JP2005325946A - Tripod type constant velocity universal joint - Google Patents

Tripod type constant velocity universal joint Download PDF

Info

Publication number
JP2005325946A
JP2005325946A JP2004145452A JP2004145452A JP2005325946A JP 2005325946 A JP2005325946 A JP 2005325946A JP 2004145452 A JP2004145452 A JP 2004145452A JP 2004145452 A JP2004145452 A JP 2004145452A JP 2005325946 A JP2005325946 A JP 2005325946A
Authority
JP
Japan
Prior art keywords
diameter
constant velocity
velocity universal
universal joint
outer ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004145452A
Other languages
Japanese (ja)
Inventor
Yoshihiko Hayama
佳彦 葉山
Masafumi Nakakoji
雅文 中小路
Takashi Nozaki
野▲崎▼孝志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2004145452A priority Critical patent/JP2005325946A/en
Publication of JP2005325946A publication Critical patent/JP2005325946A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve collapse strength of a deep groove ball bearing used in a tripod type constant velocity universal joint. <P>SOLUTION: This tripot type constant velocity universal joint is, as shown in Fig. (A), formed to satisfy the relationship expressed by:2.4<ä(D-d)/2}/dB, 2.5<(W/d<SB>B</SB>), and 1.2<äD/(PCD+d<SB>B</SB>)} where the outer ring outside diameter of the deep groove ball bearing is D, the inner ring inside diameter is (d), the bearing width is W, the ball diameter is d<SB>B</SB>, and the pitch circle diameter of the ball is PCD, whereby as compared with a standard bearing (a deep groove ball bearing used in the conventional tripod type constant velocity universal joint shown in Fig. (B)), the wall thicknesses of the outer ring 6a and the inner ring 6b are secured to improve the collapse strength. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、トリポード型等速自在継手に関するものである。   The present invention relates to a tripod type constant velocity universal joint.

従来のトリポード型等速自在継手の一例について、図1を参照して説明する。図1(A)において、符号1は外方継手部材で、内周面の軸方向に三本のトラック溝2を形成してある。各トラック溝2には、外方継手部材1の円周方向に対向する一対の案内面3を形成してある。一対の案内面3は、外方継手部材1の軸線と平行な凹曲面(部分円筒面)である。符号4はトリポード部材で、半径方向に三本の脚軸5を突設してある。各脚軸5には、深溝玉軸受6を外嵌してある。   An example of a conventional tripod type constant velocity universal joint will be described with reference to FIG. In FIG. 1A, reference numeral 1 is an outer joint member, and three track grooves 2 are formed in the axial direction of the inner peripheral surface. Each track groove 2 is formed with a pair of guide surfaces 3 facing the circumferential direction of the outer joint member 1. The pair of guide surfaces 3 are concave curved surfaces (partial cylindrical surfaces) parallel to the axis of the outer joint member 1. Reference numeral 4 is a tripod member, and three leg shafts 5 project in the radial direction. A deep groove ball bearing 6 is fitted on each leg shaft 5.

深溝玉軸受6は、図1(A)のように、外周面を外方継手部材1の案内面3に対応する凸曲面(部分円筒面)状に形成して、外方継手部材1のトラック溝2に挿入する外輪6aと、トリポード部材4の脚軸5に外嵌して外輪6aを回転自在に支持する内輪6bと、外輪6aと内輪6bとの間に介在する複数のボール6cとを主要な構成要素としている(例えば特許文献1〜4参照)。   As shown in FIG. 1A, the deep groove ball bearing 6 has an outer peripheral surface formed in a convex curved surface (partial cylindrical surface) corresponding to the guide surface 3 of the outer joint member 1, and the track of the outer joint member 1. An outer ring 6a to be inserted into the groove 2, an inner ring 6b that is externally fitted to the leg shaft 5 of the tripod member 4 and rotatably supports the outer ring 6a, and a plurality of balls 6c interposed between the outer ring 6a and the inner ring 6b. Main components (see, for example, Patent Documents 1 to 4).

上記のトリポード型等速自在継手は、外方継手部材1の内側にトリポード部材4を挿入して、外方継手部材1のトラック溝2にトリポード部材4の脚軸5に外嵌した深溝玉軸受6を係合させ、外方継手部材1及びトリポード部材4間に相対的軸方向変位(作動角)を付けた状態でトルクの伝達を可能にしてある。図1(B)に示すように、外方継手部材1及びトリポード部材4間に相対的軸方向変位(作動角θ)を付けた状態でトルクを付与すると、各深溝玉軸受6は、外輪6aを回転させつつトラック溝2に沿って外方継手部材1の軸線方向に往復動する。このとき、外方継手部材1及びトリポード部材4間では深溝玉軸受6を介してトルクが伝達されるので、深溝玉軸受6に対してラジアル荷重が負荷される。特に、自動車や産業機械などにおいて、高トルクの伝達に使用されるトリポード型等速自在継手の場合は、深溝玉軸受6に対して過大なラジアル荷重が負荷されたときに、外輪6a及び内輪6bが破損することが実験で確かめられている。したがって、高トルク伝達用のトリポード型等速自在継手には、上記のラジアル荷重に対する強度を高めた深溝玉軸受を使用する必要がある。なお、FEMによる強度解析によると、外輪6a及び内輪6bが破損するときの最大主応力は、図1(C)の小ピッチのハッチングで示す領域に発生する。   The above-mentioned tripod type constant velocity universal joint is a deep groove ball bearing in which the tripod member 4 is inserted inside the outer joint member 1 and is externally fitted to the track shaft 2 of the outer joint member 1 on the leg shaft 5 of the tripod member 4. 6 is engaged, and torque can be transmitted with a relative axial displacement (operation angle) between the outer joint member 1 and the tripod member 4. As shown in FIG. 1 (B), when a torque is applied with a relative axial displacement (operating angle θ) between the outer joint member 1 and the tripod member 4, each deep groove ball bearing 6 has an outer ring 6a. Is reciprocated along the track groove 2 in the axial direction of the outer joint member 1. At this time, since torque is transmitted between the outer joint member 1 and the tripod member 4 via the deep groove ball bearing 6, a radial load is applied to the deep groove ball bearing 6. In particular, in the case of a tripod type constant velocity universal joint used for transmission of high torque in automobiles, industrial machines, etc., when an excessive radial load is applied to the deep groove ball bearing 6, the outer ring 6a and the inner ring 6b Has been confirmed by experiments. Therefore, it is necessary to use a deep groove ball bearing with increased strength against the radial load for a tripod type constant velocity universal joint for high torque transmission. According to the strength analysis by FEM, the maximum principal stress when the outer ring 6a and the inner ring 6b are broken is generated in the area indicated by the small pitch hatching in FIG.

一方、特許文献5(特開平11−132231号公報)には、スライドシート用深溝玉軸受の外輪圧壊強度を向上させるために軸受構成要素の寸法関係が定義されている。しかし、高トルク伝達用のトリポード型等速自在継手に使用される深溝玉軸受6は、上記のスライドシート用深溝玉軸受よりも大きなラジアル荷重が負荷されるため、特許文献5で定義された軸受構成要素の寸法では外輪6a及び内輪6bの強度が不足する。   On the other hand, Patent Document 5 (Japanese Patent Laid-Open No. 11-132231) defines the dimensional relationship of bearing components in order to improve the outer ring crushing strength of the slide groove deep groove ball bearing. However, since the deep groove ball bearing 6 used for the tripod type constant velocity universal joint for high torque transmission is loaded with a larger radial load than the above-mentioned deep groove ball bearing for slide seat, the bearing defined in Patent Document 5 is used. The strength of the outer ring 6a and the inner ring 6b is insufficient with the dimensions of the constituent elements.

特開2000−227124号公報JP 2000-227124 A 特開2000−257643号公報Japanese Patent Application Laid-Open No. 2000-257643 特開2001−295855号公報JP 2001-295855 A 特開2002−323060号公報JP 2002-323060 A 特開平11−132231号公報JP-A-11-132231

本発明は、斯かる実情に鑑み創案されたものであって、その目的は、例えば自動車や産業機械などに使用されるトリポード型等速自在継手にラジアル方向の耐荷重性を高めた深溝玉軸受を適用して高トルクの伝達に好適なトリポード型等速自在継手を提供することにある。   The present invention was devised in view of such circumstances, and its object is to provide a deep groove ball bearing with improved radial load resistance in a tripod type constant velocity universal joint used in, for example, automobiles and industrial machines. Is to provide a tripod type constant velocity universal joint suitable for high torque transmission.

本発明に係るトリポード型等速自在継手は、上記目的を達成するため、内周面に軸方向に延びた3本のトラック溝が形成された外方継手部材と、半径方向に3本の脚軸を突設すると共に外方継手部材の内側に挿入されるトリポード部材と、外方継手部材のトラック溝に外輪を挿入すると共に、外輪を回転自在に支持する内輪をトリポード部材の脚軸に外嵌し、外輪の軌道面と内輪の軌道面との間に複数のボールを介在させた深溝玉軸受とを備え、外輪を回転させながら深溝玉軸受を外方継手部材のトラック溝に沿って移動させるように構成したトリポード型等速自在継手において、深溝玉軸受の外輪外径(D)、内輪内径(d)及びボール径(dB)の関係が、2.4<{(D−d)/2}/dBであることを特徴としている。 In order to achieve the above object, a tripod type constant velocity universal joint according to the present invention has an outer joint member in which three track grooves extending in the axial direction are formed on the inner peripheral surface, and three legs in the radial direction. A tripod member protruding from the shaft and inserted inside the outer joint member, and an outer ring inserted into the track groove of the outer joint member and an inner ring rotatably supporting the outer ring on the leg shaft of the tripod member. Fitted with a deep groove ball bearing with a plurality of balls interposed between the raceway surface of the outer ring and the raceway surface of the inner ring, and moves the deep groove ball bearing along the track groove of the outer joint member while rotating the outer ring. In the tripod type constant velocity universal joint configured so that the outer ring outer diameter (D), inner ring inner diameter (d) and ball diameter (d B ) of the deep groove ball bearing are 2.4 <{(D−d) / 2} / are characterized by d is B.

深溝玉軸受の外輪外径(D)は外輪が外方継手部材のトラック溝に収まるように定められ、また、内輪内径(d)は内輪がトリポード部材の脚軸に外嵌し得るように定められる。したがって、深溝玉軸受のボール径(dB)は、{(D−d)/2}の2.4分の1未満の値となる(dB<{(D−d)/2}/2.4)。ここで、{(D−d)/2}は、内輪の内周部から外輪の外周部までの軸受肉厚の寸法である。一方、従来のトリポード型等速自在継手に使用されていた一般的な深溝玉軸受(以下、標準軸受という。)の場合、外輪外径(D)、内輪内径(d)及びボール径(dB’)の関係は、1.57<({(D−d)/2}/dB’)<2.1となっている。すなわち、標準軸受のボール径(dB’)は、({(D−d)/2}/2.1)<dB’<({(D−d)/2}/1.57)の範囲内である。本トリポード型等速自在継手に使用される深溝玉軸受も標準軸受も、適用対象となるトリポード型等速自在継手の外方継手部材及びトリポード部材の規格が同じであれば、外輪外径(D)及び内輪内径(d)が同じ寸法になる。すなわち、本トリポード型等速自在継手に使用される深溝玉軸受は、軸受肉厚{(D−d)/2}が標準軸受と同じであれば、標準軸受よりもボール径(dB)が小さくなるので、外輪及び内輪の肉厚が確保され、外輪及び内輪の圧壊強度が高められる。 The outer ring outer diameter (D) of the deep groove ball bearing is determined so that the outer ring fits in the track groove of the outer joint member, and the inner ring inner diameter (d) is determined so that the inner ring can be fitted on the leg shaft of the tripod member. It is done. Therefore, the ball diameter (d B ) of the deep groove ball bearing is a value less than 1/4 of {(D−d) / 2} (d B <{(D−d) / 2} / 2). .4). Here, {(D−d) / 2} is the dimension of the bearing wall thickness from the inner periphery of the inner ring to the outer periphery of the outer ring. On the other hand, in the case of a general deep groove ball bearing (hereinafter referred to as a standard bearing) used in a conventional tripod type constant velocity universal joint, the outer ring outer diameter (D), inner ring inner diameter (d) and ball diameter (d B The relationship of ') is 1.57 <({(D−d) / 2} / d B ′) <2.1. That is, the ball diameter (d B ′) of the standard bearing is ({(D−d) / 2} /2.1) <d B ′ <({(D−d) / 2} /1.57). Within range. If the standard of the outer joint member and the tripod member of the tripod type constant velocity universal joint to be applied is the same for both the deep groove ball bearing and the standard bearing used in this tripod type constant velocity universal joint, the outer ring outer diameter (D ) And inner ring inner diameter (d) have the same dimensions. In other words, a deep groove ball bearing used in this tripod type constant velocity universal joint, if the same as the standard bearing bearing wall thickness {(D-d) / 2 }, the ball diameter than the standard bearing (d B) is Therefore, the thickness of the outer ring and the inner ring is ensured, and the crushing strength of the outer ring and the inner ring is increased.

また、深溝玉軸受の軸受幅(W)及びボール径(dB)の関係は、2.5<(W/dB)とする。軸受幅(W)は、深溝玉軸受が外方継手部材のトラック溝に収まるように定められる。したがって、ボール径(dB)は、軸受幅(W)の2.5分の1未満の寸法となる[dB<(W/2.5)]。一方、標準軸受の場合、軸受幅(W)及びボール径(dB’)の関係は、1.26<(W/dB’)<2.1となっている。すなわち、標準軸受のボール径(dB’)は、(W/2.1)<dB’<(W/1.26)の範囲内である。本トリポード型等速自在継手に使用される深溝玉軸受も標準軸受も、適用対象となるトリポード型等速自在継手の外方継手部材及びトリポード部材の規格が同じであれば、軸受幅(W)が同じ寸法になる。すなわち、本トリポード型等速自在継手に使用される深溝玉軸受は、軸受幅(W)が標準軸受と同じであれば、標準軸受よりもボール径(dB)が小さくなるので、外輪及び内輪の肉厚が確保され、外輪及び内輪の圧壊強度が高められる。また、軸受幅(幅)との関係で、ボール径(dB)の上限を設定すると、図1(C)に示す領域で発生する最大主応力が緩和され、外輪及び内輪が破損し難くなる。 Further, the relation between the bearing width (W) and the ball diameter (d B ) of the deep groove ball bearing is 2.5 <(W / d B ). The bearing width (W) is determined so that the deep groove ball bearing fits in the track groove of the outer joint member. Therefore, the ball diameter (d B ) is a dimension less than 1/2 of the bearing width (W) [d B <(W / 2.5)]. On the other hand, in the case of a standard bearing, the relationship between the bearing width (W) and the ball diameter (d B ′) is 1.26 <(W / d B ′) <2.1. That is, the ball diameter (d B ′) of the standard bearing is in the range of (W / 2.1) <d B ′ <(W / 1.26). If both the deep groove ball bearing and standard bearing used in this tripod type constant velocity universal joint have the same specifications for the outer joint member and tripod member of the tripod type constant velocity universal joint, the bearing width (W) Have the same dimensions. In other words, a deep groove ball bearing used in this tripod type constant velocity universal joint as long as they have the same bearing width (W) is a standard bearing, since the ball diameter than the standard bearing (d B) is small, the outer ring and the inner ring The wall thickness of the outer ring and the inner ring can be increased. If the upper limit of the ball diameter (d B ) is set in relation to the bearing width (width), the maximum main stress generated in the region shown in FIG. 1C is relaxed, and the outer ring and the inner ring are less likely to be damaged. .

さらに、深溝玉軸受の外輪外径(D)、ボールのピッチ円直径(PCD)及びボール径(dB)の関係は、1.2<{D/(PCD+dB)}とする。ここで、(PCD+dB)は、外輪の軌道面に周方向に形成された円環状のボール溝の溝底部分における外輪の内径(以下、溝底径という。)である。すなわち、外輪の溝底径(PCD+dB)は、外輪外径(D)の1.2分の1未満の寸法となる[(PCD+dB)<(D/1.2)]。一方、標準軸受の場合、外輪外径(D)、ボールのピッチ円直径(PCD’)及びボール径(dB’)の関係は、1.03<D/(PCD’+dB’)<1.19となっている。すなわち、標準軸受の外輪の溝底径(PCD’+dB’)は、(D/1.19)<(PCD’+dB’)<(D/1.03)の範囲内である。本トリポード型等速自在継手に使用される深溝玉軸受も標準軸受も、適用対象となるトリポード型等速自在継手の外方継手部材及びトリポード部材の規格が同じであれば、外輪外径(D)が同じ寸法になる。すなわち、本トリポード型等速自在継手に使用される深溝玉軸受は、外輪外径(D)が標準軸受と同じであれば、標準軸受よりも外輪の溝底径(PCD+dB)が小さくなるので、ボール溝の溝底部分における外輪の肉厚寸法が確保され、外輪の圧壊強度を高めることができる。 Further, the relationship between the outer ring outer diameter (D) of the deep groove ball bearing, the pitch circle diameter (PCD) of the ball, and the ball diameter (d B ) is 1.2 <{D / (PCD + d B )}. Here, (PCD + d B ) is the inner diameter of the outer ring (hereinafter referred to as the groove bottom diameter) in the groove bottom portion of the annular ball groove formed in the circumferential direction on the raceway surface of the outer ring. That is, the groove bottom diameter (PCD + d B ) of the outer ring is less than one-twelfth the outer ring outer diameter (D) [(PCD + d B ) <(D / 1.2)]. On the other hand, in the case of a standard bearing, the relationship between the outer diameter of the outer ring (D), the pitch diameter of the ball (PCD ′) and the ball diameter (d B ′) is 1.03 <D / (PCD ′ + d B ′) <1. .19. That is, the groove bottom diameter (PCD ′ + d B ′) of the outer ring of the standard bearing is within the range of (D / 1.19) <(PCD ′ + d B ′) <(D / 1.03). If the standard of the outer joint member and the tripod member of the tripod type constant velocity universal joint to be applied is the same for both the deep groove ball bearing and the standard bearing used in this tripod type constant velocity universal joint, the outer ring outer diameter (D ) Have the same dimensions. That is, if the outer ring outer diameter (D) of the deep groove ball bearing used in the tripod type constant velocity universal joint is the same as that of the standard bearing, the groove bottom diameter (PCD + d B ) of the outer ring is smaller than that of the standard bearing. The thickness of the outer ring at the groove bottom portion of the ball groove is ensured, and the crushing strength of the outer ring can be increased.

なお、上記の各関係式2.4<{(D−d)/2}/dB、2.5<(W/dB)、1.2<{D/(PCD+dB)}は、深溝玉軸受に発生する最大主応力が所定値(しきい値)以下となるときの寸法関係から求めてあるので、それぞれ[{(D−d)/2}/dB]、(W/dB)、{D/(PCD+dB)}の上限値を示していない。かかる上限値は、深溝玉軸受が外方継手部材とトリポード部材との間に介在し、かつ、他部品(外方継手部材等)と干渉しないという制約を受けることから、外方継手部材やトリポード部材などとの寸法関係で適宜定められる。 Each of the relational expressions 2.4 <{(D−d) / 2} / d B , 2.5 <(W / d B ), 1.2 <{D / (PCD + d B )} Since it is obtained from the dimensional relationship when the maximum principal stress generated in the ball bearing is a predetermined value (threshold) or less, [{(D−d) / 2} / d B ], (W / d B ), respectively. ) And {D / (PCD + d B )} are not shown. This upper limit value is limited by the fact that the deep groove ball bearing is interposed between the outer joint member and the tripod member and does not interfere with other parts (outer joint member, etc.). It is determined appropriately depending on the dimensional relationship with the member.

本発明によれば、外方継手部材及びトリポード部材間でトルクを伝達する際に深溝玉軸受の外輪及び内輪に発生する最大主応力が低減されるように軸受構成要素の寸法関係を定めたので、ラジアル荷重に対する外輪及び内輪の圧壊強度が向上し、高トルクの伝達に好適なトリポード型等速自在継手を提供することができる。   According to the present invention, the dimensional relationship of the bearing components is determined so that the maximum principal stress generated in the outer ring and the inner ring of the deep groove ball bearing when torque is transmitted between the outer joint member and the tripod member is reduced. The crushing strength of the outer ring and the inner ring against a radial load is improved, and a tripod type constant velocity universal joint suitable for high torque transmission can be provided.

以下、図面を参照しつつ本発明を実施するための最良の形態について説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

本発明に係るトリポード型等速自在継手は、図1(A)に示す従来のトリポード型等速自在継手と同様、外方継手部材1、トリポード部材4及び深溝玉軸受6からなっている。外方継手部材1及びトリポード部材4は、従来のトリポード型等速自在継手に使用するものと同じものである。深溝玉軸受6は、外輪6a、内輪6b及び複数個のボール6cを主要な構成要素とし、外輪6aの外径(D)、内輪6bの内径(d)、ボール径(dB)、軸受幅(W)及びボールのピッチ円直径(PCD)の関係が、従来のトリポード型等速自在継手に使用される標準軸受と相違している。以下、この相違点を中心に説明する。 The tripod type constant velocity universal joint according to the present invention includes an outer joint member 1, a tripod member 4, and a deep groove ball bearing 6, like the conventional tripod type constant velocity universal joint shown in FIG. The outer joint member 1 and the tripod member 4 are the same as those used for a conventional tripod type constant velocity universal joint. The deep groove ball bearing 6 includes an outer ring 6a, an inner ring 6b, and a plurality of balls 6c as main components, and the outer diameter (D) of the outer ring 6a, the inner diameter (d) of the inner ring 6b, the ball diameter (d B ), and the bearing width. The relationship between (W) and the pitch circle diameter (PCD) of the ball is different from that of a standard bearing used in a conventional tripod constant velocity universal joint. Hereinafter, this difference will be mainly described.

図2(A)は、本発明に係るトリポード型等速自在継手に適用する深溝玉軸受の一実施形態を示す軸方向の概略断面図で、同図(B)は従来のトリポード型等速自在継手に適用する標準軸受の軸方向の概略断面図である。また、図3(A)乃至(C)は、図2(A)に示す深溝玉軸受の軸直交方向の概略断面を例示する図である。なお、この実施形態では、周方向に8個のボール6cを一列に配設した深溝玉軸受及び標準軸受を例に挙げて説明する。   FIG. 2 (A) is a schematic sectional view in the axial direction showing an embodiment of a deep groove ball bearing applied to the tripod type constant velocity universal joint according to the present invention, and FIG. 2 (B) is a conventional tripod type constant velocity universal. It is a schematic sectional drawing of the axial direction of the standard bearing applied to a coupling. 3A to 3C are diagrams illustrating a schematic cross section of the deep groove ball bearing shown in FIG. 2A in the direction perpendicular to the axis. In this embodiment, a deep groove ball bearing and a standard bearing in which eight balls 6c are arranged in a row in the circumferential direction will be described as an example.

本発明に係るトリポード型等速自在継手に適用する深溝玉軸受は、図2(A)に示すように、外輪6aの外径(D)、内輪6bの内径(d)、ボール6cの直径(dB)、軸受幅(W)及びボール6cのピッチ円直径(PCD)が、以下の関係式(1)〜(3)を満たすように構成してある。 As shown in FIG. 2A, the deep groove ball bearing applied to the tripod type constant velocity universal joint according to the present invention includes an outer diameter (D) of the outer ring 6a, an inner diameter (d) of the inner ring 6b, and a diameter of the ball 6c ( d B ), the bearing width (W), and the pitch circle diameter (PCD) of the balls 6c are configured to satisfy the following relational expressions (1) to (3).

Figure 2005325946
・・・(1)
Figure 2005325946
・・・(2)
Figure 2005325946
・・・(3)
Figure 2005325946
... (1)
Figure 2005325946
... (2)
Figure 2005325946
... (3)

外輪6aの外径(D)、内輪6bの内径(d)及び軸受幅(W)は、図1(A)に示すように、外輪6aが外方継手部材1のトラック溝2の案内面3間に収まり、かつ、内輪6bがトリポード部材4の脚軸5に外嵌可能に構成されるので、外方継手部材1及びトリポード部材4の規格によって定められる寸法である。トリポード部材4の脚軸5は、例えば図3(A)のように断面楕円形状のもの、図3(B)のように中心位置O1,O2が相違する2個の円の集合断面形状のもの、図3(C)のように中心位置O1,O2が相違する2個の楕円の集合断面形状のものなど、種々の断面形状のものがある。 As shown in FIG. 1A, the outer diameter (D) of the outer ring 6a, the inner diameter (d) of the inner ring 6b, and the bearing width (W) are such that the outer ring 6a is the guide surface 3 of the track groove 2 of the outer joint member 1. Since the inner ring 6b can be fitted onto the leg shaft 5 of the tripod member 4, the dimensions are determined by the standards of the outer joint member 1 and the tripod member 4. The leg shaft 5 of the tripod member 4 has, for example, an elliptical cross section as shown in FIG. 3A, and a collective cross sectional shape of two circles having different center positions O 1 and O 2 as shown in FIG. 3B. There are various cross-sectional shapes such as one having a cross-sectional shape of two ellipses having different center positions O 1 and O 2 as shown in FIG.

このように、外輪6aの外径(D)、内輪6bの内径(d)及び軸受幅(W)の値は、外方継手部材1及びトリポード部材4の規格によって定められるから、上記の関係式(1)〜(3)においては定数と捉えることができる。したがって、上記の関係式(1)〜(3)は、下記の式(1)’〜(3)’のように変形される。   Thus, since the values of the outer diameter (D) of the outer ring 6a, the inner diameter (d) of the inner ring 6b, and the bearing width (W) are determined by the standards of the outer joint member 1 and the tripod member 4, the above relational expression (1) to (3) can be regarded as constants. Accordingly, the above relational expressions (1) to (3) are transformed into the following expressions (1) 'to (3)'.

Figure 2005325946
・・・(1)’
Figure 2005325946
・・・(2)’
Figure 2005325946
・・・(3)’
Figure 2005325946
... (1) '
Figure 2005325946
... (2) '
Figure 2005325946
... (3) '

ここで、式(1)’における{(D−d)/2}は、図2(A)に示すように、内輪6bの内周部から外輪6aの外周部までの軸受肉厚の寸法である。また、式(3)’における(PCD+dB)は、図2(A)に示すように、外輪6aの軌道面6a1に周方向に形成された円環状のボール溝6a2の溝底部分における外輪6aの内径(溝底径)である。 Here, {(D−d) / 2} in the expression (1) ′ is a dimension of the bearing wall thickness from the inner peripheral part of the inner ring 6b to the outer peripheral part of the outer ring 6a as shown in FIG. 2 (A). is there. Further, as shown in FIG. 2A, (PCD + d B ) in the expression (3) ′ is the outer ring 6a at the groove bottom portion of the annular ball groove 6a2 formed in the circumferential direction on the raceway surface 6a1 of the outer ring 6a. The inner diameter (groove bottom diameter).

一方、図2(B)に示す標準軸受は、外輪6aの外径(D)、内輪6bの内径(d)、ボール6cの直径(dB’)、軸受幅(W)及びボール6cのピッチ円直径(PCD’)が、以下の関係式(4)〜(6)を満たすように構成されている。 On the other hand, the standard bearing shown in FIG. 2B has an outer diameter (D) of the outer ring 6a, an inner diameter (d) of the inner ring 6b, a diameter (d B ') of the ball 6c, a bearing width (W), and a pitch of the balls 6c. The circle diameter (PCD ′) is configured to satisfy the following relational expressions (4) to (6).

Figure 2005325946
・・・(4)
Figure 2005325946
・・・(5)
Figure 2005325946
・・・(6)
Figure 2005325946
... (4)
Figure 2005325946
... (5)
Figure 2005325946
... (6)

標準軸受は、本発明に係るトリポード型等速自在継手に適用される深溝玉軸受と同様に、外輪6aの外径(D)、内輪6bの内径(d)及び軸受幅(W)の寸法が外方継手部材1及びトリポード部材4の規格によって定められ、本発明に係るトリポード型等速自在継手に適用される深溝玉軸受と同じ寸法になっている。したがって、上記の関係式(4)〜(6)は、下記の式(4)’〜(6)’のように変形される。

Figure 2005325946
・・・(4)’
Figure 2005325946
・・・(5)’
Figure 2005325946
・・・(6)’ Similar to the deep groove ball bearing applied to the tripod type constant velocity universal joint according to the present invention, the standard bearing has dimensions of the outer diameter (D) of the outer ring 6a, the inner diameter (d) of the inner ring 6b, and the bearing width (W). It is determined by the standards of the outer joint member 1 and the tripod member 4, and has the same dimensions as the deep groove ball bearing applied to the tripod type constant velocity universal joint according to the present invention. Therefore, the above relational expressions (4) to (6) are transformed into the following expressions (4) ′ to (6) ′.
Figure 2005325946
... (4) '
Figure 2005325946
... (5) '
Figure 2005325946
... (6) '

上記の関係式(1)’及び(4)’、並びに上記の関係式(2)’及び(5)’を比較すると、本発明に係るトリポード型等速自在継手に適用される深溝玉軸受のボール6cの直径(dB)は、標準軸受のボール6cの直径(dB’)よりも小さくなる。上記の関係式(1)’及び(4)’は、ボール6cの直径(dB)(dB’)の寸法範囲を軸受肉厚{(D−d)/2}との関係で定めている。したがって、本発明に係るトリポード型等速自在継手に適用される深溝玉軸受は、ボール6cの直径(dB)が標準軸受のボール6cの直径(dB’)よりも小さい分だけ、標準軸受よりも外輪6a及び内輪6bの肉厚を確保することができる。また、上記の関係式(2)’及び(5)’は、ボール6cの直径(dB)(dB’)の寸法範囲を軸受幅(W)との関係で定めている。したがって、本発明に係るトリポード型等速自在継手に適用される深溝玉軸受は、軸受幅(W)に対するボール6cの大きさを小さくした分だけ、図1(C)に示す小ピッチのハッチング領域に発生する最大主応力を標準軸受よりも緩和させることができる。これにより、外輪6a及び内輪6bの圧壊強度を高めることができる。 When the above relational expressions (1) ′ and (4) ′ and the above relational expressions (2) ′ and (5) ′ are compared, the deep groove ball bearing applied to the tripod constant velocity universal joint according to the present invention The diameter (d B ) of the ball 6c is smaller than the diameter (d B ′) of the ball 6c of the standard bearing. The above relational expressions (1) ′ and (4) ′ define the dimension range of the diameter (d B ) (d B ′) of the ball 6c in relation to the bearing thickness {(D−d) / 2}. Yes. Therefore, the deep groove ball bearing applied to the tripod type constant velocity universal joint according to the present invention is equivalent to the standard bearing by which the diameter (d B ) of the ball 6c is smaller than the diameter (d B ′) of the ball 6c of the standard bearing. In addition, the thickness of the outer ring 6a and the inner ring 6b can be ensured. In addition, the above relational expressions (2) ′ and (5) ′ define the dimension range of the diameter (d B ) (d B ′) of the ball 6c in relation to the bearing width (W). Therefore, the deep groove ball bearing applied to the tripod type constant velocity universal joint according to the present invention has a small pitch hatching region shown in FIG. 1C corresponding to the size of the ball 6c with respect to the bearing width (W). Can be relaxed more than the standard bearing. Thereby, the crushing strength of the outer ring 6a and the inner ring 6b can be increased.

また、上記の関係式(3)’及び(6)’を比較すると、本発明に係るトリポード型等速自在継手に適用される深溝玉軸受の外輪6aの溝底径(PCD+dB)は、標準軸受の外輪6aの溝底径(PCD’+dB’)よりも小さくなる。上記の関係式(3)’及び(6)’は、外輪6aの溝底径(PCD+dB)(PCD’+dB’)の寸法範囲を外輪6aの外径(D)との関係で定めている。したがって、本発明に係るトリポード型等速自在継手に適用される深溝玉軸受は、外輪6aの外径(D)に対する溝底径(PCD+dB)の大きさを小さくした分だけ、ボール溝6a2の溝底部分における外輪6aの肉厚を標準軸受よりも確保することができる。 Further, when the above relational expressions (3) ′ and (6) ′ are compared, the groove bottom diameter (PCD + d B ) of the outer ring 6a of the deep groove ball bearing applied to the tripod type constant velocity universal joint according to the present invention is standard. It becomes smaller than the groove bottom diameter (PCD ′ + d B ′) of the outer ring 6a of the bearing. The above relational expressions (3) ′ and (6) ′ define the dimension range of the groove bottom diameter (PCD + d B ) (PCD ′ + d B ′) of the outer ring 6a in relation to the outer diameter (D) of the outer ring 6a. Yes. Therefore, the deep groove ball bearing applied to the tripod type constant velocity universal joint according to the present invention has the ball groove 6a2 corresponding to the size of the groove bottom diameter (PCD + d B ) with respect to the outer diameter (D) of the outer ring 6a. The thickness of the outer ring 6a at the groove bottom portion can be ensured more than that of the standard bearing.

以上、本発明の実施形態につき説明したが、本発明は上記実施形態に限定されることなく種々の変形が可能であって、例えば図2(A)では本発明に係るトリポード型等速自在継手に適用される深溝玉軸受の外輪6aの外径(D)、内輪6bの内径(d)、ボール6cの直径(dB)及び軸受幅(W)が下記の関係式(7)を満たすようになっているが、下記の関係式(8)を満たすようにしても構わない。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications are possible. For example, in FIG. 2A, the tripod constant velocity universal joint according to the present invention. The outer diameter (D) of the outer ring 6a, the inner diameter (d) of the inner ring 6b, the diameter (d B ) of the ball 6c, and the bearing width (W) satisfy the following relational expression (7). However, the following relational expression (8) may be satisfied.

Figure 2005325946
・・・(7)
Figure 2005325946
・・・(8)
Figure 2005325946
... (7)
Figure 2005325946
... (8)

また、上記の実施形態では、図2(A)及び図3(A)乃至(C)のように、外輪6a及び内輪6b間に8個のボール6cを1列に配置してあるが、ボール6cの個数は、適宜変更可能である。   In the above embodiment, as shown in FIGS. 2A and 3A to 3C, eight balls 6c are arranged in a row between the outer ring 6a and the inner ring 6b. The number of 6c can be changed as appropriate.

(A)図はトリポード型等速自在継手の軸直交方向の断面図で、(B)図はトリポード型等速自在継手の軸方向の断面図で、(C)図はトリポード型等速自在継手用深溝玉軸受の軸方向の部分断面図で深溝玉軸受の最大主応力の発生領域を示す図である。(A) is a cross-sectional view in the direction perpendicular to the axis of a tripod type constant velocity universal joint, (B) is a cross sectional view in the axial direction of the tripod type constant velocity universal joint, and (C) is a tripod type constant velocity universal joint. It is a figure which shows the generation | occurrence | production area | region of the largest principal stress of a deep groove ball bearing with the fragmentary sectional view of the axial direction of a deep groove ball bearing for an application. (A)図は本発明に係るトリポード型等速自在継手用深溝玉軸受の一実施形態を示す軸方向の断面図で、(B)図は(A)図のトリポード型等速自在継手用深溝玉軸受と適用対象が同じである標準軸受の一例を示す軸方向の断面図である。(A) is an axial sectional view showing an embodiment of a deep groove ball bearing for a tripod type constant velocity universal joint according to the present invention, and (B) is a deep groove for a tripod type constant velocity universal joint of FIG. It is sectional drawing of the axial direction which shows an example of a standard bearing with the same application object as a ball bearing. (A)図乃至(C)図はトリポード型等速自在継手用深溝玉軸受の軸直交方向の断面図である。(A) The figure thru | or (C) figure are sectional drawings of the axis orthogonal direction of the deep groove ball bearing for tripod type constant velocity universal joints.

符号の説明Explanation of symbols

1 外方継手部材
2 トラック溝
3 案内面
4 トリポード部材
5 脚軸
6 トリポード型等速自在継手用深溝玉軸受
6a 外輪
6b 内輪
6c ボール

DESCRIPTION OF SYMBOLS 1 Outer joint member 2 Track groove 3 Guide surface 4 Tripod member 5 Leg shaft 6 Deep groove ball bearing for tripod type constant velocity universal joint 6a Outer ring 6b Inner ring 6c Ball

Claims (3)

内周面に軸方向に延びた3本のトラック溝が形成された外方継手部材と、半径方向に3本の脚軸を突設すると共に外方継手部材の内側に挿入されるトリポード部材と、外方継手部材のトラック溝に外輪を挿入すると共に、外輪を回転自在に支持する内輪をトリポード部材の脚軸に外嵌し、外輪の軌道面と内輪の軌道面との間に複数のボールを介在させた深溝玉軸受とを備え、外輪を回転させながら深溝玉軸受を外方継手部材のトラック溝に沿って移動させるように構成したトリポード型等速自在継手において、
深溝玉軸受の外輪外径(D)、内輪内径(d)及びボール径(dB)の関係が、2.4<{(D−d)/2}/dBであることを特徴とするトリポード型等速自在継手。
An outer joint member in which three track grooves extending in the axial direction are formed on the inner peripheral surface, and a tripod member projecting three leg shafts in the radial direction and inserted inside the outer joint member; The outer ring is inserted into the track groove of the outer joint member, and the inner ring that rotatably supports the outer ring is externally fitted to the leg shaft of the tripod member, and a plurality of balls are interposed between the raceway surface of the outer ring and the raceway surface of the inner ring. A tripod type constant velocity universal joint configured to move the deep groove ball bearing along the track groove of the outer joint member while rotating the outer ring.
The relationship between the outer ring outer diameter (D), inner ring inner diameter (d) and ball diameter (d B ) of the deep groove ball bearing is 2.4 <{(D−d) / 2} / d B. Tripod type constant velocity universal joint.
深溝玉軸受の軸受幅(W)及びボール径(dB)の関係が、2.5<(W/dB)であることを特徴とする請求項1に記載のトリポード型等速自在継手。 The tripod constant velocity universal joint according to claim 1, wherein the relationship between the bearing width (W) and the ball diameter (d B ) of the deep groove ball bearing is 2.5 <(W / d B ). 深溝玉軸受の外輪外径(D)、ボールのピッチ円直径(PCD)及びボール径(dB)の関係が、1.2<{D/(PCD+dB)}であることを特徴とする請求項1又は2に記載のトリポード型等速自在継手。

The relationship among the outer ring outer diameter (D), ball pitch circle diameter (PCD), and ball diameter (d B ) of the deep groove ball bearing is 1.2 <{D / (PCD + d B )}. Item 3. A tripod type constant velocity universal joint according to item 1 or 2.

JP2004145452A 2004-05-14 2004-05-14 Tripod type constant velocity universal joint Withdrawn JP2005325946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004145452A JP2005325946A (en) 2004-05-14 2004-05-14 Tripod type constant velocity universal joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004145452A JP2005325946A (en) 2004-05-14 2004-05-14 Tripod type constant velocity universal joint

Publications (1)

Publication Number Publication Date
JP2005325946A true JP2005325946A (en) 2005-11-24

Family

ID=35472450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004145452A Withdrawn JP2005325946A (en) 2004-05-14 2004-05-14 Tripod type constant velocity universal joint

Country Status (1)

Country Link
JP (1) JP2005325946A (en)

Similar Documents

Publication Publication Date Title
JP2010043667A (en) Fixed-type constant velocity universal joint
JP2007270997A (en) Fixed type constant velocity universal joint
JP2011163442A (en) Sliding tripod constant velocity joint
JP2006266329A (en) Fixed type constant velocity universal joint
JP2007064264A (en) Fixed type constant velocity universal joint
JP2007309366A (en) Constant velocity joint
JP2006266459A (en) High angle fixed uniform speed universal joint
JP2005325946A (en) Tripod type constant velocity universal joint
JP5625534B2 (en) Sliding tripod type constant velocity joint
JP6544207B2 (en) Ball screw
JP2008286330A (en) Tripod-type constant velocity universal joint
JP2006242263A (en) Fixed constant velocity universal joint and its manufacturing method
JP4973930B2 (en) Sliding tripod type constant velocity joint
JP2008175371A (en) Sliding tripod type constant velocity joint
JP2007064402A (en) Cross groove type constant velocity universal joint
JP4745186B2 (en) Fixed constant velocity universal joint
JP2008051190A (en) Fixed type constant velocity universal joint
JP4896673B2 (en) Fixed constant velocity universal joint and manufacturing method thereof
JP2014088889A (en) Tripod type constant velocity joint of double roller type
JP2007024106A (en) Fixed type constant velocity universal joint
JP2007016899A (en) Fixed-type constant-velocity universal joint
JP2009014179A (en) Tripod-type constant velocity universal joint
JP2009127637A (en) Constant velocity universal joint
JP2006266368A (en) Fixed type constant velocity universal joint
JP2007132379A (en) Fixed type constant velocity universal joint

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070807