JP2005325022A - ガラスレンズ成形用型及びその製造方法並びにガラスレンズ成形方法 - Google Patents

ガラスレンズ成形用型及びその製造方法並びにガラスレンズ成形方法 Download PDF

Info

Publication number
JP2005325022A
JP2005325022A JP2005166085A JP2005166085A JP2005325022A JP 2005325022 A JP2005325022 A JP 2005325022A JP 2005166085 A JP2005166085 A JP 2005166085A JP 2005166085 A JP2005166085 A JP 2005166085A JP 2005325022 A JP2005325022 A JP 2005325022A
Authority
JP
Japan
Prior art keywords
molding
curved surface
surface portion
glass lens
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005166085A
Other languages
English (en)
Inventor
Shinichiro Hirota
慎一郎 広田
Takeo Takiguchi
壮雄 滝口
Kishio Sugawara
紀士男 菅原
Hiroaki Takahara
弘明 高原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2005166085A priority Critical patent/JP2005325022A/ja
Publication of JP2005325022A publication Critical patent/JP2005325022A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/40Product characteristics
    • C03B2215/46Lenses, e.g. bi-convex
    • C03B2215/47Bi-concave
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/40Product characteristics
    • C03B2215/46Lenses, e.g. bi-convex
    • C03B2215/48Convex-concave

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

【課題】 ガラスの精密プレスによって、少なくとも一方の光学機能面が凹面をなしたガラスレンズを歩留まり良く安定してレンズを成形することができる成形用型及びその製造方法並びにガラスレンズ成形方法を提供する。
【解決手段】 成形型の成形面を、ガラスレンズの凹面を成形するための凸状曲面部と、凸状曲面部の周囲に凸状曲面部から外側に連続して形成されて中心軸とほぼ直交する平面部と、凸状曲面部と平面部との境界部に形成され凸状曲面部から連続して滑らかに変化する曲面によって平面部に移行するように形成された境界曲面部とを有して構成した。成形型は、荒加工工程と仕上研削工程とで成形される。仕上研削工程では、荒加工後の素材を回転させながら、高速回転する仕上研削用砥石を素材の仕上面に接触させつつ中心軸から外側に向けて所定の軌跡を描くように移動させる。この成形型を胴型、上型又は下型として用いて、ガラスレンズを成形する。
【選択図】図1

Description

本発明は、ガラスの精密プレス成形に用いられる成形用型及びその製造方法並びにガラスレンズ成形方法に関する。
近年、プレス後に被成形体のプレス面を研磨等の面仕上げ処理を施すまでもなくレンズとしての面精度が得られる精密プレス成形によって特に少なくとも一方の面が非球面をなした非球面ガラスレンズを製造する技術が種々検討されている。
ところで、この技術による非球面レンズの製造は、両凸レンズが中心であったが、最近、この技術によって非球面の凹メニスカスレンズや両凹レンズを製造したいという要請が高まってきている。なお、この種の凹メニスカスレンズや両凹レンズにおいては、各種のレンズ系に組み込むために、図5に示したように、光学機能面(光学的有効径領域)である凹面41の外側に光軸と直交する平面部43を設けることが必要とされる。
しかし、精密プレス成形によってこの様な凹メニスカスレンズ及び両凹レンズを製造する技術については、いまだ十分に検討されておらず、この成形に用いるための成形用型についてもその報告例は極めて少ない。
精密プレス成形を用いて上記凹メニスカスレンズを成形する方法として従来知られているのは、図6R>6、図7、図8、図9及び図10に示されるような方法であった。
図6〜10に示される方法は、いずれも、胴型30の成形室30A内に摺動可能に挿入配置された上型10と下型20との間の成形空間に成形材料をいれて成形するものである。このうち、図6〜7に示される方法は、成形後に、レンズの一方の側の外周部を研削加工して平面部43を形成するものであり、図8〜10に示される方法は、成形時に平面部43をも同時に形成するものである。
図6〜7に示される方法は、レンズの凹面を成形するための上型10の加工技術上の理由から結果的に、上型10の外側領域の曲面が凸状曲面部101を略延長したような形状(図6)や、あるいは、砥石の摩耗を極力防いで凸状曲面部の要求精度を加工上において確保しやすくするために、レンズ有効径外での加工部をできるだけなくした形状(図7)にしたものである。これらの方法では、成形によって得られる成形体自体には平面部が形成されていないので、成形後にあらためて平面部を研削加工等によって形成する必要がある。
また、図8に示される方法は、レンズの凹面の有効径領域を成形する凸状曲面部101を有する上型10の外側に円筒状の第2の上型103を嵌合してこの上型103によって平面部43(図5参照)を成形するようにしたものである。
さらに、図9〜10に示される方法は、胴型30の上方部に小径部301を形成し、この小径部301に上型10が嵌合されるようにし、小径部301の下方に大径部302を形成してこの大径部302に下型20が嵌合されるようにし、上記小径部301と大径部302との境界段差面303によってレンズの平面部43を成形するものである。この場合、図9に示される方法では、境界段差面303が上型10の凸状曲面部101の外端仕切り線と一致するようにしたものであるのに対して、図10に示される方法では、境界段差面303から上型10の凸状曲面部101の外端仕切り線を下方に突出させたものである。
以上の通り、従来の方法は、いずれも、凹メニスカスレンズの凹面有効径領域41を成形するための凸状曲面を有する成形型には、平面部43を成形するための成形部が形成されていない。この理由は、次の通りである。
すなわち、まず、ガラスレンズの精密プレス成形用の型の材料としては、耐熱温度が高い材料であることが必要であることから、セラミックス、超硬合金、サーメット等の加工が容易でない硬脆材料が用いられる。それゆえ、凸状曲面に連続して平面部があるような比較的複雑な形状を精度よく加工する事は困難である。
凸状曲面部が球面である場合には、細かい面粗度と高い面精度を得るための研磨加工としていわゆる球面研磨機が一般的に用いられる。図11に示されるように、この方法は、研削加工後の上型10を回転装置50によって回転させつつ凸状曲面部に接触させた研磨皿60を揺動させることによって、研磨皿60の表面に設けた研磨砥粒によって研磨するものである。この方法で研磨を行う場合には、研磨対象たる上型10の形状としては、凸状曲面部の外側に研磨皿の揺動を阻害するような形状を設けることができず、したがって平面部を設けることもできない。
また、凸状曲面部が非球面の場合には、CNC非球面加工機を使用するが、成形型が硬脆材料であるために砥石による研削加工法が採用される。砥石による研削加工では、加工面積が多いとその分砥石が摩耗し、目的の形状精度が得難くなるので、できるだけレンズの有効領域となる部分のみを加工して砥石の摩耗の少ない状態で所望の形状精度を確保する必要がある。その必然的結果としてレンズの有効領域以外は加工する必要のない図6〜10に示されるような形状が採用されることになる。
ところで、本願発明者等の研究によれば、上述の従来の成形方法のうち、図6〜7に示される方法によって成形したレンズは、面精度が得られにくいことがわかった。これは、成形の際に、上型10の凸状曲面の成形面による成形材料に対する押圧力がレンズ外周辺では外側に逃げてしまい、成形の際に下型20の成形面の外周付近に対応する上型10には成形面がないのでレンズの下面外周辺部分には上型10からの成形圧力がほとんど加えられないからであるものと推察される。
以上のような傾向はレンズ凹面の曲率半径が小さいものほど顕著になる。また、成形後にレンズ凹面側の外周縁を研削除去する後加工によって平面部を形成するようにしていることから、成形体の段階ではその外周縁を十分に厚くしておかなければならない。このため、成形体の中心肉厚とコバ厚との差をどうしても大きいものにせざるを得なくなってそのことからも面精度が得にくいものと推察される。
しかも、成形後に研削除去加工が必要であることから工程数が多く製造コスト上も不利であった。
さらに図7に示される方法では、図12に示したように、成形の際に上型10の側面にもガラス材料が入り込む場合が少なくない。そうすると、冷却固化に際してガラスの収縮係数が成形型の収縮係数より大きいために、A部で引っかかりが生じ、これによって面精度が悪化したり応力集中によってガラスにクラックがはいる場合も少なくないという問題もあった。
また、図8〜10に示される方法は、成形によって平面部も形成されるので、図6〜7の方法のような欠点は一部解消される。しかしながら、レンズの凹状曲面部41と平面部43とが別部材の成形型で成形されるようになっているので、成形の際に別部材の成形型の接触部あるいは成形型と胴型との嵌合部の隙間等にガラス材料が入り込む場合が少なくない。これらの嵌合部の隙間にガラス材料が入り込むと、成形面の面精度が悪化する原因になるとともに、成形後にその部分が欠けてガラス屑が生じたり、あるいは、成形後の取り出しの際に引っかかりが生じて成形体を損傷したり、さらには、上型10や胴型30等の角部を損傷するおそれもあった。
本発明は、上述の背景のもとでなされたものであり、ガラスの精密プレスによって、少なくとも一方の光学機能面が凹面をなしたガラスレンズを歩留まり良く安定して成形することができる成形用型及びその製造方法並びにガラスレンズ成形方法を提供することを目的としている。
上述の課題を解決するために本発明にかかるガラスレンズ成形用型は、(構成1)プレス後に被成形体のプレス面を研磨等の面仕上げ処理を施すことなくレンズの光学機能面にできるガラスの精密プレス成形によって少なくとも一方の光学機能面が凹面をなしたガラスレンズを成形する際に用いられる成形用型であって、前記プレスの際に前記ガラスレンズの凹面側の転写を行なうガラスレンズ成形用型において、成形面が、前記ガラスレンズの凹面を成形するための凸状曲面部と、該凸状曲面部の周囲に該凸状曲面部から外側に連続して形成されて該凸状曲面部の中心軸とほぼ直交する平面に含まれる平面部と、前記凸状曲面部と平面部との境界部に形成された曲面部であって前記凸状曲面部から連続して滑らかに変化する曲面によって前記平面部に移行するように形成された境界曲面部と、を有することを特徴とする構成とし、この構成1の態様として、(構成2)構成1のガラスレンズ成形用型において、前記凸状曲面部と境界曲面部との境界点における境界曲面部側の曲面の接平面が前記凸状曲面部の中心軸に対してなす角度をθ1 、前記境界点における凸状曲面部側の曲面の接平面が前記中心軸に対してなす角度をθ2 としたとき、0°≦θ2 −θ1 ≦25°が成立するようにしたことを特徴とする構成とし、また、本発明にかかるガラスレンズ成形用型の製造方法は、(構成3)構成1又は2のガラスレンズ成形用型を製造するガラスレンズ成形用型の製造方法において、成形用型の素材を荒加工して前記凸状曲面部、平面部及び境界曲面部を形成する荒加工工程と、これら各面を仕上げ研削加工する仕上研削工程とを有し、前記仕上研削工程は、前記荒加工後の成形用型の素材を前記凸状曲面部の中心軸を回転軸として回転させながら、高速回転する仕上研削用砥石を前記成形用型の素材の仕上面に接触させつつ凸状曲面部の中心軸から外側に向けてまたは外側から中心軸に向けて所定の軌跡を描くように移動することによって行うことを特徴とする構成とし、この構成3の態様として、(構成4)構成3のガラスレンズ成形用型の製造方法において、前記仕上研削工程では、前記凸状曲面部の研削に用いる砥石と、前記平面部部及び境界曲面部の研削に用いる砥石とを異ならしめたことを特徴とする構成とした。
さらに本発明にかかるガラスレンズ成形方法は、(構成5) 胴型内に摺動可能に設けた上型と下型との間に充填されたガラス素材を前記上型及び下型によってプレスしてガラスレンズを成形するガラスレンズ成形方法において、前記上型又は下型の少なくとも一方に構成1又は2のガラスレンズ成形用型を用いると共に、前記上型及び下型の間に充填するガラス素材の量を、胴型、上型及び下型によって形成される容積より少なくすることを特徴とした構成としたものである。
上述の構成1によれば、要するに、ガラスの精密プレス成形によって少なくとも一方の光学機能面が凹面をなしたガラスレンズを成形する際に用いられる成形用型であって、プレスの際にガラスレンズの凹面側の転写を行なうガラスレンズ成形用型において、その成形面の形状として、光学機能面を成形する凸状曲面部と平面部との境界部に境界曲面部を設けた形状としたものである。
これによって、まず、レンズの凹面部と平面部との双方の成形を行う成形面を有する成形型を、現在の加工技術を用いて製造することが可能になった。
また、上記形状にした成形型を用いて少なくとも一方の光学機能面が凹面をなしたガラスレンズを精密成形した場合には、特に平面部と境界曲面部の作用によって成形の際にガラス素材にかかる押圧力が比較的均等になり、その結果、この成形型に対向して設けられる成形型の成形面にガラス素材が均等に押圧されることになって、十分な面精度を有するガラスレンズが安定して得られるようになった。しかも、凸状曲面部と平面部との境界部に境界曲面部を設けたので上記成形型の表面にはレンズの凹面部と平面部との双方の成形を行う成形面が切れ目なくしかも滑らかに連続して形成されているので、応力集中の起こるような部分がなく、また、成形面にガラス材料が入り込むような隙間等がないと共に、成形後に欠けやすい角部を生じさせる形状もない。したがって、成形体にわれや欠け等を生ずることなく歩留まりよく安定してしかも迅速・ローコストにガラスレンズを得ることが可能になった。
その場合、構成2のように、凸状曲面部と境界曲面部との境界点における境界曲面部側の曲面の接平面が前記凸状曲面部の中心軸に対してなす角度をθ1 、境界点における凸状曲面部側の曲面の接平面が前記中心軸に対してなす角度をθ2としたとき、0°≦θ2 −θ1 ≦25°が成立するようにすることが望ましい。これは、0°>θ2 −θ1 であると、加工方法によっては、凸状曲面部と平面部とをつなぐ境界曲面部を凸状曲面部から連続して滑らかに変化する曲面によって平面部に移行する曲面に加工することが事実上困難にな場合が生じ、また、θ2−θ1 が25°を超えると、凸状曲面部と境界曲面部12との境界がはっきりした変曲点となり、凸状曲面部から連続して滑らかに変化する曲面によって平面部に移行する曲面にならなくなり、応力集中等が生じて好ましくないためである。
上述の構成3によれば、成形用型の素材を荒加工して前記凸状曲面部、平面部及び境界曲面部を形成する荒加工工程と、これら各面を仕上げ研削加工する仕上研削工程とを有し、前記仕上研削工程は、前記荒加工後の成形用型の素材を前記凸状曲面部の中心軸を回転軸として回転させながら、高速回転する仕上研削用砥石を前記成形用型の素材の仕上面に接触させつつ凸状曲面部の中心軸から外側に向けてまたは外側から中心軸に向けて所定の軌跡を描くように移動することによって行うようにしたことにより、構成1又は2の成形型を高精度の成形面を確保しつつ製造することが可能になった。即ち、回転する成形用型の素材の表面を、仕上研削用砥石が高速で回転しながら所定の軌跡を移動することで、成形用型の素材の回転と、仕上研削用砥石の高速回転とが相俟って、成形用型の成形面を高精度に仕上げることができる。
上述の構成3によれば、構成2に記載のガラスレンズ成形用型の製造方法において、前記仕上研削工程では、前記凸状曲面部の研削に用いる砥石と、前記平面部及び境界曲面部の研削に用いる砥石とを異ならしめるようにして、効率的かつローコストで製造可能になった。これは、レンズの光学機能面を成形する面であるために加工の際に高い面精度を要求される凸状曲面部を研削するには高精度で高価な砥石を用いて砥石の摩耗を最小限におさえることにより高精度面を得るが、平面部及び境界曲面部は光学機能面でないので、それほどの精度は必要でなく、その加工には凸状曲面部の加工に用いる砥石よりは荒くかつ多少摩耗した砥石を用いて比較的早い速度での加工をすることができ、全体として効率的で安価な加工が可能となる。高精度を要求される凸状曲面部を研磨する砥石は必要最小限の領域しか加工しないため、全体を加工する場合に比較して高価な砥石の摩耗が少ないので高精度の凸状曲面部が得られ、かつ、砥石の寿命を延ばすことができる。
上述の構成4によれば、上型又は下型の少なくとも一方に構成1に記載のガラスレンズ成形用型を用いると共に、前記上型及び下型の間に充填するガラス素材の量を、胴型、上型及び下型によって形成される容積より少なくするようにしたことにより、充填するガラス素材の量に多少のバラツキがあっても、成形の際にガラス素材が胴型と上型または下型との境目に生じる角部あるいは摺動部の隙間に入り込んで成形体の外端部に鋭い角部を形成して欠け等の原因を生じさせたりするおそれを除去しつつ、高精度のガラスレンズを成形することが可能になった。
以上詳述したように、本発明は、要するに、ガラスの精密プレス成形によって少なくとも一方の光学機能面が凹面をなしたガラスレンズを成形する際に用いられる成形用型の形状を、プレスの際にガラスレンズの凹面側の転写を行なうガラスレンズ成形用型において、その成形面の形状として、光学機能面を成形する凸状曲面部と平面部との境界部に凸状曲面部から連続して滑らかに変化する曲面によって前記平面部に移行する境界曲面部を設けた形状としたことにより、まず、レンズの凹面部と平面部との双方の成形を行う成形面を有する成形型を、現在の加工技術を用いて製造することが可能になった。また、上記形状にした成形型を用いて少なくとも一方の光学機能面が凹面をなしたガラスレンズを精密成形した場合には、特に平面部と境界曲面部の作用によって成形の際にガラス素材にかかる押圧力が比較的均等になり、その結果、この成形型に対向して設けられる成形型の成形面にガラス素材が均等に押圧されることになって、十分な面精度を有するガラスレンズが安定して得られるようになった。しかも、上記成形型の表面にはレンズの凹面部と平面部との双方の成形を行う成形面が切れ目なくしかも滑らかに連続して形成されているので、成形面にガラス材料が入り込むような隙間等がないと共に、成形後に欠けやすい角部を生じさせる形状もない。したがって、成形体にわれや欠け、応力集中等を生ずることなく歩留まりよく安定してしかも迅速・ローコストにガラスレンズを得ることが可能になった。
(実施例1)図1は本発明の実施例1にかかるガラスレンズ成形装置を示す模式的断面図である。以下、図1から図3を参照にしながら、まず実施例1にかかるガラスレンズ成形装置の構成を説明し、次に、この装置を構成するガラスレンズ成形用型の製造方法を説明する。
[ガラスレンズ成形用型の構成]図1に示されるように、本実施例のガラスレンズ成形装置は上型1と下型2と胴型3とから構成されている。胴型3は上型1及び下型2を内部に摺動可能に挿入する円柱状成形室3Aを有している。この円柱状成形室3Aと上型1と下型2とで、凹メニスカスレンズを成形する成形空間を構成している。
上型1は、図2及び図3に示すように、その下側面(図3においては上側面)が成形面1Aとなっている。この成形面1Aは、ガラスレンズの凹面を成形するための凸状曲面部11と、この凸状曲面部11の周囲に凸状曲面部11から外側に連続して形成されて凸状曲面部11の中心軸Oとほぼ直交する平面上に含まれる平面部13と、前記凸状曲面部11と平面部13との境界部に形成された曲面部分であって凸状曲面部11から連続して滑らかに変化する曲面によって平面部13に移行するように形成された境界曲面部12とを有して構成されている。なお、中心軸Oは、上型1及び下型2等によってレンズ材料をレンズの形状に成形している際において、被成形体たるレンズの光学中心軸と一致する軸である。
これら凸状曲面部11、境界曲面部12及び平面部13は、プレス後に被成形体であるガラス素材の表面を精密プレス成形することができるように、高精度の表面仕上げを施している。即ち、プレス後のレンズ表面が、研磨等の面仕上げ処理を施すことなくそのままレンズの光学機能面等にすることができるように、上型1の成形面1Aが高精度の表面仕上げを施されている。
凸状曲面部11は曲率半径R1 の球面の一部として構成されている。この曲率半径R1 の大きさは製造するガラスレンズに要求される曲率半径に応じて設定される。
境界曲面部12は、凸状曲面部11の周囲に環状に形成され、その断面形状が曲率半径R2 の円の一部として構成されている。曲率半径R2 は、凸状曲面部11の有効直径(レンズとして有効に使用される曲面の直径)にかからないように設定されている。
上型1の寸法を具体的数値を上げて説明すると、例えば上型1の外径は28.0mm、凸状曲面部11の曲率半径R1 は12.9mm、その有効直径は17.0mmにとなっている。さらに、凸状曲面部11と境界曲面部12との境界部の直径は17.7mm、境界曲面部12と平面部13との境界部の直径は23.5mmとなっている。また、境界曲面部12の曲率半径R2 は6mmとなっている。この上型1は超硬合金(タングステンカーバイド等)で構成されている。
下型2は、図1に示すように、その上側面が成形面2Aとなっている。この成形面2Aは前記上型1の成形面1Aに対向して配設され、凹面状に形成されている。そして上型1の成形面1Aと下型2の成形面2Aとで、凹メニスカスレンズを製造するようになっている。成形面2Aの寸法は、製造したいレンズの曲面に合せて適宜設定される。この下型2の成形面2Aも、上型1の成形面1Aと同様に、高精度の表面仕上げが施されている。
そして、上型1と下型2が胴型3の円柱状成形室3A内に挿入された状態で、図示しない周知の加圧機構によって上型1が下方へ、下型2が上方へそれぞれ押圧されるようになっている。さらに、胴型3の周囲には図示しない周知の加熱機構が設けられ、上型1、下型2及び胴型3でできる成形空間に挿入されたガラス素材を加熱するようになっている。
[ガラスレンズ成形用型の製造方法]以上のように構成されたガラスレンズ成形装置の上型1は、次のようにして製造する。
まず、荒加工工程として、CNC超精密加工機を用いて、上型1となる素材を荒加工して大まかな面形状(球面又は非球面)に全体を形成する。これにより、凸状曲面部11、境界曲面部12及び平面部13となる粗面を形成する。
次に、仕上研削工程として、CNC超精密加工機で、凸状曲面部11、境界曲面部12及び平面部13を高精度の仕上面に研削加工する。具体的には、次のようにして行なう。
前記荒加工工程で荒加工した後の素材を、中心軸Oを回転軸として低速(100〜1000rpm程度)の速度で回転させる。この回転する素材の表面に仕上研削用砥石5を高速(10000〜100000rpm程度)で回転させながら移動させる。この場合、この高速回転する仕上研削用砥石5を、低速回転する素材の表面に接触させつつ中心軸Oから外側に向けて所定の軌跡を描くように正確に移動させる。この所定の軌跡とは、精密仕上げされた凸状曲面部11、境界曲面部12及び平面部13の表面を辿る軌跡である。この軌跡に沿って仕上研削用砥石5を正確に移動させる。即ち、仕上研削用砥石5を、凸状曲面部11では曲率半径12.9mmの円弧を描くように、境界曲面部12では6mmの円弧を描くように移動させる。平面部13で中心軸Oに直交する直線上を移動させる。
仕上研削用砥石5としては円筒状又は円盤状の砥石を用い、中心軸Oに直交する回転軸に沿って回転させる。そして、仕上研削用砥石5を、前記回転軸と中心軸Oにそれぞれ直交する方向(外側方向)であって、前記所定の軌跡を描くように正確に移動させる。
その後、研磨装置で、少なくとも凸状曲面部11のうち有効直径17.0mm内を研磨する。好ましくは凸状曲面部11と境界曲面部12との境界部の直径17.7mmを僅かに越える領域まで研磨して上型1を得る。
[ガラスレンズ成形方法]以上のようにして製造した上型1を成形装置にセットして、以下の方法でガラスレンズを成形した。
胴型3の円柱状成形室3A内に下型2が下側から挿入された状態で、円柱状成形室3Aの上側から成形材料たるガラス素材を配置する。このガラス素材は平凸形状をしており、その平面側を上にして円柱状成形室3A内に配置する。このガラス素材の量は、上型1、下型2及び胴型3によって囲まれる容積を全部満たす量より少なくする。これは、成形時に上型1と胴型3との境界部に形成される角部にまではガラス素材が満たされないようにして成形後のガラスレンズに欠けやすい鋭い角部が生じないようにし、同時に、ガラス素材の過充填を防止して過充填によって生ずる寸法誤差を防止するためである。
次いで、加熱機構(図示せず)でこのガラス素材を加熱して軟化させる。そして、ガラス素材が所定の成形温度(ガラス粘度107 〜1012ポアズに対応する温度)まで上昇したら、加圧機構で上型1及び下型2の一方又は両方を加圧する。
上型1の成形面1Aで加圧される部分では、凸状曲面部11、境界曲面部12及び平面部13によって成形の際にこの成形面1Aの転写が良好に行われると共に、この成形面1Aによる転写の際にガラス素材にかかる押圧力が比較的均等になる。特に、境界曲面部12の部分で応力の集中がなくほぼ均等な押圧力になる。その結果、この上型1に対向して設けられる下型2の成形面2Aにガラス素材が均等に押圧されることになって、欠陥のない高精度の光学機能面が得られる。
次いで、加圧機構で加圧した状態で、または上型1の自重によりある程度の圧力をかけた状態で、ガラスの転移点以下までガラス素材を徐々に冷却する等の所定の処理を行って成形されたガラスレンズを得る。
(実施例2)図4は実施例2にかかるガラスレンズ成形用型の製造方法の説明図である。以下、図4R>4を参照にしながら実施例2にかかるガラスレンズ成形用型の製造方法を説明する。なお、この実施例は上型1の成形面1Aを仕上げる仕上研削工程が異なる外は前記実施例1とほぼ同様である。また、本実施例の成形用型材料としては炭化ケイ素を用いた。
本実施例では、仕上研削用砥石として、2つの砥石51,52を用いる。第1砥石51は、境界曲面部12と平面部13とを仕上げる砥石で、外周から中心軸Oへ向けて移動させる。第2砥石52は凸状曲面部11を仕上げる砥石で、中心軸Oから外周へ向けて移動させる。第1砥石51は境界曲面部12と平面部13を仕上げる砥石であるため、高精度の仕上げが必要な第2砥石52に比べて多少粗いもの又は場合によっては第2砥石として用いて多少摩耗したもの等を用いることができる。
荒加工を行なった後、CNC超精密加工機で成形型用の素材を回転させながら、第1砥石51を外周から中心軸Oへ向けて移動させる。最初は直線的に移動させて平面加工を行ない、平面部13を仕上げる。具体的には、第1砥石51を素材の最外周である直径28mmの位置から直径18.6mmの位置まで移動させる。次いで、この直径18.6mmの位置で、その直上1.0mmの位置に中心をもつ曲率半径1.0mmの円弧を描くように、第1砥石51を移動させて、平面部13及び境界曲面部12を仕上げる。
次いで、第2砥石52を、凸状曲面部11の表面において、中心軸Oから外周に向けて曲率半径12.9mmの円弧を描くように移動させて、凸状曲面部11を仕上げる。この第2砥石52は凸状曲面部11を仕上げる際に、直径17.7mmの点まで移動させる。この点で凸状曲面部11の面と境界曲面部12の面とが接続する。この加工の際、直径17.7mmの点における境界曲面部側の曲面の接平面(=第1砥石51による接平面)が中心軸Oに対してなす角度θ1 に比較して、この点における凸状曲面部側の曲面の接平面(=第2砥石52による接平面)が中心軸Oに対してなす角度θ2 を僅かに大きくなるように設定する。これは、第1砥石51による接平面と中心軸Oのなす角度θ1 が、第2砥石52による接平面と中心軸Oのなす角度θ2 より大きいと、それぞれの仕上面を直径17.7mmの点で接続させることができず、この加工は成り立たないためである。但し、Δθ=θ2 −θ1 が25°を超えると、凸状曲面部11と境界曲面部12との境界がはっきりした変曲点となるため、好ましくない。それゆえ、0°<Δθ=θ2 −θ1 ≦25°とすることが望ましい。
次いで、凸状曲面部11を仕上げた後、前記実施例1と同様に、研磨装置で凸状曲面部11を研磨する。
以上のようにして製造した上型1をガラスレンズ成形装置に組み込んで、前記実施例1と同様にしてガラスレンズをプレス成形する。図13はこのプレス成形の様子を示す図である。この実施例では、図13に示されるように、上型1及び下型2の間に充填するガラス素材4の量を、胴型3、上型1及び下型2によって形成される容積内を完全に充満する量より少なくするようにした。これにより、成形されるガラス素材の外周部が成形型に接触しないようになっている。このため、充填するガラス素材4の量に多少のバラツキがあっても、成形の際にガラス素材4が胴型3と上型1または下型2との境目に生じる角部あるいは摺動部の隙間に入り込んで成形体の外端部に鋭い角部を形成して欠け等の原因を生じさせたりするおそれを除去しつつ、高精度のガラスレンズを成形することが可能になった。
以上のように、高い精度が要求される凸状曲面部11を第2砥石52で加工し、凸状曲面部11ほどの精度が要求されない境界曲面部12及び平面部13を第1砥石51で加工するようにしたので、全体を1つの砥石で仕上げる場合に比べて、各砥石51,52の摩耗を抑制することができ、これらの寿命を大幅に延ばすことができる。特に第2砥石52の摩耗を抑制できることで、この摩耗の少ない第2砥石52によって凸状曲面部11の面を容易にかつ高い精度で仕上げることができる。これにより、第2砥石52による仕上げ精度の高さを長期間維持することができるようになる。
なお、実施例1においては、仕上研削用砥石5を中心軸Oから外側の方向へ移動させたが、外側から中心軸Oの方向へ移動させるようにしてもよい。
また、前記各実施例では、凸状曲面部11、境界曲面部12及び平面部13を有する成形型を上型1として用いが、下型2として用いてもよいことはいうまでもない。
さらに、各実施例では、説明を簡単にするために球面の凹メニスカスレンズを成形する場合について説明したが、本発明は、むしろ非球面レンズを製造する場合により効果的である。また、勿論、両凹メニスカスレンズの場合も前記各実施例同様の作用、効果を奏することができる。
本発明の実施例1にかかるガラスレンズ成形用型を上型として用いたガラスレンズ成形装置の構成を示す模式的断面図である。 実施例1のガラスレンズ成形装置の上型の構成を示す模式的断面図である。 実施例1のガラスレンズ成形用型の製造方法にかかる仕上研削用砥石の移動を示す模式図である。 実施例2のガラスレンズ成形用型の製造方法にかかる仕上研削用砥石の移動を示す模式図である。 光学機能面外側の一方の側に光軸と直交する平面部を設けた凹メニスカスレンズの説明図である。 従来の凹メニスカスレンズを成形する方法の説明図である。 従来の凹メニスカスレンズを成形する方法の説明図である。 従来の凹メニスカスレンズを成形する方法の説明図である。 従来の凹メニスカスレンズを成形する方法の説明図である。 従来の凹メニスカスレンズを成形する方法の説明図である。 従来の成形型の加工方法の説明図である。 図7の部分拡大図である。 実施例2にかかるガラスレンズ製造方法の説明図である。
符号の説明
1…上型、
1A,2A…成形面、
2…下型、
3…胴型、
3A…円柱状成形室、
5…仕上研削用砥石、
11…凸状曲面部、
12…境界曲面部、
13…平面部、
51…第1砥石、
52…第2砥石。

Claims (7)

  1. 精密プレス成形によって少なくとも一方の光学機能面が凹面をなしたガラスレンズを成形する際に用いられる成形用型であって、成形面が、前記ガラスレンズの凹面を成形するための凸状曲面部と、該凸状曲面部の周囲に形成されて該凸状曲面部の光学中心軸とほぼ直交する平面に含まれる平面部と、前記凸状曲面部と平面部との境界部に形成された曲面部であって前記凸状曲面部から連続して滑らかに変化する曲面によって前記平面部に移行するように形成された境界曲面部とを有するガラスレンズ成形用型の製造方法であって、
    第一の砥石を前記成形用型素材に接触させながらこの成形用型素材の外周から中心軸に向けて移動させて、前記平面部を形成し、
    第二の砥石を前記成形用型素材に接触させながらこの成形用型素材の中心軸から外周に向けて移動させて、前記凸状曲面部を形成することを特徴とするガラスレンズ成形用型の製造方法。
  2. 前記第一の砥石を前記成形用型素材の外周から中心軸に向けて移動させて前記平面部と前記境界曲面部とを形成することを特徴とする請求項1に記載のガラスレンズ成形用型の製造方法。
  3. 前記成形用型素材を、この成形用型素材の中心軸を回転軸として、100〜1000rpmの速度で回転させながら、研削加工することを特徴とする、請求項1又は2に記載のガラスレンズ成形用型の製造方法。
  4. 前記第一の砥石及び第二の砥石を、10000〜100000rpmで回転しながら研削加工することを特徴とする請求項1〜3のいずれかに記載のガラスレンズ成形用型の製造方法。
  5. 前記境界曲面部が、円弧面をなすことを特徴とする請求項1〜4のいずれかに記載のガラスレンズ成形用型の製造方法。
  6. 請求項1〜4製造方法によって製造されたガラスレンズ成形用型を上型又は下型の少なくとも一方に備えた成形装置に、ガラス素材を配置し、ガラス素材が所定の温度に加熱されて軟化した状態で、加圧成形することを特徴とするガラスレンズの製造方法。
  7. 前記成形装置は、前記上型及び下型を胴型内に摺動可能に設けたものとし、前記上型及び下型の間に配置するガラス素材の量を、胴型、上型及び下型によって形成される容積より少なくすることを特徴とした請求項6に記載のガラスレンズの製造方法。
JP2005166085A 2005-06-06 2005-06-06 ガラスレンズ成形用型及びその製造方法並びにガラスレンズ成形方法 Pending JP2005325022A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005166085A JP2005325022A (ja) 2005-06-06 2005-06-06 ガラスレンズ成形用型及びその製造方法並びにガラスレンズ成形方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005166085A JP2005325022A (ja) 2005-06-06 2005-06-06 ガラスレンズ成形用型及びその製造方法並びにガラスレンズ成形方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP14362695A Division JP4030136B2 (ja) 1995-06-09 1995-06-09 ガラスレンズ成形用型及びその製造方法並びにガラスレンズ成形方法

Publications (1)

Publication Number Publication Date
JP2005325022A true JP2005325022A (ja) 2005-11-24

Family

ID=35471665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005166085A Pending JP2005325022A (ja) 2005-06-06 2005-06-06 ガラスレンズ成形用型及びその製造方法並びにガラスレンズ成形方法

Country Status (1)

Country Link
JP (1) JP2005325022A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100827002B1 (ko) 2005-11-29 2008-05-02 키니크 컴퍼니 축 대칭 성형 유리 렌즈용 몰드 어셈블리 및 축 대칭 성형 유리 렌즈용 몰드 어셈블리의 제조 방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100827002B1 (ko) 2005-11-29 2008-05-02 키니크 컴퍼니 축 대칭 성형 유리 렌즈용 몰드 어셈블리 및 축 대칭 성형 유리 렌즈용 몰드 어셈블리의 제조 방법
KR100827003B1 (ko) * 2005-11-29 2008-05-02 키니크 컴퍼니 축 대칭 성형 유리 렌즈 및 축 대칭 성형 유리 렌즈의 제조방법

Similar Documents

Publication Publication Date Title
Suzuki et al. Development of ultrasonic vibration assisted polishing machine for micro aspheric die and mold
EP2259899B2 (en) Block piece for holding an optical workpiece, in particular a spectacle lens, for processing thereof, and method for manufacturing spectacle lenses according to a prescription
CN105834859A (zh) 一种高精度光学透镜冷加工工艺
EP1203626A1 (en) Method of producing glasses lenses, and polishing tool
WO1997013603A3 (de) Verfahren zum herstellen von optischen oberflächen sowie bearbeitungsmaschine zur durchführung des verfahrens
CN102490103B (zh) 一种弯月透镜及其加工方法
CN105081895A (zh) 硫系玻璃透镜的高精度加工方法
JP2004223700A (ja) 転写光学面の加工方法、加工機、光学素子成形用型及びダイアモンド工具
CN106363501A (zh) 一种陶瓷产品的弧面加工及抛光方法以及陶瓷面板
JP4030136B2 (ja) ガラスレンズ成形用型及びその製造方法並びにガラスレンズ成形方法
KR101725439B1 (ko) 볼 렌즈 연마장치
Tohme Grinding aspheric and freeform micro-optical molds
JP2005325022A (ja) ガラスレンズ成形用型及びその製造方法並びにガラスレンズ成形方法
JP2008088849A (ja) ノズルベーン部材の製造方法およびノズルベーン部材
JP2009001483A (ja) 斜面付円柱ガラスレンズの製造方法
JP4374161B2 (ja) 光学レンズ又はその金型の切削加工方法
CN108779013B (zh) 玻璃坯料、玻璃坯料的制造方法以及磁盘用玻璃基板的制造方法
JP2002100025A (ja) 磁気ディスク用成形ガラス基板およびその製造方法
JP5690540B2 (ja) 情報記録媒体用ガラス基板の製造方法
JP5649928B2 (ja) 光学素子成形用金型、光学素子成形方法、および光学素子成形用金型製造方法
JP2009160714A (ja) 金型の製造方法
Klocke et al. Tooling system for diamond turning of hardened steel moulds with apsheric or non rotational symmetrical geometries
Mertus et al. Implications of diamond-turned vs. diamond-ground mold fabrication techniques on precision-molded optics
JP2001310330A (ja) 金型及びその成形品
JP2006055961A (ja) 平面研削盤による軸対称非球面の加工方法及び装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080722

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080911