔は、溶接金属の機械性能に関しては大きな問題とはならないものの、後工程において溶接構造物にペイントを施す場合、ペイントが剥がれ落ちやすく、その剥がれた部分が選択的に腐食することがある。このように、フラックスの塩基性を高くすることにより溶接金属中の酸素量を低減する方法は、ビード外観の劣化及び収縮孔発生という問題があり、高速溶接において低温靱性が要求される場合には適用することができない。   On the other hand, when the basicity of the flux is increased in order to improve the low temperature toughness, pock marks and bead meandering occur and the bead appearance tends to deteriorate, and this tendency is particularly noticeable in high-speed welding. Further, when the basicity of the flux is increased, contraction holes are likely to be generated intermittently at the center of the bead. Although this shrinkage hole is not a major problem with respect to the mechanical performance of the weld metal, when paint is applied to the welded structure in a later process, the paint tends to peel off, and the peeled portion may be selectively corroded. . As described above, the method of reducing the oxygen content in the weld metal by increasing the basicity of the flux has a problem of deterioration of the bead appearance and generation of shrinkage holes, and when low-temperature toughness is required in high-speed welding. It cannot be applied.

特許文献8に記載のフラックスは、2電極溶接法に関するフラックスであり、近時、溶接効率を向上させるために溶接速度が更に高速化されており、現在要求されている靱性に対して十分な性能であるとは言い難い。このため、サブマージアーク溶接用溶融型フラックスには、更なる性能向上が求められている。   The flux described in Patent Document 8 is a flux related to the two-electrode welding method. Recently, the welding speed has been further increased in order to improve the welding efficiency, and the performance sufficient for the toughness currently required. It is hard to say. For this reason, the further improvement in performance is calculated | required by the fusion type flux for submerged arc welding.

本発明はかかる問題点に鑑みてなされたものであって、両面一層の高速溶接における溶接作業性が優れ、更に、高塩基化することなく溶接金属中の酸素量を低減したサブマージアーク溶接用溶融型フラックスを提供することを目的とする。   The present invention has been made in view of such problems, and is excellent in welding workability in high-speed welding on both sides, and further, melting for submerged arc welding in which the amount of oxygen in the weld metal is reduced without being highly basic. The object is to provide mold flux.

本発明に係るサブマージアーク溶接用溶融型フラックスは、フラックス全質量あたり、SiO:23乃至33質量%、Ca化合物:Ca換算で5乃至25質量%、Ba化合物:Ba換算で5乃至35質量%、F化合物:F換算で1乃至14質量%、MgO:7乃至18質量%、Al:1乃至13質量%、MnO:1乃至9質量%、ZrO:0.5乃至5.0質量%、FeO:0.5乃至5.0質量%を含有し、TiO:8質量%以下、Ca化合物及びBa化合物:総量で40質量%以下に規制し、SiO含有量(質量%)を[SiO]、Ca化合物のCa換算含有量(質量%)を[Ca]、Ba化合物のBa換算含有量(質量%)を[Ba]、F化合物のF換算含有量(質量%)を[F]、MgO含有量(質量%)を[MgO]、Al含有量を[Al]、MnO含有量(質量%)を[MnO]、ZrO含有量(質量%)を[ZrO]、FeO含有量(質量%)を[FeO]、TiO含有量(質量%)を[TiO]としたとき、下記数式1により与えられる[M]が300以下であり、下記数式2により与えられる[N]が0よりも大きく、且つ下記数式3により与えられる[P]が0以下であることを特徴とする。 The melt type flux for submerged arc welding according to the present invention has a SiO 2 of 23 to 33% by mass, a Ca compound: 5 to 25% by mass in terms of Ca, and a Ba compound: 5 to 35% by mass in terms of Ba, based on the total mass of the flux. , F compound: 1 to 14% by mass in terms of F, MgO: 7 to 18% by mass, Al 2 O 3 : 1 to 13% by mass, MnO: 1 to 9% by mass, ZrO 2 : 0.5 to 5.0 Containing 0.5% by mass, FeO: 0.5 to 5.0% by mass, TiO 2 : 8% by mass or less, Ca compound and Ba compound: 40% by mass or less in total, SiO 2 content (% by mass) [SiO 2 ], the Ca equivalent content (% by mass) of the Ca compound is [Ca], the Ba equivalent content (% by mass) of the Ba compound is [Ba], and the F equivalent content (% by mass) of the F compound. [F], MgO content (% by mass) [MgO], Al 2 O 3 content [Al 2 O 3 ], MnO content (mass%) [MnO], ZrO 2 content (mass%) [ZrO 2 ], FeO content (mass %) Is [FeO] and TiO 2 content (% by mass) is [TiO 2 ], [M] given by the following formula 1 is 300 or less, and [N] given by the following formula 2 is 0. And [P] given by Equation 3 below is 0 or less.

Figure 2005329462
Figure 2005329462

Figure 2005329462
Figure 2005329462

Figure 2005329462
Figure 2005329462

本発明においては、フラックス中に含まれ、溶接作業性に影響を及ぼすSiO、Ca化合物、Ba化合物、F化合物、MgO、Al、MnO、ZrO、FeO及びTiOの含有量を夫々上述の範囲にしているため、溶接作業性が向上する。また、溶接金属中の酸素量に影響を及ぼす成分の含有量により規定され、上記数式1により与えられる[M]を300以下にしているため、溶接金属中の酸素量を300ppm以下にすることができる。これにより、低温靱性が優れた溶接金属が得られる。更に、収縮孔の発生に影響を及ぼす、Ca化合物、Ba化合物及びF化合物の含有量により規定され、上記数式2により与えられる[N]を0よりも大きくしているため、収縮孔の発生を抑制することができる。更にまた、上記数式3により与えられる[P]を0以下にしているため、ビード蛇行の発生を抑制することができる。 In the present invention, the contents of SiO 2 , Ca compound, Ba compound, F compound, MgO, Al 2 O 3 , MnO, ZrO 2 , FeO and TiO 2 contained in the flux and affecting welding workability are determined. Since each is in the above range, welding workability is improved. Further, since [M] defined by the content of the component that affects the oxygen content in the weld metal and given by the above mathematical formula 1 is set to 300 or less, the oxygen content in the weld metal can be set to 300 ppm or less. it can. Thereby, the weld metal excellent in low-temperature toughness is obtained. Further, since the [N] defined by the contents of the Ca compound, Ba compound and F compound, which affects the generation of shrinkage pores and given by the above mathematical formula 2, is larger than 0, the occurrence of shrinkage pores is prevented. Can be suppressed. Furthermore, since [P] given by Equation 3 is 0 or less, the occurrence of bead meandering can be suppressed.

本発明によればSiO、Ca化合物、Ba化合物、F化合物、MgO、Al、MnO、ZrO、FeO及びTiOの含有量を適正化することにより、溶接作業性を向上することができ、また、SiO、Ca化合物、Ba化合物、F化合物、MgO、Al、MnO、ZrO、FeO及びTiOの含有量から求められる[M]を300以下に規制することにより、溶接金属中の酸素量を低減することができ、更に、Ca化合物、Ba化合物及びF化合物の含有量により求められる[N]を0よりも大きくすることにより、収縮孔の発生を抑制することができ、更にまた、Ca化合物及びMgOの含有量により求められる[P]を0以下にすることにより、ビード蛇行の発生を抑制することができる。 According to the present invention, welding workability is improved by optimizing the contents of SiO 2 , Ca compound, Ba compound, F compound, MgO, Al 2 O 3 , MnO, ZrO 2 , FeO and TiO 2. In addition, by regulating the [M] obtained from the contents of SiO 2 , Ca compound, Ba compound, F compound, MgO, Al 2 O 3 , MnO, ZrO 2 , FeO and TiO 2 to 300 or less In addition, the amount of oxygen in the weld metal can be reduced, and further, the generation of shrinkage holes can be suppressed by making [N] larger than 0 determined by the contents of Ca compound, Ba compound and F compound. Furthermore, by making [P] determined by the contents of the Ca compound and MgO 0 or less, the occurrence of bead meandering can be suppressed.

以下、本発明に係るサブマージアーク溶接用溶融型フラックスについて、添付の図面を参照して具体的に説明する。本発明者等は、上述の目的を達成するために鋭意実験研究した結果、フラックス成分と溶接金属の低温靭性に影響を及ぼす酸素量との関係を導き出し、更には、高速溶接における作業性が優れ、低温靭性が優れた溶接金属が得られるフラックス組成を見出した。具体的には、本発明者等は、溶接速度の更なる高速化及びそれに伴う設備コストの増大の両面を考慮して、3又は4電極溶接について検討を行った結果、サブマージアーク溶接用溶融型フラックスの組成を、以下に示す範囲にすることにより、溶接金属中の酸素量が低減し、溶接金属の高靭性化及び高速溶接における作業性の向上を実現できることを見出した。   Hereinafter, the fusion flux for submerged arc welding according to the present invention will be specifically described with reference to the accompanying drawings. As a result of earnest experiment research to achieve the above-mentioned object, the present inventors have derived the relationship between the flux component and the amount of oxygen that affects the low temperature toughness of the weld metal, and further, the workability in high-speed welding is excellent. The present inventors have found a flux composition capable of obtaining a weld metal having excellent low-temperature toughness. Specifically, the present inventors have studied three- or four-electrode welding in consideration of further increasing the welding speed and the accompanying increase in equipment cost, and as a result, the fusion mold for submerged arc welding has been studied. It has been found that the amount of oxygen in the weld metal can be reduced and the weld metal can be made tougher and workability in high-speed welding can be improved by setting the flux composition within the following range.

以下、本発明に係るサブマージアーク溶接用溶融型フラックスの成分組成の限定理由について説明する。   Hereinafter, the reason for limitation of the component composition of the melt-type flux for submerged arc welding according to the present invention will be described.

SiO :23乃至33質量%
SiOは溶融型フラックスの基本成分であって、溶融スラグの粘度及び融点を調節するために有効な成分である。但し、SiO含有量が23質量%未満であると、溶融スラグの粘度が不足してビード蛇行が発生しやすくなる。一方、SiO含有量が33質量%を超えると、溶融スラグの粘度が高くなり過ぎ、ビード形状が凸状になる。従って、SiO含有量は23乃至33質量%とする。
SiO 2 : 23 to 33% by mass
SiO 2 is a basic component of the melt type flux and is an effective component for adjusting the viscosity and melting point of the molten slag. However, if the SiO 2 content is less than 23% by mass, the viscosity of the molten slag is insufficient and bead meandering is likely to occur. On the other hand, if the SiO 2 content exceeds 33% by mass, the viscosity of the molten slag becomes too high, and the bead shape becomes convex. Therefore, the SiO 2 content is 23 to 33% by mass.

Ca化合物:Ca換算で5乃至25質量%、Ba化合物:Ba換算で5乃至35質量%、Ca化合物+Ba化合物:総量で40質量%以下
Ca化合物及びBa化合物、溶接金属中の酸素量を低減させる効果が高く、溶接金属の高靱性化に有用な成分であると共に、収縮孔の発生を防止する効果がある。但し、Ca化合物含有量又はBa化合物含有量が5質量%未満の場合、その効果が十分に得られず、収縮孔が発生する。一方、Ca化合物及びBa化合物は、不規則網目構造であるガラス状ケイ酸のSi−O結合を分断するため、これらの添加量が多いと溶融スラグの粘度が低下し、更に過度に添加すると溶融金属の押さえが不足してビード蛇行が発生する。また、Ca化合物及びBa化合物は、過剰に添加すると、結晶質化しやすく、具体的には、Ca化合物の含有量が25質量%を超えるか、Ba化合物の含有量が35質量%を超えると、耐吸湿性が低下してポックマークが発生しやすくなる。更に、Ca化合物及びBa化合物の総含有量が40質量%を超えると、フラックスが結晶質化し、耐吸湿性が低下してポックマークが発生すると共に、溶融スラグの粘性が低下してビード蛇行が発生する。
Ca compound: 5 to 25% by mass in terms of Ca, Ba compound: 5 to 35% by mass in terms of Ba, Ca compound + Ba compound: 40% by mass or less in total amount Reduce the amount of oxygen in the Ca compound, Ba compound and weld metal It is highly effective and is a component useful for increasing the toughness of the weld metal, and also has the effect of preventing the occurrence of shrinkage holes. However, when the Ca compound content or the Ba compound content is less than 5% by mass, the effect is not sufficiently obtained and shrinkage holes are generated. On the other hand, the Ca compound and the Ba compound break the Si—O bond of the glassy silicic acid having an irregular network structure. Therefore, when the amount of these compounds added is large, the viscosity of the molten slag is lowered, and when added excessively, the compound melts. The bead meanders due to lack of metal hold. Further, when the Ca compound and the Ba compound are added in excess, they are easily crystallized. Specifically, when the content of the Ca compound exceeds 25% by mass or the content of the Ba compound exceeds 35% by mass, Hygroscopic resistance is lowered and a pock mark is likely to be generated. Furthermore, when the total content of Ca compound and Ba compound exceeds 40% by mass, the flux becomes crystallized, the moisture absorption resistance is lowered and a pock mark is generated, and the viscosity of the molten slag is lowered and the bead meandering occurs. Occur.

よって、Ca化合物及びBa化合物の含有量は、夫々適正な粘度を保つことができ、ビード蛇行が発生しない量とする。即ち、Ca化合物の含有量はCa換算で5乃至25質量%、Ba化合物含有量は5乃至35質量%、Ca化合物及びBa化合物の総含有量を40質量%以下とする。なお、本発明におけるCa化合物の含有量とは、フラックス中に含まれる全てのCa化合物をCaで換算した値であり、Ba化合物の含有量とは、フラックス中に含まれる全てのBa化合物をCaで換算した値であり、以下の説明においても同様である。また、本発明のサブマージアーク溶接用溶融型フラックスに添加されるCa化合物及びBa化合物としては、例えば、CaO、CaF、BaO、BaF等が挙げられる。 Therefore, the content of the Ca compound and the Ba compound is an amount that can maintain an appropriate viscosity and does not cause bead meandering. That is, the Ca compound content is 5 to 25% by mass in terms of Ca, the Ba compound content is 5 to 35% by mass, and the total content of the Ca compound and Ba compound is 40% by mass or less. In addition, content of Ca compound in this invention is the value which converted all Ca compounds contained in a flux with Ca, and content of Ba compound means all Ba compounds contained in a flux to Ca. The same applies to the following description. Examples of the Ca compound and Ba compound added to the melted flux for submerged arc welding of the present invention include CaO, CaF 2 , BaO, BaF 2 and the like.

F化合物:F換算で1乃至14質量%
F化合物は、溶接金属中の酸素量を低減させる効果が高く、溶接金属の高靱性化に有用な成分である。但し、F化合物の含有量が1質量%未満では、その効果が十分得られず、また、粘度が高くなり、ビード形状が凸状になる。一方、F化合物は不規則網目構造であるガラス状ケイ酸のSi−O結合を分断するため、F化合物の添加量が多いと溶融スラグの粘度が低下し、更に過度に添加すると溶融金属の押さえが不足してビード蛇行が発生する。また、本発明者等は、F化合物の含有量によっても収縮孔の発生傾向が変化し、F化合物は収縮孔の発生を助長する成分であることを見出した。F化合物の含有量が14質量%を超えると、粘度が低下してビードが蛇行すると共に、収縮孔が発生する。よって、F含有量は1乃至14質量%とする。なお、本発明におけるF化合物の含有量とは、フラックス中に含まれる全てのF化合物をFで換算した値であり、以下の説明においても同様である。また、本発明のサブマージアーク溶接用溶融型フラックスに添加されるF化合物としては、例えば、CaF、BaF、NaF、AlF、MgF等が挙げられる。
F compound: 1 to 14% by mass in terms of F
The F compound has a high effect of reducing the amount of oxygen in the weld metal, and is a component useful for increasing the toughness of the weld metal. However, if the content of the F compound is less than 1% by mass, the effect cannot be sufficiently obtained, the viscosity becomes high, and the bead shape becomes convex. On the other hand, since the F compound breaks the Si-O bond of the glassy silicic acid having an irregular network structure, the viscosity of the molten slag decreases when the amount of the F compound added is large, and when it is added excessively, the molten metal is suppressed. The bead meandering occurs due to lack of. Further, the present inventors have found that the tendency of shrinkage pores to change depends on the content of the F compound, and that the F compound is a component that promotes the generation of shrinkage pores. When the content of the F compound exceeds 14% by mass, the viscosity decreases, the beads meander, and shrinkage holes are generated. Therefore, the F content is 1 to 14% by mass. In addition, content of F compound in this invention is the value which converted all F compounds contained in a flux by F, and it is the same also in the following description. As the F compound added to the melt flux for the submerged arc welding of the present invention, for example, CaF 2, BaF 2, NaF , AlF 3, MgF 2 and the like.

MgO:7乃至18質量%
MgOは溶融スラグの粘度を調節するために有効な成分であり、溶接金属中の酸素量を低減させる効果が高い。但し、MgO含有量が7質量%未満であると、溶融スラグの粘度が不足し、ビード蛇行が発生しやすくなる。一方、MgO含有量が18質量%を超えると、フラックスが結晶質化し、耐吸湿性が劣化してポックマークが発生しやすくなる。従って、MgO含有量は7乃至18質量%とする。
MgO: 7 to 18% by mass
MgO is an effective component for adjusting the viscosity of the molten slag, and is highly effective in reducing the amount of oxygen in the weld metal. However, if the MgO content is less than 7% by mass, the viscosity of the molten slag is insufficient and bead meandering is likely to occur. On the other hand, if the MgO content exceeds 18% by mass, the flux is crystallized, the moisture absorption resistance is deteriorated, and a pock mark is likely to be generated. Therefore, the MgO content is 7 to 18% by mass.

Al :1乃至13質量%
本発明のサブマージアーク溶接用溶融型フラックスの成分系においては、AlはSiOと同様の網目構造を構成し、溶融スラグの粘度及び融点を調節するために有効な成分である。但し、Alの含有量が1質量%未満であると、溶融スラグの粘度が不足し、ビード蛇行が発生しやすくなる。一方、Alの含有量が13質量%を超えると、溶融スラグの粘度が高くなり過ぎて、ビード形状が凸状になる。従って、Al含有量は、1乃至13質量%とする。
Al 2 O 3 : 1 to 13% by mass
In the component system of the melt type flux for submerged arc welding of the present invention, Al 2 O 3 constitutes a network structure similar to SiO 2 and is an effective component for adjusting the viscosity and melting point of the molten slag. However, when the content of Al 2 O 3 is less than 1% by mass, the viscosity of the molten slag is insufficient and bead meandering is likely to occur. On the other hand, when the content of Al 2 O 3 exceeds 13% by mass, the viscosity of the molten slag becomes too high and the bead shape becomes convex. Therefore, the Al 2 O 3 content is 1 to 13% by mass.

MnO:1乃至9質量%
MnOは溶融スラグの粘度を調節するために有効な成分であり、収縮孔の発生を抑制する効果もある。但し、MnOの含有量が1質量%未満であると、十分な効果が得られず、収縮孔が発生する。一方、MnOは溶鋼に酸素を供給しやすい成分でもあり、溶接金属中の酸素量を低減するためには、その添加量を抑制することが好ましく、具体的には、MnOの含有量は9質量%以下とする。MnO含有量が9質量%を超えると、溶融スラグの粘度が高くなり、ビード形状が凸状になると共に焼き付きが発生する。従って、MnO含有量は1乃至9質量%とする。
MnO: 1 to 9% by mass
MnO is an effective component for adjusting the viscosity of the molten slag, and also has an effect of suppressing the generation of shrinkage holes. However, if the content of MnO is less than 1% by mass, sufficient effects cannot be obtained and shrinkage holes are generated. On the other hand, MnO is also a component that easily supplies oxygen to the molten steel, and in order to reduce the amount of oxygen in the weld metal, it is preferable to suppress the amount of addition, specifically, the content of MnO is 9 mass. % Or less. When the MnO content exceeds 9% by mass, the viscosity of the molten slag increases, the bead shape becomes convex and seizure occurs. Therefore, the MnO content is 1 to 9% by mass.

ZrO :0.5乃至5.0質量%
ZrOはビード幅を安定させる効果が極めて高い。但し、ZrO含有量が0.5質量%未満であると、十分な効果が得られず、ビード蛇行が発生する。但し、ZrOは溶接金属中の酸素量を高める成分でもあるため、その含有量は低い方が好ましい。また、ZrO含有量が5.0質量%を超えると、スラグの焼き付きが発生する。従って、ZrO含有量は0.5乃至5.0質量%とする。
ZrO 2 : 0.5 to 5.0% by mass
ZrO 2 has an extremely high effect of stabilizing the bead width. However, if the ZrO 2 content is less than 0.5% by mass, sufficient effects cannot be obtained, and bead meandering occurs. However, since ZrO 2 is also a component that increases the amount of oxygen in the weld metal, the content is preferably low. On the other hand, when the ZrO 2 content exceeds 5.0 mass%, slag seizure occurs. Therefore, the ZrO 2 content is set to 0.5 to 5.0% by mass.

FeO:0.5乃至5.0質量%
FeOは収縮孔の発生を抑制する効果がある。但し、FeO含有量が0.5質量%未満であると、十分な効果が得られず、収縮孔が発生する。また、FeOは前述のMnOと同様に、溶鋼に酸素を供給しやすい成分であるため、溶接金属中の酸素量を低減するためには、その添加量を抑制することが好ましく、具体的には、FeO含有量は5.0質量%以下とする。FeO含有量が5.0質量%を超えると、スラグの焼き付きが発生する。従って、FeO含有量は0.5乃至5.0質量%とする。
FeO: 0.5 to 5.0% by mass
FeO has an effect of suppressing the generation of shrinkage holes. However, if the FeO content is less than 0.5% by mass, sufficient effects cannot be obtained, and shrinkage holes are generated. In addition, FeO is a component that easily supplies oxygen to the molten steel, similar to MnO described above, so in order to reduce the amount of oxygen in the weld metal, it is preferable to suppress the amount added, specifically The FeO content is 5.0% by mass or less. When the FeO content exceeds 5.0% by mass, slag seizure occurs. Therefore, the FeO content is 0.5 to 5.0 mass%.

TiO :8質量%以下
TiOは収縮孔の発生を抑制するために有効な成分であるが、その効果は比較的小さい。また、TiOは溶接金属中の酸素量を高める成分であり、その含有量は低い方が好ましい。更に、TiO含有量が8質量%を超えると、スラグの焼き付きの発生が著しい。従って、TiO含有量は8質量%以下に規制する。
TiO 2 : 8% by mass or less TiO 2 is an effective component for suppressing the generation of shrinkage holes, but its effect is relatively small. TiO 2 is a component that increases the amount of oxygen in the weld metal, and the content is preferably low. Furthermore, when the TiO 2 content exceeds 8% by mass, the occurrence of seizure of slag is remarkable. Therefore, the TiO 2 content is restricted to 8% by mass or less.

[M]:300以下
また、本発明においては、下記数式4により与えられる[M]を300以下にする。なお、下記数式4における[SiO]はSiO含有量(質量%)、[Ca]はフラックス中に含まれるCa化合物の総含有量(質量%)をCaで換算した値、[Ba]はフラックス中に含まれるBa化合物の総含有量(質量%)をBaで換算した値、[F]はフラックス中に含まれるF化合物の総含有量(質量%)をFで換算した値、[MgO]はMgO含有量(質量%)、[Al]はAl含有量(質量%)、[MnO]はMnO含有量(質量%)、[ZrO]はZrO含有量(質量%)、[FeO]はFeO含有量(質量%)、[TiO]はTiO含有量(質量%)である。
[M]: 300 or less In the present invention, [M] given by the following Equation 4 is set to 300 or less. In [Formula 4] below, [SiO 2 ] is the SiO 2 content (% by mass), [Ca] is a value obtained by converting the total content (% by mass) of the Ca compound contained in the flux with Ca, and [Ba] is The value obtained by converting the total content (mass%) of the Ba compound contained in the flux with Ba, [F] is the value obtained by converting the total content (mass%) of the F compound contained in the flux with F, [MgO ] Is MgO content (% by mass), [Al 2 O 3 ] is Al 2 O 3 content (% by mass), [MnO] is MnO content (% by mass), and [ZrO 2 ] is ZrO 2 content ( Mass%), [FeO] is the FeO content (mass%), and [TiO 2 ] is the TiO 2 content (mass%).

Figure 2005329462
Figure 2005329462

本発明者等は、種々のフラックスについて、溶接金属中の酸素量とフラックス成分との関係について検討を行った結果、上記数式4により与えられる[M]を溶接金属中の酸素量との間に強い相関関係があることを見出した。図1は横軸に[M]をとり、縦軸に溶接金属中の酸素量をとって、[M]と溶接金属中の酸素量との関係を示すグラフ図である。本発明者等は、溶接金属の低温靱性を向上させるため、溶接金属中の酸素量を300ppm以下に低減することを目標としているが、図1に示すように、[M]を300以下にすることにより、溶接金属中の酸素量が300ppm以下になること見出した。また、上記数式3に示すように、溶接金属中の酸素量低減に寄与する度合いは、Ca化合物が最も大きく、Mg、Ba化合物、「F化合物、Al、MnO及びFeO」、「TiO及びZrO」、SiOの順に小さくなる。なお、図1に示す溶接金属中の酸素量は、鋼板及びワイヤの酸素量が共に100ppm以下である場合は、鋼板及びワイヤの酸素量にかからわらず、同じ傾向を示す。 As a result of examining the relationship between the amount of oxygen in the weld metal and the flux component with respect to various fluxes, the present inventors have determined that [M] given by Equation 4 above is between the amount of oxygen in the weld metal. We found a strong correlation. FIG. 1 is a graph showing the relationship between [M] and the amount of oxygen in the weld metal, with [M] on the horizontal axis and the amount of oxygen in the weld metal on the vertical axis. The present inventors aim to reduce the oxygen content in the weld metal to 300 ppm or less in order to improve the low temperature toughness of the weld metal, but as shown in FIG. 1, [M] is set to 300 or less. As a result, the inventors have found that the amount of oxygen in the weld metal is 300 ppm or less. Further, as shown in the above mathematical formula 3, the degree of contribution to the reduction of the oxygen content in the weld metal is the largest in the Ca compound, Mg, Ba compound, “F compound, Al 2 O 3 , MnO and FeO”, “TiO”. 2 and ZrO 2 ”and SiO 2 in order. In addition, the oxygen amount in the weld metal shown in FIG. 1 shows the same tendency regardless of the oxygen amount of the steel plate and the wire when the oxygen amount of the steel plate and the wire is both 100 ppm or less.

[N]:0よりも大きい
更に、本発明においては、下記数式5により表される[N]を0よりも大きくする。
[N]: Greater than 0 Furthermore, in the present invention, [N] represented by the following Equation 5 is made larger than 0.

Figure 2005329462
Figure 2005329462

上述のように、[M]を調節することにより溶接金属中の酸素量を低減することができるが、本発明者等が[M]が300以下であるフラックスを使用して高速溶接を行ったところ、ほとんどのフラックスで収縮孔が発生した。図2(a)は高速溶接における溶接金属及び溶融池の形状を模式的に示す平面図であり、図2(b)は低速溶接における溶接金属及び溶融池の形状を模式的に示す平面図である。一般に、溶鋼が凝固する際には収縮を伴うが、図2(a)に示すように、高速溶接の場合、溶融池3の形状は涙滴型となり、溶鋼は両側の止端部から柱状晶2が成長して凝固収縮するため、溶接金属1のビード中央部には隙間が形成されやすくなる。更に、溶接金属1中の酸素量が低くなると、溶融金属の表面張力が高くなるため、ビード中央部に形成された隙間に溶融金属が十分に満たされなくなり、収縮孔4が発生する。一方、溶接金属中の酸素量が比較的多い場合は、溶融金属の表面張力が低く、凝固収縮した隙間を埋めやすいので、収縮孔4は発生しにくい。また、図2(b)に示すように、溶接速度が遅い場合は、溶融池3の形状が楕円形になり、柱状晶2がビード中央部で会合しにくくなるため、収縮孔は形成されにくい。   As described above, the amount of oxygen in the weld metal can be reduced by adjusting [M], but the present inventors performed high-speed welding using a flux having [M] of 300 or less. However, shrinkage holes occurred in most fluxes. FIG. 2A is a plan view schematically showing the shape of the weld metal and the molten pool in high-speed welding, and FIG. 2B is a plan view schematically showing the shape of the weld metal and the molten pool in low-speed welding. is there. In general, the molten steel is contracted when solidified, but as shown in FIG. 2A, in the case of high-speed welding, the shape of the molten pool 3 is a teardrop type, and the molten steel is columnar crystal from the toe ends on both sides. Since 2 grows and contracts by solidification, a gap is easily formed in the center of the bead of the weld metal 1. Further, when the amount of oxygen in the weld metal 1 decreases, the surface tension of the molten metal increases, so that the molten metal is not sufficiently filled in the gap formed at the center of the bead, and the shrink hole 4 is generated. On the other hand, when the amount of oxygen in the weld metal is relatively large, the surface tension of the molten metal is low, and it is easy to fill the gaps that have solidified and contracted, so that the shrinkage holes 4 are unlikely to occur. Further, as shown in FIG. 2B, when the welding speed is low, the shape of the molten pool 3 becomes an ellipse, and the columnar crystals 2 are less likely to associate at the bead central portion, so that shrinkage holes are not easily formed. .

本発明者等は、溶融金属の表面張力が高い場合でも、凝固収縮した際に生じる隙間に、溶融金属が浸入しやすくなるようなフラックス成分について検討を行った結果、Ca化合物、Ba化合物、MnO、FeO及びTiOには、収縮孔の発生を抑制する効果があることを見出した。しかしながら、前述したように、MnO、FeO及びTiOは、溶接金属中の酸素量を高める成分であり、過度に添加すると、スラグの焼き付き等の問題が発生する。一方、Ca化合物及びBa化合物は、収縮孔の発生を抑制する効果だけでなく、溶接金属中の酸素量を低減する効果もあるが、過剰に添加すると、溶融金属の表面張力が高くなり過ぎて、収縮孔が発生することがある。 As a result of studying flux components that make it easy for the molten metal to enter the gap generated when solidified and contracted even when the surface tension of the molten metal is high, the present inventors have found that the Ca compound, Ba compound, MnO It has been found that FeO and TiO 2 have an effect of suppressing the generation of shrinkage holes. However, as described above, MnO, FeO, and TiO 2 are components that increase the amount of oxygen in the weld metal, and when added excessively, problems such as slag seizure occur. On the other hand, the Ca compound and the Ba compound not only have the effect of suppressing the generation of shrinkage holes, but also have the effect of reducing the amount of oxygen in the weld metal, but if added excessively, the surface tension of the molten metal becomes too high. Shrinkage holes may occur.

そこで、本発明者等は更に検討を進めた結果、Ca化合物及びBa化合物の含有量だけでなく、F化合物の含有量によっても収縮孔の発生傾向が変化することを見出した。そして、Ca化合物及びBa化合物は[M]を大幅に増加させることなく、収縮孔の発生を抑制することができる成分であり、F化合物は収縮孔の発生を助長する成分であることを見出した。図3は横軸にCa化合物及びBa化合物の総含有量([Ca]+[Ba])をとり、縦軸にF化合物の含有量([F])をとって、Ca化合物及びBa化合物の総含有量並びにF化合物含有量と収縮孔との関係を示すグラフ図である。図3に示すように、上記数式4により与えられる[N]を0よりも大きくすることにより、収縮孔の発生を抑制することができる。   As a result of further studies, the present inventors have found that the tendency of shrinkage pores to change depends not only on the content of the Ca compound and the Ba compound but also on the content of the F compound. And it discovered that Ca compound and Ba compound are components which can suppress generation | occurrence | production of a contraction hole, without increasing [M] significantly, and F compound is a component which promotes generation | occurrence | production of a contraction hole. . FIG. 3 shows the total content of Ca compound and Ba compound ([Ca] + [Ba]) on the horizontal axis and the content of F compound ([F]) on the vertical axis. It is a graph which shows the relationship between total content and F compound content, and shrinkage | contraction hole. As shown in FIG. 3, the occurrence of contraction holes can be suppressed by making [N] given by the above equation 4 larger than zero.

[P]:0以下
更にまた、本発明においては、下記数式6により表される[P]を0以下とする。
[P]: 0 or less Furthermore, in the present invention, [P] represented by the following formula 6 is set to 0 or less.

Figure 2005329462
Figure 2005329462

MgOの含有量が9質量%以上の場合は、フラックスの組成が上述の範囲を満足していればビード蛇行の発生は認められない。しかしながら、MgO含有量が7質量%以上9質量%未満である場合は、フラックスの組成が上述の範囲を満足していてもビード蛇行が発生することがある。そこで、本発明者等は、更に検討を重ねた結果、Ca化合物含有量とMgO含有量との間に適正なバランスがあることを見出した。具体的には、MgO含有量が少なくなると、溶融スラグの粘度が低くなる傾向にある。また、上述したように、Ca化合物は不規則網目構造であるガラス状ケイ酸のSi−O結合を分断するため、Ca化合物含有量が多いと溶融スラグの粘度が低下する。なお、Ba化合物も同様の傾向を示すが、Ba化合物はCa化合物に比べて原子量が大きいため、MgO含有量が7質量%以上9質量%未満である場合は、Ba化合物による溶融スラグの粘度低下の影響は少ない。よって、Ca化合物含有量とMgO含有量とのバランスを適正化することが、ビード蛇行の抑制に最も有効である。   When the content of MgO is 9% by mass or more, occurrence of bead meandering is not recognized if the composition of the flux satisfies the above range. However, when the MgO content is 7% by mass or more and less than 9% by mass, bead meandering may occur even if the flux composition satisfies the above range. Then, as a result of further studies, the present inventors have found that there is an appropriate balance between the Ca compound content and the MgO content. Specifically, when the MgO content decreases, the viscosity of the molten slag tends to decrease. In addition, as described above, since the Ca compound breaks the Si—O bond of the glassy silicic acid having an irregular network structure, the viscosity of the molten slag decreases when the Ca compound content is large. Although the Ba compound shows the same tendency, the Ba compound has a larger atomic weight than the Ca compound. Therefore, when the MgO content is 7% by mass or more and less than 9% by mass, the viscosity of molten slag is reduced by the Ba compound. Is less affected. Therefore, optimizing the balance between the Ca compound content and the MgO content is most effective in suppressing bead meandering.

図4は横軸にMgO含有量([MgO])をとり、縦軸にCa化合物含有量([Ca])をとって、MgO含有量とCa化合物含有量との関係を示すグラフ図である。図4に示すように、上記数式6により与えられる[P]を0以下にすることにより、ビード蛇行の発生を抑制することができる。但し、MgO含有量が7質量%未満である場合は、[P]が0以下であっても粘性が不足し、ビード蛇行が発生する。   FIG. 4 is a graph showing the relationship between the MgO content and the Ca compound content, with the MgO content ([MgO]) on the horizontal axis and the Ca compound content ([Ca]) on the vertical axis. . As shown in FIG. 4, the occurrence of bead meandering can be suppressed by setting [P] given by Equation 6 to 0 or less. However, when the MgO content is less than 7% by mass, even when [P] is 0 or less, the viscosity is insufficient and bead meandering occurs.

なお、本発明のサブマージアーク溶接用溶融型フラックスにおける上記以外の成分は、例えば、NaO、KO、B、Cr、V、P及びS等である。 In addition, components other than the above in the melted flux for submerged arc welding of the present invention are, for example, Na 2 O, K 2 O, B 2 O 3 , Cr 2 O 3 , V 2 O 5 , P, and S. .

以下、本発明の実施例の効果について、本発明の範囲から外れる比較例と比較して説明する。図5(a)は4電極溶接における電極配置を示す模式図であり、図5(b)はその際の開先形状を示す断面図である。また、図6(a)は3電極溶接における電極配置を示す模式図であり、図6(b)はその際の開先形状を示す断面図である。先ず、図5(b)及び図6(b)に示すように、下記表1に示す成分組成(JIS規格 G3106 SM490A)で板厚が20mm、開先12の角度が70°である1対の供試鋼板11を、下記表2に示す組成のワイヤ(JIS規格 Z3351 YS−S6、直径4.0mm)並びに下記表3乃至5に示す組成のフラックスを使用し、下記表6、図5(a)及び図6(a)に示す条件で、多電極サブマージアーク溶接法による両面一層溶接を行い、溶接作業性(ビード蛇行、ポックマーク、ビード形状、スラグ焼付き、収縮孔)及び溶接金属中の酸素量を評価した。なお、本実施例においては、前述の方法で溶接する前に、供試鋼板11の2nd側を、JIS規格 Z3312 YGW11のワイヤ(直径1.2mm)を使用し、電流を260A、電圧を32V、溶接速度を50cm/分とし、シールドガスはCOを使用して仮付溶接している。このため、得られた溶接継手の2nd側には、仮付溶接部13が形成されている。また、下記表2における残部はFe及び不可避的不純物であり、「tr.」は検出限界以下であることを示す。更に、下記表3乃至5における残部は、Ca化合物及びBa化合物に含まれる酸素、F化合物に含まれるCa及びBa以外の成分、NaO、KO、B、Cr、V、P、S等である。 Hereinafter, the effect of the Example of this invention is demonstrated compared with the comparative example which remove | deviates from the scope of the present invention. Fig.5 (a) is a schematic diagram which shows the electrode arrangement | positioning in 4 electrode welding, FIG.5 (b) is sectional drawing which shows the groove shape in that case. Moreover, Fig.6 (a) is a schematic diagram which shows the electrode arrangement | positioning in 3 electrode welding, FIG.6 (b) is sectional drawing which shows the groove shape in that case. First, as shown in FIG. 5 (b) and FIG. 6 (b), a pair of components having the composition shown in Table 1 below (JIS standard G3106 SM490A) with a plate thickness of 20 mm and an angle of the groove 12 of 70 °. The test steel plate 11 is made of a wire having a composition shown in Table 2 below (JIS standard Z3351 YS-S6, diameter 4.0 mm) and a flux having a composition shown in Tables 3 to 5 below. ) And the conditions shown in FIG. 6 (a), double-sided single-layer welding is performed by the multi-electrode submerged arc welding method, welding workability (bead meandering, pock mark, bead shape, slag seizure, shrinkage hole) and in the weld metal The amount of oxygen was evaluated. In this example, before welding by the above-described method, a wire of JIS standard Z3312 YGW11 (diameter: 1.2 mm) was used on the 2nd side of the test steel plate 11, the current was 260A, the voltage was 32V, The welding speed is 50 cm / min, and the shield gas is temporarily welded using CO 2 . For this reason, the temporary welding part 13 is formed in the 2nd side of the obtained welded joint. Further, the remainder in Table 2 below is Fe and inevitable impurities, and “tr.” Indicates that it is below the detection limit. Furthermore, the balance in the following Tables 3 to 5 is oxygen contained in the Ca compound and Ba compound, components other than Ca and Ba contained in the F compound, Na 2 O, K 2 O, B 2 O 3 , Cr 2 O 3. , V 2 O 5 , P, S and the like.

Figure 2005329462
Figure 2005329462

Figure 2005329462
Figure 2005329462

Figure 2005329462
Figure 2005329462

Figure 2005329462
Figure 2005329462

Figure 2005329462
Figure 2005329462

Figure 2005329462
Figure 2005329462

以下、各項目の評価基準について説明する。なお、各供試鋼板の溶接長は1.5mとし、1st側及び2nd側のどちらか一方でも基準を満たさなかった場合は×とした。ビード蛇行については、溶接線の振れ幅が3mm以下の場合を○、溶接線の振れ幅が3mmより大きい場合を×とした。ポックマークについては、溶接長1mあたりのポックマークが1個以下であった場合を○、1個より多かった場合を×とした。ビード形状については、余盛高さが3mm以下であったものを○、余盛高さが3mmを超えていたものを×とした。スラグ焼付きについては、スラグ剥離後のビード止端部における焼付き長さが溶接長に対して20%以下であったものを○、20%を超えていたものを×とした。なお、ビード止端部の焼付きは、両側をそれぞれ測定して長い方を焼き付き長さとした。   The evaluation criteria for each item will be described below. In addition, the welding length of each test steel plate was 1.5 m, and when either one of the 1st side and the 2nd side did not satisfy the standard, it was set as x. For the bead meandering, the case where the runout width of the weld line was 3 mm or less was marked as ◯, and the case where the runout width of the weld line was greater than 3 mm was marked as x. Regarding the pock mark, the case where the number of pock marks per 1 m of weld length was 1 or less was marked with ○, and the case where there were more than 1 was marked with x. Regarding the bead shape, the case where the extra height was 3 mm or less was rated as “◯”, and the case where the extra height was over 3 mm was made “X”. For slag seizure, the seizure length at the toe end of the bead after slag peeling was 20% or less with respect to the weld length, and the case where the seizure length exceeded 20% was rated as x. In addition, the seizure of the bead toe portion was measured on both sides, and the longer one was regarded as the seizure length.

収縮孔については、ビード表面に収縮孔が発生していなかったものを◎、ビード表面の収縮孔が溶接長に対して10%以下であったものを○、ビード表面の収縮孔が溶接長に対して10%を超えていたものを×とした。図7は溶接金属中の酸素分析用の試験片の採取位置を示す断面図である。溶接金属中の酸素量は、供試鋼板11を本実施例及び比較例のフラックスを使用して溶接して得た溶接継手の溶接金属13から試験片15を採取し、酸素分析により評価した。なお、溶接金属中の酸素量が300ppm以下であれば優れた低温靱性が得られるため、低酸素化が図れたとした。以上の結果を下記表7及び表8にまとめて示す。   As for the shrinkage hole, the case where no shrinkage hole was generated on the bead surface was marked with ◎, the case where the shrinkage hole on the bead surface was 10% or less with respect to the weld length, the shrinkage hole on the bead surface became the weld length. On the other hand, what exceeded 10% was set as x. FIG. 7 is a cross-sectional view showing the sampling position of the test piece for oxygen analysis in the weld metal. The amount of oxygen in the weld metal was evaluated by analyzing a specimen 15 from a weld metal 13 of a welded joint obtained by welding the test steel plate 11 using the fluxes of the present example and the comparative example. In addition, since the low-temperature toughness which was excellent if the oxygen content in a weld metal was 300 ppm or less was obtained, it was supposed that oxygen reduction was achieved. The above results are summarized in Table 7 and Table 8 below.

Figure 2005329462
Figure 2005329462

Figure 2005329462
Figure 2005329462

上記表3に示すNo.1乃至No.21及びNo.61乃至No.64のフラックスが本発明の実施例であり、上記表4及び表5に示すNo.22乃至No.60及びNo.65乃至No.67が比較例である。なお、No.20、No.21、No.42及びNo.43のフラックスでは図6(a)及び(b)に示す3電極溶接を行い、それ以外は図5(a)及び(b)に示す4電極溶接を行った。   No. shown in Table 3 above. 1 to No. 21 and no. 61 thru | or No. No. 64 flux is an example of the present invention. 22 thru | or No. 60 and no. 65 thru | or No. 67 is a comparative example. In addition, No. 20, no. 21, no. 42 and no. For the flux of 43, three-electrode welding shown in FIGS. 6A and 6B was performed, and for the other cases, four-electrode welding shown in FIGS. 5A and 5B was performed.

上記表7に示すように、本発明の範囲内である実施例No.1乃至No.21及びNo.61乃至No.64のフラックスは、溶接作業性が良好であり、溶接金属中の酸素量も300ppm以下であった。一方、上記表8に示すように、本発明の範囲から外れた比較例No.22のフラックスは、SiO含有量が23質量%未満であるため、ビード蛇行が生じた。また、比較例No.23のフラックスは、SiO含有量が33質量%を超えていると共にCa含有量が5質量%未満であるため、ビード形状が凸状になり、更に収縮孔が発生した。比較例No.24のフラックスは、[P]が0よりも大きいため、ビード蛇行が生じた。また、比較例No.25のフラックスは、MgO含有量が18質量%を超えているため、ポックマークが発生した。 As shown in Table 7 above, Example No. which is within the scope of the present invention. 1 to No. 21 and no. 61 thru | or No. The flux of 64 had good welding workability, and the amount of oxygen in the weld metal was 300 ppm or less. On the other hand, as shown in Table 8 above, Comparative Example No. deviated from the scope of the present invention. Since the flux of No. 22 had a SiO 2 content of less than 23% by mass, bead meandering occurred. Comparative Example No. The flux of No. 23 had a SiO 2 content of more than 33% by mass and a Ca content of less than 5% by mass, so that the bead shape became convex and shrinkage holes were generated. Comparative Example No. Since the flux of 24 had [P] larger than 0, bead meandering occurred. Comparative Example No. Since the flux of No. 25 had an MgO content exceeding 18% by mass, a pock mark was generated.

比較例No.26のフラックスは、Al含有量が1質量%未満であるため、ビード蛇行が生じた。また、比較例No.27のフラックスは、Al含有量が13質量%を超えているため、ビード形状が凸状になった。比較例No.28のフラックスは、MnO含有量が1質量%未満であるため、収縮孔が発生した。また、比較例No.29のフラックスは、MnO含有量が9質量%を超えているため、ビード形状が凸状になると共にスラグの焼き付きが発生した。比較例No.30のフラックスは、TiO含有量が8質量%を超えているため、スラグの焼き付きが発生した。比較例No.31のフラックスは、ZrO含有量が0.5質量%未満であるため、ビード蛇行が生じた。また、比較例No.32のフラックスは、ZrO含有量が5.0質量%を超えているため、スラグの焼き付きが発生した。比較例No.33のフラックスは、FeO含有量が0.5質量%未満であるため、収縮孔が発生した。また、比較例No.34は、FeO含有量が5.0質量%を超えているため、スラグの焼き付きが発生した。 Comparative Example No. Since the flux of No. 26 had an Al 2 O 3 content of less than 1% by mass, bead meandering occurred. Comparative Example No. Since the flux of No. 27 had an Al 2 O 3 content exceeding 13% by mass, the bead shape became convex. Comparative Example No. In the flux No. 28, since the MnO content was less than 1% by mass, shrinkage holes were generated. Comparative Example No. In the flux No. 29, since the MnO content exceeds 9 mass%, the bead shape became convex and slag seizure occurred. Comparative Example No. Since the flux of 30 had a TiO 2 content exceeding 8% by mass, seizure of slag occurred. Comparative Example No. Since the flux of No. 31 had a ZrO 2 content of less than 0.5% by mass, bead meandering occurred. Comparative Example No. Since the flux of No. 32 has a ZrO 2 content exceeding 5.0 mass%, slag seizure occurred. Comparative Example No. In the flux No. 33, since the FeO content was less than 0.5% by mass, shrinkage holes were generated. Comparative Example No. In No. 34, since the FeO content exceeded 5.0 mass%, slag seizure occurred.

比較例No.35のフラックスは、Ca化合物量が5質量%未満であるため、収縮孔が発生した。また、比較例No.36のフラックスは、Ca化合物量が25質量%を超えているため、ポックマークが発生した。比較例No.37のフラックスは、F化合物含有量が1質量%未満であるため、ビード形状が凸状になった。また、比較例No.38のフラックスは、F化合物含有量が14質量%を超えているため、ビード蛇行及び収縮孔が生じた。比較例No.39のフラックスは、Ba化合物含有量が5質量%未満であるため、収縮孔が発生した。また、比較例No.40のフラックスは、Ba化合物含有量が35質量%を超えていると共にCa化合物及びBa化合物の総含有量が40質量%を超えているため、ビード蛇行が生じ、更にポックマークが発生した。比較例No.41のフラックスは、Ca化合物及びBa化合物の総含有量が40質量%を超えているため、ビード蛇行が生じ、更にポックマークが発生した。   Comparative Example No. In the flux No. 35, the amount of Ca compound was less than 5% by mass, so that shrinkage holes were generated. Comparative Example No. As for the flux of 36, since the Ca compound amount exceeded 25 mass%, a pock mark was generated. Comparative Example No. Since the F compound content of the flux of 37 was less than 1% by mass, the bead shape became convex. Comparative Example No. In the flux No. 38, the F compound content exceeded 14% by mass, and therefore bead meandering and shrinkage holes were generated. Comparative Example No. In the flux No. 39, the Ba compound content was less than 5% by mass, so that shrinkage holes were generated. Comparative Example No. In the flux No. 40, the Ba compound content exceeded 35% by mass, and the total content of Ca compound and Ba compound exceeded 40% by mass. Therefore, bead meandering occurred and a pock mark was generated. Comparative Example No. In the flux No. 41, since the total content of the Ca compound and the Ba compound exceeded 40% by mass, bead meandering occurred and a pock mark was generated.

比較例No.42、No.44乃至No.50のフラックスは、[N]が0以下であるため、収縮孔が発生した。また、比較例No.43のフラックスは、[P]が0よりも大きく、[N]が0以下であるため、ビード蛇行及び収縮孔が生じた。比較例No.51、No.53及びNo.60のフラックスは、[M]が300を超えているため、溶接金属中の酸素量が300ppmを超えていた。比較例No.52及びNo.54のフラックスは、[M]が300を超えていると共にAl含有量が13質量%を超えているため、溶接金属中の酸素量が300ppmを超え、更にビード形状が凸状になった。比較例No.55のフラックスは、[M]が300を超え、Al含有量が13質量%を超え、MnO含有量が9質量%を超え、ZrO含有量が0.5質量%未満であるため、溶接金属中の酸素量が300ppmを超え、更に、ビード形状が凸状になり、ビード蛇行及びスラグの焼き付きが生じた。比較例No.56のフラックスは、[M]が300を超え、SiO含有量が33質量%を超え、Al含有量が13質量%を超え、ZrO含有量が0.5質量%未満であるため、溶接金属中の酸素量が300ppmを超え、更に、ビード形状が凸状になると共にビード蛇行が生じた。 Comparative Example No. 42, no. 44 thru | or No. Since the flux of 50 had [N] of 0 or less, shrinkage holes were generated. Comparative Example No. In the flux of 43, [P] was larger than 0 and [N] was 0 or less, so that bead meandering and shrinkage holes were generated. Comparative Example No. 51, no. 53 and no. In the flux of 60, since [M] exceeded 300, the amount of oxygen in the weld metal exceeded 300 ppm. Comparative Example No. 52 and no. In the flux No. 54, since [M] exceeds 300 and the Al 2 O 3 content exceeds 13% by mass, the oxygen content in the weld metal exceeds 300 ppm, and the bead shape becomes convex. It was. Comparative Example No. In the flux of 55, [M] exceeds 300, Al 2 O 3 content exceeds 13% by mass, MnO content exceeds 9% by mass, and ZrO 2 content is less than 0.5% by mass. The oxygen content in the weld metal exceeded 300 ppm, the bead shape became convex, and bead meandering and slag seizure occurred. Comparative Example No. In the flux of 56, [M] exceeds 300, the SiO 2 content exceeds 33% by mass, the Al 2 O 3 content exceeds 13% by mass, and the ZrO 2 content is less than 0.5% by mass. For this reason, the amount of oxygen in the weld metal exceeded 300 ppm, and the bead shape became convex and bead meandering occurred.

比較例No.57及びNo.58のフラックスは、[M]が300を超えていると共にZrO含有量が0.5質量%未満であるため、溶接金属中の酸素量が300ppmを超え、更にビード蛇行が生じた。比較例No.59のフラックスは、[M]が300を超え、SiO2含有量が33質量%を超え、ZrO含有量が0.5質量%未満であるため、溶接金属中の酸素量が300ppmを超え、更に、ビード形状が凸状になると共にビード蛇行が生じた。なお、比較例No.55乃至No.59のフラックスは、Ba化合物の含有量が5質量%未満であるにもかかわらず収縮孔が発生しなかった。これは、[M]が300を超えているため、溶接金属中の酸素量が300ppmを超えて、溶融金属の表面張力が低くなったためである。 Comparative Example No. 57 and no. In the flux No. 58, [M] exceeded 300 and the ZrO 2 content was less than 0.5% by mass. Therefore, the oxygen content in the weld metal exceeded 300 ppm, and bead meandering occurred. Comparative Example No. 59 flux is greater than 300 [M], it exceeds the 33 wt% SiO2 content, since the content of ZrO 2 is less than 0.5 wt%, greater than 300ppm oxygen content in the weld metal, and further The bead shape became convex and bead meandering occurred. Comparative Example No. 55 to No. In the flux No. 59, no shrinkage hole was generated even though the content of the Ba compound was less than 5% by mass. This is because [M] exceeds 300, the oxygen content in the weld metal exceeds 300 ppm, and the surface tension of the molten metal is lowered.

比較例No.65のフラックスは、MgO含有量が7質量%未満であるため、ビード蛇行が生じた。比較例No.66のフラックスは、MgO含有量が7質量%未満であると共に、[P]が0よりも大きいため、ビード蛇行が生じた。比較例No.67のフラックスは、[P]が0よりも大きいため、ビード蛇行が生じた。   Comparative Example No. Since the flux of 65 had an MgO content of less than 7% by mass, bead meandering occurred. Comparative Example No. The flux No. 66 had a MgO content of less than 7% by mass, and [P] was greater than 0, and therefore bead meandering occurred. Comparative Example No. In the flux No. 67, since [P] was larger than 0, bead meandering occurred.

横軸に[M]をとり、縦軸に溶接金属中の酸素量をとって、[M]と溶接金属中の酸素量との関係を示すグラフ図である。FIG. 5 is a graph showing the relationship between [M] and the amount of oxygen in the weld metal, with [M] on the horizontal axis and the amount of oxygen in the weld metal on the vertical axis. (a)は高速溶接における溶接金属及び溶融池の形状を模式的に示す平面図であり、(b)は低速溶接における溶接金属及び溶融池の形状を模式的に示す平面図である。(A) is a top view which shows typically the shape of the weld metal and molten pool in high-speed welding, (b) is a top view which shows typically the shape of the weld metal and molten pool in low-speed welding. 横軸にCa化合物及びBa化合物の総含有量をとり、縦軸にF化合物含有量をとって、Ca化合物及びBa化合物の総含有量とF化合物含有量との関係を示すグラフ図である。It is a graph which shows the relationship between the total content of Ca compound and Ba compound, and F compound content, taking the total content of Ca compound and Ba compound on a horizontal axis, and taking F compound content on a vertical axis | shaft. 横軸にMgO含有量をとり、縦軸にCa化合物含有量をとって、MgO含有量とCa化合物含有量との関係を示すグラフ図である。It is a graph which shows the relationship between MgO content and Ca compound content, taking MgO content on a horizontal axis and taking Ca compound content on a vertical axis. (a)は4電極溶接における電極配置を示す模式図であり、(b)は開先形状を示す断面図である。(A) is a schematic diagram which shows the electrode arrangement | positioning in 4 electrode welding, (b) is sectional drawing which shows a groove shape. (a)は3電極溶接における電極配置を示す模式図であり、(b)は開先形状を示す断面図である。(A) is a schematic diagram which shows the electrode arrangement | positioning in 3 electrode welding, (b) is sectional drawing which shows a groove shape. 溶接金属中の酸素分析用の試験片の採取位置を示す断面図である。It is sectional drawing which shows the extraction | collection position of the test piece for the oxygen analysis in a weld metal.

符号の説明Explanation of symbols

1;溶接金属
2;柱状晶
3;溶融池
4;収縮孔
11;供試鋼板
12;開先
13;仮付溶接部
14;溶接金属
15;酸素量分析用試験片
DESCRIPTION OF SYMBOLS 1; Weld metal 2; Columnar crystal 3; Molten pool 4; Shrinkage hole 11; Test steel plate 12; Groove 13; Temporary weld 14; Weld metal 15;

Claims (1)

フラックス全質量あたり、SiO:23乃至33質量%、Ca化合物:Ca換算で5乃至25質量%、Ba化合物:Ba換算で5乃至35質量%、F化合物:F換算で1乃至14質量%、MgO:7乃至18質量%、Al:1乃至13質量%、MnO:1乃至9質量%、ZrO:0.5乃至5.0質量%、FeO:0.5乃至5.0質量%を含有し、TiO:8質量%以下、Ca化合物及びBa化合物:総量で40質量%以下に規制し、SiO含有量(質量%)を[SiO]、Ca化合物のCa換算含有量(質量%)を[Ca]、Ba化合物のBa換算含有量(質量%)を[Ba]、F化合物のF換算含有量(質量%)を[F]、MgO含有量(質量%)を[MgO]、Al含有量を[Al]、MnO含有量(質量%)を[MnO]、ZrO含有量(質量%)を[ZrO]、FeO含有量(質量%)を[FeO]、TiO含有量(質量%)を[TiO]としたとき、下記数式により与えられる[M]が300以下であり、下記数式により与えられる[N]が0よりも大きく、且つ下記数式により与えられる[P]が0以下であることを特徴とするサブマージアーク溶接用溶融型フラックス。
Figure 2005329462
Based on the total mass of the flux, SiO 2 : 23 to 33% by mass, Ca compound: 5 to 25% by mass in terms of Ca, Ba compound: 5 to 35% by mass in terms of Ba, F compound: 1 to 14% by mass in terms of F, MgO: 7 to 18% by mass, Al 2 O 3 : 1 to 13% by mass, MnO: 1 to 9% by mass, ZrO 2 : 0.5 to 5.0% by mass, FeO: 0.5 to 5.0% by mass %, TiO 2 : 8 mass% or less, Ca compound and Ba compound: 40 mass% or less in total, SiO 2 content (mass%) is [SiO 2 ], Ca equivalent content of Ca compound [Ca], the Ba equivalent content (mass%) of the Ba compound [Ba], the F equivalent content (mass%) of the F compound [F], and the MgO content (mass%) [ MgO], the content of Al 2 O 3 [Al 2 O 3], nO content (mass%) [MnO], ZrO 2 content (wt%) [ZrO 2], FeO content (mass%) [FeO], TiO 2 content (mass%) of [TiO 2 ], [M] given by the following formula is 300 or less, [N] given by the following formula is larger than 0, and [P] given by the following formula is 0 or less. Fused flux for submerged arc welding.
Figure 2005329462
JP2005117587A 2004-04-19 2005-04-14 Fused flux for submerged arc welding Active JP4694245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005117587A JP4694245B2 (en) 2004-04-19 2005-04-14 Fused flux for submerged arc welding

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004123494 2004-04-19
JP2004123494 2004-04-19
JP2005117587A JP4694245B2 (en) 2004-04-19 2005-04-14 Fused flux for submerged arc welding

Publications (2)

Publication Number Publication Date
JP2005329462A true JP2005329462A (en) 2005-12-02
JP4694245B2 JP4694245B2 (en) 2011-06-08

Family

ID=35484444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005117587A Active JP4694245B2 (en) 2004-04-19 2005-04-14 Fused flux for submerged arc welding

Country Status (1)

Country Link
JP (1) JP4694245B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103192197A (en) * 2013-03-21 2013-07-10 中冶焊接科技有限公司 Facing surfacing material of surfacing composite manufactured work roll and preparation method thereof
EP3254799A4 (en) * 2015-02-02 2018-08-01 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Flux for submerged arc welding
CN113146093A (en) * 2015-05-05 2021-07-23 铟泰公司 High reliability lead-free solder alloys for harsh environment electronic device applications
CN114643437A (en) * 2022-05-20 2022-06-21 东北大学 Fluorine-free smelting flux and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5122639A (en) * 1974-08-20 1976-02-23 Nippon Steel Corp TEISUISOKOEN KISEISENKOYOSETSUYOFURATSUKUSU
JPS61169194A (en) * 1985-01-22 1986-07-30 Kobe Steel Ltd Fused flux for submerged arc welding
JPS61180694A (en) * 1985-02-05 1986-08-13 Kobe Steel Ltd Fused flux for submerged arc welding
JPS61182896A (en) * 1985-02-07 1986-08-15 Kobe Steel Ltd Flux for submerged arc welding
JP2004090051A (en) * 2002-08-30 2004-03-25 Nippon Steel Corp Flux for submerged arc welding of low alloy steel excellent in resistance to sulfuric acid and hydrochloric acid, and submerged arc welding process

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5122639A (en) * 1974-08-20 1976-02-23 Nippon Steel Corp TEISUISOKOEN KISEISENKOYOSETSUYOFURATSUKUSU
JPS61169194A (en) * 1985-01-22 1986-07-30 Kobe Steel Ltd Fused flux for submerged arc welding
JPS61180694A (en) * 1985-02-05 1986-08-13 Kobe Steel Ltd Fused flux for submerged arc welding
JPS61182896A (en) * 1985-02-07 1986-08-15 Kobe Steel Ltd Flux for submerged arc welding
JP2004090051A (en) * 2002-08-30 2004-03-25 Nippon Steel Corp Flux for submerged arc welding of low alloy steel excellent in resistance to sulfuric acid and hydrochloric acid, and submerged arc welding process

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103192197A (en) * 2013-03-21 2013-07-10 中冶焊接科技有限公司 Facing surfacing material of surfacing composite manufactured work roll and preparation method thereof
EP3254799A4 (en) * 2015-02-02 2018-08-01 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Flux for submerged arc welding
CN113146093A (en) * 2015-05-05 2021-07-23 铟泰公司 High reliability lead-free solder alloys for harsh environment electronic device applications
CN114643437A (en) * 2022-05-20 2022-06-21 东北大学 Fluorine-free smelting flux and preparation method and application thereof
CN114643437B (en) * 2022-05-20 2022-07-22 东北大学 Fluorine-free smelting flux and preparation method and application thereof

Also Published As

Publication number Publication date
JP4694245B2 (en) 2011-06-08

Similar Documents

Publication Publication Date Title
JP3850825B2 (en) Fused flux for submerged arc welding
JP6809533B2 (en) Flux-cored wire, welded joint manufacturing method, and welded joint
JP4834191B2 (en) Flux-cored wire for gas shielded arc welding that can be welded in all positions
JP2014113615A (en) Flux-cored wire for carbon dioxide gas shielded arc welding
JP2011125904A (en) Flux cored wire for gas shielded arc welding for weather resistant steel
JP5236309B2 (en) Flux-cored wire for gas shielded arc welding
JP2015217393A (en) Flux-cored wire for carbon dioxide gas shielded arc welding
JP2007160314A (en) Flux cored wire for welding high-strength stainless steel
KR20180007690A (en) Submerged arc welding process
JP2013158777A (en) Flux-cored wire for gas shield arc welding
JP4484079B2 (en) Fused flux for submerged arc welding
JP5922078B2 (en) Fused flux for submerged arc welding
JP4694245B2 (en) Fused flux for submerged arc welding
JP4838100B2 (en) Flux-cored wire for horizontal corner gas shielded arc welding for weathering steel
US6734395B2 (en) Flux-cored wire for stainless steel arc welding
JP6958139B2 (en) Flux-cored wire for gas shielded arc welding and welding joint manufacturing method
JP6599807B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP4949449B2 (en) Flux-cored wire for welding
CN113613829A (en) Ni-based alloy flux-cored wire
JP5096062B2 (en) Weld metal and titania-based flux-cored wire
JP4581842B2 (en) Fused flux for submerged arc welding
JP2012148298A (en) Wire including flux for two-phase stainless steel welding
JP5669684B2 (en) Flux-cored wire for horizontal fillet gas shielded arc welding
JPH0631481A (en) Flux for welding
JP5468971B2 (en) Melting flux for multi-layered submerged arc welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110223

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4694245

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150