JP2005325692A - 圧縮着火内燃機関の着火時期推定システム、圧縮着火内燃機関の燃料噴射制御システム - Google Patents

圧縮着火内燃機関の着火時期推定システム、圧縮着火内燃機関の燃料噴射制御システム Download PDF

Info

Publication number
JP2005325692A
JP2005325692A JP2004142416A JP2004142416A JP2005325692A JP 2005325692 A JP2005325692 A JP 2005325692A JP 2004142416 A JP2004142416 A JP 2004142416A JP 2004142416 A JP2004142416 A JP 2004142416A JP 2005325692 A JP2005325692 A JP 2005325692A
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
engine
ignition timing
compression ignition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004142416A
Other languages
English (en)
Inventor
Kazuki Iwatani
一樹 岩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004142416A priority Critical patent/JP2005325692A/ja
Publication of JP2005325692A publication Critical patent/JP2005325692A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】本発明は、内燃機関の機関始動において気筒内での燃料の着火時期をより正確に把握する。
【解決手段】圧縮着火内燃機関の気筒内での燃料の着火時期を推定する着火時期推定システムにおいて、圧縮着火内燃機関が所定の低温状態で始動する場合の、該圧縮着火内燃機関における燃焼トルクを推定、検出する燃焼トルク検出手段(S103〜S105)と、燃焼トルク検出手段によって推定、検出された燃焼トルクに基づいて、圧縮着火内燃機関における燃料の着火時期を推定する着火時期推定手段(S106、S108〜S110、S112)と、を備える。
【選択図】 図3

Description

本発明は、圧縮着火内燃機関における燃料の着火時期を推定する着火時期推定システム、又は燃料噴射時期を制御することで着火時期を調整する燃料噴射制御システムに関する。
圧縮着火内燃機関(以下、単に「内燃機関」ともいう)での燃焼を良好な状態で行うためには、気筒内での燃料の着火時期が目標時期となるのが好ましい。この目標時期は内燃機関の機関負荷や機関回転速度によって変動するが、例えば、圧縮行程上死点直後の時期等が挙げられる。そこで、気筒内の圧力を気筒内圧力センサで検出し、その検出された圧力の推移である燃焼圧力波形の特徴点から着火時期を検出して、該着火時期が目標時期となるべく燃料噴射時期を制御する技術が公開されている(例えば、特許文献1を参照。)。
また、圧縮行程上死点前の機関出力軸の回転角の変動と圧縮行程上死点後の機関出力軸の回転角の変動とを比較することで、内燃機関の気筒内での燃料の着火時期を検出する技術が公開されている(例えば、特許文献2を参照。)。
特開平9−68081号公報 特開2001−82224号公報 特開平9−303188号公報
内燃機関の機関始動時、特に外気温度が零下であるような極低温状態での機関始動時においては、気筒内壁温も比較的低くなるため燃料の着火性が低下する。そのため、着火時期が理想の着火時期からずれて十分なトルクを発生させられず内燃機関の機関始動が困難となる。従って、内燃機関の着火時期を正確に把握する必要がある。
しかし、気筒内での燃焼における着火現象は短時間での現象であるため、着火時期の正確な把握は困難であり、また従来では、より正確に検出するために気筒内圧力センサ等を設けているが、このようにすると内燃機関を構成するコストが増加する虞がある。
本発明では、上記した問題に鑑み、内燃機関の機関始動において気筒内での燃料の着火時期をより正確に把握することを目的とする。
本発明においては、上記した課題を解決するために、内燃機関の機関始動時において該内燃機関が比較的低温の状態にあるときの、気筒内での燃料の着火時期と気筒内での燃焼によって発生する燃焼トルクとの関係に着目した。これは、内燃機関が比較的低温の状態にあるときは、気筒内への燃料供給量(燃料噴射料)が増加しても、機関始動に関連する燃焼トルクの変動は緩やかであり、一方で、気筒内での燃料の着火時期が変動すると、燃焼トルクが大きく変動するからである。
そこで、本発明は、圧縮着火内燃機関の気筒内の燃料の着火時期を推定する着火時期推定システムにおいて、圧縮着火内燃機関が所定の低温状態で始動する場合の、該圧縮着火内燃機関における燃焼トルクを推定、検出する燃焼トルク検出手段と、前記燃焼トルク検
出手段によって推定、検出された燃焼トルクに基づいて、前記圧縮着火内燃機関における燃料の着火時期を推定する着火時期推定手段と、を備える。
ここで、所定の低温状態とは、上述したように、気筒内への燃料供給量に対して燃焼トルクの変動が比較的小さく、一方で、気筒内での燃料の着火時期の変動に対して燃焼トルクの変動が比較的大きくなる、内燃機関の状態をいう。例えば、一定時間内燃機関が稼動して暖機された後に停止し、その後直ちに機関始動するような場合は、気筒内への燃料供給量に対して燃焼トルクの変動が比較的大きいため、所定の低温状態における機関始動とは言い難い。また、内燃機関が十分に機関停止した後に機関始動する場合や、外気温度が零下での機関始動の場合等には、気筒内への燃料供給量に対して燃焼トルクの変動が比較的小さく、一方で、気筒内での燃料の着火時期の変動に対して燃焼トルクの変動が比較的大きくなるため、所定の低温状態における機関始動と言い得る。尚、以上は例示であって、内燃機関の置かれる環境によって異なる場合もある。
そして、所定の低温状態における機関始動時の燃焼トルクは、気筒内での燃料の着火時期に大きく関連することを踏まえて、燃焼トルク検出手段によって検出された燃焼トルクに基づくことで気筒内での燃料の着火時期を、より正確に把握することが可能となる。
ここで、上記の圧縮着火内燃機関の着火時期推定システムにおいて、前記着火時期推定手段は、前記圧縮着火内燃機関における燃料噴射時期と、噴射燃料が着火するまでの所定の着火遅れ時間を考慮して、前記燃焼トルク検出手段によって推定、検出された燃焼トルクに基づいて、前記圧縮着火内燃機関における燃料の着火時期を推定するようにしてもよい。
圧縮着火内燃機関においては、燃料が噴射されてから該噴射燃料が着火するまでに一定の前記所定の着火遅れ時間が存在する。従って、着火時期推定手段による着火時期の推定に際しては、燃料噴射時期から所定の着火遅れ時間が経過した後でなければ燃料の着火は生じない点を踏まえて着火時期の推定を行うことで、より正確な着火時期の推定が可能となる。尚、この所定の着火遅れ時間は、内燃機関の運転状態等によって変動するので、この点を踏まえて着火時期の推定を行ってもよい。
ここで、上述までの圧縮着火内燃機関の着火時期推定システムにおいて、前記圧縮着火内燃機関の機関回転速度を推定、検出する機関回転速度検出手段を、更に備える場合、前記燃焼トルク検出手段は、前記機関回転速度検出手段によって推定、検出された機関回転速度の推移に基づいて前記圧縮着火内燃機関における燃焼トルクを推定、検出するようにしてもよい。
機関始動時において燃焼による燃焼トルクを顕著に反映するものとして、内燃機関の機関回転速度が挙げられる。そして、機関回転速度を検出する機関回転速度検出手段は、通常の内燃機関における燃焼制御等のために必須の構成要素である。従って、機関始動時の着火時期の推定のために新たに構成要素を設ける必要もなく、燃焼トルクを推定、検出することが可能となり、以て着火時期のより正確な推定が可能となる。
ここで、上記の圧縮着火内燃機関の着火時期推定システムにおいて、前記機関回転速度の推移は、前記圧縮着火内燃機関の一の気筒の圧縮行程上死点における機関回転速度と、該一の気筒の次に燃焼が行われる気筒の圧縮行程上死点における機関回転速度との差であってもよい。
即ち、内燃機関の各気筒毎に順次迎える圧縮行程上死点での機関回転速度の変動を、機関回転速度の推移とするものである。機関始動時において各気筒において燃焼トルクが発
生しているときは、機関回転速度は徐々に上昇していく。従って、気筒間での機関回転速度の上昇における変化量に基づいて燃焼トルクを推定、検出することが可能となり、以て着火時期のより正確な推定が可能となる。
ここで、上記の機関回転速度検出手段を備える圧縮着火内燃機関の着火時期推定システムにおいて、前記圧縮着火内燃機関の始動時に、該圧縮着火内燃機関に対して外部より駆動力を与えクランキングを行うスタータと、前記スタータの駆動のための電力を該スタータに供給するバッテリと、前記バッテリの蓄電量を検出するバッテリ蓄電量検出手段と、を更に備え、前記機関回転速度検出手段は、前記バッテリ蓄電量検出手段によって検出された前記バッテリの蓄電量に基づいて前記圧縮着火内燃機関の機関回転速度を推定、検出するようにしてもよい。
前記機関回転速度検出手段が、内燃機関の出力軸の回転角の変化量から機関回転速度を推定、検出する場合、一の回転角と他の回転角との差である変化量に基づくため機関回転速度を正確に把握することが困難であり、特に機関始動時等の機関回転速度が急峻に変動する場合には推定、検出される機関回転速度の精度が低下する。
一方で、スタータによって機関始動時にクランキングを行う場合、クランキングによって消費されるバッテリの蓄電量は比較的に顕著に減少し、その減少量の検出は比較的容易に精度良く行うことが可能である。そして、バッテリの蓄電量は、機関回転速度の上昇とともに減少する関係にあることから、バッテリの蓄電量に基づくことで機関始動時の機関回転速度をより正確に推定、検出することが可能となり、以て着火時期の推定精度が上昇する。
ここで、上述までの圧縮着火内燃機関の着火時期推定システムによって推定される着火時期が目標着火時期となるべく、該圧縮着火内燃機関における燃料噴射時期を制御する圧縮着火内燃機関の燃料噴射制御システムを構築することも可能である。
目標着火時期とは、内燃機関の機関始動において燃焼トルクを十分に発生させて機関回転速度を円滑に上昇させるために設定される気筒内での燃料の着火時期である。従って、上述までの圧縮着火内燃機関の着火時期推定システムによってより正確に推定された着火時期が目標着火時期とずれていた場合には、燃料噴射時期を制御することで、最終的に実際の着火時期を目標着火時期に近づけて、より円滑な機関始動を図る。例えば、推定された着火時期が目標着火時期より進角側の場合は、燃料噴射時期を遅角側に移行し、推定された着火時期が目標着火時期より遅角側の場合は、燃料噴射時期を進角側に移行すればよい。
本発明に係る圧縮着火内燃機関の着火時期推定システムにおいては、圧縮着火内燃機関の機関始動において気筒内での燃料の着火時期をより正確に把握することが可能となる。
ここで、本発明に係る圧縮着火内燃機関の着火時期推定システムと燃料噴射制御システムの実施の形態について、図面に基づいて説明する。
図1は、本発明が適用される内燃機関1およびその制御系統の概略構成を表すブロック図である。内燃機関1は、4つの気筒2(各気筒を#1、#2、#3、#4で表す)を有する圧縮着火式の内燃機関である。また、気筒2内に直接燃料を噴射する燃料噴射弁3を備えている。燃料噴射弁3は、燃料を所定圧に蓄圧する蓄圧室4と接続されている。内燃
機関1には吸気枝管7が接続されており、吸気枝管7の各枝管は、吸気ポートを介して気筒内に接続される。同様に、内燃機関1には排気枝管12が接続され、排気枝管12の各枝管は排気ポートを介して気筒内に接続される。ここで、吸気ポートおよび排気ポートには、各々吸気弁および排気弁が設けられている。
また、吸気枝管7は吸気管8に接続されている。更に、吸気管8における吸気枝管7の直上流に位置する部位には、吸気管8内を流れる吸気の流量を調節する吸気絞り弁10が、更に吸気絞り弁10の上流側には、吸気管8を流れる吸入空気量を検出するエアフローメータ9が設けられている。この吸気絞り弁10には、ステップモータ等で構成されて該吸気絞り弁10を開閉駆動する吸気絞り用アクチュエータ11が取り付けられている。一方、内燃機関1には、EGR装置21が設けられている。EGR装置21は排気枝管12を流れる排気の一部を吸気枝管7へ再循環させる。EGR装置21は、排気枝管12(上流側)から吸気枝管7(下流側)へ延出しているEGR通路22と、EGR通路22上に上流側から順に設けられたEGRガス冷却用のEGRクーラ23と、EGRガスの流量調整用のEGR弁24と、から構成される。
エアフローメータ9と吸気絞り弁10との間に位置する吸気管8には、排気のエネルギーを駆動源として作動する過給機16のコンプレッサ側が設けられ、排気枝管12には過給機16のタービン側が設けられている。
過給機16より下流の吸気管8には、過給機16によって加圧されて高温となった吸入空気を冷却するためのインタークーラ15が設けられている。また、過給機16のタービン側は、排気管13と接続され、この排気管13は、下流にてマフラーに接続されている。そして、排気管13の途中には、内燃機関1からの排気を浄化する排気浄化触媒14が設けられている。
ここで、内燃機関1のクランクシャフト27はスタータモータ28と接続され、機関始動時においてはスタータモータ28によって内燃機関1のクランキングが行われる。また、スタータモータ28は、その駆動のための電力を供給するバッテリ29と電気的に接続されている。
また、内燃機関1には、該内燃機関1を制御するための電子制御ユニット(以下、「ECU」という)20が併設されている。このECU20は、CPUの他、後述する各種の制御ルーチン及びマップを記憶するROM、RAM等を備えており、内燃機関1の運転条件や運転者の要求に応じて内燃機関1の運転状態等を制御するユニットである。例えば、燃料噴射弁3は、ECU20からの制御信号によって開閉動作を行う。
ここで、アクセル開度センサ26がECU20と電気的に接続されており、ECU20はアクセル開度に応じた信号を受け取り、それより内燃機関1に要求される機関負荷等を算出する。また、クランクポジションセンサ25がECU20と電気的に接続されており、ECU20は内燃機関1のクランクシャフト27の回転角に応じた信号を受け取り、内燃機関1の機関回転速度や、該機関回転速度とギア比等から内燃機関1が搭載されている車両の車両速度等を算出する。更に、内燃機関1のイグニッションスイッチ30が、ECU20と電気的に接続されている。これにより、ECU20は、内燃機関1への機関始動指令I/Gを受け取る。
そして、バッテリ29もECU20と電気的に接続されており、ECU20からの指令によってバッテリ29がスタータモータ28へ電力を供給するとともに、バッテリ29における蓄電量がECU20へと伝えられる。尚、本実施の形態においては、バッテリ29の蓄電量として、その出力端子間の電圧(以下、「端子間電圧」という)が利用されてい
る。
ここで、内燃機関1が置かれる状況においてその外気温度が零下である場合に内燃機関1の機関始動を行うとき(以下、「極低温始動時」という)、スタータモータ28によってクランキングを開始するとともに、燃料噴射弁3からの燃料噴射が開始される。このとき、内燃機関1の機関温度が比較的低いため、気筒内での燃焼が良好に行われにくい。その結果、燃料噴射弁3から多量の燃料を気筒内に供給しても、その供給量に応じた燃焼トルクは発生しない。
このような場合、気筒内での燃料の着火時期に着目する。図2には、極低温始動時の燃料の着火時期と該燃料の燃焼によって発生する燃焼トルクとの関係が示されている。図2の横軸は着火時期を、縦軸は燃焼トルクを表す。図2に示すように、内燃機関1では、着火時期が圧縮行程上死点(図2中、「TDC」で表されている)前の時期からTDC以降の所定の時期Tainjまでの間は、着火時期が遅角側に進むに従い発生する燃焼トルクが大きくなり、所定の時期Tainjで燃焼トルクが最大となる。そして、TDC後の所定の時期Tainj以降は、着火時期が遅角側に進むに従い燃焼トルクは小さくなる。一方で、極低温時においては、上述したように、燃料噴射量を増量しても、燃焼トルクは大きく変動しない。尚、図2中のT1、T2については後述する。
そこで、極低温時の内燃機関1の機関始動時においては、図3に示す燃料の着火時期を推定するとともに、その推定された着火時期に基づいて燃料噴射時期を制御する機関始動制御を行うことで、内燃機関1のより円滑な機関始動を行う。尚、図3に示す機関始動制御は、内燃機関1の機関始動時において実行されるルーチンである。
S101では、イグニッションスイッチ30から機関始動指令I/Gが発せられたか否かが判定される。イグニッションスイッチ30から機関始動指令I/Gが発せられたと判定されるとS102へ進み、イグニッションスイッチ30から機関始動指令I/Gが発せられていないと判定されるとS101の処理が再び行われる。
S102では、スタータモータ28によってクランキングを開始する。S102の処理が終了すると、S103へ進む。
S103では、内燃機関1の各気筒における圧縮行程上死点時の機関回転速度の変化量ΔNeが算出される。尚、内燃機関1の機関回転速度は、クランクポジションセンサ25からの信号に基づいて算出される。変化量ΔNeの算出について、図4に基づいて説明する。図4は、内燃機関1の機関回転速度の推移を示す図であり、横軸はクランクアングルを、縦軸は機関回転速度を表す。そして、図4中、#1TDC、#3TDC、#4TDCとあるのは、それぞれ気筒2#1における圧縮行程上死点、気筒2#3における圧縮行程上死点、気筒2#4における圧縮行程上死点を意味する。
ここで、本実施の形態においては、圧縮行程上死点を迎える順序が隣り合う気筒2#1と気筒2#3の各圧縮行程上死点時の機関回転速度の変化量をΔNeとする。機関始動時においては、気筒内で発生した燃焼トルクによって内燃機関1の機関回転速度が上昇していくことより、このΔNeは、気筒内で発生した燃焼トルクとほぼ比例する。そこで、本実施の形態においては、気筒内で発生した燃焼トルクに代替するパラメータとして、機関回転速度の変化量ΔNeを用いる。従って、図2に示した燃焼トルクと着火時期との関係と同様に、機関回転速度の変化量ΔNeと着火時期との関係においても、極低温時の機関始動において、圧縮行程上死点以降の以降の所定の時期Tainjに燃料の着火時期を迎えると、機関回転速度の変化量ΔNeが最大となる。S103の処理が終了すると、S104へ進む。
S104では、S103で算出された機関回転速度の変化量ΔNeが零より小さいか否かが判定される。機関回転速度の変化量ΔNeが零より小さいと判定されると、それは気筒2内での燃焼状態が失火状態となっていることを意味する。そこで、その場合は、S114へ進み、失火と判定するとともに、燃料噴射弁3からの燃料噴射時期ainjを進角側に移行する。これにより、気筒2内での燃焼状態を失火状態から回避させる。また、S104で機関回転速度の変化量ΔNeが零以上であると判定されると、S105へ進む。
ここで、機関回転速度の変化量ΔNeと着火時期との関係は、図2に示した燃焼トルクと着火時期との関係に準ずるのは上述の通りである。そこで、機関回転速度の変化量ΔNeと着火時期との関係は、図2に示す機関回転速度の変化量ΔNeと着火時期との関係に基づいて、図5(a)〜(c)のように表すことが可能となる。図5の各図の横軸は機関回転速度の変化量ΔNeを表し、縦軸はクランクアングル(着火時期)を表す。即ち、機関回転速度の変化量ΔNeが0〜ΔNe1の間の値である場合、換言すると図2において燃焼トルクがT1で表される範囲にある場合は、機関回転速度の変化量ΔNeと着火時期は一義的な関係となる。一方で、機関回転速度の変化量ΔNeがΔNe1〜ΔNe2の間の値である場合、換言すると図2において燃焼トルクがT2で表される範囲にある場合は、一の機関回転速度の変化量ΔNeから二の着火時期が導かれる関係となる。
そこで、S105では、機関回転速度の変化量ΔNeが0以上であって且つΔNe1未満であるか否かが判定される。そして、機関回転速度の変化量ΔNeが0以上であって且つΔNe1未満であると判定されると、それは気筒2内で発生した燃焼トルクが図2で示す範囲T1内の燃焼トルクであることを意味し、S106へ進む。
S106では、着火時期acmbが、図5(a)に示す機関回転速度の変化量ΔNeとクランクアングル(着火時期)との関係から算出される。この場合、機関回転速度の変化量ΔNeと着火時期は一義的な関係となるため、図5(a)に示すように、S103で算出された機関回転速度の変化量ΔNeに基づいて、一の着火時期acmbが算出される。S106の処理が終了すると、S107へ進む。
S107では、機関回転速度の変化量ΔNeが最大となる着火時期、換言すると燃焼トルクが最大となる着火時期であるTainjに、実際の着火時期acmbが近づくべく、燃料噴射弁3からの燃料噴射時期が遅角側に移行される。S107の処理が終了すると、S115へ進む。
次に、S105で、機関回転速度の変化量ΔNeが0以上であって且つΔNe1未満ではない、即ちΔNe1以上であって且つΔNe2以下であると判定されると、それは気筒2内で発生した燃焼トルクが図2で示す範囲T2内の燃焼トルクであることを意味し、S108へ進む。
S108では、着火時期acmbが、図5(b)、(c)に示す機関回転速度の変化量ΔNeとクランクアングル(着火時期)との関係から算出される。この場合、機関回転速度の変化量ΔNeと着火時期との関係は、一の機関回転速度の変化量ΔNeから二の着火時期が導かれる関係となるため、図5(b)、(c)に示すように、S103で算出された機関回転速度の変化量ΔNeに基づいて、二の着火時期acmb1とacmb2が算出される。ここで、acmb1はacmb2より進角側の着火時期とする。S108の処理が終了すると、S109へ進む。
S109では、S108で算出された進角側の着火時期acmb1が、燃料噴射弁3からの燃料噴射時期ainjから所定の着火遅れ時間α経過した時期(図3中で、ainj
+αで表される時期)より前か否かが判定される。燃料噴射弁3から噴射された燃料は、その燃料噴射時期から所定の着火遅れ時間を経過した後に着火する。即ち、噴射燃料はainj+αで表される時期よりも前の時期に着火することはない。ここで、所定の着火遅れ時間αは、内燃機関1の運転状態等に応じて変化させてもよい。
そこで、S109では、進角側の着火時期acmb1がainj+αで表される時期よりも前の時期であるか否かによって、進角側の着火時期acmb1が適正な着火時期であるか否かを判定する。そして、進角側の着火時期acmb1がainj+αで表される時期よりも前の時期ではないと判定されるときはS110へ進み、進角側の着火時期acmb1がainj+αで表される時期よりも前の時期であると判定されるときはS112へ進む。
S110では、S108で算出された着火時期acmb1、acmb2のうち、進角側の着火時期acmb1を、内燃機関1における実際の着火時期と設定する。この場合、着火時期acmb1、acmb2、燃料噴射時期ainj等の関係は、図5(b)に示すようになる。即ち、進角側の着火時期acmb1は、ainj+αで表される時期よりも遅角側の時期となり、更に着火時期acmb2は更に遅角側の着火時期となる。そこで、ainj+αで表される時期に最も近い進角側の着火時期acmb1を実際の着火時として設定することで、より正確な着火時期が算出される。S110の処理が終了すると、S111へ進む。
S111では、機関回転速度の変化量ΔNeが最大となる着火時期、換言すると燃焼トルクが最大となる着火時期であるTainjに、実際の着火時期acmb1が近づくべく、燃料噴射弁3からの燃料噴射時期が遅角側に移行される。S111の処理が終了すると、S115へ進む。
S112では、S108で算出された着火時期acmb1、acmb2のうち、遅角側の着火時期acmb2を、内燃機関1における実際の着火時期と設定する。この場合、着火時期acmb1、acmb2、燃料噴射時期ainj等の関係は、図5(c)に示すようになる。即ち、進角側の着火時期acmb1は、ainj+αで表される時期よりも進角側の時期となるため、実際の着火時期としては不適切な時期となる。そこで、ainj+αで表される時期より遅角側の着火時期acmb2を実際の着火時として設定することで、より正確な着火時期が算出される。S112の処理が終了すると、S113へ進む。
S113では、機関回転速度の変化量ΔNeが最大となる着火時期、換言すると燃焼トルクが最大となる着火時期であるTainjに、実際の着火時期acmb2が近づくべく、燃料噴射弁3からの燃料噴射時期が進角側に移行される。S113の処理が終了すると、S115へ進む。
S115では、内燃機関1の機関回転速度Neが、所定の機関回転速度Ne0を超えているか否かが判定される。ここで、所定の機関回転速度Ne0は、内燃機関1の機関始動が完了したか否かを判定するための機関回転速度Neの閾値である。機関回転速度Neが、所定の機関回転速度Ne0を超えたと判断されると本制御を終了し、機関回転速度Neが、所定の機関回転速度Ne0を超えていないと判断されると、S103以降の処理が行われる。
本制御によると、気筒2内で生じる燃焼トルクと着火時期との関係および燃焼トルクと機関回転速度の変化量ΔNeとの関係から、より正確に気筒2内での燃料の着火時期を推定することが可能となる。そして、その推定された着火時期を目標とする着火時期Tainjに近づけるべく燃料噴射時期を制御することで、燃焼トルクをより効率的に発生させ
てより円滑な機関始動が可能となる。
また、上記の機関始動制御においては、気筒2内で発生する燃焼トルクと関連性を有する機関回転速度の検出は、クランクポジションセンサ25からの信号に基づいて行われる。ここで、クランクポジションセンサ25は、内燃機関1のクランクシャフト27の回転角の変化量から機関回転速度を検出する。即ち、クランクポジションセンサ25からの信号に基づく機関回転速度の検出は、一の回転角と他の回転角との差である変化量に基づくことになり、図6に示すようにその検出された機関回転速度は平均化された値となる。
図6は、図4と同様に、内燃機関1の機関回転速度の推移を示す図であり、横軸はクランクアングルを、縦軸は機関回転速度を表す。そして、図4中、#1TDC、#3TDC、#4TDCとあるのは、それぞれ気筒2#1における圧縮行程上死点、気筒2#3における圧縮行程上死点、気筒2#4における圧縮行程上死点を意味する。ここで、図6中の線L1は、実際の内燃機関1の機関回転速度の推移を表し、線L2はクランクポジションセンサ25からの信号に基づいてECU20が把握する内燃機関1の機関回転速度の推移を表す。上述のように、線L2で表される機関回転速度の推移は、線L1で表される機関回転速度の推移を平均化したものとなる。
従って、実際の機関回転速度の変化量がΔNe’であるのに対して、ECU20が把握する機関回転速度の変化量はΔNeとなり、ΔNe’−ΔNeの誤差が生じる。その結果、機関回転速度の変化量に関連する燃焼トルクの算出の精度が低下し、それに伴い気筒2内での燃料の着火時期の推定精度も低下する。
そこで、機関始動時にクランキングを行うスタータモータ28と、それに電力を供給するバッテリ29に着目する。スタータモータ28のクランキングによって消費されるバッテリ29の蓄電量を、その端子間電圧VbとしてECU20は精度良く把握することが可能である。そして、バッテリ29の端子間電圧Vbは、機関回転速度の上昇とともに減少する関係にあることから、以下の式(1)に従いバッテリ29の端子間電圧Vbに基づいて、機関始動時の機関回転速度をより正確に算出することが可能となる。その結果、機関始動制御における着火時期の推定精度が上昇する。
機関回転速度Ne=a1 × Vb^2 ・・・式(1)
a1は、スタータモータ28の出力特性や内燃機関1のクランクシャフト27等の回転体の慣性モーメント等によって決定される定数である。
本発明の実施の形態に係る圧縮着火内燃機関の着火時期推定システムが適用される圧縮着火内燃機関およびその制御系統の概略構成を表す図である。 本発明の実施の形態に係る圧縮着火内燃機関の着火時期推定システムが適用される圧縮着火内燃機関において、その機関始動時の着火時期と燃焼トルクとの関係を示す図である。 本発明の実施の形態に係る圧縮着火内燃機関の着火時期推定システムおよび燃料噴射制御システムが適用される圧縮着火内燃機関において、機関始動時に実行される機関始動制御に関するフローチャートである。 本発明の実施の形態に係る圧縮着火内燃機関の着火時期推定システムおよび燃料噴射制御システムが適用される圧縮着火内燃機関において、機関始動時の機関回転速度の推移を示す第一の図である。 本発明の実施の形態に係る圧縮着火内燃機関の着火時期推定システムおよび燃料噴射制御システムが適用される圧縮着火内燃機関において、機関回転速度の変化量と着火時期との関係を表す図である。 本発明の実施の形態に係る圧縮着火内燃機関の着火時期推定システムおよび燃料噴射制御システムが適用される圧縮着火内燃機関において、機関始動時の機関回転速度の推移を示す第二の図である。
符号の説明
1・・・・圧縮着火内燃機関(内燃機関)
2・・・・気筒
3・・・・燃料噴射弁
20・・・・ECU
25・・・・クランクポジションセンサ
28・・・・スタータモータ
29・・・・バッテリ
30・・・・イグニッションスイッチ

Claims (6)

  1. 圧縮着火内燃機関が所定の低温状態で始動する場合の、該圧縮着火内燃機関における燃焼トルクを推定、検出する燃焼トルク検出手段と、
    前記燃焼トルク検出手段によって推定、検出された燃焼トルクに基づいて、前記圧縮着火内燃機関における燃料の着火時期を推定する着火時期推定手段と、を備える圧縮着火内燃機関の着火時期推定システム。
  2. 前記着火時期推定手段は、前記圧縮着火内燃機関における燃料噴射時期と、噴射燃料が着火するまでの所定の着火遅れ時間を考慮して、前記燃焼トルク検出手段によって推定、検出された燃焼トルクに基づいて、前記圧縮着火内燃機関における燃料の着火時期を推定することを特徴とする請求項1に記載の圧縮着火内燃機関の着火時期推定システム。
  3. 前記圧縮着火内燃機関の機関回転速度を推定、検出する機関回転速度検出手段を、更に備え、
    前記燃焼トルク検出手段は、前記機関回転速度検出手段によって推定、検出された機関回転速度の推移に基づいて前記圧縮着火内燃機関における燃焼トルクを推定、検出することを特徴とする請求項1又は請求項2に記載の圧縮着火内燃機関の着火時期推定システム。
  4. 前記機関回転速度の推移は、前記圧縮着火内燃機関の一の気筒の圧縮行程上死点における機関回転速度と、該一の気筒の次に燃焼が行われる気筒の圧縮行程上死点における機関回転速度との差であることを特徴とする請求項3に記載の圧縮着火内燃機関の着火時期推定システム。
  5. 前記圧縮着火内燃機関の始動時に、該圧縮着火内燃機関に対して外部より駆動力を与えクランキングを行うスタータと、
    前記スタータの駆動のための電力を該スタータに供給するバッテリと、
    前記バッテリの蓄電量を検出するバッテリ蓄電量検出手段と、を更に備え、
    前記機関回転速度検出手段は、前記バッテリ蓄電量検出手段によって検出された前記バッテリの蓄電量に基づいて前記圧縮着火内燃機関の機関回転速度を推定、検出することを特徴とする請求項3又は請求項4に記載の圧縮着火内燃機関の着火時期推定システム。
  6. 請求項1から請求項5のいずれかに記載の圧縮着火内燃機関の着火時期推定システムによって推定される前記圧縮着火内燃機関における着火時期が目標着火時期となるべく、該圧縮着火内燃機関における燃料噴射時期を制御する圧縮着火内燃機関の燃料噴射制御システム。
JP2004142416A 2004-05-12 2004-05-12 圧縮着火内燃機関の着火時期推定システム、圧縮着火内燃機関の燃料噴射制御システム Withdrawn JP2005325692A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004142416A JP2005325692A (ja) 2004-05-12 2004-05-12 圧縮着火内燃機関の着火時期推定システム、圧縮着火内燃機関の燃料噴射制御システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004142416A JP2005325692A (ja) 2004-05-12 2004-05-12 圧縮着火内燃機関の着火時期推定システム、圧縮着火内燃機関の燃料噴射制御システム

Publications (1)

Publication Number Publication Date
JP2005325692A true JP2005325692A (ja) 2005-11-24

Family

ID=35472227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004142416A Withdrawn JP2005325692A (ja) 2004-05-12 2004-05-12 圧縮着火内燃機関の着火時期推定システム、圧縮着火内燃機関の燃料噴射制御システム

Country Status (1)

Country Link
JP (1) JP2005325692A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263043A (ja) * 2006-03-29 2007-10-11 Toyota Motor Corp 内燃機関の燃焼制御システム
JP2011153547A (ja) * 2010-01-26 2011-08-11 Denso Corp 燃料噴射装置
WO2014076753A1 (ja) * 2012-11-13 2014-05-22 本田技研工業株式会社 車両の停止制御装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263043A (ja) * 2006-03-29 2007-10-11 Toyota Motor Corp 内燃機関の燃焼制御システム
JP2011153547A (ja) * 2010-01-26 2011-08-11 Denso Corp 燃料噴射装置
WO2014076753A1 (ja) * 2012-11-13 2014-05-22 本田技研工業株式会社 車両の停止制御装置
US9688254B2 (en) 2012-11-13 2017-06-27 Honda Motor Co., Ltd. Stop control system for vehicle

Similar Documents

Publication Publication Date Title
US7532973B2 (en) Control apparatus of direct injection internal combustion engine
US7458353B2 (en) Automatic internal combustion engine stop device, internal combustion engine provided with the same and automatic internal combustion engine stop method
US8316828B2 (en) Exhaust gas recirculation diagnostic for coordinated torque control systems
US7848875B2 (en) Engine automatic stop-start controller
US8676478B2 (en) Engine stop control device
US7027911B2 (en) Apparatus for controlling engine rotation stop by estimating kinetic energy and stop position
US7698049B2 (en) Speed control in a torque-based system
US8000885B2 (en) Engine stop control device
US8086392B2 (en) Post oxygen sensor performance diagnostic with minimum air flow
US20100125400A1 (en) Fuel temperature estimation in a spark ignited direct injection engine
US9145796B2 (en) Control unit for variable valve timing mechanism and control method for variable valve timing mechanism
EP1918555A1 (en) Controller for diesel internal combustion engine
JP2006057524A (ja) エンジン回転停止制御装置
JP3991714B2 (ja) 排気制御バルブ付き2サイクル内燃機関の電子式制御装置
JP5273547B2 (ja) エンジン制御装置
JP2009215887A (ja) エンジン回転停止制御装置
US6769401B2 (en) Power output control system for internal combustion engine
JP2005325692A (ja) 圧縮着火内燃機関の着火時期推定システム、圧縮着火内燃機関の燃料噴射制御システム
JP5059043B2 (ja) エンジン停止始動制御装置
JP4661747B2 (ja) エンジンの停止制御装置
JP2008095519A (ja) エンジンの停止制御装置
JP2007321651A (ja) 内燃機関の始動制御装置
JP5374471B2 (ja) エンジン回転停止制御装置
US11242818B2 (en) Control device of internal combustion engine
EP3626956B1 (en) Engine unit

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070807