JP3135819U - Heat dissipation structure - Google Patents

Heat dissipation structure Download PDF

Info

Publication number
JP3135819U
JP3135819U JP2007005554U JP2007005554U JP3135819U JP 3135819 U JP3135819 U JP 3135819U JP 2007005554 U JP2007005554 U JP 2007005554U JP 2007005554 U JP2007005554 U JP 2007005554U JP 3135819 U JP3135819 U JP 3135819U
Authority
JP
Japan
Prior art keywords
convex portion
heat dissipation
structure according
heat
scale
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007005554U
Other languages
Japanese (ja)
Inventor
張始偉
江貴鳳
劉通敏
Original Assignee
エイジア ヴァイタル コンポーネンツ カンパニー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エイジア ヴァイタル コンポーネンツ カンパニー リミテッド filed Critical エイジア ヴァイタル コンポーネンツ カンパニー リミテッド
Priority to JP2007005554U priority Critical patent/JP3135819U/en
Application granted granted Critical
Publication of JP3135819U publication Critical patent/JP3135819U/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

【課題】 熱伝導効率を高めることのできる放熱構造体を提供する。
【解決手段】 少なくとも1以上の表面を具える本体と、該表面に設けられる熱伝導強化部とによってなり、該熱伝導強化部が、該表面に間隔を開けて、かつ該表面よりやや高く突起して設けられる少なくとも1以上の凸部と、該表面の該凸部を設ける位置を除く箇所に、該表面から窪むように設けられる複数の鱗状部とを含んでなり、該鱗状部が表面に所定の角度を形成して傾斜するとともに、端縁部と尖端部とを具え、かつ該尖端部が隣り合う鱗状部の端縁部に接するように形成する。
【選択図】 図1
PROBLEM TO BE SOLVED: To provide a heat radiating structure capable of improving heat conduction efficiency.
SOLUTION: A main body having at least one surface and a heat conduction strengthening part provided on the surface, the heat conduction strengthening part being spaced apart from the surface and protruding slightly higher than the surface. At least one convex portion provided on the surface, and a plurality of scale-like portions provided so as to be recessed from the surface, except for a position where the convex portion is provided on the surface. Are formed so as to have an end edge portion and a pointed end portion, and the pointed end portion is in contact with the end edge portion of the adjacent scale-like portion.
[Selection] Figure 1

Description

この考案は、熱伝導効率を高める放熱構造体に関する。   The present invention relates to a heat dissipation structure that enhances heat conduction efficiency.

電子素子が精密になるにつれて、電子素子から発生する熱もますます多くなった。このため、自然に、もしくは強制的に対流で周囲の環境に放熱するだけでは足らなくなった。このため、電子装置自体の放熱効果を高めなければならなくなった。既存する方法は、そのほとんどが熱の発生源に放熱手段を設けて熱を導いて放出する方法である。即ち、放熱手段のフィンを利用して自然に、もしくは強制的に対流で熱を周囲の環境に放出する方式である。   As electronic elements become more precise, more heat is generated from the electronic elements. For this reason, it is not sufficient to dissipate heat naturally or forcefully to the surrounding environment. For this reason, the heat dissipation effect of the electronic device itself has to be enhanced. Most of the existing methods are methods in which a heat radiating means is provided at a heat generation source to guide and release the heat. In other words, this is a system in which heat is naturally or forcibly released to the surrounding environment by using the fins of the heat dissipation means.

しかしながら、既存のファンを有する放熱手段は、解決することのできない一部の問題を有する。例えば、フィンの表面と放熱手段を流れる気流の温度差は、僅か摂氏5度〜10度であって、温度の段階が不足するという問題が挙げられる。また、放熱手段自体の材料と構造によって、放熱が阻止されるという問題も存在する。これら問題によって、既存の放熱手段は放熱効率を更に高めることが難しくなっている。このため、発熱量の高い電子素子の放熱問題を解決するに足りないものということができる。   However, the heat dissipation means having an existing fan has some problems that cannot be solved. For example, the temperature difference between the airflow flowing through the fin surface and the heat dissipating means is only 5 to 10 degrees Celsius, and there is a problem that the temperature stage is insufficient. There is also a problem that heat dissipation is prevented by the material and structure of the heat dissipation means itself. These problems make it difficult for existing heat dissipation means to further increase the heat dissipation efficiency. For this reason, it can be said that it is insufficient to solve the heat dissipation problem of an electronic element having a high calorific value.

上述する問題を改善する技術として、台湾実用新案公告第90220898号公報に開示される技術が挙げられる。該公報に開示される技術は渦流現象を発生させる熱交換フィンを提供するものであって、フィンの表面に複数の凹部と凸部とが分布して形成され、係る構成のフィンを2枚、もしくは2枚以上組み合わせる。この場合、隣り合う2枚のフィンの対向する面においてそれぞれの凸部が当接するように設ける。このため、複数のフィンが連なり熱交換機能を提供する。熱交換が行われる場合、熱を運ぶ気流は両フィンの凸部と凹部とによってなる阻害部を含まない空間に形成される通路を流れる。また、該気流が凸部、凹部が当接して形成される阻害部に衝突すると、流れる角度が変わり、本来の流動する方向と速度が変化する。このため熱を運ぶ気流が乱れる現象が発生し、気流とそれぞれのフィンとの間の熱対流効果を高めることができる。   As a technique for improving the above-mentioned problems, there is a technique disclosed in Taiwan Utility Model Public Notice No. 90220898. The technology disclosed in the publication provides a heat exchange fin that generates a vortex phenomenon, and a plurality of concave portions and convex portions are formed and distributed on the surface of the fin. Or combine two or more. In this case, it is provided so that the respective convex portions abut on the opposing surfaces of two adjacent fins. For this reason, a plurality of fins are connected to provide a heat exchange function. When heat exchange is performed, the airflow that carries heat flows through a passage formed in a space that does not include an obstruction formed by the convex and concave portions of both fins. Further, when the air current collides with an obstructing portion formed by the contact of the convex portion and the concave portion, the flowing angle changes, and the original flowing direction and speed change. For this reason, the phenomenon in which the airflow carrying heat is disturbed occurs, and the thermal convection effect between the airflow and each fin can be enhanced.

但し、上述する構造は実際に使用する上で、問題が存在する。即ち、フィンの間の気流の通路に複数の阻害部が存在するため、本来提供できる気流の流動空間が縮減し、対流が流入する場合かなりの大きさの逆圧力が発生する。よって、流体の流入量が減損する。   However, the above-described structure has a problem in actual use. That is, since there are a plurality of blocking portions in the airflow path between the fins, the flow space of the airflow that can be originally provided is reduced, and a considerable amount of back pressure is generated when convection flows. Therefore, the amount of fluid inflow is reduced.

また、気流が複数の阻害部の周囲を流動するため、フィン表面に摩擦による抗力が発生するのみならず、阻害部表面との流動摩擦による抗力によって二次元の流動摩擦抗力が存在し、流動体の減速を発生させる。   In addition, since the airflow flows around the plurality of inhibition portions, not only drag due to friction is generated on the fin surface, but also two-dimensional fluid friction drag exists due to the drag due to fluid friction with the inhibition portion surface. Generate a slowdown.

さらに、境界層の厚さも流動する距離の増加にしたがって、熱伝導効果を低減させる。このため熱を効率よく放出することができなくなり、使用者の需要に合わなくなる。   In addition, the thickness of the boundary layer also reduces the heat transfer effect as the flow distance increases. For this reason, it becomes impossible to discharge | release heat efficiently, and it becomes impossible to meet a user's demand.

この考案は、熱伝導効率を高めることのできる放熱構造体を提供することを課題とする。   This invention makes it a subject to provide the thermal radiation structure which can improve heat conduction efficiency.

そこで、本考案者は従来の技術に見られる欠点に鑑み鋭意研究を重ねた結果、
少なくとも1以上の表面を具える本体と、該表面に設けられる熱伝導強化部とによってなり、該熱伝導強化部が、該表面に間隔を開けて、かつ該表面よりやや高く突起して設けられる少なくとも1以上の凸部と、該表面の該凸部を設ける位置を除く箇所に、該表面から窪むように設けられる複数の鱗状部とを含みんでなり、該鱗状部が表面に迎角を形成するとともに、端縁部と尖端部とを具え、かつ該尖端部が隣り合う鱗状部の端縁部に接するように形成される放熱構造体の構造によって課題を解決できる点に着眼し、係る知見に基いて本考案を完成させた。
Therefore, as a result of intensive research in light of the drawbacks found in the prior art,
A main body having at least one surface and a heat conduction strengthening portion provided on the surface, and the heat conduction strengthening portion is provided with a gap on the surface and protruding slightly higher than the surface. It includes at least one or more convex portions and a plurality of scale-like portions provided so as to be recessed from the surface at locations other than the position where the convex portions are provided on the surface, and the scale-like portions form an angle of attack on the surface. At the same time, focusing on the knowledge that the problem can be solved by the structure of the heat dissipating structure that is formed so as to be in contact with the edge part of the adjacent scale-like part, including the edge part and the pointed part. Based on this, the present invention was completed.

以下この考案について具体的に説明する。
請求項1に記載する放熱構造体は、少なくとも1以上の表面を具える本体と、該表面に設けられる熱伝導強化部とによってなる放熱構造体であって、
該熱伝導強化部が、該表面に間隔を開けて、かつ該表面よりやや高く突起して設けられる少なくとも1以上の凸部と、該表面の該凸部を設ける位置を除く箇所に、該表面から窪むように設けられる複数の鱗状部とを含み、
該鱗状部が表面に迎角を形成して傾斜するとともに、端縁部と尖端部とを具え、かつ該尖端部が隣り合う鱗状部の端縁部に接するように形成され、
該凸部と該鱗状部とによって、該表面に近づく流体に渦流と二次流とを発生させ、かつ厚さを増す境界層を破壊して熱伝導効率を高めるように構成する。
This device will be specifically described below.
The heat dissipating structure according to claim 1 is a heat dissipating structure comprising a main body having at least one surface and a heat conduction strengthening portion provided on the surface,
The surface of the heat conduction strengthening portion is excluded from at least one convex portion provided at a distance from the surface and protruding slightly higher than the surface, and a position on the surface where the convex portion is provided. A plurality of scaly portions provided so as to be recessed from,
The scaly part is inclined to form an angle of attack on the surface, is provided with an end edge part and a pointed end part, and the pointed end part is formed so as to be in contact with the end edge part of the adjacent scale-like part,
The convex portion and the scale-like portion are configured to generate a vortex and a secondary flow in the fluid approaching the surface, and to destroy the boundary layer that increases the thickness to increase the heat conduction efficiency.

請求項2に記載する放熱構造体は、請求項1における鱗状部が前後に交錯するように設けられ、かつそれぞれの尖端部が、その前に位置する鱗状部の端縁部に向かい、対応するように設けられる。   The heat dissipating structure according to claim 2 is provided so that the scale portions in claim 1 cross front and back, and each pointed portion corresponds to an end edge portion of the scale portion located in front of the scale portion. It is provided as follows.

請求項3に記載する放熱構造体は、請求項1における鱗状態が分散して配設される。   The heat dissipating structure according to claim 3 is arranged with the scale state in claim 1 dispersed.

請求項4に記載する放熱構造体は、請求項1における鱗状部が単一方向に傾斜して該本体表面に配設される。   According to a fourth aspect of the present invention, the scale-like portion according to the first aspect is disposed on the surface of the main body so as to be inclined in a single direction.

請求項5に記載する放熱構造体は、請求項1における鱗状部が相対的に傾斜して配設される。   The heat dissipating structure according to claim 5 is arranged such that the scale-like portions in claim 1 are relatively inclined.

請求項6に記載する放熱構造体は、請求項1における凸部が、少なくとも1以上の第1凸部を具え、且つ該第1凸部が該表面の一方の側辺から他方の側辺に延伸する。   In the heat dissipation structure according to claim 6, the convex portion in claim 1 includes at least one first convex portion, and the first convex portion extends from one side of the surface to the other side. Stretch.

請求項7に記載する放熱構造体は、請求項1における凸部が、少なくとも1以上の第1凸部と第2凸部とを具え、かつ該第1凸部と第2凸部とが該表面の両側から該表面の長手方向の中央線に向かって延伸して交わり、左右対称に形成される。   In the heat dissipation structure according to claim 7, the convex portion in claim 1 includes at least one first convex portion and second convex portion, and the first convex portion and the second convex portion are They extend from both sides of the surface toward the center line in the longitudinal direction of the surface and intersect to form a symmetrical shape.

請求項8に記載する放熱構造体は、請求項1における第1凸部と第2凸部とが交わる箇所に夾角が形成される。   In the heat dissipation structure according to an eighth aspect, a depression angle is formed at a location where the first convex portion and the second convex portion in the first aspect intersect.

請求項9に記載する放熱構造体は、請求項1における鱗状部が円形か、菱形か、三角形から選択されるか、もしくはこれらを交錯させて組み合わせる。   In the heat dissipation structure according to claim 9, the scale-like portion in claim 1 is selected from a circular shape, a rhombus shape, and a triangular shape, or these are combined to be combined.

請求項10に記載する放熱構造体は、請求項1における鱗状部の表面が平面である。   In the heat dissipation structure described in claim 10, the surface of the scale-like portion in claim 1 is a flat surface.

請求項11に記載する放熱構造体は、請求項1における凸部が方形である。   In the heat dissipating structure according to an eleventh aspect, the convex portion according to the first aspect is square.

請求項12に記載する放熱構造体は、 請求項1における凸部が半円形である。   The heat dissipation structure according to a twelfth aspect has a semicircular convex portion according to the first aspect.

この考案による放熱構造体は、境界層を破壊して熱伝導に対する阻害を低下させることができ、また流体が鱗状部の周辺に沿って流れる場合に回転渦流を発生させ、メインフィールドと混合して二次流を形成して熱伝導効率を高め、これらによって、好ましい熱伝導効果が得られる。   The heat-dissipating structure according to this device can destroy the boundary layer and reduce the inhibition of heat conduction, and when the fluid flows along the periphery of the scale-like part, a rotating vortex is generated and mixed with the main field. A secondary flow is formed to increase the heat transfer efficiency, and thereby a preferable heat transfer effect is obtained.

図1、2に開示するように、この考案による放熱構造体は、少なくとも1以上の表面と、該表面に設けられた熱伝導強化部とを具える本体10を含む。   As disclosed in FIGS. 1 and 2, the heat dissipation structure according to the present invention includes a main body 10 including at least one surface and a heat conduction enhancing portion provided on the surface.

該熱伝導強化部は、少なくとも1以上の凸部11と、複数の鱗状部12とを含む。本体10は必要に応じて適宜な厚さとすることができ、その形状は図示する形状に限らず、如何なる幾何形状であってもよい。例えば、方形、長方形、円形、菱形などから選択することができる。実施例においては長方形の場合を例とする。   The heat conduction strengthening portion includes at least one convex portion 11 and a plurality of scale portions 12. The main body 10 can have an appropriate thickness as required, and the shape is not limited to the illustrated shape, and may be any geometric shape. For example, it can be selected from square, rectangle, circle, diamond, and the like. In the embodiment, a rectangular case is taken as an example.

凸部11は、該表面において、間隔を開けて、かつ該表面よりやや高く突出して設ける。好ましくは、図示するように第1凸部111と第2凸部112から成る。第1凸部111、第2凸部112は、それぞれ該表面の両側から該表面の長手方向の中央線に向かって延伸して交わり、左右対称に形成されるとともに、両者が交わる箇所に夾角θを形成する。該夾角θは、好ましくは90度より大きくならないようにし、凸部11をV字状に形成して本体10表面に設ける。   Protrusions 11 are provided on the surface so as to be spaced apart and slightly higher than the surface. Preferably, it consists of the 1st convex part 111 and the 2nd convex part 112 so that it may illustrate. The first convex portion 111 and the second convex portion 112 intersect with each other by extending from both sides of the surface toward the center line in the longitudinal direction of the surface, and are formed symmetrically, and the depression angle θ Form. The depression angle θ is preferably not larger than 90 degrees, and the convex portion 11 is formed in a V shape and provided on the surface of the main body 10.

鱗状部12は、該表面の凸部11を設ける位置を除く箇所に設け、かつ該表面から窪むように設ける。それぞれの鱗状部12は、図2に示したように、表面に迎角αを形成する。また、端縁部121と尖端部122とを具え、尖端部122は隣り合う鱗状部12の端縁部121に接するように形成される。鱗状部12の表面123は平面である。   The scaly portion 12 is provided at a location other than the position where the convex portion 11 is provided on the surface, and is provided so as to be recessed from the surface. Each scale portion 12 forms an angle of attack α on the surface, as shown in FIG. Moreover, it has the edge part 121 and the point part 122, and the point part 122 is formed so that the edge part 121 of the scale part 12 which adjoins may be contact | connected. The surface 123 of the scale portion 12 is a flat surface.

実施例において鱗状部12を本体10の表面に配置する場合は、前後に交錯するように設け、かつそれぞれの尖端部122が、その前に位置する鱗状部12の端縁部121に向かい、対応するように設ける。凸部11の設置(例えば前述するV字状)と相対的に傾斜させて本体10の表面に配設する。   In the embodiment, when the scaly portion 12 is arranged on the surface of the main body 10, the scaly portions 12 are provided so as to cross each other, and each of the pointed portions 122 faces the end edge portion 121 of the scaly portion 12 located in front of the scaly portion 12. To be provided. It is disposed on the surface of the main body 10 so as to be inclined relative to the installation of the convex portion 11 (for example, the V shape described above).

また、鱗状部12は、好ましくは円形か、菱形か、三角形から選択するか、もしくはこれらを交錯させて組み合わせる。鱗状部12の迎角αは鱗状部12と流体通路との比較値、鱗状部12のピッチと高さとの比較値、及び鱗状部12の直径とピッチとの比較値とに基いて設定する。   In addition, the scaly portion 12 is preferably selected from a circle, a rhombus, and a triangle, or these are combined to be combined. The angle of attack α of the scaly portion 12 is set based on a comparison value between the scaly portion 12 and the fluid passage, a comparison value between the pitch and the height of the scaly portion 12, and a comparison value between the diameter and the pitch of the scaly portion 12.

ここで併せて説明すると、凸部11は図面によれば方形を呈するが、これに限らず、例えば半円形であってもよい。その形態は少なくとも1以上の第1凸部111だけであって、本体の一方の端縁部から他方の端縁部に延伸するように形成してもよい。即ち、凸部が単一方向に傾斜し、本体表面に並列して設けられる。この場合、鱗状部12は凸部11に合わせて単一方向に傾斜して本体表面に配設される。さらに、鱗状部12は上述する形態に限らず、本体表面に分散するように配設してもよい。   If it demonstrates collectively, the convex part 11 will exhibit a square according to drawing, but it is not restricted to this, For example, a semicircle may be sufficient. The form is only at least one or more 1st convex part 111, Comprising: You may form so that it may extend | stretch from one edge part of a main body to the other edge part. That is, the convex portion is inclined in a single direction and provided in parallel with the surface of the main body. In this case, the scale-like portion 12 is disposed on the surface of the main body so as to be inclined in a single direction in accordance with the convex portion 11. Furthermore, the scale-like part 12 is not limited to the above-described form, and may be arranged so as to be dispersed on the surface of the main body.

図3、4に開示するように、流体が流れ(図示するように該夾角方向に相対して流れる流体)、本体10の表面を通過する場合、流体はそれぞれの鱗状部12の尖端突起の部位を通過する。本体10の表面に近づく流体はそれぞれの鱗状部12の端縁部121の傾斜の制限を受けて流れる。よって、流体は突起の端縁部121を通過した後、次の尖端部122によって分割され周期性の流動が発生する。また、尖端部122によって流体の横方向の流動が発生し、鱗状部12の凹状部において流体部に渦流が循環して発生する(即ち、流体が凹状部を通過するたびにフィールドが乱れて渦対流が発生する)。渦流量はレイノルズ数にしたがって増加し、高くなる。   As disclosed in FIGS. 3 and 4, when the fluid flows (fluid flowing relative to the depression direction as shown) and passes through the surface of the main body 10, the fluid is a point projection portion of each scale-like portion 12. Pass through. The fluid approaching the surface of the main body 10 flows under the restriction of the inclination of the end edge portion 121 of each scale-like portion 12. Therefore, after the fluid passes through the edge portion 121 of the protrusion, it is divided by the next tip portion 122 to generate a periodic flow. Further, the fluid flow in the lateral direction is generated by the pointed portion 122, and a vortex is generated in the concave portion of the scale-like portion 12 by circulation (that is, the field is disturbed and vortexed every time the fluid passes through the concave portion). Convection occurs). Vortex flow increases with Reynolds number and increases.

また、本体10より高い表面の流体が混合して二次流(Secondary flows)を形成して流体の乱れを強め、放熱の効率を高める。   In addition, a fluid having a surface higher than that of the main body 10 is mixed to form a secondary flow, thereby strengthening the fluid turbulence and increasing the efficiency of heat dissipation.

傾斜した鱗状部12の表面は熱伝導面積を増加するのみならず、境界層(boundary layer)を周期的に破壊し、境界層を改めて発展させる。係る流動形態は渦流量の増加にしたがって流体間の混合を高め、改善して熱伝導の効率を高めることができる。   The surface of the inclined scale portion 12 not only increases the heat conduction area, but also periodically breaks the boundary layer and develops the boundary layer again. Such a flow configuration can increase and improve the mixing between the fluids as the vortex flow increases, thereby increasing the efficiency of heat conduction.

また、流体が凸部11を通過すると、流体は表面中央線に向かって集中させられる。さらに反転してメインフィールドの方向に向かって流動し、メインフィールドの流体と混合して二次流(Secondary flows)を発生させ、均一な流れを破壊する。このため境界層が破壊されて高乱流(Turbulence intensity)の強度を高める。これに加え、余剰の熱伝導面積が与えられ、熱伝導機能が改善される。   Further, when the fluid passes through the convex portion 11, the fluid is concentrated toward the surface center line. Furthermore, it reverses and flows in the direction of the main field, mixes with the fluid of the main field, generates secondary flows, and breaks the uniform flow. This destroys the boundary layer and increases the intensity of turbulence intensity. In addition to this, an excess heat conduction area is provided and the heat conduction function is improved.

以上は、この考案の好ましい実施の形態であって、この考案の実施の範囲を限定するものではない。よって、当業者のなし得る修正、または変更であって、この考案の精神の下においてなされ、この考案に対して均等の効果を有するものは、いずれもこの考案の実用新案登録請求の範囲に含まれるものとする。   The above is a preferred embodiment of the present invention, and does not limit the scope of implementation of the present invention. Accordingly, any modifications or changes that can be made by those skilled in the art, which are made within the spirit of the present invention and have an equivalent effect on the present invention, are included in the scope of the utility model registration claim of the present invention. Shall be.

この考案による放熱構造体の斜視図である。It is a perspective view of the thermal radiation structure by this device. 図1に開示する放熱構造体の側面説明図である。It is side surface explanatory drawing of the thermal radiation structure disclosed in FIG. 図1に開示する放熱構造体の表面の局部拡大図である。It is a local enlarged view of the surface of the thermal radiation structure disclosed in FIG. この考案による放熱構造体において渦流の発生する状態を示した説明図である。It is explanatory drawing which showed the state which a vortex | eddy_current generate | occur | produces in the thermal radiation structure by this invention.

符号の説明Explanation of symbols

10 本体
11 凸部
111 第1凸部
112 第2凸部
12 鱗状部
121 端縁部
122 尖端部
123 表面
DESCRIPTION OF SYMBOLS 10 Main body 11 Convex part 111 1st convex part 112 2nd convex part 12 Scale-like part 121 End edge part 122 Pointed end part 123 Surface

Claims (12)

少なくとも1以上の表面を具える本体と、該表面に設けられる熱伝導強化部とによってなる放熱構造体であって、
該熱伝導強化部が、該表面に間隔を開けて、かつ該表面よりやや高く突起して設けられる少なくとも1以上の凸部と、該表面の該凸部を設ける位置を除く箇所に、該表面から窪むように設けられる複数の鱗状部とを含み、
該鱗状部が表面に迎角を形成するとともに、端縁部と尖端部とを具え、かつ該尖端部が隣り合う鱗状部の端縁部に接するように形成され、
該凸部と該鱗状部とによって、該表面に近づく流体に渦流と二次流とを発生させ、かつ厚さを増す境界層を破壊して熱伝導効率を高めるように構成することを特徴とする放熱構造体。
A heat dissipating structure comprising a main body having at least one surface and a heat conduction enhancing portion provided on the surface,
The surface of the heat conduction strengthening portion is excluded from at least one convex portion provided at a distance from the surface and protruding slightly higher than the surface, and a position on the surface where the convex portion is provided. A plurality of scaly portions provided so as to be recessed from,
The scaly part forms an angle of attack on the surface, and has an end edge part and a pointed end part, and the pointed end part is formed so as to be in contact with the edge part of the adjacent scaly part,
The projecting portion and the scaly portion are configured to generate a vortex and a secondary flow in the fluid approaching the surface, and to destroy the boundary layer that increases the thickness, thereby increasing the heat conduction efficiency. Heat dissipation structure.
前記鱗状部が前後に交錯するように設けられ、かつそれぞれの尖端部が、その前に位置する鱗状部の端縁部に向かい、対応するように設けられることを特徴とする請求項1に記載の放熱構造体。   The said scaly part is provided so that it may cross | intersect back and forth, and each tip part is provided so that it may correspond to the edge part of the scaly part located in front of it, and it may respond | correspond. Heat dissipation structure. 前記鱗状態が分散して配設されることを特徴とする請求項1に記載の放熱構造体。   The heat dissipating structure according to claim 1, wherein the scales are dispersed. 前記鱗状部が単一方向に傾斜して該本体表面に配設されることを特徴とする請求項1に記載の放熱構造体。   The heat dissipation structure according to claim 1, wherein the scale-like portion is disposed on the surface of the main body so as to be inclined in a single direction. 前記鱗状部が相対的に傾斜して配設されることを特徴とする請求項1に記載の放熱構造体。   The heat dissipating structure according to claim 1, wherein the scale-like portions are relatively inclined. 前記凸部が、少なくとも1以上の第1凸部を具え、且つ該第1凸部が該表面の一方の側辺から他方の側辺に延伸することを特徴とする請求項1に記載の放熱構造体。   The heat dissipation according to claim 1, wherein the convex portion includes at least one or more first convex portions, and the first convex portion extends from one side of the surface to the other side. Structure. 前記凸部が、少なくとも1以上の第1凸部と第2凸部とを具え、かつ該第1凸部と第2凸部とが該表面の両側から該表面の長手方向の中央線に向かって延伸して交わり、左右対称に形成されることを特徴とする請求項1に記載の放熱構造体。   The convex portion includes at least one first convex portion and a second convex portion, and the first convex portion and the second convex portion are directed from both sides of the surface toward the center line in the longitudinal direction of the surface. The heat dissipating structure according to claim 1, wherein the heat dissipating structure is formed symmetrically by extending and intersecting. 前記第1凸部と第2凸部とが交わる箇所に夾角が形成されることを特徴とする請求項1に記載の放熱構造体。   2. The heat dissipation structure according to claim 1, wherein a depression angle is formed at a location where the first convex portion and the second convex portion intersect. 前記鱗状部が円形か、菱形か、三角形から選択されるか、もしくはこれらを交錯させて組み合わせることを特徴とする請求項1に記載の放熱構造体。   The heat dissipating structure according to claim 1, wherein the scale-like portion is selected from a circle, a rhombus, and a triangle, or a combination of these is crossed. 前記鱗状部の表面が平面であることを特徴とする請求項1に記載の放熱構造体。   The heat dissipation structure according to claim 1, wherein a surface of the scale portion is a flat surface. 前記凸部が方形であることを特徴とする請求項1に記載の放熱構造体。   The heat dissipation structure according to claim 1, wherein the convex portion is square. 前記凸部が半円形であることを特徴とする請求項1に記載の放熱構造体。   The heat dissipation structure according to claim 1, wherein the convex portion is semicircular.
JP2007005554U 2007-07-19 2007-07-19 Heat dissipation structure Expired - Fee Related JP3135819U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007005554U JP3135819U (en) 2007-07-19 2007-07-19 Heat dissipation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007005554U JP3135819U (en) 2007-07-19 2007-07-19 Heat dissipation structure

Publications (1)

Publication Number Publication Date
JP3135819U true JP3135819U (en) 2007-09-27

Family

ID=43286297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007005554U Expired - Fee Related JP3135819U (en) 2007-07-19 2007-07-19 Heat dissipation structure

Country Status (1)

Country Link
JP (1) JP3135819U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013067387A (en) * 2013-01-21 2013-04-18 Sumitomo Rubber Ind Ltd Pneumatic tire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013067387A (en) * 2013-01-21 2013-04-18 Sumitomo Rubber Ind Ltd Pneumatic tire

Similar Documents

Publication Publication Date Title
US20090190302A1 (en) Method, apparatus and computer system for vortex generator enhanced cooling
JP3138062U (en) Heat dissipation structure
TWI704656B (en) heat sink
IE20060839A1 (en) A cooling device
US20090025911A1 (en) Heat dissipation device with coarse surface capable of intensifying heat transfer
JP3604310B2 (en) Forced air-cooled comb heat sink
JP3135819U (en) Heat dissipation structure
TWI417499B (en) Heat dissipating device
US8353331B2 (en) Heat dissipation apparatus with coarse surface capable of intensifying heat transfer
CN105636407A (en) Radiating fin group
JP2005327795A (en) Heat radiator
JP2000164773A (en) Radiator
CN101087508B (en) Radiator
JP6494408B2 (en) Cooling device for vehicle equipment
JP2019047116A (en) Heat sink
JP2007221153A (en) Heat sink cooling device
JP4135904B2 (en) Heat sink cooling device and power electronics device having the same
JP2006278735A (en) Cooling device
JP4875454B2 (en) Heat sink with centrifugal fan for heat dissipation
JPH10163389A (en) Heat sink
TW201124691A (en) Heat dissipation device
JP2009182215A (en) Heat radiation device for electronic unit
JP2008103437A (en) Heat sink with centrifugal fan
JP2006237366A (en) Heat sink
CN214046508U (en) Radiating fin and radiator

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees