JP2005327795A - Heat radiator - Google Patents

Heat radiator Download PDF

Info

Publication number
JP2005327795A
JP2005327795A JP2004142332A JP2004142332A JP2005327795A JP 2005327795 A JP2005327795 A JP 2005327795A JP 2004142332 A JP2004142332 A JP 2004142332A JP 2004142332 A JP2004142332 A JP 2004142332A JP 2005327795 A JP2005327795 A JP 2005327795A
Authority
JP
Japan
Prior art keywords
radiator
heat
refrigerant
flow
flow direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004142332A
Other languages
Japanese (ja)
Inventor
Takao Maeda
貴雄 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2004142332A priority Critical patent/JP2005327795A/en
Publication of JP2005327795A publication Critical patent/JP2005327795A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat radiator which can radiate heat efficiently, when making a cooling medium flow forcibly. <P>SOLUTION: The heat radiator 1 consists of a lot of columnar heat-radiating elements 11 which are installed in a projecting state on a plate-like body 10 of the heat radiator having a wide surface along the XY plane. Each of the heat radiating elements 11 has a cross-section such that two sides form an acute-angle portion, and the acute-angle portion is oriented in the +X direction, which is the upstream side of the cooling medium flowing direction. The growing direction of each heat-radiating element 11 is inclined toward the -X direction, which is the direction corresponding to the cooling medium flow. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電子回路等から放熱するための放熱器に関する。   The present invention relates to a radiator for radiating heat from an electronic circuit or the like.

半導体を用いた回路等で構成される装置では、回路から発生する熱による悪影響を抑制するために、放熱部品としてのヒートシンクが多用されている。   In an apparatus composed of a circuit using a semiconductor or the like, a heat sink as a heat radiating component is frequently used in order to suppress an adverse effect due to heat generated from the circuit.

このヒートシンクは、表面積(すなわち放熱面積)を増加させて効率良く放熱させるために、多くの場合、円柱や四角柱等の細い柱状の多数の部材(ピン)が、平面板に対して垂直に立設された構造を有する。   In order to efficiently dissipate heat by increasing the surface area (that is, the heat radiation area) of this heat sink, in many cases, a large number of thin columnar members (pins) such as cylinders and quadrangular columns stand perpendicular to the plane plate. It has an installed structure.

そして、冷媒(気体や流体)が流れる方向によらず放熱効果をほぼ等しく得るために、ヒートシンクに立設されるピンは、その断面が円や正方形等となるように構成されている。   And in order to obtain the heat dissipation effect substantially equal regardless of the direction in which the refrigerant (gas or fluid) flows, the pins erected on the heat sink are configured such that the cross section thereof becomes a circle, a square, or the like.

しかしながら、各種ファン等によって冷媒を強制的に流動させる場合には、ピンが冷媒の流れの抵抗となる。そして、ファンのモーター等の出力が大きければ大きい程、強制的な冷媒の流動の度合いが大きくなるため、ヒートシンクによる放熱度合い(例えば、単位時間あたりの放熱量)が大きくなる。つまり、ヒートシンクによる放熱度合いとファンのモーター等の出力とがトレードオフの関係を有している。   However, when the refrigerant is forced to flow by various fans or the like, the pin becomes a resistance to the flow of the refrigerant. The greater the output of the fan motor or the like, the greater the degree of forced refrigerant flow, and the greater the degree of heat release by the heat sink (for example, the amount of heat released per unit time). That is, the degree of heat dissipation by the heat sink and the output of the fan motor and the like have a trade-off relationship.

本発明は、上記課題に鑑みてなされたものであり、強制的に冷媒を流動させる場合に、効率良く放熱させることができる放熱器を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a radiator that can efficiently dissipate heat when the refrigerant is forced to flow.

上記の課題を解決するために、請求項1の発明は、冷媒を強制的に所定の流動方向に流動させる環境で使用される放熱器であって、放熱器本体と、前記放熱器本体に対して凸設された放熱体とを備え、前記放熱体が、2辺によって鋭角部を形成するとともに当該鋭角部が前記流動方向の上流側に相当する所定方向を指向する断面を有することを特徴とする。   In order to solve the above problems, the invention of claim 1 is a radiator used in an environment in which a refrigerant is forced to flow in a predetermined flow direction, with respect to the radiator body and the radiator body. And the heat sink has a cross section in which an acute angle portion is formed by two sides and the acute angle portion is oriented in a predetermined direction corresponding to the upstream side of the flow direction. To do.

また、請求項2の発明は、冷媒を強制的に所定の流動方向に流動させる環境で使用される放熱器であって、放熱器本体と、前記放熱器本体に対して凸設された棒状の放熱体とを備え、前記放熱体が、前記流動方向に相当する第1の方向に沿った長さが当該第1の方向に直交する長さよりも長い断面を有することを特徴とする。   The invention of claim 2 is a radiator used in an environment in which the refrigerant is forced to flow in a predetermined flow direction, the radiator main body, and a rod-shaped protrusion protruding from the radiator main body. A heat radiator, wherein the heat radiator has a cross section whose length along a first direction corresponding to the flow direction is longer than a length perpendicular to the first direction.

また、請求項3の発明は、請求項1又は請求項2に記載の放熱器であって、前記放熱体が、前記流動方向に相当する第1の方向に直交する第2の方向に沿った幅が前記流動方向の上流側に相当する側で最小となる断面を有することを特徴とする。   Moreover, invention of Claim 3 is a heat radiator of Claim 1 or Claim 2, Comprising: The said heat radiator followed the 2nd direction orthogonal to the 1st direction corresponded to the said flow direction. The cross-section has a minimum width on the side corresponding to the upstream side in the flow direction.

また、請求項4の発明は、請求項1から請求項3のいずれかに記載の放熱器であって、前記放熱体が、当該放熱体の延設方向が前記流動方向に相当する第1の方向に向けて傾斜状となるように、前記放熱器本体に対して凸設されることを特徴とする。   Moreover, invention of Claim 4 is a heat radiator in any one of Claims 1-3, Comprising: The said heat radiator is 1st in which the extending direction of the said heat sink corresponds to the said flow direction. It protrudes with respect to the said heat radiator main body so that it may become inclined toward a direction, It is characterized by the above-mentioned.

また、請求項5の発明は、冷媒を強制的に所定の流動方向に流動させる環境で使用される放熱器であって、放熱器本体と、前記放熱器本体に対して凸設された放熱体とを備え、前記放熱体が、当該放熱体の延設方向が前記流動方向に相当する第1の方向に向けて傾斜状となるように、前記放熱器本体に対して凸設されることを特徴とする。   Further, the invention of claim 5 is a radiator used in an environment in which the refrigerant is forced to flow in a predetermined flow direction, the radiator body, and a radiator projecting from the radiator body. The radiator is projected with respect to the radiator body such that the extending direction of the radiator is inclined toward a first direction corresponding to the flow direction. Features.

また、請求項6の発明は、請求項1から請求項5のいずれかに記載の放熱器であって、前記放熱体が、前記流動方向の下流側に相当する側で凹部を有することを特徴とする。   The invention according to claim 6 is the radiator according to any one of claims 1 to 5, wherein the radiator has a concave portion on a side corresponding to the downstream side in the flow direction. And

また、請求項7の発明は、請求項1から請求項6のいずれかに記載の放熱器であって、前記放熱体が、前記放熱器本体に対して多数凸設されることを特徴とする。   The invention according to claim 7 is the radiator according to any one of claims 1 to 6, wherein a large number of the radiators are provided so as to protrude from the radiator body. .

請求項1に記載の発明によれば、放熱体が、2辺によって鋭角部を形成し当該鋭角部が冷媒の流動方向の上流側に相当する方向を指向する断面を有することで、冷媒の流れに対する放熱体の抵抗を低減することができ、放熱器に対して送られてくる冷媒が円滑に流れるため、強制的に冷媒を流動させる場合に、効率良く放熱させることができる。   According to the first aspect of the present invention, the heat sink has an acute angle portion formed by two sides, and the acute angle portion has a cross section that points in a direction corresponding to the upstream side of the flow direction of the refrigerant. Since the resistance of the heat radiating body to the heat sink can be reduced and the refrigerant sent to the radiator flows smoothly, heat can be efficiently radiated when the refrigerant is forced to flow.

また、請求項2に記載の発明によれば、放熱体が、冷媒の流動方向に沿った長さが冷媒の流動方向に直交する方向に沿った長さよりも長い断面を有することで、冷媒の流れに対する放熱体の抵抗を低減することができ、放熱器に対して送られてくる冷媒が円滑に流れるため、強制的に冷媒を流動させる場合に、効率良く放熱させることができる。   According to the invention of claim 2, the radiator has a cross section in which the length along the flow direction of the refrigerant is longer than the length along the direction perpendicular to the flow direction of the refrigerant. Since the resistance of the radiator to the flow can be reduced and the refrigerant sent to the radiator flows smoothly, heat can be efficiently radiated when the refrigerant is forced to flow.

また、請求項3に記載の発明によれば、冷媒の流動方向に相当する方向に直交する幅が冷媒の流動方向の上流側に相当する側で最小となる断面を有することで、冷媒の流れに対する放熱体の抵抗を低減することができ、放熱器に対して送られてくる冷媒が円滑に流れるため、強制的に冷媒を流動させる場合に、効率良く放熱させることができる。   According to the third aspect of the present invention, the flow of the refrigerant is achieved by having a cross section in which the width orthogonal to the direction corresponding to the flow direction of the refrigerant is minimized on the side corresponding to the upstream side in the flow direction of the refrigerant. Since the resistance of the heat radiating body to the heat sink can be reduced and the refrigerant sent to the radiator flows smoothly, heat can be efficiently radiated when the refrigerant is forced to flow.

また、請求項4又は請求項5に記載の発明によれば、放熱体の延設方向が冷媒の流通方向に相当する方向に向けて傾斜状となるように放熱体が凸設されることで、冷媒の流れに対する放熱体の抵抗を低減することができ、放熱器に対して送られてくる冷媒が円滑に流れるため、強制的に冷媒を流動させる場合に、効率良く放熱させることができる。   In addition, according to the invention described in claim 4 or claim 5, the heat dissipating body is provided so that the extending direction of the heat dissipating member is inclined toward the direction corresponding to the refrigerant flow direction. Since the resistance of the radiator to the refrigerant flow can be reduced and the refrigerant sent to the radiator flows smoothly, heat can be efficiently radiated when the refrigerant is forced to flow.

また、請求項6に記載の発明によれば、放熱体が、冷媒の流動方向の下流側に相当する側で凹部を有することで、放熱器の軽量化に資することができる。   Further, according to the invention described in claim 6, the radiator has the concave portion on the side corresponding to the downstream side in the flow direction of the refrigerant, thereby contributing to the weight reduction of the radiator.

また、請求項7に記載の発明によれば、請求項1から請求項6のいずれかに記載の発明に係る多数の放熱体が放熱器本体に対して凸設されることで、多数の放熱体の間隙で冷媒が滞留し難くなり、放熱器に対して送られてくる冷媒が円滑に流れるため、強制的に冷媒を流動させる場合に、効率良く放熱させることができる。   In addition, according to the invention described in claim 7, a large number of heat dissipating members according to the invention described in any one of claims 1 to 6 are provided so as to protrude from the heat dissipating body. Since the refrigerant hardly stays in the gaps between the bodies and the refrigerant sent to the radiator flows smoothly, heat can be efficiently radiated when the refrigerant is forced to flow.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の実施形態に係る放熱器1及び周辺構成の概要を示す図であり、図2は放熱器1の外観構成を示す斜視図である。図1及び図1以降の図では、方位関係を明確にするためにX,Y,Zの直交する三軸を付しており、必要に応じて、冷媒(気体や液体等)の流れる方向(以下、「冷媒流動方向」とも称する)を実線矢印で示す。   FIG. 1 is a diagram showing an outline of a radiator 1 and peripheral configuration according to an embodiment of the present invention, and FIG. 2 is a perspective view showing an external configuration of the radiator 1. In FIG. 1 and the drawings after FIG. 1, three orthogonal axes of X, Y, and Z are attached in order to clarify the azimuth relationship, and the flow direction of refrigerant (gas, liquid, etc.) (if necessary) ( Hereinafter, the direction of refrigerant flow is also indicated by solid arrows.

図1及び図2に示すように、放熱器1は、例えば全体がアルミニウム系金属等の熱伝導性に優れた材料で形成され、下面(−Z方向の面)が略平坦に形成されて半導体回路等の回路2を設置するための面(以下、「回路設置面」とも称する)15として形成されている。そして、放熱器1は、XY平面に沿った広い面を有する板状の放熱器本体10と、その放熱器本体10に対して凸設される多数の柱状(棒状)の放熱体(「ピン」とも称する)11とを備えて構成される。   As shown in FIGS. 1 and 2, the radiator 1 is entirely made of a material having excellent thermal conductivity such as an aluminum-based metal, and the lower surface (surface in the −Z direction) is formed substantially flat. It is formed as a surface (hereinafter also referred to as “circuit installation surface”) 15 for installing the circuit 2 such as a circuit. The radiator 1 includes a plate-like radiator body 10 having a wide surface along the XY plane, and a large number of columnar (rod-like) radiators (“pins”) protruding from the radiator body 10. (Also referred to as 11).

また、図1に示すように、放熱器1は、冷却ファン3等によって、空気等の気体によって構成される冷媒がX方向から放熱器1に対して強制的に流される場合を想定して形成されている。つまり、放熱器1は、冷却ファン3等の駆動力によって冷媒が強制的に所定の冷媒流動方向に沿って流動する環境で使用される放熱器として構成される。   As shown in FIG. 1, the radiator 1 is formed on the assumption that a refrigerant composed of a gas such as air is forced to flow from the X direction to the radiator 1 by the cooling fan 3 or the like. Has been. That is, the radiator 1 is configured as a radiator that is used in an environment in which the refrigerant is forced to flow along a predetermined refrigerant flow direction by the driving force of the cooling fan 3 or the like.

各放熱体11は、XY平面に沿った断面が二等辺三角形である三角柱状の形状を有し、延設方向が冷媒流動方向に相当する−X方向に向けて傾斜している。つまり、柱状の多数の放熱体11が、各先端部が−X方向に倒れる方向に傾斜された状態でそれぞれ放熱器本体10に対して凸設されている。このように、冷媒流動方向に対して傾けられて放熱体11が凸設された構造により、放熱器1に向けて+X方向から流れてくる冷媒の流れに対する放熱体11の抵抗を低減することができる。   Each radiator 11 has a triangular prism shape whose cross section along the XY plane is an isosceles triangle, and the extending direction is inclined toward the −X direction corresponding to the refrigerant flow direction. That is, a large number of columnar heat dissipating bodies 11 are provided so as to protrude from the heat dissipating body 10 in a state in which each tip end portion is inclined in a direction in which each tip end part is tilted in the −X direction. As described above, the structure in which the radiator 11 is inclined with respect to the refrigerant flow direction and the radiator 11 protrudes can reduce the resistance of the radiator 11 to the refrigerant flow flowing from the + X direction toward the radiator 1. it can.

なお、例えば、多数の放熱体11は、それぞれ同一の形状を有し、さらに、各放熱体11におけるXY平面に沿った断面の形状が、Z軸方向の位置に拘わらず一定となっている。以下、多数の放熱体11が上述したような形状を有するものと仮定して説明する。   For example, the large number of radiators 11 have the same shape, and the shape of the cross section along the XY plane of each radiator 11 is constant regardless of the position in the Z-axis direction. Hereinafter, description will be made on the assumption that a large number of radiators 11 have the shapes described above.

図3は冷媒流動方向に沿ったXY平面に係る放熱体11の断面11CSを示す図である。断面11CSは、例えば、3辺La,Lb,Lcによって形成される二等辺三角形の形状を有し、2辺La,Lbの長さが等しく、2辺La,Lbによって鋭角が成されている。そして、2辺La,Lbによって成される鋭角の部分(以下、「鋭角部」とも称する)Edが、冷媒の上流側に相当するX方向を指向するように構成されている。換言すれば、放熱体11は、鋭角を成す2面が冷媒流動方向の上流側に曝されるように構成される。   FIG. 3 is a view showing a cross section 11CS of the heat dissipating body 11 according to the XY plane along the refrigerant flow direction. The cross section 11CS has, for example, an isosceles triangle shape formed by three sides La, Lb, and Lc, the lengths of the two sides La and Lb are equal, and an acute angle is formed by the two sides La and Lb. An acute angle portion (hereinafter, also referred to as “acute angle portion”) Ed formed by the two sides La and Lb is configured to point in the X direction corresponding to the upstream side of the refrigerant. In other words, the radiator 11 is configured such that two surfaces forming an acute angle are exposed to the upstream side in the refrigerant flow direction.

また、別の観点から言えば、冷媒流動方向に相当する−X方向に直交するY方向に沿った幅が、−X方向から+X方向へと徐々に小さくなり、冷媒流動方向の上流側に相当する側(最も+X方向に位置する端部)において最小となるように断面11CSが構成されている。言い換えれば、冷媒流動方向に相当する−X方向及び当該放熱体11の延設方向(ここでは、軸方向)に直交する方向に沿った幅が冷媒流動方向の上流側に相当する側において最小となるように放熱体11が構成されている。   From another point of view, the width along the Y direction orthogonal to the −X direction corresponding to the refrigerant flow direction gradually decreases from the −X direction to the + X direction, and corresponds to the upstream side of the refrigerant flow direction. The cross section 11CS is configured so as to be the smallest on the side to be operated (the end located in the + X direction most). In other words, the width along the −X direction corresponding to the refrigerant flow direction and the direction orthogonal to the extending direction (here, the axial direction) of the radiator 11 is the smallest on the side corresponding to the upstream side of the refrigerant flow direction. The heat dissipating body 11 is configured as described above.

さらに、放熱体11の延設方向に垂直な断面における形状について言えば、2辺によって成された鋭角の部分が冷媒流動方向の上流側に相当する側に来ており、当該放熱体11の延設方向に直交する幅が冷媒流動方向の上流側に相当する側において最小となっている。そして、ここでは、XY平面上のあらゆる方向から冷媒を流した場合における冷媒の流れに対する放熱体11の表面の抵抗のうち、+X方向から冷媒を流した場合における冷媒の流れに対する放熱体11の表面の抵抗が最も小さくなるように放熱体11の形状が設定されている。   Further, regarding the shape in the cross section perpendicular to the extending direction of the radiator 11, the acute angle portion formed by the two sides comes to the side corresponding to the upstream side in the refrigerant flow direction. The width orthogonal to the installation direction is the smallest on the side corresponding to the upstream side in the refrigerant flow direction. And here, among the resistance of the surface of the radiator 11 with respect to the flow of the refrigerant when the refrigerant flows from all directions on the XY plane, the surface of the radiator 11 with respect to the flow of the refrigerant when the refrigerant flows from the + X direction The shape of the heat radiator 11 is set so that the resistance of the heat sink 11 is minimized.

このような形状を放熱体11が有することにより、図3に示すように、+X方向から流れてきた冷媒(実線矢印AR1)が、放熱体11の表面で大きな抵抗を受けることなく円滑に流動することが可能である(破線矢印AR2)。   Since the radiator 11 has such a shape, as shown in FIG. 3, the refrigerant flowing from the + X direction (solid arrow AR <b> 1) smoothly flows without receiving a large resistance on the surface of the radiator 11. (Dashed arrow AR2).

以上のように、本実施形態に係る放熱器1では、放熱体11が、2辺La,Lbによって鋭角部を形成するとともに当該鋭角部が冷媒流動方向の上流側に相当する+X方向を指向する断面11CSを有する。また、放熱体11の断面11CSの+Y方向に沿った幅が、冷媒流動方向の上流側に向かって徐々に小さくなって、端部において最小となっている。その結果、冷媒の流れに対する放熱体11の抵抗を低減することができるため、放熱器1に対して送られてくる冷媒が多数の放熱体11の間隙で滞留し難くなり、円滑に放熱器1の放熱体11の間隙を素早くすり抜けて流れることができる。   As described above, in the radiator 1 according to the present embodiment, the radiator 11 forms an acute angle portion by the two sides La and Lb, and the acute angle portion is oriented in the + X direction corresponding to the upstream side of the refrigerant flow direction. It has a cross section 11CS. Further, the width along the + Y direction of the cross section 11CS of the heat dissipating body 11 gradually decreases toward the upstream side in the refrigerant flow direction, and is minimized at the end. As a result, the resistance of the radiator 11 with respect to the flow of the refrigerant can be reduced, so that the refrigerant sent to the radiator 1 is less likely to stay in the gaps between the numerous radiators 11, and smoothly the radiator 1 It is possible to quickly pass through the gap between the radiators 11.

また、延設方向が冷媒流動方向に傾斜された状態で多数の放熱体11が放熱器本体10に対して凸設されている。その結果、冷媒の流れに対する放熱体11の抵抗を低減することができるため、放熱器1に向けて+X方向から流れてくる冷媒が多数の放熱体11の間隙で滞留し難くなり、円滑に放熱体11の間隙を流動する。   In addition, a large number of radiators 11 are protruded from the radiator body 10 in a state where the extending direction is inclined in the refrigerant flow direction. As a result, the resistance of the radiator 11 to the refrigerant flow can be reduced, so that the refrigerant flowing from the + X direction toward the radiator 1 is less likely to stay in the gaps between the numerous radiators 11, and smoothly radiates heat. It flows through the gaps between the bodies 11.

このように、円滑な冷媒の流動が実現すれば、冷却ファン3等の冷媒を強制的に流動させるための装置(以下、「強制流動装置」とも称する)の能力(冷媒を流動させるための駆動力)が同じであっても、放熱体11の間隙を流動する冷媒の流速を高めることができるため、結果的に冷却能力を高めることができる。   Thus, if smooth refrigerant flow is realized, the capability of the device for forcibly flowing the refrigerant such as the cooling fan 3 (hereinafter also referred to as “forced flow device”) (drive for flowing the refrigerant) Even if the force) is the same, the flow rate of the refrigerant flowing through the gap between the radiators 11 can be increased, and as a result, the cooling capacity can be increased.

また、強制流動装置の能力(冷媒を流動させるための駆動力)が低くとも従来の放熱器を用いた場合と同様な冷却効果を得ることができるため、冷媒を強制的に流動させるための消費エネルギーの低減を図ることもできる。また、強制流動装置の能力自体を低下させても従来の放熱器を用いた場合と同様な冷却効果を得ることができるため、強制流動装置の小型軽量化等にも資することができる。   Moreover, even if the capability of the forced flow device (driving force for flowing the refrigerant) is low, the same cooling effect as when using a conventional radiator can be obtained, so consumption for forcing the refrigerant to flow Energy can also be reduced. Moreover, since the same cooling effect as the case where the conventional heat radiator is used can be obtained even if the capability itself of the forced flow device is reduced, it is possible to contribute to reducing the size and weight of the forced flow device.

したがって、放熱器1に対して設置される回路2から生じる熱を、冷却能力面及びエネルギー的な面から見て、効率良く放熱させることができる。   Therefore, the heat generated from the circuit 2 installed with respect to the radiator 1 can be efficiently radiated in view of the cooling capacity and the energy.

<変形例>
以上、この発明の実施形態について説明したが、この発明は上記説明した内容のものに限定されるものではない。
<Modification>
As mentioned above, although embodiment of this invention was described, this invention is not limited to the thing of the content demonstrated above.

◎例えば、上述した実施形態では、放熱体11のXY平面に沿った断面11CSが二等辺三角形となるように構成されたが、これに限られるものではなく、例えば、放熱体11のXY平面に沿った断面が、図4に示すように、冷媒流動方向に相当する+X方向が長軸の方向となる楕円形状となるようなものであっても良い。このように、冷媒流動方向に相当する+X方向に沿った長さLxが+Y方向に沿った長さLyよりも長くなるような断面を放熱体11が有することにより、冷媒の流れに対する放熱体11の抵抗を低減させることができる。すなわち、放熱器1に対して設置される回路2から生じる熱を効率良く放熱させることができる。   For example, in the above-described embodiment, the cross-section 11CS along the XY plane of the radiator 11 is configured to be an isosceles triangle. However, the present invention is not limited to this, for example, the XY plane of the radiator 11 As shown in FIG. 4, the cross section along the surface may have an elliptical shape in which the + X direction corresponding to the refrigerant flow direction is the major axis direction. As described above, the radiator 11 has a cross section in which the length Lx along the + X direction corresponding to the refrigerant flow direction is longer than the length Ly along the + Y direction, so that the radiator 11 with respect to the refrigerant flow. Resistance can be reduced. That is, the heat generated from the circuit 2 installed for the radiator 1 can be efficiently radiated.

なお、放熱体11の断面11CSが図4に示すような形状をとった場合においても、上述した実施形態と同様に、断面11CSは、冷媒流動方向に相当する−X方向に直交するY方向に沿った幅が冷媒流動方向の上流側に相当する側において最小となる。   Even when the cross section 11CS of the radiator 11 has a shape as shown in FIG. 4, the cross section 11CS is in the Y direction orthogonal to the −X direction corresponding to the refrigerant flow direction, as in the above-described embodiment. The width along the line is minimum on the side corresponding to the upstream side in the refrigerant flow direction.

◎また、上述した実施形態では、放熱体11は延設方向が傾斜された三角柱で形成されたがこれに限られるものではなく、例えば、放熱体11が、冷媒流動方向の下流側に対応する側に窪んだ形状、すなわち凹部を有するようにしても良い。例えば、図3に示すような断面11CSを有する放熱体11に凹部11bを付加した場合には、放熱体11のXY平面に沿った断面形状は、図5に示すようなものとなる。また、図4に示すような断面11CSを有する放熱体11に凹部11cを付加した場合には、放熱体11のXY平面に沿った断面形状は、図6に示すようなものとなる。つまり、放熱体11のXY平面に沿った断面11CSが冷媒流動方向の下流側に対応する側(−X方向の側)に凹んだ部分を有するようにしても良い。このような構成としても、上述した実施形態と同様に冷媒の流れに対する放熱体11の抵抗を低減させることが可能であり、さらに、放熱体11の容積の低減によって放熱器1の軽量化に資することができる。その結果、放熱効率の向上と、放熱器1が取り付けられる各種機器の軽量化とに寄与することができる。   In the above-described embodiment, the heat dissipating body 11 is formed by a triangular prism whose extending direction is inclined. However, the present invention is not limited to this. For example, the heat dissipating body 11 corresponds to the downstream side in the refrigerant flow direction. You may make it have the shape dented to the side, ie, a recessed part. For example, when the recess 11b is added to the heat dissipating body 11 having the cross section 11CS as shown in FIG. 3, the cross-sectional shape along the XY plane of the heat dissipating body 11 is as shown in FIG. Moreover, when the recessed part 11c is added to the heat radiator 11 which has the cross section 11CS as shown in FIG. 4, the cross-sectional shape along XY plane of the heat radiator 11 will become as shown in FIG. That is, the cross section 11CS along the XY plane of the radiator 11 may have a recessed portion on the side corresponding to the downstream side in the refrigerant flow direction (the −X direction side). Even with such a configuration, it is possible to reduce the resistance of the radiator 11 with respect to the flow of the refrigerant as in the above-described embodiment, and further contribute to the weight reduction of the radiator 1 by reducing the volume of the radiator 11. be able to. As a result, it is possible to contribute to improvement in heat dissipation efficiency and weight reduction of various devices to which the radiator 1 is attached.

◎また、上述した実施形態では、多数の放熱体11がそれぞれ同一の形状を有したが、これに限られず、例えば、延設方向の長さが相互に異なっても良い。   In the above-described embodiment, the large number of radiators 11 have the same shape. However, the present invention is not limited to this, and for example, the lengths in the extending direction may be different from each other.

◎また、上述した実施形態では、冷媒は、空気等の気体によって構成されたが、これに限られるものではなく、例えば、空気以外の各種気体や、各種液体によって構成されても良い。   In the above-described embodiment, the refrigerant is composed of a gas such as air, but is not limited thereto, and may be composed of, for example, various gases other than air or various liquids.

◎なお、鋭角の部分を成す2辺には、直線状の線分だけでなく、若干の曲率を持って形成されるもの(曲線状のもの)も含まれる。   Note that the two sides forming the acute angle portion include not only a straight line segment but also those formed with a slight curvature (curved ones).

◎また、上述した実施形態では、図3〜図6に示すように、放熱体11の断面11CSの形状が、±Y方向について対象、すなわち図3〜図6において上下対象となっていたが、これに限られず、±Y方向について非対象であっても、上述した実施形態と同様な効果を奏することができる。つまり、例えば、図3,図5,図6に示す断面11CSを、それぞれ図7〜図9に示すように、±Y方向について非対象(図7〜図9中において上下非対称)となるようにしても良い。具体的には、例えば図7に示すように、断面11CSの2辺La,Lbの長さが異なり、2辺La,Lbによって鋭角が成されていても上述した実施形態と同様な効果を奏することができる。すなわち、図3における断面11CSの形状は二等辺三角形に限られない。   In the embodiment described above, as shown in FIGS. 3 to 6, the shape of the cross section 11CS of the radiator 11 is the target in the ± Y direction, that is, the vertical object in FIGS. However, the present invention is not limited to this, and the same effects as those of the above-described embodiment can be obtained even if the object is not targeted in the ± Y directions. That is, for example, the cross-section 11CS shown in FIGS. 3, 5, and 6 is made non-objective in the ± Y direction (vertical asymmetry in FIGS. 7 to 9) as shown in FIGS. May be. Specifically, as shown in FIG. 7, for example, even if the lengths of the two sides La and Lb of the cross section 11CS are different and an acute angle is formed by the two sides La and Lb, the same effect as in the above-described embodiment can be obtained. be able to. That is, the shape of the cross section 11CS in FIG. 3 is not limited to an isosceles triangle.

本発明の実施形態に係る放熱器及び周辺構成の概要を示す図である。It is a figure which shows the outline | summary of the heat radiator and peripheral structure which concern on embodiment of this invention. 本発明の実施形態に係る放熱器の外観構成を示す斜視図である。It is a perspective view which shows the external appearance structure of the heat radiator which concerns on embodiment of this invention. 放熱体の断面模式図である。It is a cross-sectional schematic diagram of a heat radiator. 変形例に係る放熱体の断面模式図である。It is a cross-sectional schematic diagram of the heat radiator which concerns on a modification. 変形例に係る放熱体の断面模式図である。It is a cross-sectional schematic diagram of the heat radiator which concerns on a modification. 変形例に係る放熱体の断面模式図である。It is a cross-sectional schematic diagram of the heat radiator which concerns on a modification. 変形例に係る放熱体の断面模式図である。It is a cross-sectional schematic diagram of the heat radiator which concerns on a modification. 変形例に係る放熱体の断面模式図である。It is a cross-sectional schematic diagram of the heat radiator which concerns on a modification. 変形例に係る放熱体の断面模式図である。It is a cross-sectional schematic diagram of the heat radiator which concerns on a modification.

符号の説明Explanation of symbols

1 放熱器
2 回路
3 冷却ファン
10 放熱器本体
11 放熱体
11b,11c 凹部
11CS 断面
Ed 鋭角部
DESCRIPTION OF SYMBOLS 1 Radiator 2 Circuit 3 Cooling fan 10 Radiator body 11 Radiator 11b, 11c Recess 11CS Cross section Ed Sharp angle part

Claims (7)

冷媒を強制的に所定の流動方向に流動させる環境で使用される放熱器であって、
放熱器本体と、
前記放熱器本体に対して凸設された放熱体と、
を備え、
前記放熱体が、2辺によって鋭角部を形成するとともに当該鋭角部が前記流動方向の上流側に相当する所定方向を指向する断面を有することを特徴とする放熱器。
A radiator that is used in an environment in which a refrigerant is forced to flow in a predetermined flow direction,
A radiator body,
A radiator that protrudes from the radiator body;
With
The radiator has a cross section in which an acute angle portion is formed by two sides and the acute angle portion is oriented in a predetermined direction corresponding to an upstream side of the flow direction.
冷媒を強制的に所定の流動方向に流動させる環境で使用される放熱器であって、
放熱器本体と、
前記放熱器本体に対して凸設された棒状の放熱体と、
を備え、
前記放熱体が、前記流動方向に相当する第1の方向に沿った長さが当該第1の方向に直交する長さよりも長い断面を有することを特徴とする放熱器。
A radiator that is used in an environment in which a refrigerant is forced to flow in a predetermined flow direction,
A radiator body,
A rod-shaped radiator that protrudes from the radiator body;
With
The heat radiator has a cross section in which a length along a first direction corresponding to the flow direction is longer than a length orthogonal to the first direction.
請求項1又は請求項2に記載の放熱器であって、
前記放熱体が、前記流動方向に相当する第1の方向に直交する第2の方向に沿った幅が前記流動方向の上流側に相当する側で最小となる断面を有することを特徴とする放熱器。
The heat radiator according to claim 1 or claim 2,
The heat dissipating body has a cross section in which a width along a second direction orthogonal to the first direction corresponding to the flow direction is minimized on a side corresponding to the upstream side of the flow direction. vessel.
請求項1から請求項3のいずれかに記載の放熱器であって、
前記放熱体が、当該放熱体の延設方向が前記流動方向に相当する第1の方向に向けて傾斜状となるように、前記放熱器本体に対して凸設されることを特徴とする放熱器。
A radiator according to any one of claims 1 to 3,
The heat radiating member is provided so as to protrude from the radiator body so that the extending direction of the heat radiating member is inclined toward a first direction corresponding to the flow direction. vessel.
冷媒を強制的に所定の流動方向に流動させる環境で使用される放熱器であって、
放熱器本体と、
前記放熱器本体に対して凸設された放熱体と、
を備え、
前記放熱体が、当該放熱体の延設方向が前記流動方向に相当する第1の方向に向けて傾斜状となるように、前記放熱器本体に対して凸設されることを特徴とする放熱器。
A radiator that is used in an environment in which a refrigerant is forced to flow in a predetermined flow direction,
A radiator body,
A radiator that protrudes from the radiator body;
With
The heat radiating member is provided so as to protrude from the radiator body so that the extending direction of the heat radiating member is inclined toward a first direction corresponding to the flow direction. vessel.
請求項1から請求項5のいずれかに記載の放熱器であって、
前記放熱体が、前記流動方向の下流側に相当する側で凹部を有することを特徴とする放熱器。
A radiator according to any one of claims 1 to 5,
The radiator has a recess on a side corresponding to the downstream side in the flow direction.
請求項1から請求項6のいずれかに記載の放熱器であって、
前記放熱体が、前記放熱器本体に対して多数凸設されることを特徴とする放熱器。
A radiator according to any one of claims 1 to 6,
The radiator is characterized in that a large number of the radiators are provided with respect to the radiator body.
JP2004142332A 2004-05-12 2004-05-12 Heat radiator Pending JP2005327795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004142332A JP2005327795A (en) 2004-05-12 2004-05-12 Heat radiator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004142332A JP2005327795A (en) 2004-05-12 2004-05-12 Heat radiator

Publications (1)

Publication Number Publication Date
JP2005327795A true JP2005327795A (en) 2005-11-24

Family

ID=35473916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004142332A Pending JP2005327795A (en) 2004-05-12 2004-05-12 Heat radiator

Country Status (1)

Country Link
JP (1) JP2005327795A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011257128A (en) * 2010-06-11 2011-12-22 Hamilton Sundstrand Corp Surface cooling device and method of manufacturing the same
WO2012114955A1 (en) * 2011-02-21 2012-08-30 古河スカイ株式会社 Heat sink and method for using heat sink
JP2012227367A (en) * 2011-04-20 2012-11-15 Nippon Soken Inc Cooling fin structure
WO2013005279A1 (en) * 2011-07-01 2013-01-10 パイオニア株式会社 Method for forming contact hole and method for manufacturing semiconductor device
DE102013212469A1 (en) * 2013-06-27 2014-12-31 Siemens Aktiengesellschaft Cooling device with a heat sink
JP2015017776A (en) * 2013-07-12 2015-01-29 株式会社デンソー Fin for heat exchanger
JP2016157579A (en) * 2015-02-24 2016-09-01 ダイキョーニシカワ株式会社 Cooling structure of heating element
WO2016194158A1 (en) * 2015-06-03 2016-12-08 三菱電機株式会社 Liquid-cooled cooler, and manufacturing method for radiating fin in liquid-cooled cooler
JP2016225555A (en) * 2015-06-03 2016-12-28 三菱電機株式会社 Liquid-cooling cooler and manufacturing method of heat radiation fins in the same
JP2019096649A (en) * 2017-11-17 2019-06-20 富士電機株式会社 Cooler
JP2019149404A (en) * 2018-02-26 2019-09-05 トヨタ自動車株式会社 Heat radiation fin structure and cooling structure of electronic substrate using the same
WO2023195158A1 (en) * 2022-04-08 2023-10-12 日本電信電話株式会社 Heat conversion system and heat conversion method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55103966U (en) * 1979-01-16 1980-07-19
JPS59215755A (en) * 1983-05-24 1984-12-05 Nippon Telegr & Teleph Corp <Ntt> Radiator fin and manufacture thereof
JPH0745762A (en) * 1993-07-30 1995-02-14 Fujitsu Ltd Semiconductor device cooling device
JPH07218174A (en) * 1994-02-04 1995-08-18 Mitsubishi Alum Co Ltd Heat radiation fin
JPH10242357A (en) * 1997-02-26 1998-09-11 Pfu Ltd Heat sink device
JP2000332177A (en) * 1999-05-18 2000-11-30 Toshiba Home Technology Corp Cooler for heat generating element
JP2001111276A (en) * 1999-10-14 2001-04-20 Pfu Ltd Heat sink and hood for the same
JP2001135755A (en) * 1999-11-10 2001-05-18 Oki Electric Ind Co Ltd Heat-radiating fin structure
JP2003017878A (en) * 2001-07-04 2003-01-17 Fujikura Ltd Heat sink
JP2003188322A (en) * 2001-12-18 2003-07-04 Nec Corp Heat sink

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55103966U (en) * 1979-01-16 1980-07-19
JPS59215755A (en) * 1983-05-24 1984-12-05 Nippon Telegr & Teleph Corp <Ntt> Radiator fin and manufacture thereof
JPH0745762A (en) * 1993-07-30 1995-02-14 Fujitsu Ltd Semiconductor device cooling device
JPH07218174A (en) * 1994-02-04 1995-08-18 Mitsubishi Alum Co Ltd Heat radiation fin
JPH10242357A (en) * 1997-02-26 1998-09-11 Pfu Ltd Heat sink device
JP2000332177A (en) * 1999-05-18 2000-11-30 Toshiba Home Technology Corp Cooler for heat generating element
JP2001111276A (en) * 1999-10-14 2001-04-20 Pfu Ltd Heat sink and hood for the same
JP2001135755A (en) * 1999-11-10 2001-05-18 Oki Electric Ind Co Ltd Heat-radiating fin structure
JP2003017878A (en) * 2001-07-04 2003-01-17 Fujikura Ltd Heat sink
JP2003188322A (en) * 2001-12-18 2003-07-04 Nec Corp Heat sink

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011257128A (en) * 2010-06-11 2011-12-22 Hamilton Sundstrand Corp Surface cooling device and method of manufacturing the same
US8770269B2 (en) 2010-06-11 2014-07-08 Hs Marston Aerospace Ltd. Three phase fin surface cooler
WO2012114955A1 (en) * 2011-02-21 2012-08-30 古河スカイ株式会社 Heat sink and method for using heat sink
JP2012227367A (en) * 2011-04-20 2012-11-15 Nippon Soken Inc Cooling fin structure
WO2013005279A1 (en) * 2011-07-01 2013-01-10 パイオニア株式会社 Method for forming contact hole and method for manufacturing semiconductor device
DE102013212469A1 (en) * 2013-06-27 2014-12-31 Siemens Aktiengesellschaft Cooling device with a heat sink
JP2015017776A (en) * 2013-07-12 2015-01-29 株式会社デンソー Fin for heat exchanger
JP2016157579A (en) * 2015-02-24 2016-09-01 ダイキョーニシカワ株式会社 Cooling structure of heating element
JPWO2016194158A1 (en) * 2015-06-03 2017-12-14 三菱電機株式会社 Liquid-cooled cooler and method of manufacturing radiating fin in liquid-cooled cooler
EP3627549A1 (en) * 2015-06-03 2020-03-25 Mitsubishi Electric Corporation Liquid-type cooling apparatus and manufacturing method for heat radiation fin in liquid-type cooling apparatus
WO2016194158A1 (en) * 2015-06-03 2016-12-08 三菱電機株式会社 Liquid-cooled cooler, and manufacturing method for radiating fin in liquid-cooled cooler
CN107615479A (en) * 2015-06-03 2018-01-19 三菱电机株式会社 The manufacture method of the cold cooler of liquid and the radiating fin in the cold cooler of liquid
EP3306659A4 (en) * 2015-06-03 2019-06-19 Mitsubishi Electric Corporation Liquid-cooled cooler, and manufacturing method for radiating fin in liquid-cooled cooler
US11003227B2 (en) 2015-06-03 2021-05-11 Mitsubishi Electric Corporation Liquid-type cooling apparatus and manufacturing method for heat radiation fin in liquid-type cooling apparatus
EP3745455A1 (en) * 2015-06-03 2020-12-02 Mitsubishi Electric Corporation Manufacturing method for heat radiation fin in liquid-type cooling apparatus
JP2016225555A (en) * 2015-06-03 2016-12-28 三菱電機株式会社 Liquid-cooling cooler and manufacturing method of heat radiation fins in the same
CN107615479B (en) * 2015-06-03 2020-08-11 三菱电机株式会社 Method for manufacturing radiating fin in liquid cooling cooler
JP2019096649A (en) * 2017-11-17 2019-06-20 富士電機株式会社 Cooler
JP7024962B2 (en) 2017-11-17 2022-02-24 富士電機株式会社 Cooler
JP2019149404A (en) * 2018-02-26 2019-09-05 トヨタ自動車株式会社 Heat radiation fin structure and cooling structure of electronic substrate using the same
JP7081203B2 (en) 2018-02-26 2022-06-07 トヨタ自動車株式会社 Radiation fin structure and cooling structure of electronic board using this
WO2023195158A1 (en) * 2022-04-08 2023-10-12 日本電信電話株式会社 Heat conversion system and heat conversion method

Similar Documents

Publication Publication Date Title
EP3222955B1 (en) Cooling device and projection display device
US6538888B1 (en) Radial base heatsink
US8385071B2 (en) Heat radiator
US6533028B2 (en) Heat sink, method of manufacturing the same, and cooling apparatus using the same
US9255743B2 (en) Finned heat dissipation module
JP2005327795A (en) Heat radiator
JP2001196511A (en) Heat sink and method of its manufacturing and cooler using it
JP2001210762A (en) Heat sink and its manufacturing method and cooler comprising it
JP2006100293A (en) Cooling fin and cooling structure
TW201921617A (en) heat sink
JP6623810B2 (en) Cooler, flow path unit
JP2001118972A (en) Forced-air cooling comb-type heat sink
JP4682858B2 (en) Cooling device for electronic equipment
JP2001345585A (en) Heat-radiating fin
JP2013197020A (en) Heat sink for in-vehicle led lamp
CN115004362B (en) Cooling structure and radiator
JP2005079349A (en) Heatsink having louver
CN107534030B (en) Heat sink including heat pipe and related methods
JP2007005397A (en) Dissipator unit for electronic part
JP2010287730A (en) Heat receiving surface parallel-fin type flat heat dissipation structure
JP2006237366A (en) Heat sink
JP2008103437A (en) Heat sink with centrifugal fan
JP7442335B2 (en) heat sink
JP3135819U (en) Heat dissipation structure
JP3936940B2 (en) Heat sink and cooling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090428