JP2005327613A - 燃料電池 - Google Patents

燃料電池 Download PDF

Info

Publication number
JP2005327613A
JP2005327613A JP2004145026A JP2004145026A JP2005327613A JP 2005327613 A JP2005327613 A JP 2005327613A JP 2004145026 A JP2004145026 A JP 2004145026A JP 2004145026 A JP2004145026 A JP 2004145026A JP 2005327613 A JP2005327613 A JP 2005327613A
Authority
JP
Japan
Prior art keywords
oxidant
diffusion layer
fuel
catalyst layer
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004145026A
Other languages
English (en)
Inventor
Takeshi Sha
剛 謝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2004145026A priority Critical patent/JP2005327613A/ja
Priority to EP05009794A priority patent/EP1596456A3/en
Priority to US11/127,087 priority patent/US20050255375A1/en
Publication of JP2005327613A publication Critical patent/JP2005327613A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0263Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant having meandering or serpentine paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

【課題】 拡散層での圧力損失を低減するとともにセパレータの製造コストを低減する。
【解決手段】 平板状の電解質1と、電解質1の一方面に設けられた燃料極触媒層2と、電解質1の他方面に設けられた酸化剤極触媒層3と、燃料極触媒層2の電解質1側に対して背向する面に設けられた燃料拡散層4と、酸化剤極触媒層3の電解質1側に対して背向する面に設けられた酸化剤拡散層5とが設けられた燃料電池において、燃料拡散層4、酸化剤拡散層5の少なくとも一方の拡散層に活物質を含む流体が流通する流路空間51が設けられていることを特徴とする燃料電池。
【選択図】 図1

Description

本発明は燃料電池に関する。
大気汚染防止、CO排出規制および石油資源枯渇といった地球規模での環境・資源問題に対処するため、クリーンでエネルギー密度が高く、充電時間が不要な燃料電池は最も脚光を浴び、世界中で急ピッチに研究開発が進められている。すなわち、燃料電池は水素と酸素を使用して電気分解の逆反応で発電し、水以外の排出物がなくクリーンな発電装置として注目されている。燃料電池の中でも固体高分子電解質型燃料電池が低温で作動するため家庭用、業務用などの定置用あるいは自動車用として有望視されている。
燃料電池は、一般的に多数の単セルが積層されて構成されている。単セルは、二つの電極(燃料極と酸化剤極)で電解質を挟持したものを、燃料極の活物質を含む燃料の流路を有するセパレータと、酸化剤極の活物質を含む酸化剤の流路を有するセパレータで挟んだ構造をしている。
このセパレータは金属あるいはカーボン板の表面に機械加工によって流路を形成しており、そのコストは燃料電池全体の中で大きな割合を占めている。
燃料極は多孔質の平板からなる燃料拡散層とその一方面に設けられた燃料極触媒層が設けられ、単セル中で燃料極触媒層が電解質に当接するように配置されている。酸化剤極は多孔質の平板からなる酸化剤拡散層とその一方面に設けられた酸化剤極触媒層が設けられ、単セル中で酸化剤極触媒層が電解質に当接するように配置されている。
燃料あるいは酸化剤はセパレータに形成された流路から拡散層を拡散して触媒層に供給され、電極反応に供される。
非特許文献1には、セパレータ中の流路の途中を遮断して燃料あるいは酸化剤のガスを拡散層中に強制的に流すようにし活物質供給の律速を緩和しようとした技術が開示されている。
非特許文献2は、燃料あるいは酸化剤のガスを拡散層と触媒層の当接面に平行に拡散層中を流すフラクタル流路を拡散層に形成することによりセパレータに非常に薄い平板を用いること提案している。
特許文献1は、平板状のセパレータの表面にガス流路の溝を形成する代わりに互いに通気性が異なる複数の通気部分を形成する構造が開示されている。このものは触媒層へのガス供給を均一にするとともにコスト低減を図ろうとしたものである。
特開2004−39508号公報(段落[0028]、[0030]、図5、図8) Electrochimica Acta, Vol.43, No.24, pp.3795-3809 第70回電気化学会春大会講演要旨集 P310、「フラクタル流路による燃料電池の構成」 しかしながら、非特許文献1は、通気抵抗が大きな拡散層中にガスを強制的に流すので、圧力損失が大きくなり、かつセパレータには流路が必要であるのでセパレータの製造コストの問題は残っている。
非特許文献2は、通気抵抗が大きな拡散層内部を通してガスを流すため、圧力損失が大きくこと、ガスが拡散層内部を拡散する距離が長いため、電極で供給される活物質が不均一となる問題点がある。
特許文献1は、ガス流路を多孔体で構成しているので、圧力損失が大きくなる問題点がある。
本発明は上記課題を解決したもので、拡散層での圧力損失を低減するとともにセパレータの製造コストを低減できる燃料電池を提供する。
上記技術的課題を解決するために、請求項1の発明では、平板状の電解質と、前記電解質の一方面に設けられた燃料極触媒層と、前記電解質の他方面に設けられた酸化剤極触媒層と、前記燃料極触媒層の前記電解質側に対して背向する面に設けられた燃料拡散層と、前記酸化剤極触媒層の前記電解質側に対して背向する面に設けられた酸化剤拡散層とが設けられた燃料電池において、前記燃料拡散層、前記酸化剤拡散層の少なくとも一方の拡散層に活物質を含む流体が流通する流路空間が設けられていることを特徴とする燃料電池としている。
請求項2の発明では、前記流路空間は、前記拡散層の一方面および他方面に開口していることを特徴とする請求項1記載の燃料電池としている。
請求項3の発明では、前記燃料拡散層の前記燃料極触媒層側に対して背向する面に燃料極側セパレータが設けられ、前記酸化剤拡散層の前記酸化剤極触媒層側に対して背向する面に酸化剤極側セパレータが設けられ、前記燃料極側セパレータ、前記酸化剤極側セパレータの少なくとも一方のセパレータは前記拡散層に面する面が平面であることを特徴とする請求項1または請求項2に記載の燃料電池としている。
請求項1の発明によれば、拡散層に活物質を含む流体が流通する流路空間が設けられているので、流路空間から電極反応の活物質を直接電極に供給でき、かつ拡散層を介して活物質を電極に供給する経路も短いため、拡散層での圧力損失を低減でき、かつ活物質を含む流体が流通する流路空間を拡散層に形成しているので、セパレータに流路を形成する必要がなく、セパレータの製造コストを低減できる。
請求項2の発明によれば、流路空間は、拡散層の一方面および他方面に開口しているので、流路空間を有する拡散層を製造するコストを低減できる。
請求項3の発明によれば、セパレータは拡散層に面する面が平面であるので、セパレータの構造を簡略化でき、セパレータの製造コストをより低減できる。
以下、本発明の実施形態について、図面に基づいて説明する。
(実施形態1)
図1は実施形態1の燃料電池の単セルの概略断面図である。本燃料電池は高分子電解質型燃料電池である。この燃料電池では、電解質にはイオン交換膜が使用され、燃料には一般的に活物質としての水素を含む燃料ガスが使用され、酸化剤には活物質としての酸素を含む酸化剤ガスが使用される。酸化剤ガスは一般的には空気が使用される。
膜状のイオン交換膜1の一方面には燃料極触媒層2が設けられ、他方面には酸化剤極触媒層3が設けられている。燃料極触媒層2、酸化剤極触媒層3は、触媒(一般的にはPtなどの貴金属触媒)が担持されたカーボン粒子とイオン交換溶液と撥水性物質を混合してシート状にしたものが使用される。イオン交換膜1と燃料極触媒層2および酸化剤極触媒層3はホットプレスなどによって接合されて膜電極接合体10とされている。
膜電極接合体10の燃料極触媒層2側、すなわち燃料極触媒層2のイオン交換膜1側に対して背向する面に燃料拡散層4が設けられている。一方、膜電極接合体10の酸化剤極触媒層3側、すなわち酸化剤極触媒層3のイオン交換膜1側に対して背向する面に酸化剤拡散層5が設けられている。燃料拡散層4の燃料極触媒層2側に対して背向する面に燃料極側セパレータ6が設けられている。酸化剤拡散層5の酸化剤極触媒層3側に対して背向する面に酸化剤極側セパレータ7が設けられている。燃料極側セパレータ6と酸化剤極側セパレータ7の外周部は接着剤によって接合されている。この接着剤によって接着層8が形成される。接着層8は燃料拡散層4、酸化剤拡散層5から外部に漏れようとするガスをシールする役割も持っている。接着層8はイオン交換膜1の周辺部を包んでおり、互いに相手側に移動しようとする燃料ガスと酸化剤ガスをシールしている。燃料拡散層4、酸化剤拡散層5は、いずれも導電性を有する多孔体を基材としており、必要に応じて撥水処理、親水処理が施される。
図2は膜電極接合体10側から見た酸化剤拡散層5の概略平面図である。図3は酸化剤拡散層5側から見た酸化剤極側セパレータ7の概略平面図である。
酸化剤拡散層5には酸化剤ガスは流通する流路空間51が設けられている。拡散層は流体を拡散させるためにカーボンペーパーなどの通気性を有する多孔体で形成されている。流路空間51は拡散層などの多孔体が全く存在しない空間である。流路空間51は、その入口部51aから出口部51bに向かってつづら折り状の通路が形成されている。流路空間51は、その一方面5a(燃料極触媒層2側の面)および他方面(酸化剤極側セパレータ7側の面)に開口している。すなわち図2の面に垂直な方向に貫通している。燃料拡散層4も酸化剤拡散層5と同様な構造である。
酸化剤極側セパレータ7には、単セル100が多数積層されて燃料電池スタックに形成されたときに酸化剤ガス供給マニホールド11となる酸化剤ガス供給孔71と、酸化剤ガス排出マニホールド12となる酸化剤ガス排出孔74が設けられている。また酸化剤極側セパレータ7には、酸化剤ガス供給孔71に連通し、酸化剤ガス供給マニホールド11から供給された酸化剤ガスを流路空間51の入口部51aに供給するための供給溝部7aが設けられている。入口部51aと連通する供給溝部7aの供給口72を除いた部分は蓋部7bによって蓋がされており、接着部8によって供給溝部7aが塞がれないようになっている。蓋部7bの供給溝部7a側の反対面と酸化剤極側セパレータ7の酸化剤拡散層5側の面は略同一平面になるように設計されている。同様に、酸化剤極側セパレータ7には、酸化剤ガス排出孔74に連通し、流路空間51の出口部51bから排出された酸化剤ガスを酸化剤ガス排出マニホールド12に排出するための排出溝部7cが設けられている。出口部51bと連通する排出溝部7cの排出口75を除いた部分は蓋部7dによって蓋がされており、接着部8によって排出溝部7cが塞がれないようになっている。蓋部7dの排出溝部7c側の反対面と酸化剤極側セパレータ7の酸化剤拡散層5側の面は略同一平面になるように設計されている。
外部から燃料電池スタックの酸化剤ガス供給マニホールド11に供給された酸化剤ガスは供給溝部7aを介してその供給口72から流路空間51の入口部51aに供給される。入口部51aに供給された酸化剤ガスは、づら折り状の流路空間51を通ってその出口部51bに至る。そして出口部51bから排出口75から排出溝部7cを経て酸化剤ガス排出マニホールド12に排出されて燃料電池スタックの外部へ排出される。
図4は酸化剤ガスの活物質が触媒層に供給される経路を説明する説明図であり、酸化剤極触媒層3の周辺を拡大して示されている。図4に示すように、流路空間51を通過している間に酸化剤ガスの活物質である酸素が矢印Aのように直接酸化剤極触媒層3に供給され電極反応に供されるとともに矢印Bのように酸化剤拡散層5の多孔体部分を拡散し酸化剤極触媒層3に供給され電極反応に供される。
矢印Aのように直接酸化剤極触媒層3に供給される場合だけでなく、矢印Bのように酸化剤拡散層5介して活物質を電極に供給される場合もその経路は短いので、拡散層での圧力損失を低減できる。また流路空間51を酸化剤拡散層5に形成しているので、酸化剤極側セパレータ7に流路を形成する必要がなく、セパレータの製造コストを低減できる。
酸化剤拡散層5は、シート状の導電性多孔体をプレス打ち抜き加工、ワイヤカット加工などによって流路空間51を形成することによって製造するる。また樹脂をバインダーとしてシート状に成形後、シートが柔らかいうちに打ち抜き加工によって流路空間51を形成し、その後、脱バインダー処理により樹脂を除去して多孔体にすることによっても製造することができる。酸化剤拡散層5は、流路空間51が酸化剤拡散層5の一方面および他方面に開口しているので、低コストに製造できる。
酸化剤極側セパレータ7は、酸化剤拡散層5に面する面が実質的に平面であるので、セパレータの構造を簡略化でき、セパレータの製造コストをより低減できる。
燃料拡散層4は酸化剤拡散層5と同様の構造になっており、燃料極側セパレータ6は酸化剤極側セパレータ7と同様の構造になっている。したがって、酸化剤拡散層5、酸化剤極側セパレータ7と同様の効果を奏する。
(実施形態2)
実施形態2は拡散層の構造が異なる以外は実施形態1と同じ構造になっている。実施形態2でも燃料拡散層と酸化剤拡散層も同じ構造となっている。図5は実施形態2の酸化剤拡散層52の概略断面図である。酸化剤拡散層52に設けられている流路空間52aは実施形態1と同様のつづら折り状となっている。しかし、その入口部52b、出口部52cを除いて、酸化剤極触媒層3側の面52dには開口しているが、酸化剤極側セパレータ側の面52eには開口していない。入口部52b、出口部52cは酸化剤拡散層52の一方面52dにも他方面52eにも開口している。酸化剤拡散層52は、加工によって製造したり、樹脂をバインダーとして射出成形などにより成形後、脱バインダー処理により樹脂を除去することによって製造する。
入口部52bから入った酸化剤ガスは流路空間52aを通って出口部52cに至る。流路空間52aを通過している間に酸化剤ガスの活物質である酸素が直接酸化剤極触媒層3に供給され電極反応に供されるとともに酸化剤拡散層5の多孔体部分を拡散し酸化剤極触媒層3に供給され電極反応に供される。したがって、流路空間52aは流路空間51とは構造が異なるが実施形態1と同様の効果を奏する。
以下、実施例および比較例について説明する。
(実施例)
膜電極接合体は以下のように製作した。白金担持濃度が55wt%の白金担持カーボン触媒(田中貴金属工業株式会社製、TEC10E60E、以下Pt/Cと称する。)12gと5wt%濃度のイオン交換樹脂溶液(旭化成工業株式会社製、SS−1080)106gと水23g、成形助剤としてのイソプロピルアルコール23gとを十分に混合し触媒ペーストを作製した。この触媒ペーストをドクターブレード法により白金担持量が0.8mg/cmになるようにテトラフルオロエチレンシート上に酸化剤極触媒層を形成後、乾燥させて、酸化剤極触媒層シートとした。同様な方法によって白金担持量が0.4mg/cmになるように燃料極触媒層がテトラフルオロエチレンシート上に形成されたものを燃料極触媒層シートとした。
厚さが50μmのイオン交換膜(デュポン社製、Nafion112)を使用し、その一方面に上記の酸化剤極触媒層シートの酸化剤極触媒層が接するように、他方面に上記の燃料極触媒層シートの燃料極触媒層が接するように、イオン交換膜を酸化剤極触媒層シートと燃料極触媒層シートで挟んで、150℃、10MPa、3分間でホットプレスしイオン交換膜と触媒層を接合後、テトラフルオロエチレンシートを剥がし、膜電極接合体を作製した。
拡散層は以下のように製作した。1000gの水にカーボンブラックを300g、テトラフルオロエチレンの含有濃度が60%のディスパージョン原液(ダイキン工業株式会社製、POLYFLON D1グレード)を250g添加して十分間攪拌しカーボンインクを作製した。このカーボンインク中にカーボンペーパー(東レ株式会社製、トレカTGP−120、厚さ370μm、72mm×91mm)を投入して、十分にカーボンインクを含浸させた。次に80℃の温度に保った乾燥炉で余分な水分を蒸発させた後、焼結温度390℃で60分保持して、撥水カーボンペーパーを作製した。この撥水カーボンペーパーをそのまま酸化剤拡散層として使用する。
上記のカーボンペーパーから幅3mmの短冊状カーボンペーパーを切り出して、上記と同様にカーボンインク含浸処理を行い、短冊状撥水カーボンペーパーを作製した。これを燃料拡散層として使用する。
図6は酸化剤極側セパレータの概略平面図である。酸化剤極側セパレータ102は緻密質カーボン板を加工することによって図6のように流路91を形成されている。流路91には図6の上下方向に細長い複数の直線部91aが設けられている。この直線部91a同士は凸部94によって形成されている。凸部94の大きさは、高さ0.4mm、幅3mm、長さ91mmである。凸部94間のピッチは6mmである。
また流路91に酸化剤極ガスを供給する供給口92、流路91から酸化剤極ガスを排出する排出口93を形成した。供給口92、排出口93は緻密質カーボン板を貫通する貫通孔である。
図7は燃料極側セパレータの概略平面図である。燃料極側セパレータ101は供給口81、排出口82となる貫通孔が設けられているだけである。
上記で作製した膜電極接合体の酸化剤極触媒層に酸化剤拡散層を当接させ、膜電極接合体の燃料極触媒層に短冊状撥水カーボンペーパーを、その長手方向が直線部91aの長手方向と同じになるように3mmの間隔で複数当接させた状態で、140℃、8MPa、3分間ホットプレスした。短冊状撥水カーボンペーパーが複数並んだ部分が燃料拡散層となる。ホットプレス後、酸化剤拡散層に上記の酸化剤極側セパレータと当接させ、燃料拡散層に上記の燃料極側セパレータと当接させて単セルを作製した。
図8は実施例の、流路91の直線部91aを横断する単セルの概略断面図である。膜電極接合体10の燃料極触媒層2に短冊状撥水カーボンペーパーが複数並んだ燃料拡散層401が当接され、その外側に燃料極側セパレータ101が配設されている。なお、図示されていないが、燃料拡散層401の側面から単セル外に燃料が漏れないようにシールされている。一方、膜電極接合体10の燃料極触媒層3には平板状の酸化剤拡散層501が当接され、その外側に酸化剤極側セパレータ102が配設されている。
この単セルを用いて、セル温度75℃、酸化剤電極に空気(利用率40%)、燃料電極に水素ガス(利用率90%)をそれぞれ常圧で供給して、発電実験を行った。
(比較例)
実施例と同様に膜電極接合体を作製した。酸化剤拡散層および燃料拡散層は、いずれも実施例の酸化剤拡散層と同様に作製した。酸化剤極側セパレータおよび燃料極側セパレータは。いずれも実施例の酸化剤極側セパレータと同様のものを用いた。
膜電極接合体の酸化剤極触媒層に酸化剤拡散層を当接させ、膜電極接合体の燃料極触媒層に燃料拡散層を当接させた状態で、140℃、8MPa、3分間ホットプレスした。ホットプレス後、酸化剤拡散層に上記の酸化剤極側セパレータと当接させ、燃料拡散層に上記の燃料極側セパレータと当接させて単セルを作製した。そして実施例と同じ条件で発電試験を行った。
図9は比較例の、流路91の直線部91aを横断する単セルの概略断面図である。膜電極接合体10の燃料極触媒層2には、実施例の酸化剤極側と同様、平板状の燃料拡散層502が当接され、その外側に燃料極側セパレータ103が配設されている。一方、膜電極接合体10の燃料極触媒層3は、実施例と同様、平板状の酸化剤拡散層501が当接され、その外側に酸化剤極側セパレータ102が配設されている。
この単セルを用いて、セル温度75℃、酸化剤電極に空気(利用率40%)、燃料電極に水素ガス(利用率90%)をそれぞれ常圧で供給して、発電実験を行った。
図10は実施例、比較例の発電試験結果を示すグラフ図である。実施例の燃料極側セパレータ101は単純な平板構造であるにも係わらず、発電特性に優れていることがわかる。
なお、実施例では燃料極側の拡散層、セパレータに本発明を適用した場合を示したが、酸化剤極側の拡散層、セパレータにも適用することができる。
実施例では直線的な流路空間で試験し、実施形態ではつづら折り状の流路空間で示したが、これに限定されない。例えば、つづら折り状の流路空間が複数本設けられていてもよい。複数本の流路の間隔は等間隔でも等間隔でなくてもよい。
実施形態、実施例では、酸化剤極側の流体が酸素を活物質として含むガス、燃料極側の流体が水素を活物質として含むガスであるとして説明したが、ダイレクトメタノール型燃料電池(燃料としてメタノールを使用)のように流体が液体であってもよい。
実施形態1の燃料電池の単セルの概略断面図 膜電極接合体側から見た酸化剤拡散層の概略平面図 酸化剤拡散層側から見た酸化剤極側セパレータの概略平面図 酸化剤ガスの活物質が触媒層に供給される経路を説明する説明図 実施形態2の酸化剤拡散層の概略断面図 酸化剤極側セパレータの概略平面図 燃料極側セパレータの概略平面図 実施例の単セルの概略断面図 比較例の単セルの概略断面図 実施例、比較例の発電試験結果を示すグラフ図
符号の説明
1…イオン交換膜(電解質)
2…燃料極触媒層
3…酸化剤極触媒層
4…燃料拡散層
5…酸化剤拡散層
6…燃料極側セパレータ
7…酸化剤極側セパレータ
51…流路

Claims (3)

  1. 平板状の電解質と、
    前記電解質の一方面に設けられた燃料極触媒層と、
    前記電解質の他方面に設けられた酸化剤極触媒層と、
    前記燃料極触媒層の前記電解質側に対して背向する面に設けられた燃料拡散層と、
    前記酸化剤極触媒層の前記電解質側に対して背向する面に設けられた酸化剤拡散層とが設けられた燃料電池において、
    前記燃料拡散層、前記酸化剤拡散層の少なくとも一方の拡散層に活物質を含む流体が流通する流路空間が設けられていることを特徴とする燃料電池。
  2. 前記流路空間は、前記拡散層の一方面および他方面に開口していることを特徴とする請求項1記載の燃料電池。
  3. 前記燃料拡散層の前記燃料極触媒層側に対して背向する面に燃料極側セパレータが設けられ、前記酸化剤拡散層の前記酸化剤極触媒層側に対して背向する面に酸化剤極側セパレータが設けられ、前記燃料極側セパレータ、前記酸化剤極側セパレータの少なくとも一方のセパレータは前記拡散層に面する面が平面であることを特徴とする請求項1または請求項2に記載の燃料電池。
JP2004145026A 2004-05-14 2004-05-14 燃料電池 Pending JP2005327613A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004145026A JP2005327613A (ja) 2004-05-14 2004-05-14 燃料電池
EP05009794A EP1596456A3 (en) 2004-05-14 2005-05-04 Fuel cell
US11/127,087 US20050255375A1 (en) 2004-05-14 2005-05-12 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004145026A JP2005327613A (ja) 2004-05-14 2004-05-14 燃料電池

Publications (1)

Publication Number Publication Date
JP2005327613A true JP2005327613A (ja) 2005-11-24

Family

ID=34936148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004145026A Pending JP2005327613A (ja) 2004-05-14 2004-05-14 燃料電池

Country Status (3)

Country Link
US (1) US20050255375A1 (ja)
EP (1) EP1596456A3 (ja)
JP (1) JP2005327613A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008186788A (ja) * 2007-01-31 2008-08-14 Toyota Motor Corp 燃料電池

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5569157B2 (ja) * 2010-06-07 2014-08-13 住友電気工業株式会社 ガス分解素子
CN102933293B (zh) 2010-06-07 2016-01-20 住友电气工业株式会社 气体分解组件、氨分解组件、发电装置、电化学反应装置、以及气体分解组件的制造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4824741A (en) * 1988-02-12 1989-04-25 International Fuel Cells Corporation Solid polymer electrolyte fuel cell system with porous plate evaporative cooling
US6280870B1 (en) * 1999-08-26 2001-08-28 Plug Power Inc. Combined fuel cell flow plate and gas diffusion layer
US20040072055A1 (en) * 2000-04-14 2004-04-15 Getz Matthew George Graphite article useful as a fuel cell component substrate
US20020180094A1 (en) * 2001-06-01 2002-12-05 Gough Jeffrey John Hydrophobic fuel cell component
JP3952154B2 (ja) * 2002-03-01 2007-08-01 Nok株式会社 燃料電池用構成部品

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008186788A (ja) * 2007-01-31 2008-08-14 Toyota Motor Corp 燃料電池

Also Published As

Publication number Publication date
EP1596456A3 (en) 2006-06-07
US20050255375A1 (en) 2005-11-17
EP1596456A2 (en) 2005-11-16

Similar Documents

Publication Publication Date Title
US7476459B2 (en) Membrane electrode assembly and fuel cell
EP2362470B1 (en) Fuel cell
WO2005109556A1 (en) Fuel cell and separator thereof
JP2001297779A (ja) 燃料電池システム
JP2009026762A (ja) 濃縮燃料で作動する直接酸化燃料電池システム用の多孔質輸送構造体
JP2002367655A (ja) 燃料電池
US20090214918A1 (en) Anode of direct methanol fuel cell and direct methanol fuel cell employing the same
KR101223082B1 (ko) 연료전지
JP5022707B2 (ja) 固体高分子電解質型燃料電池
US20130101917A1 (en) Polymer electrolyte fuel cell and method of fabricating the same
US20090202882A1 (en) Polymer electrolyte fuel cell and fuel cell system including the same
JP2004030959A (ja) ガス拡散部材、ガス拡散電極および燃料電池
JP5541291B2 (ja) 燃料電池及び燃料電池を備えた車両
EP2405515B1 (en) Fuel cell separator and fuel cell including same
US8632927B2 (en) Membraneless fuel cell and method of operating same
US20130011762A1 (en) Direct oxidation fuel cell
JP2008311047A (ja) 燃料電池
JP4606038B2 (ja) 高分子電解質型燃料電池及びその運転方法
JP4880131B2 (ja) ガス拡散電極およびこれを用いた燃料電池
JP2006049115A (ja) 燃料電池
US20050255375A1 (en) Fuel cell
JP2008041348A (ja) 固体高分子型燃料電池及びその製造方法
JP2005222720A (ja) 燃料電池
JP2006066323A (ja) 燃料電池セル
US8568941B2 (en) Fuel cell separator and fuel cell including same