JP2005329274A - Film forming apparatus - Google Patents

Film forming apparatus Download PDF

Info

Publication number
JP2005329274A
JP2005329274A JP2004147086A JP2004147086A JP2005329274A JP 2005329274 A JP2005329274 A JP 2005329274A JP 2004147086 A JP2004147086 A JP 2004147086A JP 2004147086 A JP2004147086 A JP 2004147086A JP 2005329274 A JP2005329274 A JP 2005329274A
Authority
JP
Japan
Prior art keywords
film thickness
blade
displacement sensor
transfer plate
forming apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004147086A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kiyomura
浩之 清村
Masaru Sawada
勝 澤田
Akihiro Yamamoto
章博 山本
Yoshiyuki Nagai
禎之 永井
Takashi Omura
貴志 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004147086A priority Critical patent/JP2005329274A/en
Publication of JP2005329274A publication Critical patent/JP2005329274A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Coating Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a film forming apparatus in which the control accuracy of film thickness is better than that in the conventional art in the film forming apparatus for forming the film of a viscous material having a prescribed film thickness and slope on the surface of a transfer pan. <P>SOLUTION: A plurality of displacement sensors S1, S2, S3 are attached to a bracket 10 to fix the position so as to measure the film thickness in a plurality of points each having different film surface of the viscous material formed on the surface of the transfer pan 2 and the attitude of a blade 3 is controlled by a film thickness control part 6 to bring the film thickness close to a required value on the basis of the measured values of a plurality of the displacement sensors S1, S2, S3. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、転写皿の表面に所望の膜厚および傾きを有する粘性材料の膜を形成する膜形成装置に関するものである。   The present invention relates to a film forming apparatus for forming a film of a viscous material having a desired film thickness and inclination on the surface of a transfer dish.

この種の膜形成装置は、粘性材料をチップに適量だけ付けるために使用されている。具体的には、フリップチップ実装工法において実装しようとするチップに導電性ペーストを付ける(特許文献1)に示す装置を例に挙げることができる。   This type of film forming apparatus is used to apply an appropriate amount of viscous material to the chip. Specifically, the apparatus shown in (Patent Document 1) for attaching a conductive paste to a chip to be mounted in the flip chip mounting method can be given as an example.

この従来の膜形成装置は図8に示すように構成されている。
モータ1によって回転駆動される転写皿2と、転写皿2の表面に対する隙間と傾きを調節可能なブレード3と、転写皿2の表面に形成された導電性ペースト4の膜厚を測定する非接触式変位センサ5と、非接触式変位センサ5によって測定された膜厚が規定値に近づくように前記転写皿2と前記ブレード3の姿勢を相対的に制御する膜厚制御部6とで構成されている。Rは転写皿2の回転方向である。
This conventional film forming apparatus is configured as shown in FIG.
Non-contact for measuring the film thickness of a transfer tray 2 that is rotationally driven by a motor 1, a blade 3 that can adjust the gap and inclination with respect to the surface of the transfer plate 2, and a conductive paste 4 formed on the surface of the transfer plate 2. The displacement sensor 5 and a film thickness controller 6 that relatively controls the posture of the transfer plate 2 and the blade 3 so that the film thickness measured by the non-contact displacement sensor 5 approaches a specified value. ing. R is the rotation direction of the transfer plate 2.

非接触式変位センサ5には具体的にはレーザー変位計が使用されており、転写皿2の回転停止中に、非接触式変位センサ5を転写皿2の径方向に移動させて膜厚分布を測定し、この膜厚分布が所望の膜厚および傾きになるように膜厚制御部6がブレード3の姿勢を変更し、この姿勢変更後に転写皿2がモータ1によって回転駆動されると、ブレード3が掻いた導電性ペースト4が所望の膜厚および傾きになる。   Specifically, a laser displacement meter is used for the non-contact type displacement sensor 5, and the film thickness distribution is obtained by moving the non-contact type displacement sensor 5 in the radial direction of the transfer plate 2 while the transfer plate 2 is stopped rotating. When the film thickness controller 6 changes the posture of the blade 3 so that the film thickness distribution has a desired film thickness and inclination, and the transfer plate 2 is rotated by the motor 1 after the posture change, The conductive paste 4 scraped by the blade 3 has a desired film thickness and inclination.

非接触式変位センサ5を転写皿2の径方向に駆動する手段としては、非接触式変位センサ5を横送りするボールネジ(図示せず)などが使用されている。
特開2001−102412公報
As a means for driving the non-contact type displacement sensor 5 in the radial direction of the transfer plate 2, a ball screw (not shown) for laterally feeding the non-contact type displacement sensor 5 is used.
JP 2001-102412 A

この従来の技術では、非接触式変位センサ5を転写皿2の径方向に移動させるとともに、その駆動手段としてボールネジなどが使用されているので、転写皿2の径方向に非接触式変位センサ5を移動させる際には、非接触式変位センサ5の動きに微少量のガタツキが伴う。また、走査の軌道の再現精度の影響を受けるため、膜厚の制御精度を十分に向上させることが困難である。   In this conventional technique, the non-contact type displacement sensor 5 is moved in the radial direction of the transfer plate 2 and a ball screw or the like is used as a driving means thereof. When moving the non-contact type displacement sensor 5, a slight amount of rattling is accompanied by the movement of the non-contact type displacement sensor 5. Further, since it is affected by the reproduction accuracy of the scanning trajectory, it is difficult to sufficiently improve the film thickness control accuracy.

図9(a)〜(d)は膜厚の高い制御精度の必要性を示している。
(a)は膜厚が制御された転写皿2の上の導電性ペースト4にチップ7を押し付ける直前の状態を示しており、(b)(c)のようにチップ7の電極部8を転写皿2に押し付けて持ち上げることによって、チップ7の電極部8に熱硬化性の適量の導電性ペースト4が転写される。さらに、この導電性ペースト4が電極部8に転写されたチップ7を、(d)に示すようにプリント基板9の実装位置に押し付けてセットする。このチップ7のセットが完了したプリント基板9を部分的または全体的に加熱して硬化させる。
9 (a) to 9 (d) show the necessity of high film thickness control accuracy.
(A) shows a state immediately before the chip 7 is pressed against the conductive paste 4 on the transfer tray 2 whose film thickness is controlled, and the electrode portion 8 of the chip 7 is transferred as shown in (b) and (c). By pressing the plate 2 and lifting it, an appropriate amount of the thermosetting conductive paste 4 is transferred to the electrode portion 8 of the chip 7. Further, the chip 7 on which the conductive paste 4 is transferred to the electrode portion 8 is pressed and set to the mounting position of the printed board 9 as shown in FIG. The printed circuit board 9 on which the chip 7 has been set is partially or entirely heated and cured.

この際に、図9(a)の工程における導電性ペースト4の膜厚制御が不十分で、導電性ペースト4の膜厚が薄い場合には目的とする半田付け接合力を得ることができず、また、厚過ぎた場合には図9(d)の工程において、プリント基板9の隣接する配線パターンとの間に半田ブリッジが発生する。したがって、図9(a)の工程において導電性ペースト4の高精度の膜厚制御が必要である。   At this time, when the film thickness control of the conductive paste 4 in the step of FIG. 9A is insufficient and the film thickness of the conductive paste 4 is thin, the target soldering strength cannot be obtained. If it is too thick, a solder bridge is generated between the printed circuit board 9 and an adjacent wiring pattern in the step of FIG. 9D. Therefore, it is necessary to control the film thickness of the conductive paste 4 with high accuracy in the process of FIG.

本発明は、膜厚の制御精度が従来よりも良好な膜形成装置を提供することを目的とする。   It is an object of the present invention to provide a film forming apparatus with better film thickness control accuracy than before.

本発明の膜形成装置は、転写皿と、この転写皿の表面の粘性材料を掻くブレードと、前記転写皿の表面に形成された前記粘性材料の膜厚を測定する非接触式変位センサと、前記非接触式変位センサによって測定された膜厚が規定値に近づくように前記転写皿と前記ブレードの姿勢を相対的に制御する膜厚制御部とを設け、前記非接触式変位センサを、転写皿の表面に形成された前記粘性材料の膜面の異なる複数点を測定するように位置固定されて互いに間隔を隔てて取り付けられた複数の変位センサで構成し、前記膜厚制御部を、前記複数の変位センサの測定値に基づいて前記膜厚が前記規定値になるように制御するよう構成したことを特徴とする。   The film forming apparatus of the present invention includes a transfer plate, a blade that scrapes the viscous material on the surface of the transfer plate, a non-contact displacement sensor that measures the film thickness of the viscous material formed on the surface of the transfer plate, A film thickness controller for relatively controlling the posture of the blade and the blade is provided so that the film thickness measured by the non-contact displacement sensor approaches a specified value, and the non-contact displacement sensor is transferred. A plurality of displacement sensors fixed to each other and spaced from each other so as to measure a plurality of different points on the surface of the viscous material formed on the surface of the dish, and the film thickness control unit, The film thickness is controlled to be the specified value based on the measurement values of a plurality of displacement sensors.

また、本発明の膜形成装置は、回転駆動される転写皿と、前記転写皿の表面に対する隙間と平行度を調節可能に取り付けられ前記転写皿の表面の粘性材料を掻くブレードと、前記転写皿の表面に形成された前記粘性材料の膜厚を測定する非接触式変位センサと、前記非接触式変位センサによって測定された膜厚が規定値に近づくように前記転写皿と前記ブレードの姿勢を相対的に制御する膜厚制御部とを設け、前記非接触式変位センサを、転写皿の表面に形成された前記粘性材料の膜面の異なる複数点を測定するように位置固定されて互いに間隔を隔てて取り付けられた第1,第2の変位センサで構成し、前記膜厚制御部を、前記複数の変位センサの測定値に基づいて前記膜厚が前記規定値になるように制御するよう構成したことを特徴とする。   In addition, the film forming apparatus of the present invention includes a transfer plate that is rotationally driven, a blade that is attached so that the clearance and parallelism with respect to the surface of the transfer plate can be adjusted, and scrapes the viscous material on the surface of the transfer plate, and the transfer plate A non-contact displacement sensor for measuring the film thickness of the viscous material formed on the surface of the transfer plate, and the posture of the transfer plate and the blade so that the film thickness measured by the non-contact displacement sensor approaches a specified value. And a non-contact type displacement sensor that is fixed in position so as to measure a plurality of different points on the film surface of the viscous material formed on the surface of the transfer dish. The film thickness control unit is configured to control the film thickness control unit so that the film thickness becomes the specified value based on the measurement values of the plurality of displacement sensors. Characterized by composition .

また、本発明の膜形成装置は、転写皿の表面を検出する第3の変位センサを更に設け、前記膜厚制御部を、第1,第2,第3の変位センサの測定値に基づいて前記膜厚が前記規定値になるように制御するよう構成したことを特徴とする。   The film forming apparatus of the present invention further includes a third displacement sensor for detecting the surface of the transfer dish, and the film thickness control unit is based on the measured values of the first, second, and third displacement sensors. The film thickness is controlled so as to be the specified value.

また、前記第1,第2,第3の変位センサをレーザー変位計または静電容量型変位センサとしたことを特徴とする。   The first, second, and third displacement sensors may be laser displacement meters or capacitive displacement sensors.

本発明の膜形成装置によると、転写皿の表面に形成された前記粘性材料の膜面の異なる複数点を測定するように位置固定されて互いに間隔を隔てて取り付けられた複数の変位センサを設けたので、従来の膜厚制御部のように非接触式変位センサを移動させて走査しなくても、膜厚分布を測定でき、膜厚の制御精度が従来より向上する。   According to the film forming apparatus of the present invention, there are provided a plurality of displacement sensors which are fixed in position and spaced from each other so as to measure a plurality of different points on the film surface of the viscous material formed on the surface of the transfer dish. Therefore, the film thickness distribution can be measured without moving the non-contact displacement sensor and scanning as in the conventional film thickness control unit, and the film thickness control accuracy is improved as compared with the conventional film thickness control unit.

以下、本発明の膜形成装置を図1〜図7に基づいて説明する。
なお、従来例を示した図8と同様の作用を成すものには、同一の符号を付けて説明する。
The film forming apparatus of the present invention will be described below with reference to FIGS.
In addition, the same code | symbol is attached | subjected and demonstrated to what has the effect | action similar to FIG. 8 which showed the prior art example.

(実施の形態1)
図1と図2は(実施の形態1)の膜形成装置の要部を示す。
この図1に示す膜形成装置では、従来例において転写皿2の径方向に走査させていた非接触式変位センサ5としてのレーザー変位計に代えて、取り付け位置が固定されていて動かない複数の非接触式変位センサS1,S2,S3が設けられている。
(Embodiment 1)
1 and 2 show the main part of the film forming apparatus of (Embodiment 1).
In the film forming apparatus shown in FIG. 1, in place of the laser displacement meter as the non-contact type displacement sensor 5 scanned in the radial direction of the transfer plate 2 in the conventional example, a plurality of stationary positions are fixed and the movement is not performed. Non-contact displacement sensors S1, S2, S3 are provided.

具体的には、非接触式変位センサS1,S2,S3としては何れも静電容量センサを使用している。この非接触式変位センサS1,S2,S3は基端部が固定側に固定して取り付けられたブラケット10に、間隔を空けて固定して取り付けられている。図2に示すように非接触式変位センサS1は、転写皿2の回転中心から距離L1の半径の位置を測定するように固定されている。非接触式変位センサS2は、転写皿2の回転中心から距離L2の半径の位置を測定するように固定されている。非接触式変位センサS3は、転写皿2の回転中心から距離L3の半径の位置を測定するように固定されている。   Specifically, capacitance sensors are used as the non-contact type displacement sensors S1, S2, and S3. The non-contact type displacement sensors S1, S2, and S3 are fixedly attached to the bracket 10 that is fixedly attached at the base end to the fixed side with a space therebetween. As shown in FIG. 2, the non-contact displacement sensor S <b> 1 is fixed so as to measure the position of the radius L <b> 1 from the rotation center of the transfer plate 2. The non-contact type displacement sensor S2 is fixed so as to measure the position of the radius L2 from the rotation center of the transfer plate 2. The non-contact type displacement sensor S3 is fixed so as to measure the position of the radius L3 from the rotation center of the transfer plate 2.

L2 < L1 < L3
である。
なお、距離L1の半径の位置と距離L2の半径の位置は、ブレード3で掻いて転写皿2の上に展開された導電性ペースト4の範囲内に位置しており、距離L3の半径の位置は導電性ペースト4の範囲外に位置している。
L2 <L1 <L3
It is.
The radius position of the distance L1 and the radius position of the distance L2 are located within the range of the conductive paste 4 developed on the transfer plate 2 by scratching with the blade 3, and the radius position of the distance L3. Is located outside the range of the conductive paste 4.

転写皿2の回転停止中の非接触式変位センサS1,S2,S3の検出距離をそれぞれd1,d2,d3とすると、マイクロコンピュータを主要部として構成され前記ブレード3の姿勢を制御する膜厚制御部6は、
d3 − d1 = a 第1式
d3 − d2 = b 第2式
としたときに、“( a + b )/2 ”を検出した膜厚とし、これが目標膜厚値に近づくように前記ブレード3を動かして転写皿2の表面との隙間を調節する。また膜厚制御部6は、“( a − b ) ”を傾きの関数として扱って、これが目標傾き値の場合の同様の関数に近づくように前記ブレード3を動かして転写皿2の表面との傾きを調節する。
When the detection distances of the non-contact displacement sensors S1, S2, S3 while the rotation of the transfer plate 2 is stopped are d1, d2, and d3, respectively, a film thickness control that is configured with a microcomputer as a main part and controls the posture of the blade 3 is performed. Part 6
d3-d1 = a 1st formula d3-d2 = b When using the 2nd formula, "(a + b) / 2" is the detected film thickness, and the blade 3 is moved so that this approaches the target film thickness value. Move to adjust the gap with the surface of the transfer dish 2. Further, the film thickness controller 6 treats “(a−b)” as a function of the inclination, and moves the blade 3 so as to approach a similar function in the case of the target inclination value. Adjust the tilt.

なお、膜厚制御部6によるブレード3の傾きθの制御については、非接触式変位センサS1,S2の間隔( L1−L2 )であるので、
θ = tan−1( a−b )/( L1−L2 )
が、目標傾角度に近づくように前記ブレード3を動かして転写皿2の表面との傾きを調節することによっても同様に制御できる。
Note that the control of the inclination θ of the blade 3 by the film thickness controller 6 is the interval (L1-L2) between the non-contact displacement sensors S1, S2, so
θ = tan −1 (ab) / (L1-L2)
However, the same control can be performed by moving the blade 3 so as to approach the target tilt angle and adjusting the tilt with the surface of the transfer plate 2.

このように、固定して取り付けられた非接触式変位センサS1,S2,S3の検出値に基づいて、導電性ペースト4の膜厚分布を検出することができる。さらに、従来のように単一の非接触式変位センサ5を転写皿2の径方向に走査移動させなくても済むため、走査移動に伴うガタツキや軌道再現精度の影響も無く、膜厚の制御精度を従来よりも良好にできる。   In this way, the film thickness distribution of the conductive paste 4 can be detected based on the detection values of the non-contact displacement sensors S1, S2, S3 fixedly attached. Further, since it is not necessary to scan and move the single non-contact type displacement sensor 5 in the radial direction of the transfer plate 2 as in the prior art, there is no influence of backlash and trajectory reproduction accuracy due to the scanning movement, and control of the film thickness. The accuracy can be made better than before.

(実施の形態2)
図3(a)(b)は(実施の形態2)の膜形成装置の要部を示す。
(実施の形態1)では非接触式変位センサS1,S2,S3を使用していたが、この(実施の形態2)では取り付け位置が固定されていて動かない非接触式変位センサS1,S2が設けられているが、非接触式変位センサS3は設けられていない。非接触式変位センサS3が設けられていない代わりにこの(実施の形態2)の膜厚制御部6は、次のように構成されている。
(Embodiment 2)
3A and 3B show the main part of the film forming apparatus of (Embodiment 2).
In (Embodiment 1), non-contact type displacement sensors S1, S2, S3 are used, but in this (Embodiment 2), non-contact type displacement sensors S1, S2 that have fixed mounting positions and do not move are used. Although provided, the non-contact displacement sensor S3 is not provided. Instead of the non-contact displacement sensor S3 being provided, the film thickness controller 6 of this (Embodiment 2) is configured as follows.

膜厚制御部6は、第1工程では図3(a)に示すように、転写皿2の表面に導電性ペースト4が無い状態における非接触式変位センサS1,S2の検出距離d10,d20をそれぞれ記憶する。第2工程では図3(b)に示すように、転写皿2の表面に導電性ペースト4が展開した状態における転写皿2の回転停止中の非接触式変位センサS1,S2の検出距離d1,d2を検出し、
d10 − d1 = a 第3式
d20 − d2 = b 第4式
としたときに、“( a + b )/2 ”を検出した膜厚とし、これが目標膜厚値に近づくように前記ブレード3を動かして転写皿2の表面との隙間を調節する。また膜厚制御部6は、“( a − b ) ”を傾きの関数として扱って、これが目標傾き値の場合の同様の関数に近づくように前記ブレード3を動かして転写皿2の表面との傾きを調節する。
In the first step, the film thickness controller 6 sets the detection distances d10 and d20 of the non-contact displacement sensors S1 and S2 in a state where the conductive paste 4 is not present on the surface of the transfer dish 2 as shown in FIG. Remember each one. In the second step, as shown in FIG. 3B, the detection distances d1 of the non-contact type displacement sensors S1, S2 while the rotation of the transfer plate 2 is stopped in a state where the conductive paste 4 is spread on the surface of the transfer plate 2. detect d2,
d10−d1 = a 3rd formula d20−d2 = b When the 4th formula is established, the detected film thickness “(a + b) / 2” is set so that the blade 3 approaches the target film thickness value. Move to adjust the gap with the surface of the transfer dish 2. Further, the film thickness controller 6 treats “(a−b)” as a function of the inclination, and moves the blade 3 so as to approach a similar function in the case of the target inclination value. Adjust the tilt.

なお、膜厚制御部6によるブレード3の傾きθの制御については、非接触式変位センサS1,S2の間隔( L1−L2 )であるので、
θ = tan−1( a−b )/( L1−L2 )
が、目標傾角度に近づくように前記ブレード3を動かして転写皿2の表面との傾きを調節することによっても同様に制御できる。
Note that the control of the inclination θ of the blade 3 by the film thickness controller 6 is the interval (L1-L2) between the non-contact displacement sensors S1, S2, so
θ = tan −1 (ab) / (L1-L2)
However, the same control can be performed by moving the blade 3 so as to approach the target tilt angle and adjusting the tilt with the surface of the transfer plate 2.

このように、固定して取り付けられた非接触式変位センサS1,S2の検出値に基づいて、導電性ペースト4の膜厚分布を検出することができる。さらに、従来のように単一の非接触式変位センサ5を転写皿2の径方向に走査移動させなくても済むため、走査移動に伴うガタツキや軌道再現精度の影響も無く、膜厚の制御精度を従来よりも良好にできる。   In this manner, the film thickness distribution of the conductive paste 4 can be detected based on the detection values of the non-contact displacement sensors S1 and S2 that are fixedly attached. Further, since it is not necessary to scan and move the single non-contact type displacement sensor 5 in the radial direction of the transfer plate 2 as in the prior art, there is no influence of backlash and trajectory reproduction accuracy due to the scanning movement, and control of the film thickness. The accuracy can be made better than before.

(実施の形態3)
図4〜図6は(実施の形態3)の膜形成装置の要部を示す。
(実施の形態1)の非接触式変位センサS1,S2,S3、ならびに(実施の形態2)の非接触式変位センサS1,S2は、何れも静電容量センサであったが、この(実施の形態3)では非接触式変位センサS1,S2,S3として、前記粘性材料の膜面の異なる複数点を測定するように位置固定されて互いに間隔を隔てて取り付けられたレーザー変位計が採用されている点だけが(実施の形態1)と異なっている。
(Embodiment 3)
4 to 6 show the main part of the film forming apparatus of (Embodiment 3).
The non-contact displacement sensors S1, S2 and S3 of (Embodiment 1) and the non-contact displacement sensors S1 and S2 of (Embodiment 2) are all capacitive sensors. In the third embodiment, laser displacement meters fixed in position and spaced apart from each other are used as the non-contact displacement sensors S1, S2 and S3 so as to measure a plurality of different points on the film surface of the viscous material. Only the difference is from (Embodiment 1).

具体的には、レーザー変位計の非接触式変位センサS1,S2,S3は転写皿2に対して動かないように間隔を空けて固定して取り付けられている。図5,図6に示すように非接触式変位センサS1,S2,S3は、それぞれ転写皿2の回転中心から距離L1,L2,L3の半径の位置を測定するように固定されており、 L2 < L1 < L3 である。   Specifically, the non-contact displacement sensors S1, S2, and S3 of the laser displacement meter are fixedly attached at an interval so as not to move with respect to the transfer plate 2. As shown in FIGS. 5 and 6, the non-contact displacement sensors S1, S2, and S3 are fixed so as to measure the positions of the radii of the distances L1, L2, and L3 from the rotation center of the transfer plate 2, respectively. <L1 <L3.

なお、距離L1,L2の半径の位置は、ブレード3で掻いて転写皿2の上に展開された導電性ペースト4の範囲内に位置しており、距離L3の半径の位置は導電性ペースト4の範囲外に位置している。   Note that the positions of the radii of the distances L1 and L2 are located within the range of the conductive paste 4 scraped by the blade 3 and spread on the transfer plate 2, and the positions of the radii of the distance L3 are the positions of the conductive paste 4. It is located outside the range.

転写皿2の回転停止中の非接触式変位センサS1,S2,S3の検出距離をそれぞれd1,d2,d3とすると、ブレード3の姿勢を制御する膜厚制御部6は、(実施の形態1)の膜厚制御部6と同様にして検出した膜厚と隙間が、目標膜厚値と目標隙間値に近づくように前記ブレード3を動かして転写皿2の表面との隙間ならびに転写皿2の表面との傾きを調節する。   When the detection distances of the non-contact displacement sensors S1, S2, S3 while the rotation of the transfer plate 2 is stopped are d1, d2, and d3, respectively, the film thickness control unit 6 that controls the posture of the blade 3 is (Embodiment 1). ), The blade 3 is moved so that the detected film thickness and gap approach the target film thickness value and the target gap value, and the gap between the transfer dish 2 and the surface of the transfer dish 2. Adjust the tilt with the surface.

このように、固定して取り付けられた非接触式変位センサS1,S2,S3の検出値に基づいて、導電性ペースト4の膜厚分布を検出することができる。さらに、従来のように単一の非接触式変位センサ5を転写皿2の径方向に走査移動させなくても済むため、走査移動に伴うガタツキや軌道再現精度の影響も無く、膜厚の制御精度を従来よりも良好にできる。   In this way, the film thickness distribution of the conductive paste 4 can be detected based on the detection values of the non-contact displacement sensors S1, S2, S3 fixedly attached. Further, since it is not necessary to scan and move the single non-contact type displacement sensor 5 in the radial direction of the transfer plate 2 as in the prior art, there is no influence of backlash and trajectory reproduction accuracy due to the scanning movement, and control of the film thickness. The accuracy can be made better than before.

(実施の形態4)
図7は(実施の形態4)の膜形成装置の要部を示す。
(実施の形態3)では非接触式変位センサS1,S2,S3を使用していたが、この(実施の形態4)では取り付け位置が固定されていて動かないレーザー変位計の非接触式変位センサS1,S2が設けられているが、非接触式変位センサS3は設けられていない。非接触式変位センサS3が設けられていない代わりにこの(実施の形態4)の膜厚制御部6は、図7(a)に示すように転写皿2の表面に導電性ペースト4が無い状態における非接触式変位センサS1,S2の検出距離をd10,d20とし、図7(b)に示すように転写皿2の表面に導電性ペースト4が展開した状態における転写皿2の回転停止中の非接触式変位センサS1,S2の検出距離d1,d2とすると、(実施の形態2)の膜厚制御部6と同様にして検出した膜厚と隙間が、目標膜厚値と目標隙間値に近づくように前記ブレード3を動かして転写皿2の表面との隙間ならびに転写皿2の表面との傾きを調節する。
(Embodiment 4)
FIG. 7 shows the main part of the film forming apparatus of (Embodiment 4).
In (Embodiment 3), non-contact type displacement sensors S1, S2, and S3 are used. In (Embodiment 4), a non-contact type displacement sensor of a laser displacement meter that does not move because the mounting position is fixed. S1 and S2 are provided, but the non-contact displacement sensor S3 is not provided. Instead of the non-contact type displacement sensor S3 being provided, the film thickness controller 6 of this (Embodiment 4) is in a state in which there is no conductive paste 4 on the surface of the transfer dish 2 as shown in FIG. The detection distances of the non-contact displacement sensors S1 and S2 at d10 and d20 are d10 and d20, and the rotation of the transfer plate 2 is stopped when the conductive paste 4 is spread on the surface of the transfer plate 2 as shown in FIG. Assuming the detection distances d1 and d2 of the non-contact displacement sensors S1 and S2, the film thickness and gap detected in the same manner as the film thickness control unit 6 in (Embodiment 2) become the target film thickness value and the target gap value. The blade 3 is moved so as to approach, and the gap with the surface of the transfer plate 2 and the inclination with the surface of the transfer plate 2 are adjusted.

このように、固定して取り付けられた非接触式変位センサS1,S2の検出値に基づいて、導電性ペースト4の膜厚分布を検出することができる。さらに、従来のように単一の非接触式変位センサ5を転写皿2の径方向に走査移動させなくても済むため、走査移動に伴うガタツキや軌道再現精度の影響も無く、膜厚の制御精度を従来よりも良好にできる。   In this manner, the film thickness distribution of the conductive paste 4 can be detected based on the detection values of the non-contact displacement sensors S1 and S2 that are fixedly attached. Further, since it is not necessary to scan and move the single non-contact type displacement sensor 5 in the radial direction of the transfer plate 2 as in the prior art, there is no influence of backlash and trajectory reproduction accuracy due to the scanning movement, and control of the film thickness. The accuracy can be made better than before.

上記の各実施の形態では、粘性材料が導電性ペーストの場合を例に挙げて説明したが、粘性を有する接着剤などの粘性材料を転写皿2の上に展開し、その膜厚と傾きを制御する場合も同様に実施できる。   In each of the above-described embodiments, the case where the viscous material is a conductive paste has been described as an example. However, a viscous material such as an adhesive having viscosity is spread on the transfer dish 2, and the thickness and inclination thereof are determined. The same can be done for control.

なお、非接触式変位センサを3個設けた(実施の形態1)(実施の形態3)における膜厚制御部6は、転写皿2の回転停止中の非接触式変位センサS1,S2,S3の検出値に基づいてブレード3の姿勢を制御したが、転写皿2の表面まで距離を検出している非接触式変位センサS3のデータについては、膜厚制御部6が転写皿2の回転中に、具体的には回転皿2が一回転する間の非接触式変位センサS3の時々のデータを複数だけ収集し、この平均値を転写皿2の表面まで距離d3Aとし、この距離d3Aと転写皿2の回転停止中の非接触式変位センサS1,S2の検出距離d1,d2に基づいて、
d3A − d1 = a 第5式
d3A − d2 = b 第6式
として膜厚制御部6がブレード3の姿勢を制御するように構成することもできる。
The film thickness controller 6 in the first embodiment (third embodiment) provided with three non-contact type displacement sensors is a non-contact type displacement sensor S 1, S 2, S 3 when the transfer tray 2 is stopped rotating. Although the attitude of the blade 3 is controlled based on the detected value of the non-contact displacement sensor S3 that detects the distance to the surface of the transfer plate 2, the film thickness control unit 6 is rotating the transfer plate 2. Specifically, a plurality of pieces of occasional data of the non-contact displacement sensor S3 during one rotation of the rotating dish 2 are collected, and this average value is set as a distance d3A to the surface of the transfer dish 2, and this distance d3A and the transfer Based on the detection distances d1 and d2 of the non-contact displacement sensors S1 and S2 when the rotation of the pan 2 is stopped,
d3A−d1 = a Fifth Formula d3A−d2 = b As the sixth formula, the film thickness controller 6 may be configured to control the posture of the blade 3.

なお、非接触式変位センサを2個設けた(実施の形態2)(実施の形態4)における膜厚制御部6は、転写皿2の表面に導電性ペースト4が無い状態における非接触式変位センサS1,S2の検出距離d10,d20をそれぞれ記憶して処理したが、検出距離d10,d20の具体的な収集方法としては、転写皿2が停止している状態で収集する場合と、転写皿2の表面に導電性ペースト4が無い状態において回転皿2が一回転する間の非接触式変位センサS1,S2の時々のデータを複数だけ収集し、この平均値を転写皿2の表面まで距離d10A,d20Aとのいずれかを採用する。   The film thickness controller 6 in the second embodiment (fourth embodiment) provided with two non-contact displacement sensors is a non-contact displacement in a state where the conductive paste 4 is not present on the surface of the transfer dish 2. The detection distances d10 and d20 of the sensors S1 and S2 are stored and processed, respectively. As a specific method of collecting the detection distances d10 and d20, the transfer dish 2 is stopped and the transfer dish 2 is stopped. In the state where there is no conductive paste 4 on the surface of 2, only a plurality of occasional data of the non-contact type displacement sensors S 1 and S 2 are collected while the rotating dish 2 makes one rotation, and this average value is the distance to the surface of the transfer dish 2. Either d10A or d20A is adopted.

膜厚制御部6において検出距離d10,d20とd1,d2に基づいて上記のように制御する場合の他に、検出距離d10A,d20Aとd1,d2に基づいて上記のように制御する場合や、検出距離d10A,d20Aの平均値
( d10A + d20A )/2 = d1020A
とし、d1020Aとd1,d2に基づいて、
d1020A − d1 = a 第7式
d1020A − d2 = b 第8式
として同様に制御することもできる。
In addition to the above-described control based on the detection distances d10, d20 and d1, d2 in the film thickness controller 6, the control is performed as described above based on the detection distances d10A, d20A, d1, d2, Average value of detection distances d10A and d20A (d10A + d20A) / 2 = d1020A
And based on d1020A and d1, d2,
d1020A−d1 = a seventh equation d1020A−d2 = b The same control can be performed as the eighth equation.

上記の各実施の形態では、転写皿2がブレード3に対して回転して粘性材料を展開する場合を例に挙げて説明したが、ブレード3が転写皿2に対して回転して粘性材料を展開することもでき、転写皿2とブレード3が相対的に移動して粘性材料を展開する場合に実施できる。同様に、ブレード3の転写皿2に対する姿勢を変更して隙間ならびに傾きを調節したが、転写皿2のブレード3に対する姿勢を変更して隙間ならびに傾きを調節することもでき、ブレード3と転写皿2の相対的な姿勢を変更して隙間ならびに傾きを調節する場合に実施できる。   In each of the above embodiments, the case where the transfer plate 2 rotates with respect to the blade 3 and the viscous material is developed has been described as an example. However, the blade 3 rotates with respect to the transfer plate 2 and the viscous material is removed. It can also be developed, and can be carried out when the transfer plate 2 and the blade 3 move relatively to develop the viscous material. Similarly, the posture of the blade 3 with respect to the transfer plate 2 is changed to adjust the gap and the inclination. However, the posture of the transfer plate 2 with respect to the blade 3 can be changed to adjust the gap and the inclination. This can be implemented when the relative posture of 2 is changed to adjust the gap and inclination.

上記の各実施の形態の第1式と第2式、第3式と第4式、第5式と第6式、第7式と第8式における“d1”“d2”は、非接触式変位センサS1,S2のそれぞれの取り付け高さと、非接触式変位センサS3の取り付け高さとが同一の場合を例に挙げて説明した。しかし、非接触式変位センサS1の取り付け高さと非接触式変位センサS3の取り付け高さの間、非接触式変位センサS2の取り付け高さと非接触式変位センサS3の取り付け高さの間には取り付け誤差が発生するため、実際の“d1”“d2”には取り付け高さを補正するための補正項Δ1,Δ2が含まれている。具体的には、組み立て完了の直後に転写皿2に導電性ペースト4が無い状態において非接触式変位センサS1,S2,S3を読み取って、そのときの“d3−d1”を取り付け高さの補正項Δ1としてメモリにプリセットし、同様に“d3−d2”を取り付け高さの補正項Δ2としてメモリにプリセットしておき、この補正項Δ1,Δ2で取り付け誤差を補正することで、非接触式変位センサS1,S2,S3の間の取り付け高さの誤差の影響を受けることなく、導電性ペースト4の微少な膜厚を正確に計測している。   “D1” and “d2” in the first and second formulas, the third and fourth formulas, the fifth and sixth formulas, and the seventh and eighth formulas in the above embodiments are non-contact types. The case where the mounting heights of the displacement sensors S1 and S2 are the same as the mounting height of the non-contact displacement sensor S3 has been described as an example. However, the mounting height is between the mounting height of the non-contact displacement sensor S1 and the mounting height of the non-contact displacement sensor S3, and between the mounting height of the non-contact displacement sensor S2 and the mounting height of the non-contact displacement sensor S3. Since errors occur, actual “d1” and “d2” include correction terms Δ1 and Δ2 for correcting the mounting height. Specifically, immediately after the assembly is completed, the non-contact type displacement sensors S1, S2, and S3 are read in a state where the conductive paste 4 is not present on the transfer plate 2, and “d3-d1” at that time is attached and the height is corrected. The term Δ1 is preset in the memory, and similarly “d3−d2” is preset in the memory as the correction height Δ2 of the mounting height, and the correction error Δ1, Δ2 is used to correct the mounting error. The minute film thickness of the conductive paste 4 is accurately measured without being affected by the mounting height error between the sensors S1, S2 and S3.

また、上記の各実施の形態において転写皿2の導電性ペースト4が展開されていない場所を計測している非接触式変位センサS3の時々のd3を基準に導電性ペースト4の膜厚を決定したが、非接触式変位センサS3の運転開始時の測定値d30をメモリに記憶しておいて、非接触式変位センサS3の時々のd3と前記メモリに記憶しているd30とを比較することによって、両者の間に誤差Δ3が発生した場合には、転写皿2の熱による歪みが発生したとして、この誤差Δ3で時々のd1,d2を補正することで、導電性ペースト4の膜厚を転写皿2の熱による歪みの影響を低減して正確に計測することができ、より正確にブレード3の傾きを制御して導電性ペースト4の均一な膜厚の展開を期待できる。   Further, in each of the above embodiments, the film thickness of the conductive paste 4 is determined based on the occasional d3 of the non-contact displacement sensor S3 that measures the location where the conductive paste 4 of the transfer dish 2 is not spread. However, the measured value d30 at the start of operation of the non-contact displacement sensor S3 is stored in the memory, and the occasional d3 of the non-contact displacement sensor S3 is compared with d30 stored in the memory. Therefore, if an error Δ3 occurs between them, it is assumed that distortion due to the heat of the transfer plate 2 has occurred. By correcting the d1 and d2 from time to time with this error Δ3, the film thickness of the conductive paste 4 can be reduced. The influence of distortion due to heat of the transfer tray 2 can be reduced and measured accurately, and the development of a uniform film thickness of the conductive paste 4 can be expected by controlling the inclination of the blade 3 more accurately.

本発明の膜形成装置は、転写皿の上に展開された粘性材料の導電性ペーストや接着剤などの膜厚を高精度で目標値に制御することができ、各種部品の実装などに使用できる。   The film forming apparatus of the present invention can control the film thickness of the conductive paste or adhesive of the viscous material developed on the transfer plate to a target value with high accuracy, and can be used for mounting various parts. .

本発明の膜形成装置の(実施の形態1)の要部斜視図(Embodiment 1) perspective view of essential parts of the film forming apparatus of the present invention 同実施の形態の要部正面図Main part front view of the same embodiment 本発明の膜形成装置の(実施の形態2)の粘性材料を展開する前後の要部の正面図The front view of the principal part before and behind developing the viscous material of (Embodiment 2) of the film forming apparatus of this invention 本発明の膜形成装置の(実施の形態3)の要部斜視図(Embodiment 3) perspective view of essential parts of the film forming apparatus of the present invention 同実施の形態の要部平面図The principal part top view of the same embodiment 同実施の形態の要部正面図Main part front view of the same embodiment 本発明の膜形成装置の(実施の形態4)の粘性材料を展開する前後の要部の正面図The front view of the principal part before and behind developing the viscous material of (Embodiment 4) of the film forming apparatus of this invention 従来の膜形成装置の要部斜視図Perspective view of main part of conventional film forming apparatus 膜形成装置を使用した実装工程の説明図Explanatory drawing of mounting process using film forming equipment

符号の説明Explanation of symbols

2 転写皿
3 ブレード
4 導電性ペースト(粘性材料)
6 膜厚制御部
S1,S2,S3 非接触式変位センサ
10 ブラケット
2 Transfer tray 3 Blade 4 Conductive paste (viscous material)
6 Film thickness controller S1, S2, S3 Non-contact displacement sensor 10 Bracket

Claims (4)

転写皿と、
この転写皿の表面の粘性材料を掻くブレードと、
前記転写皿の表面に形成された前記粘性材料の膜厚を測定する非接触式変位センサと、
前記非接触式変位センサによって測定された膜厚が規定値に近づくように前記転写皿と前記ブレードの姿勢を相対的に制御する膜厚制御部と
を設け、
前記非接触式変位センサを、転写皿の表面に形成された前記粘性材料の膜面の異なる複数点を測定するように位置固定されて互いに間隔を隔てて取り付けられた複数の変位センサで構成し、
前記膜厚制御部を、前記複数の変位センサの測定値に基づいて前記膜厚が前記規定値になるように制御するよう構成した
膜形成装置。
A transfer plate,
A blade that scrapes the viscous material on the surface of the transfer dish;
A non-contact displacement sensor that measures the film thickness of the viscous material formed on the surface of the transfer dish;
A film thickness control unit that relatively controls the posture of the blade and the blade so that the film thickness measured by the non-contact displacement sensor approaches a specified value;
The non-contact type displacement sensor is composed of a plurality of displacement sensors fixed in position and spaced apart from each other so as to measure a plurality of different points on the surface of the viscous material formed on the surface of the transfer dish. ,
A film forming apparatus configured to control the film thickness control unit so that the film thickness becomes the specified value based on measurement values of the plurality of displacement sensors.
回転駆動される転写皿と、
前記転写皿の表面に対する隙間と平行度を調節可能に取り付けられ前記転写皿の表面の粘性材料を掻くブレードと、
前記転写皿の表面に形成された前記粘性材料の膜厚を測定する非接触式変位センサと、
前記非接触式変位センサによって測定された膜厚が規定値に近づくように前記転写皿と前記ブレードの姿勢を相対的に制御する膜厚制御部と
を設け、
前記非接触式変位センサを、転写皿の表面に形成された前記粘性材料の膜面の異なる複数点を測定するように位置固定されて互いに間隔を隔てて取り付けられた第1,第2の変位センサで構成し、
前記膜厚制御部を、前記複数の変位センサの測定値に基づいて前記膜厚が前記規定値になるように制御するよう構成した
膜形成装置。
A transfer plate that is driven to rotate;
A blade attached to the surface of the transfer plate to adjust the gap and parallelism, and scraping the viscous material on the surface of the transfer plate;
A non-contact displacement sensor that measures the film thickness of the viscous material formed on the surface of the transfer dish;
A film thickness control unit that relatively controls the posture of the blade and the blade so that the film thickness measured by the non-contact displacement sensor approaches a specified value;
The non-contact type displacement sensor is fixed in position so as to measure a plurality of different points on the film surface of the viscous material formed on the surface of the transfer plate, and is mounted at a distance from each other. Composed of sensors,
A film forming apparatus configured to control the film thickness control unit so that the film thickness becomes the specified value based on measurement values of the plurality of displacement sensors.
転写皿の表面を検出する第3の変位センサを設け、
前記膜厚制御部を、第1,第2,第3の変位センサの測定値に基づいて前記膜厚が前記規定値になるように制御するよう構成した
請求項2記載の膜形成装置。
Providing a third displacement sensor for detecting the surface of the transfer dish;
The film forming apparatus according to claim 2, wherein the film thickness control unit is configured to control the film thickness to be the specified value based on measurement values of the first, second, and third displacement sensors.
第1,第2,第3の変位センサをレーザー変位計または静電容量型変位センサとした
請求項3記載の膜形成装置。
The film forming apparatus according to claim 3, wherein the first, second, and third displacement sensors are laser displacement meters or capacitance displacement sensors.
JP2004147086A 2004-05-18 2004-05-18 Film forming apparatus Pending JP2005329274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004147086A JP2005329274A (en) 2004-05-18 2004-05-18 Film forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004147086A JP2005329274A (en) 2004-05-18 2004-05-18 Film forming apparatus

Publications (1)

Publication Number Publication Date
JP2005329274A true JP2005329274A (en) 2005-12-02

Family

ID=35484270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004147086A Pending JP2005329274A (en) 2004-05-18 2004-05-18 Film forming apparatus

Country Status (1)

Country Link
JP (1) JP2005329274A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007305726A (en) * 2006-05-10 2007-11-22 Matsushita Electric Ind Co Ltd Paste transfer apparatus
JP2007311551A (en) * 2006-05-18 2007-11-29 Hitachi High-Tech Instruments Co Ltd Flux transfer apparatus, and electronic component mounting apparatus
JP2008078456A (en) * 2006-09-22 2008-04-03 Sony Corp Coating device, mounting device, coating method, method of manufacturing electronic component, and the electronic component
JP2011020100A (en) * 2009-07-17 2011-02-03 Tokyo Electron Ltd Liquid treatment apparatus and liquid treatment method
CN104001645A (en) * 2014-06-04 2014-08-27 苏州桐力光电技术服务有限公司 Glue layer preforming fixture for protective cover plate
WO2018055669A1 (en) * 2016-09-20 2018-03-29 富士機械製造株式会社 Component mounting machine
CN109482431A (en) * 2019-01-24 2019-03-19 爱普科斯电阻电容(珠海)有限公司 A kind of automatic injecting glue frictioning mechanism
CN111197155A (en) * 2020-03-24 2020-05-26 常州市乐萌压力容器有限公司 Rotary magnetron sputtering film thickness multipoint measuring device capable of being followed and detection method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007305726A (en) * 2006-05-10 2007-11-22 Matsushita Electric Ind Co Ltd Paste transfer apparatus
JP4720609B2 (en) * 2006-05-10 2011-07-13 パナソニック株式会社 Paste transfer device
JP2007311551A (en) * 2006-05-18 2007-11-29 Hitachi High-Tech Instruments Co Ltd Flux transfer apparatus, and electronic component mounting apparatus
JP2008078456A (en) * 2006-09-22 2008-04-03 Sony Corp Coating device, mounting device, coating method, method of manufacturing electronic component, and the electronic component
JP2011020100A (en) * 2009-07-17 2011-02-03 Tokyo Electron Ltd Liquid treatment apparatus and liquid treatment method
CN104001645A (en) * 2014-06-04 2014-08-27 苏州桐力光电技术服务有限公司 Glue layer preforming fixture for protective cover plate
WO2018055669A1 (en) * 2016-09-20 2018-03-29 富士機械製造株式会社 Component mounting machine
JPWO2018055669A1 (en) * 2016-09-20 2019-07-04 株式会社Fuji Component mounting machine
CN109482431A (en) * 2019-01-24 2019-03-19 爱普科斯电阻电容(珠海)有限公司 A kind of automatic injecting glue frictioning mechanism
CN111197155A (en) * 2020-03-24 2020-05-26 常州市乐萌压力容器有限公司 Rotary magnetron sputtering film thickness multipoint measuring device capable of being followed and detection method
CN111197155B (en) * 2020-03-24 2024-05-10 常州市乐萌压力容器有限公司 Rotatable magnetron sputtering film thickness multipoint measuring device capable of being followed and detecting method

Similar Documents

Publication Publication Date Title
TWI433256B (en) Method of calibrating x-y positioning of positioning tool and device with such positioning tool
CN1993604A (en) Scale making method
JPH118497A (en) Electronic-component packaging method and device
JP2005329274A (en) Film forming apparatus
CN111307073B (en) Device for measuring coaxiality deviation of rotary transformer stator and rotor
KR20010074937A (en) Method and device for calibrating a displacement path and/or angular position of a holding device in a device for producing electrical assembly groups and calibration substrate
CN115666125B (en) Machine vision-based method for detecting and compensating positioning error of XY platform of chip mounter
CN101666957A (en) Automatic focal point regulation process in imaging apparatus
JP2017161252A (en) Surface shape measuring method, and surface shape measuring device
JP5418877B2 (en) 4 probe resistivity measuring device
KR20000076357A (en) Method and device for gauging a device for producing electrical components
JP5691398B2 (en) Mounting table, shape measuring device, and shape measuring method
CN114501863B (en) Blade coating alignment calibration device and method
JP2017116401A (en) Substrate position adjustment device and substrate position adjustment method
JP3893191B2 (en) Calibration value measurement method for measurement imaging device
JPH09196641A (en) Apparatus and method for adjustment of misalignment
JP2008026193A (en) Plating film thickness measuring instrument
JP2010034585A (en) Method for adjusting parallelism in chip mounting device
JP2002257506A (en) Non-contact coating thickness measuring device
JP2009262422A (en) Printing apparatus and control method of the same
JP5113657B2 (en) Surface mounting method and apparatus
JP2560462B2 (en) Film thickness measuring device
CN1945699A (en) Method and apparatus for adjusting static attitude of magnetic head
TWI580586B (en) Printing device and printing method
CN117331292A (en) Visual target finding and aligning method for self-anti-disturbance universal semiconductor lithography machine