JP2005324245A - Liquid phase diffusion joining method for metal machine parts, and metal machine parts - Google Patents

Liquid phase diffusion joining method for metal machine parts, and metal machine parts Download PDF

Info

Publication number
JP2005324245A
JP2005324245A JP2004149581A JP2004149581A JP2005324245A JP 2005324245 A JP2005324245 A JP 2005324245A JP 2004149581 A JP2004149581 A JP 2004149581A JP 2004149581 A JP2004149581 A JP 2004149581A JP 2005324245 A JP2005324245 A JP 2005324245A
Authority
JP
Japan
Prior art keywords
liquid phase
phase diffusion
joint
metal
diffusion bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004149581A
Other languages
Japanese (ja)
Other versions
JP4540392B2 (en
Inventor
Ryuichi Honma
竜一 本間
Hiroshi Hasegawa
泰士 長谷川
Yutaka Takagi
豊 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Fukuju Kogyo KK
Original Assignee
Nippon Steel Corp
Fukuju Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2004149581A priority Critical patent/JP4540392B2/en
Application filed by Nippon Steel Corp, Fukuju Kogyo KK filed Critical Nippon Steel Corp
Priority to KR1020057022990A priority patent/KR100733524B1/en
Priority to CN2004800153887A priority patent/CN1798630B/en
Priority to US10/559,040 priority patent/US7804039B2/en
Priority to PCT/JP2004/008011 priority patent/WO2004105994A1/en
Priority to EP04735820A priority patent/EP1637270B1/en
Publication of JP2005324245A publication Critical patent/JP2005324245A/en
Priority to US12/658,343 priority patent/US20100143747A1/en
Application granted granted Critical
Publication of JP4540392B2 publication Critical patent/JP4540392B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/22Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/002Resistance welding; Severing by resistance heating specially adapted for particular articles or work
    • B23K11/0033Welding locally a thin plate to a large piece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • B23K11/241Electric supplies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/02Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a press ; Diffusion bonding
    • B23K20/023Thermo-compression bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/16Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating with interposition of special material to facilitate connection of the parts, e.g. material for absorbing or producing gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/22Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
    • B23K20/227Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded with ferrous layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/24Preliminary treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K28/00Welding or cutting not covered by any of the preceding groups, e.g. electrolytic welding
    • B23K28/02Combined welding or cutting procedures or apparatus
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/058Alloys based on nickel or cobalt based on nickel with chromium without Mo and W
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/005Camshafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/006Vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/06Tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2301/00Using particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2303/00Manufacturing of components used in valve arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12944Ni-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid phase diffusion joining method for metal machine parts, which method can shorten a joining time compared with a conventional liquid phase diffusion joining method, and can improve the quality/reliability of a joint, such as the uniformity of a joining structure, the tensile strength, the fatigue strength, compared with a conventional resistance welding method, and is excellent in the quality of a joint portion and the productivity, and further to provide the metal machine parts assembled using the method. <P>SOLUTION: In the liquid phase diffusion joining method for the metal machine parts, an amorphous alloy foil for the liquid phase diffusion joining is placed in the groove face of a metallic material. In a primary joining, a joint portion is formed by pressure joining of the amorphous alloy foil and the metallic material fused by the resistance welding. Next, in a secondary joining, after the joint portion has been heated again over the melting point of the amorphous alloy foil, the solidifying process of the joint portion is completed by keeping the temperature. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、金属機械部品の製造方法および金属機械部品に関し、詳しくは、自動車用部品などに用いられる金属機械部品の液相拡散接合方法および金属機械部品に関する。   The present invention relates to a method for manufacturing a metal machine part and a metal machine part, and more particularly, to a liquid phase diffusion bonding method and a metal machine part for a metal machine part used for automobile parts and the like.

従来、金属材料同士の接合方法として溶接方法が主に用いられてきたが、近年、これに替わる新たな工業的接合技術として、液相拡散接合法の適用が普及しつつある。   Conventionally, a welding method has been mainly used as a method for joining metal materials, but in recent years, the application of a liquid phase diffusion joining method is becoming widespread as a new industrial joining technique.

液相拡散接合法とは、被接合材料の接合面、すなわち開先面間に、被接合材料に比較して低融点の非晶質合金箔、具体的には結晶構造の50%以上が非晶質であり、かつ拡散律速の等温凝固過程を経て接合継ぎ手を形成する能力を有する元素、例えば、B或いはPを含有し、NiないしFeの基材からなる多元合金箔を介在させた後、継ぎ手をこの非晶質合金箔の融点以上の温度に加熱・保持し、等温凝固過程で継ぎ手を形成する技術である。   In the liquid phase diffusion bonding method, an amorphous alloy foil having a low melting point compared to the material to be bonded, specifically, 50% or more of the crystal structure is non-between the bonding surfaces of the material to be bonded, that is, between the groove surfaces. After interposing a multi-element alloy foil containing a Ni or Fe base material containing an element, for example, B or P, which is crystalline and has an ability to form a joint joint through a diffusion-controlled isothermal solidification process, In this technique, the joint is heated and maintained at a temperature equal to or higher than the melting point of the amorphous alloy foil to form the joint in the isothermal solidification process.

この液相拡散接合法は、通常の溶接法に比べて低入熱で接合が可能であるため熱膨張、収縮に伴う溶接部の残留応力が殆ど生じないこと、溶接法のような溶接部の余盛りが発生しないことから接合表面が平滑で、しかも精密な接合継ぎ手を形成できるという特徴を有している。   This liquid phase diffusion bonding method can be joined with lower heat input than ordinary welding methods, so there is almost no residual stress in the weld due to thermal expansion and contraction. Since there is no surplus, the joining surface is smooth and a precise joining joint can be formed.

特に、液相拡散接合は面接合であるため、接合面の面積に依存することなく接合時間が一定で、しかも比較的短時間で接合が完了しうるという点から従来の溶接法とは全く異なった概念の接合技術である。従って、被接合材の開先面間に挿入した非晶質合金箔の融点以上の温度に継ぎ手を所定時間保持できれば、その開先形状を選ばずに、面同士の接合を実現できるという利点を有している。   In particular, since liquid phase diffusion bonding is surface bonding, it is completely different from conventional welding methods in that the bonding time is constant without depending on the area of the bonding surface and the bonding can be completed in a relatively short time. This is the concept of joining technology. Therefore, if the joint can be held for a predetermined time at a temperature equal to or higher than the melting point of the amorphous alloy foil inserted between the groove surfaces of the material to be bonded, it is possible to realize the bonding between the surfaces without selecting the groove shape. Have.

本出願人は、この液相拡散接合法を用いて内部に管路を備えた金属製機械部品を製造する方法について既に特許文献1および特許文献2で提案した。   The present applicant has already proposed in Patent Document 1 and Patent Document 2 a method of manufacturing a metal mechanical part having a pipe line inside using this liquid phase diffusion bonding method.

しかし、特許文献1および特許文献2に開示された液相拡散接合は接合時間が比較的短時間であるものの、拡散律速で等温凝固が進行する以上、非晶質合金箔中の拡散原子が継ぎ手の融点を十分に上昇させるに足る量だけ被接合材中へ拡散・散逸するためには、厚さ10μmの非晶質合金箔を用いた場合で、合金箔の融点以上の温度に相当する、約900〜1300℃で約60秒以上の等温保持をする必要がある。   However, although the liquid phase diffusion bonding disclosed in Patent Document 1 and Patent Document 2 has a relatively short bonding time, the diffusion atoms in the amorphous alloy foil are connected to each other as long as the isothermal solidification progresses at the diffusion rate. In order to diffuse and dissipate into the material to be joined by an amount sufficient to raise the melting point of the alloy, it corresponds to a temperature equal to or higher than the melting point of the alloy foil when an amorphous alloy foil having a thickness of 10 μm is used. It is necessary to keep isothermal at about 900-1300 ° C. for about 60 seconds or more.

液相拡散接合に用いる非晶質合金箔の厚さを薄くすることにより、ある程度までは接合時間を短くすることは可能となるものの、被接合材開先面の加工精度による接合欠陥および継ぎ手強度の劣化への影響が大きくなるため合金箔の厚さ低下にも限界がある。実際には、接合用箔の融点降下のために拡散原子の濃度を高めたり、被接合材料の化学成分に依存することで接合用合金箔は接合時に母材溶融を誘引し、この結果、実質的な接合用合金箔の厚みは50μmを超えることが少なくない。   Although it is possible to reduce the bonding time to some extent by reducing the thickness of the amorphous alloy foil used for liquid phase diffusion bonding, it is possible to reduce the bonding defects and joint strength due to the processing accuracy of the groove surfaces to be bonded. Since the influence on the deterioration of the alloy becomes large, there is a limit to the reduction in the thickness of the alloy foil. In fact, the alloying foil for bonding induces the base material to melt at the time of joining by increasing the concentration of diffusion atoms due to the melting point drop of the joining foil or depending on the chemical composition of the material to be joined. The thickness of a typical bonding alloy foil often exceeds 50 μm.

また、液相拡散接合における加圧応力を高めることによっても、ある程度までは接合時間を短くすることは可能となるものの、加圧応力を高くすることにより被接合材料の座屈変形が生じやすくなるため、加圧応力の増加にも限界がある。   Also, by increasing the pressure stress in liquid phase diffusion bonding, it is possible to shorten the bonding time to a certain extent, but by increasing the pressure stress, buckling deformation of the materials to be joined is likely to occur. For this reason, there is a limit to the increase in pressure stress.

したがって、特許文献1および特許文献2に開示された液相拡散接合を用いて金属製機械部品の製造する方法において、金属製機械部品の生産性の向上および製造コストの低減のために液相拡散接合の継ぎ手品質を維持しつつ接合時間を従来よりも短縮することが工業的な課題となっていた。   Therefore, in the method of manufacturing a metal machine part using the liquid phase diffusion bonding disclosed in Patent Document 1 and Patent Document 2, the liquid phase diffusion is performed to improve the productivity of the metal machine part and reduce the manufacturing cost. It has been an industrial problem to shorten the joining time as compared with the prior art while maintaining the joint quality of the joint.

一方、従来から金属製機械部品の接合に多く用いられている接合技術として、電気抵抗溶接法が知られている。   On the other hand, an electric resistance welding method is known as a joining technique that has been widely used for joining metal mechanical parts.

電気抵抗溶接法は、金属に電流を流して生じる抵抗加熱を利用し、大電流を与えて瞬時に被接合材の開先を溶融させつつ開先を加圧し、接合継ぎ手を形成する方法である。   The electric resistance welding method is a method of forming a joint joint by using a resistance heating generated by applying an electric current to a metal and applying a large current to press the groove while melting the groove of the material to be joined instantaneously. .

例えば、熱電対を温度測定用に被測温体に溶着したり、自動車のフレーム材に鋼板を接合するなど、比較的接合面積が小さく、高い接合強度を要求しない場合には、スポット溶接、プロジェクション溶接、アップセット溶接などの電気抵抗溶接法が簡易接合法として多用され、逆に、比較的接合面積の大きい開先を接合する場合には、大電流で高い加圧力を付加できるフラシュバット溶接や連続電気抵抗溶接が金属鋼管のシーム溶接等で利用されている。   For example, when welding a thermocouple to a temperature-measured body for temperature measurement or joining a steel plate to an automobile frame material, when the joint area is relatively small and high joint strength is not required, spot welding, projection, etc. Electrical resistance welding methods such as welding and upset welding are often used as simple joining methods, and conversely, when joining grooves with a relatively large joint area, Continuous electric resistance welding is used for seam welding of metal steel pipes.

しかし、これらの抵抗溶接を用いて金属製機械部品を製造する場合には、接合条件の変動により、例えば、接合部での酸化物系介在物の残留による接合欠陥や、溶接電流不足による、所謂「冷接」と呼ばれる溶融不十分による溶接欠陥が発生する場合がある。また、接合時の加圧により大きな変形が生じ、溶接部において微細な割れが発生したり、開先端部が未接合状態で残存することにより、継ぎ手性能、特に疲労強度の低下の原因となっていた。特に少なくとも一方が円筒状金属材料を被溶接材料とする場合に継ぎ手疲労強度の低下が顕著となる傾向があり、この対策として、従来、例えば、材料設計の変更や溶接部形状の改善のための後処理を必要とし、継ぎ手設計の自由度の制約、コストの増大などの問題があった。   However, when metal mechanical parts are manufactured using these resistance weldings, the so-called joint defects due to residual oxide inclusions at the joints or the so-called welding current shortage due to fluctuations in joining conditions, for example. A welding defect called “cold welding” due to insufficient melting may occur. In addition, large deformation occurs due to pressurization at the time of joining, and fine cracks are generated in the welded part, or the open tip part remains in an unjoined state, which causes a decrease in joint performance, particularly fatigue strength. It was. Particularly when at least one of the cylindrical metal materials is a material to be welded, there is a tendency for the joint fatigue strength to decrease significantly. As countermeasures for this, conventionally, for example, for changing the material design or improving the weld shape Post-processing was required, and there were problems such as restrictions on the degree of freedom in joint design and increased costs.

これに加えて、抵抗溶接では接合部幅が極めて狭く、しかも開先変形が生じる場合もあるため、非破壊検査による品質保証がし難い等の理由から、特に信頼性が要求される継ぎ手の接合において抵抗溶接における接合品質の向上が工業的な技術的課題である。   In addition, the joint width is extremely narrow in resistance welding, and groove deformation may occur. Therefore, it is difficult to guarantee the quality by nondestructive inspection. However, improving the joint quality in resistance welding is an industrial technical problem.

更に、特許文献3、特許文献4および特許文献5には、Al系のシリンダーヘッド本体とFe系のバルブシートの接合において液相拡散接合と通電式抵抗溶接を併用して金属部材を接合する方法と接合装置が開示されているが、何れも一次接合のみの単なる、ろう材を介在させた抵抗溶接に過ぎないものである。   Further, Patent Document 3, Patent Document 4 and Patent Document 5 disclose a method of joining metal members by using both liquid phase diffusion bonding and current-resistance resistance welding in joining an Al-based cylinder head body and an Fe-based valve seat. However, all of them are merely resistance welding with a brazing filler metal interposed between them for primary bonding only.

すなわち、特許文献3〜5で開示された方法における一次接合で生じた抵抗溶接部の未等温凝固組織を、液相拡散接合組織とするための等温凝固拡散処理を行なっていないため接合部の品質を十分に向上することは困難である。   That is, since the isothermal solidification diffusion treatment for making the non-isothermal solidification structure of the resistance welded portion generated in the primary joining in the methods disclosed in Patent Documents 3 to 5 into the liquid phase diffusion bonding structure is not performed, the quality of the joint portion It is difficult to improve sufficiently.

また、上述した技術ではろう材は極く薄くなるまで加圧排出されるが、そこまでを製造プロセスとして捕らえており、従って、接合部組織の均一化は考慮されていない。更に、これらの開示技術はFeと、例えばAl等の非鉄金属の異材接合についての継ぎ手の形成技術であって、鉄鋼材料同士、特に鉄基材料同士の接合については何らの記載もない。元より、鉄基材料同士は通常の溶接が適用でき、異材継ぎ手の接合には通常の溶接技術の適用が困難であることから、鉄基材料同士を接合する技術は上記特許文献には記載されていない。   Further, in the above-described technique, the brazing filler metal is discharged under pressure until it becomes extremely thin, but this is regarded as a manufacturing process, and therefore, the homogenization of the joint structure is not considered. Furthermore, these disclosed technologies are joint forming technologies for joining different materials of Fe and non-ferrous metals such as Al, and there is no description about joining of steel materials, particularly iron base materials. Originally, normal welding can be applied between iron-based materials, and it is difficult to apply normal welding technology for joining dissimilar joints. Therefore, techniques for joining iron-based materials are described in the above-mentioned patent documents. Not.

特願2001―384765号公報Japanese Patent Application No. 2001-384765 特開2001―321963号公報JP 2001-321963 A 特開平11―90619号公報JP-A-11-90619 特開平11―90620号公報Japanese Patent Laid-Open No. 11-90620 特開平11―90621号公報Japanese Patent Application Laid-Open No. 11-90621

本発明は、上述した従来技術が抱える問題点に鑑みて、従来の液相拡散接合法に比べて接合時間の短縮化が可能であり、従来の抵抗溶接法に比べて接合組織の均一化および引張強度、疲労強度等の継ぎ手品質・信頼性の向上を達成し、継ぎ手部の品質と生産性に優れた金属機械部品の液相拡散接合方法およびそれを用いて組み立てた金属機械部品を提供することを目的とする。   In view of the above-described problems of the conventional technology, the present invention can shorten the bonding time compared to the conventional liquid phase diffusion bonding method, and can make the joint structure more uniform than the conventional resistance welding method. We provide improved joint quality and reliability such as tensile strength and fatigue strength, and provide liquid phase diffusion bonding methods for metal machine parts with excellent joint quality and productivity, and metal machine parts assembled using them. For the purpose.

本発明は、上記課題を解決するためになされたもので、その要旨は次のとおりである。
(1)金属材料の開先面に液相拡散接合用の非晶質合金箔を介在させ、一次接合として、抵抗溶接により前記非晶質合金箔と前記金属材料とを溶融圧接して継ぎ手部を形成し、次いで、二次接合として、前記継ぎ手部を前記非晶質合金箔の融点以上に再加熱した後、保持して前記継ぎ手部の凝固過程を完了させる液相拡散接合を行うことを特徴とする金属機械部品の液相拡散接合方法。
(2)前記再加熱した後の保持時間が30秒以上であることを特徴とする(1)記載の金属機械部品の液相拡散接合方法。
(3)前記非晶質合金箔の組成が、NiまたはFeを基材とし、拡散原子としてB、P及びCのうちの1種または2種以上を各々0.1〜20.0原子%含有し、さらに、Vを0.1〜10.0原子%含有することを特徴とする(1)または(2)記載の金属機械部品の液相拡散接合方法。
(4)前記抵抗溶接が、通電加熱方式のスポット溶接、プロジェクション溶接、アップセット溶接およびフラシュバット溶接のうちの何れか1種の溶接方法であり、かつ、前記抵抗溶接による前記非晶質合金箔と前記金属材料との溶融圧接の時間が10秒以下であることを特徴とする(1)〜(3)の何れか1項に記載の金属機械部品の液相拡散接合方法。
(5)前記抵抗溶接における電流量が100 〜100,000A/mm2 であることを特徴とする(1)〜(4)の何れか1項に記載の金属機械部品の液相拡散接合方法。
(6)前記抵抗溶接による前記非晶質合金箔と前記金属材料との溶融圧接における加圧力が10〜1000MPaであることを特徴とする(1)〜(5)のうちの何れか1項に記載の金属機械部品の液相拡散接合方法。
(7)前記抵抗溶接により形成した継ぎ手部の断面組織における未等温凝固組織の加圧方向の厚みが、平均で10μm以下であることを特徴とする(1)〜(6)の何れか1項に記載の金属機械部品の液相拡散接合方法。
(8)前記抵抗溶接により形成した継ぎ手部の継ぎ手効率が0.5〜2.0であることを特徴とする(1)〜(7)の何れか1項に記載の金属機械部品の液相拡散接合方法。
The present invention has been made to solve the above-described problems, and the gist thereof is as follows.
(1) An amorphous alloy foil for liquid phase diffusion bonding is interposed on the groove surface of the metal material, and the amorphous alloy foil and the metal material are melt-welded by resistance welding as a primary bonding, and the joint portion Then, as the secondary bonding, the joint portion is reheated to a temperature higher than the melting point of the amorphous alloy foil, and then held and liquid phase diffusion bonding is performed to complete the solidification process of the joint portion. A liquid phase diffusion bonding method for metal machine parts.
(2) The liquid phase diffusion bonding method for metal machine parts according to (1), wherein the holding time after the reheating is 30 seconds or more.
(3) The composition of the amorphous alloy foil is based on Ni or Fe, and contains 0.1 or 20.0 atomic% of one or more of B, P and C as diffusion atoms, respectively. Furthermore, the liquid phase diffusion bonding method for metal machine parts according to (1) or (2), further comprising 0.1 to 10.0 atomic% of V.
(4) The resistance welding is a welding method of any one of current welding type spot welding, projection welding, upset welding, and flash butt welding, and the amorphous alloy foil by the resistance welding. The method of liquid phase diffusion bonding of metal machine parts as set forth in any one of (1) to (3), wherein the time of melt pressure welding between the metal material and the metal material is 10 seconds or less.
(5) The liquid phase diffusion bonding method for metal machine parts according to any one of (1) to (4), wherein the amount of current in the resistance welding is 100 to 100,000 A / mm @ 2.
(6) In any one of (1) to (5), the applied pressure in the fusion welding between the amorphous alloy foil and the metal material by the resistance welding is 10 to 1000 MPa. The liquid phase diffusion bonding method of the metal mechanical component as described.
(7) The thickness in the pressing direction of the non-isothermal solidified structure in the cross-sectional structure of the joint portion formed by the resistance welding is 10 μm or less on average and any one of (1) to (6) A liquid phase diffusion bonding method for metal mechanical parts as described in 1 above.
(8) The liquid phase of the metal machine component according to any one of (1) to (7), wherein the joint efficiency of the joint portion formed by the resistance welding is 0.5 to 2.0. Diffusion bonding method.

ただし、継ぎ手効率とは、非晶質合金箔と金属材料を溶融圧接した後の継ぎ手部位の面積に対する金属材料の開先面の面積の比とする。
(9)前記継ぎ手部の凝固過程の完了後、0.1〜50℃/秒の冷却速度で冷却して継ぎ手組織を制御することを特徴とする(1)〜(8)の何れか1項に記載の金属機械部品の液相拡散接合方法。
(10)金属材料と液相拡散接合で形成された継ぎ手部からなる金属機械部品であり、該金属機械部品の接合ままの金属組織における旧γ結晶の最大粒径は500μm以下であることを特徴とする金属機械部品。
(11)前記金属材料の少なくとも一方が円筒状金属材料であり、該円筒状金属材料の端部と他方の金属材料面とを突き合わせて前記一次接合をする際に、突き合わせ接点に対する前記円筒状金属材料の内面側開先高さA、及び、外面側開先高さB、並びに、前記突き合わせ接点から外周までの距離Cが下記(1)式を満足するように、前記円筒状の金属材料端部にV字開先を形成することを特徴とする(1)〜(10)の何れか1項に記載の金属機械部品の液相拡散接合方法。
However, the joint efficiency is the ratio of the area of the groove surface of the metal material to the area of the joint part after the amorphous alloy foil and the metal material are melt-welded.
(9) Any one of (1) to (8), wherein after the solidification process of the joint portion is completed, the joint structure is controlled by cooling at a cooling rate of 0.1 to 50 ° C./second. A liquid phase diffusion bonding method for metal mechanical parts as described in 1 above.
(10) A metal machine part composed of a joint portion formed by liquid phase diffusion bonding with a metal material, wherein the maximum grain size of the old γ crystal in the metal structure as-bonded of the metal machine part is 500 μm or less Metal machine parts.
(11) At least one of the metal materials is a cylindrical metal material, and the cylindrical metal material with respect to the butt contact is formed when the end of the cylindrical metal material and the other metal material surface are butted to perform the primary joining. The cylindrical metal material end so that the inner surface side groove height A, the outer surface side groove height B, and the distance C from the butt contact to the outer periphery satisfy the following expression (1): A V-shaped groove is formed in the part, and the liquid phase diffusion bonding method for metal machine parts according to any one of (1) to (10).

0.2≦B/A≦1、かつ、C/t≦0.5 ・・・・ (1)
但し、Aは円筒状金属材料の内面側開先高さ、Bは円筒状金属材料の外面側開先高さ、Cは円筒状金属材料の突き合わせ接点から外周までの距離、tは円筒状金属材料の肉厚をそれぞれ示す。
(12)前記一次接合後の開先端部における最大残存高さが前記非晶質合金箔の厚みの3倍以下であることを特徴とする(11)に記載の金属機械部品の液相拡散接合方法。
(13)前記一次接合後の継ぎ手効率が0.8以上であることを特徴とする(11)または(12)に記載の金属機械部品の液相拡散接合方法。
(14)前記二次接合後の開先端部の最大残存高さが70μm以下であることを特徴とする(11)〜(13)の何れか1項に記載の金属機械部品の液相拡散接合方法。
0.2 ≦ B / A ≦ 1 and C / t ≦ 0.5 (1)
Where A is the groove height on the inner surface side of the cylindrical metal material, B is the groove height on the outer surface side of the cylindrical metal material, C is the distance from the butt contact point of the cylindrical metal material to the outer periphery, and t is the cylindrical metal material Indicates the thickness of each material.
(12) The liquid phase diffusion bonding of metal machine parts according to (11), wherein the maximum remaining height at the open tip after the primary bonding is not more than three times the thickness of the amorphous alloy foil. Method.
(13) The liquid phase diffusion bonding method for metal machine parts according to (11) or (12), wherein the joint efficiency after the primary bonding is 0.8 or more.
(14) The liquid phase diffusion bonding of metal machine parts according to any one of (11) to (13), wherein the maximum remaining height of the open tip portion after the secondary bonding is 70 μm or less. Method.

以上説明したように、本発明は液相拡散接合を用いて継ぎ手を形成して機械金属部品を製造する際に、金属材料の開先間に液相拡散接合用非晶質合金箔を介在させ、一次接合として、抵抗溶接により非晶質合金箔を溶融圧接して、非晶質合金箔が溶融、凝固して形成される極めて薄い厚みの接合合金層を設け、引き続き、非晶質合金箔の融点以上の再加熱温度で、後液相拡散接合の等温凝固過程を付与することで組織の均質性と、引張強度、靭性、疲労強度等の良好な機械的特性を有し、変形量の少ない継ぎ手を得ることができる。
その結果、継ぎ手品質及び信頼性の高い金属機械部品を高い生産性で製造することができる。また、従来の抵抗溶接方法では問題であった、少なくとも一方が円筒状金属材料からなる接合継ぎ手の疲労強度についても、本発明の一次接合と二次接合の相互作用によって溶接部の微細な割れの発生を低減し、開先端部の未接合残存量を減少することができ、疲労強度に優れた継ぎ手及びそれによる金属機械部品を製造することができる。
As described above, according to the present invention, when manufacturing a metal part by forming a joint using liquid phase diffusion bonding, an amorphous alloy foil for liquid phase diffusion bonding is interposed between the grooves of the metal material. As the primary bonding, the amorphous alloy foil is melt-welded by resistance welding to provide a very thin bonding alloy layer formed by melting and solidifying the amorphous alloy foil. It has good mechanical properties such as homogeneity of structure, tensile strength, toughness, fatigue strength, etc. by applying an isothermal solidification process of post-liquid phase diffusion bonding at a reheating temperature above the melting point of You can get fewer joints.
As a result, metal parts having high joint quality and high reliability can be manufactured with high productivity. In addition, regarding the fatigue strength of the joint joint, at least one of which is made of a cylindrical metal material, which has been a problem in the conventional resistance welding method, fine cracks in the welded portion are caused by the interaction between the primary joint and the secondary joint of the present invention. It is possible to reduce occurrence, reduce the unbonded remaining amount of the open tip portion, and manufacture a joint excellent in fatigue strength and a metal machine part thereby.

本発明は、従来、通常の機械加工、研削、穿孔では製造できない形状の金属機械部品、更には生産性が低く、材料歩留まりの低い高コストの金属機械部品を、高生産性で、かつ低コストで製造できる全く新しい金属機械部品の溶接技術を提供するものであり、液相拡散接合の適用により達成しうる金属機械部品の機能向上と供給に大きく寄与しうるものである。特に、従来、鋳造や鍛造削り出し等で製作していたカムシャフトなど中空部品、各種原動機に用いるシャフト類、あるいは従来、単独の液相拡散接合法を用いて金属機械部品の製造において、本発明法の適用により製造コストの削減、生産性の向上、接合部の品質向上などの効果が期待され、本発明による産業上の貢献は多大である。   The present invention provides a high-productivity and low-cost metal machine part that cannot be manufactured by conventional machining, grinding, and drilling, and a high-cost metal machine part that has low productivity and low material yield. It provides welding technology for completely new metal machine parts that can be manufactured at the same time, and can greatly contribute to the functional improvement and supply of metal machine parts that can be achieved by applying liquid phase diffusion bonding. In particular, in the manufacture of hollow parts such as camshafts conventionally produced by casting, forging, etc., shafts used for various prime movers, or conventional metal machine parts using a single liquid phase diffusion bonding method, the present invention By applying the method, effects such as reduction in manufacturing cost, improvement in productivity, and improvement in quality of the joint are expected, and the industrial contribution by the present invention is great.

以下に本発明の詳細を説明する。   Details of the present invention will be described below.

本発明法は、被接合材料として金属材料を用い、この金属材料端部に形成された開先面間に液相拡散接合用の非晶質合金箔を介在させて突合せた後、一次接合として、抵抗溶接により前記非晶質合金箔と前記金属材料とを溶融圧接して継ぎ手部を形成する。   In the method of the present invention, a metal material is used as a material to be joined, and after abutting with an amorphous alloy foil for liquid phase diffusion joining between the groove surfaces formed at the end of the metal material, the primary joining is performed. The amorphous alloy foil and the metal material are melt-welded by resistance welding to form a joint portion.

この一次接合では、例えば、被接合材料の開先面(突合せ面)に溶接電流を供給し加熱溶融させるための電極を各被接合材料に配置し、圧接に必要な応力を開先面間に負荷するための応力付加機構、例えば、油圧作動インストロン型の引張・圧縮装置などを適用した抵抗溶接装置が用いられる。   In this primary joining, for example, an electrode for supplying a welding current to the groove surface (butting surface) of the materials to be joined and heating and melting them is disposed on each material to be joined, and the stress required for pressure welding is applied between the groove surfaces. A resistance welding apparatus to which a stress applying mechanism for loading, for example, a hydraulically operated Instron type tension / compression apparatus is applied is used.

この一次接合では、抵抗溶接の溶接入熱によって被接合材料の開先面と液相拡散接合用合金箔は溶融し、その加圧応力でアップセットされて加熱溶融時に生成した酸化物および開先表面に存在していた爽雑物を溶融メタルと共に接合面外に排出される。   In this primary joining, the groove surface of the material to be joined and the alloy foil for liquid phase diffusion bonding are melted by resistance heat welding heat input, and the oxide and groove formed during heating and melting are upset by the pressure stress. The extraneous matter present on the surface is discharged out of the joint surface together with the molten metal.

また、一次接合において、被接合材料の開先面間に挿入する液相拡散接合用の非晶質合金箔は、被接合材料である鉄鋼材料に比較して低融点であり、箔の体積の50%以上が非晶質の構造を有する非晶質合金箔が用いられる。   In primary bonding, the amorphous alloy foil for liquid phase diffusion bonding inserted between the groove surfaces of the material to be bonded has a lower melting point than the steel material as the material to be bonded, and the volume of the foil An amorphous alloy foil having an amorphous structure of 50% or more is used.

被接合材の開先面間に900〜1200℃程度の被接合材料に比べて低融点の液相拡散接合用合金箔を介在して抵抗溶接により溶融圧接することによって、開先面に液相拡散接合用合金箔が均一に溶融されると同時に、加熱溶融で生成した酸化物および開先表面に残留していた爽雑物を溶融メタルと共に接合面外に排出される効果が促進される。   Compared to the material to be joined at a temperature of about 900 to 1200 ° C. between the groove surfaces of the material to be joined, a liquid phase diffusion bonding alloy foil having a low melting point is interposed and melt-welded by resistance welding, so that the liquid phase is applied to the groove surface. The diffusion bonding alloy foil is uniformly melted, and at the same time, the effect of discharging the oxide generated by heat melting and the extraneous matter remaining on the groove surface together with the molten metal to the outside of the bonding surface is promoted.

なお、本発明における液相拡散接合用の非晶質合金箔の組成は、NiまたはFeを基材とし、拡散原子としてB、P及びCのうちの1種または2種以上を各々0.1〜20.0原子%含有し、さらに、一次接合の際に接合面間において生成された酸化物を低融点化する作用を有するVを0.1〜10.0原子%含有するものであることが好ましい。   The composition of the amorphous alloy foil for liquid phase diffusion bonding in the present invention is based on Ni or Fe, and one or more of B, P and C as diffusion atoms is 0.1. It contains ˜20.0 atomic%, and further contains 0.1 to 10.0 atomic% of V having an effect of lowering the melting point of the oxide generated between the joint surfaces during the primary joining. Is preferred.

液相拡散接合用合金箔中のB、P及びCは、二次接合としての液相拡散接合を達成するために必要な等温凝固を実現させるための拡散元素として、あるいは融点を被接合材よりも低くするために必要な元素であり、その作用を充分に得るために0.1原子%以上含有する必要があるが、過度に添加すると、結晶粒に粗大な硼化物、金属化合物、または、炭化物が生成し接合部強度が低下するためその上限を20.0原子%とするのが好ましい。   B, P, and C in the alloy foil for liquid phase diffusion bonding are used as diffusion elements for realizing isothermal solidification necessary for achieving liquid phase diffusion bonding as secondary bonding, or have a melting point higher than that of the material to be bonded. In order to sufficiently obtain its action, it is necessary to contain 0.1 atomic% or more, but if added excessively, a coarse boride, metal compound, or Since carbides are generated and the joint strength is reduced, the upper limit is preferably made 20.0 atomic%.

液相拡散接合用合金箔中のVは、一次接合としての抵抗溶接時に開先面間で生成した酸化物あるいは残留酸化物(Fe23)と瞬時に反応し、低融点複合酸化物(V25−Fe23、融点:約800℃以下)に変える作用を有し、抵抗溶接時の加圧応力により低融点複合酸化物を溶融金属とともに溶融・排出し、接合部の酸化物系介在物を低減する効果がえられる。この作用・効果を充分に得るためには、Vを0.1原子%以上含有させるのが好ましい。一方、Vを10.0原子%を超えて過度に添加すると、V系酸化物の個数が増加し残留酸化物が却って増加し、また、液相拡散接合用合金箔の融点を高め、二次接合としての液相拡散接合を困難とするため、その上限を10.0原子%とするのが好ましい。 V in the alloy foil for liquid phase diffusion bonding reacts instantaneously with the oxide or residual oxide (Fe 2 O 3 ) generated between the groove surfaces during resistance welding as primary bonding, and low melting point composite oxide ( V 2 O 5 —Fe 2 O 3 , melting point: about 800 ° C. or less), melting and discharging low melting point composite oxide together with molten metal by pressure stress during resistance welding, and oxidizing the joint The effect of reducing material inclusions can be obtained. In order to sufficiently obtain this action and effect, it is preferable to contain 0.1 atomic% or more of V. On the other hand, when V is added excessively exceeding 10.0 atomic%, the number of V-based oxides increases and the residual oxides increase, and the melting point of the alloy foil for liquid phase diffusion bonding is increased. In order to make liquid phase diffusion bonding as bonding difficult, the upper limit is preferably 10.0 atomic%.

また、本発明において一次接合として用いられる抵抗溶接は、通電加熱方式のスポット溶接、プロジェクション溶接、アップセット溶接およびフラシュバット溶接のうちの何れか1種の溶接方法が用いられる。通常、スポット溶接、プロジェクション溶接、アップセット溶接は、比較的接合面積が小さく、高い接合強度を要求しない場合の接合に適し、フラシュバット溶接は、大電流で高い加圧力を付加できるため、比較的接合面積の大きい開先を接合する場合に適している。これらの抵抗溶接方法の選択は、特に限定する必要はなく、各溶接方法の特徴と接合継ぎ手の要求特性および溶接条件などに応じて適時選択し、生産性向上のために溶接時間を10秒以下とするのが好ましい。   In addition, as the resistance welding used as the primary joining in the present invention, any one of a welding method of an electric heating type spot welding, projection welding, upset welding, and flash butt welding is used. In general, spot welding, projection welding, and upset welding are suitable for joining when the joining area is relatively small and does not require high joining strength, and flash butt welding can apply high pressure with a large current. This is suitable for joining a groove having a large joining area. The selection of these resistance welding methods is not particularly limited, and is selected in a timely manner according to the characteristics of each welding method, the required characteristics of the joint and the welding conditions, and the welding time is 10 seconds or less in order to improve productivity. Is preferable.

また、一次接合における抵抗溶接の溶接入熱は、開先面および開先面間の液相拡散接合用の非晶質合金箔を短時間で溶融するためには電流密度を100A/mm2以上とする必要があり、一方、過度に電流密度を上げると非晶質合金箔の溶融金属が乱れて、開先面に所定厚みで均一に分布させることが困難となるため、その上限を100,000A/mm2以下とする必要がある。したがって抵抗溶接の電流密度を100 〜100,000A/mm2 とするのが好ましい。 In addition, the welding heat input of resistance welding in the primary joining is a current density of 100 A / mm 2 or more in order to melt the grooved surface and the amorphous alloy foil for liquid phase diffusion bonding between the grooved surfaces in a short time. On the other hand, if the current density is increased excessively, the molten metal of the amorphous alloy foil is disturbed, and it becomes difficult to uniformly distribute the groove surface with a predetermined thickness. 000 A / mm 2 or less is necessary. Therefore, the current density of resistance welding is preferably 100 to 100,000 A / mm 2 .

また、一次接合における抵抗溶接の加圧応力は、開先面間の液相拡散接合用の非晶質合金箔を溶融、凝固して形成される接合合金層の厚みを10μm以下までに低減し、二次接合としての液相拡散接合の接合時間を短縮化するためには、10MPa以上必要であり、一方、過度に加圧応力が高いと接合継ぎ手の変形が生じるため1000MPa以下とする必要がある。したがって抵抗溶接の加圧応力は、10〜1,000MPaとするのが好ましい。なお、接合継ぎ手の変形程度は、被接合材料の溶接温度でのヤング率によって変化するため、加圧応力の上限は被接合材料の材質によって調整するのがよりこのましい。   Also, the pressure stress of resistance welding in primary bonding reduces the thickness of the bonded alloy layer formed by melting and solidifying the amorphous alloy foil for liquid phase diffusion bonding between the groove surfaces to 10 μm or less. In order to shorten the bonding time of the liquid phase diffusion bonding as the secondary bonding, 10 MPa or more is necessary. On the other hand, when the pressure stress is excessively high, deformation of the joint is generated, so it is necessary to set the pressure to 1000 MPa or less. is there. Therefore, the pressure stress in resistance welding is preferably 10 to 1,000 MPa. Since the degree of deformation of the joint is changed by the Young's modulus at the welding temperature of the material to be joined, it is more preferable to adjust the upper limit of the pressure stress depending on the material of the material to be joined.

更に、一次接合における抵抗溶接により形成した継ぎ手部の継ぎ手効率(鉄鋼材料の開先面の面積/非晶質合金箔と鉄鋼材料を溶融圧接した後の継ぎ手部位の面積)は、開先の形状に起因する接合後の継ぎ手拘束効果を加味し、継ぎ手の静的引張り強さを母材並み以上の引張り強さを確保するために0.5以上必要であり、また、抵抗溶接時の高加圧応力によって継ぎ手部位が膨潤する結果、継ぎ手部面積が母材部断面積より広くなる場合を考慮し、良好な継ぎ手特性を得るためにその上限を2.0とすることが好ましい。   Furthermore, the joint efficiency of the joint portion formed by resistance welding in the primary joining (area of the groove surface of the steel material / area of the joint portion after the melt welding of the amorphous alloy foil and the steel material) is the shape of the groove Considering the joint restraint effect after joining due to the joint, 0.5 or more is necessary to ensure the joint's static tensile strength equal to or higher than that of the base metal, and high resistance during resistance welding. Considering the case where the joint area is larger than the cross-sectional area of the base material as a result of swelling of the joint portion due to the pressure stress, the upper limit is preferably set to 2.0 in order to obtain good joint characteristics.

上記に示した一次接合により、被接合材の開先面間に挿入した液相拡散接合用の非晶質合金箔を短時間で溶融圧接することによって、非晶質合金が溶融、凝固して形成される極めて薄い厚みの接合合金層を形成できる。本発明者らによる実験では、光学顕微鏡による継ぎ手断面組織の観察結果から、一次接合で得られた非晶質合金箔が溶融、凝固した組織からなる接合合金層の厚みは最大で7μm以下、平均厚みで3μm以下となることを確認している。   By the primary bonding shown above, the amorphous alloy foil for liquid phase diffusion bonding inserted between the groove surfaces of the materials to be bonded is melt-welded in a short time, so that the amorphous alloy is melted and solidified. An extremely thin bonding alloy layer can be formed. In the experiment by the present inventors, from the observation result of the joint cross-sectional structure by the optical microscope, the thickness of the bonded alloy layer composed of the structure obtained by melting and solidifying the amorphous alloy foil obtained by the primary bonding is a maximum of 7 μm or less, the average It has been confirmed that the thickness is 3 μm or less.

このように極めて薄い液相拡散接合用の非晶質合金が溶融、凝固して形成される接合合金層は、その後の二次接合としての液相拡散接合において、非晶質合金箔の融点以上の温度で約15秒間保持することにより実質的に等温凝固はほぼ終了し、約30秒間の保持であれば、被接合材料として通常炭素鋼を用いる場合では、完全な等温凝固組織を得られることを、拡散方程式による推定計算および実験により確認している。   The bonding alloy layer formed by melting and solidifying the extremely thin amorphous alloy for liquid phase diffusion bonding in this way is equal to or higher than the melting point of the amorphous alloy foil in the liquid phase diffusion bonding as the subsequent secondary bonding. The isothermal solidification is substantially completed by holding for about 15 seconds at a temperature of about 30 seconds, and if it is held for about 30 seconds, a complete isothermal solidification structure can be obtained when carbon steel is normally used as the material to be joined. Is confirmed by calculation and experiments using a diffusion equation.

図1は、液相拡散接合用非晶質合金箔が溶融、凝固して形成された合金層(本発明法の場合は一次接合後の合金層、従来法の場合は加圧溶融後の合金層)の厚みと、その合金層の等温凝固が終了するまでの保持時間(未等温凝固組織が観察できなくなるまでの保持時間)との関係を示した図である。   FIG. 1 shows an alloy layer formed by melting and solidifying an amorphous alloy foil for liquid phase diffusion bonding (in the case of the present invention, an alloy layer after primary bonding, in the case of the conventional method, an alloy after pressure melting) FIG. 5 is a diagram showing the relationship between the thickness of the layer) and the holding time until the isothermal solidification of the alloy layer is completed (the holding time until the non-isothermal solidified structure cannot be observed).

従来の液相拡散接合法では、加圧力の増加により液相拡散接合用非晶質合金箔が溶融、凝固して形成された合金層の厚みをある程度まで低減することは可能であるが、加圧力の増加により継ぎ手変形が発生するため、図1に示すようにその合金層の厚みは10μm以下に薄くすることは困難であり、液相拡散接合の等温凝固が完了するまでの保持時間は100秒以上必要であった。仮に、従来法で等温凝固保持時間を100秒以下にした場合には、接合合金層に非晶質合金箔の未等温凝固組織が残留してしまい、継ぎ手の強度、靱性などの特性は母材に比較して著しく低下してしまうという問題が生じる。   In the conventional liquid phase diffusion bonding method, it is possible to reduce the thickness of the alloy layer formed by melting and solidifying the amorphous alloy foil for liquid phase diffusion bonding to an extent by increasing the applied pressure. Since joint deformation occurs due to an increase in pressure, it is difficult to reduce the thickness of the alloy layer to 10 μm or less as shown in FIG. 1, and the holding time until the isothermal solidification of liquid phase diffusion bonding is completed is 100. Needed more than a second. If the isothermal solidification holding time is set to 100 seconds or less by the conventional method, the non-isothermal solidified structure of the amorphous alloy foil remains in the bonded alloy layer, and characteristics such as joint strength and toughness are the base material. There arises a problem that it is remarkably reduced as compared with the above.

これに対して、本発明法では、一次接合(抵抗溶接)により、液相拡散接合用の非晶質合金箔が溶融、凝固して生成した接合合金層の平均厚みは7μm以下に低減することができ、これに続く二次接合(液相拡散接合)により液相拡散接合の等温凝固が完了する(接合合金層の未等温凝固組織が完全に消失する)までの保持時間を30秒以下に短縮することができる。本発明者らの実験では、図に示すように、一次接合(抵抗溶接)により接合合金層の平均厚みを3μmまで薄くすることができることを確認し、この場合には二次接合(液相拡散接合)により15秒の保持時間で等温凝固が完了する(接合合金層の未等温凝固組織が完全に消失する)ことが期待できる。以上から、本発明法により従来の液相拡散性接合に比べて同等以上の継ぎ手品質を維持しつつ接合時間を大幅に短縮し、生産性の向上が期待できる。   On the other hand, in the method of the present invention, the average thickness of the bonded alloy layer formed by melting and solidifying the amorphous alloy foil for liquid phase diffusion bonding is reduced to 7 μm or less by primary bonding (resistance welding). The subsequent holding time until the isothermal solidification of the liquid phase diffusion bonding is completed by the secondary bonding (liquid phase diffusion bonding) (the non-isothermal solidification structure of the bonded alloy layer completely disappears) is reduced to 30 seconds or less. It can be shortened. In the experiments of the present inventors, as shown in the figure, it was confirmed that the average thickness of the bonded alloy layer can be reduced to 3 μm by primary bonding (resistance welding). In this case, secondary bonding (liquid phase diffusion) It can be expected that isothermal solidification is completed with a holding time of 15 seconds (completely disappearing of the non-isothermal solidified structure of the bonded alloy layer). From the above, it can be expected that the method of the present invention significantly reduces the bonding time while maintaining the same or better joint quality as compared with the conventional liquid phase diffusive bonding, and improves the productivity.

図2は、本発明法の二次接合(液相拡散接合)における等温凝固保持時間と接合継ぎ手強度との関係を示した図である。   FIG. 2 is a diagram showing the relationship between the isothermal solidification holding time and the joint strength in secondary bonding (liquid phase diffusion bonding) according to the method of the present invention.

なお、接合継ぎ手強度は、継ぎ手を接合面から引き離す方向に引張り試験を実施した場合の母材の引張強さに対する接合継ぎ手の引張強さの比で示した。この値が1の場合は、母材で破断したことを意味し、1以下の場合は、接合部で破断したことを意味する。   The joint joint strength was expressed as the ratio of the tensile strength of the joint joint to the tensile strength of the base material when the tensile test was performed in the direction in which the joint was pulled away from the joint surface. When this value is 1, it means that the base material is broken, and when it is 1 or less, it means that the joint is broken.

実際の接合では、本発明の一次接合(抵抗溶接)により開先面に形成される液相拡散接合用非晶質合金箔が溶融、凝固して生成される接合合金層の厚みは、開先面の位置によってバラツキが生じるが、図2から、二次接合(液相拡散接合)における等温凝固保持時間を少なくとも30秒以上とすることにより継ぎ手の引張り試験結果は母材破断となり、母材の引張強さ以上の良好な継ぎ手強度が得られる。   In actual bonding, the thickness of the bonding alloy layer formed by melting and solidifying the amorphous alloy foil for liquid phase diffusion bonding formed on the groove surface by primary bonding (resistance welding) of the present invention is Although the variation occurs depending on the position of the surface, it can be seen from FIG. 2 that when the isothermal solidification holding time in the secondary bonding (liquid phase diffusion bonding) is at least 30 seconds or more, the tensile test result of the joint becomes the base material fracture, Good joint strength higher than tensile strength can be obtained.

本発明法では、上記実験結果を踏まえ、従来の液相拡散接合法と同等以上の継ぎ手強度を確保するために二次接合(液相拡散接合)の等温凝固保持時間を30秒以上とするのが好ましい。   In the method of the present invention, based on the above experimental results, the isothermal solidification holding time of the secondary bonding (liquid phase diffusion bonding) is set to 30 seconds or more in order to ensure a joint strength equal to or higher than that of the conventional liquid phase diffusion bonding method. Is preferred.

なお、二次接合(液相拡散接合)の等温凝固保持時間は、増加するとともに所定の継ぎ手強度を安定して得ることができるが、過度に等温凝固保持時間を増加すると、継ぎ手の金属組織の旧γ結晶粒径が粗大化し、継ぎ手の靭性が低下するためその上限は100秒以下とするのがより好ましい。   In addition, the isothermal solidification holding time of the secondary bonding (liquid phase diffusion bonding) increases and a predetermined joint strength can be stably obtained. However, if the isothermal solidification holding time is excessively increased, the metal structure of the joint is increased. Since the old γ crystal grain size becomes coarse and the toughness of the joint decreases, the upper limit is more preferably 100 seconds or less.

本発明では、二次接合後、つまり、液相拡散接合の等温凝固が終了後に、さらに、被接合材料の鋼種に応じて冷却速度を制御することにより所望の金属組織、例えば、炭素鋼であれば、フェライト+パーライト、フェライト、ベイナイト、マルテンサイト等の金属組織が得られ、また、オーステナイト鋼であれば接合時に生じる析出物などの介在物を再固溶する作用により良好な金属組織を有する接合継ぎ手を得ることが可能となる。   In the present invention, after the secondary joining, that is, after the isothermal solidification of the liquid phase diffusion joining is completed, the desired metal structure such as carbon steel can be obtained by controlling the cooling rate according to the steel type of the material to be joined. For example, a metal structure such as ferrite + pearlite, ferrite, bainite, martensite, etc. can be obtained, and if it is austenitic steel, it has a good metal structure due to the action of re-dissolving inclusions such as precipitates generated during bonding A joint can be obtained.

本発明では、自動車用機械部品に要求される継ぎ手の強度、靭性の向上のために最低限必要な低温変態組織(ベイナイトまたはマルテンサイト)割合を確保するために、二次接合後、つまり、液相拡散接合の等温凝固が終了後の冷却速度を0.1℃/秒以上とするのが好ましく、過度の冷却は、靭性、延性の低下などの原因となるため冷却速度の上限を50℃/秒とするのが好ましい。上記冷却速度の制御により、フェライト鋼同士、オーステナイト鋼同士、またはフェライト鋼とオーステナイト鋼の異材継ぎ手であっても、健全かつ親和性の高い継ぎ手を形成することができる。   In the present invention, in order to ensure the minimum required low-temperature transformation structure (bainite or martensite) ratio for improving the strength and toughness of joints required for machine parts for automobiles, The cooling rate after completion of isothermal solidification of phase diffusion bonding is preferably 0.1 ° C./second or more. Excessive cooling causes a decrease in toughness and ductility, so the upper limit of the cooling rate is 50 ° C. / The second is preferred. By controlling the cooling rate, even a ferritic steel, austenitic steel, or a dissimilar joint between ferritic steel and austenitic steel can form a healthy and highly compatible joint.

なお、本発明法において、上述の冷却後に、さらに、金属組織を調質する目的で、再加熱して焼き入れ、焼き戻し、焼き入れ+焼き戻し、などの熱処理を単独でまたは複数回繰り返したり、組み合わせたりして適用することも可能であり、この場合には継ぎ手組織はより一層均質化されて、本発明の効果を更に高めることができる。   In the method of the present invention, after the cooling described above, for the purpose of further tempering the metal structure, heat treatment such as reheating and quenching, tempering, quenching + tempering, etc. may be repeated alone or multiple times. In this case, the joint structure can be further homogenized and the effect of the present invention can be further enhanced.

なお、残留オーステナイトを忌避する材料では深冷化処理も有効であり、時効による変形を抑制することができる。   In addition, a deep cooling process is also effective in the material which repels a retained austenite, and can suppress the deformation | transformation by aging.

上記に示した本発明の実施形態により、従来の単独の抵抗溶接法に比べて継ぎ手の変形量を低減でき、金属機械部品の組み立てを行なう場合など、穿孔、切削、切断などの通常の機械加工を駆使しても加工できない形状の機械部品、或いは組み合わせの困難な難溶接材料の異材継ぎ手を含む機械部品、更には削り出しのよって大きな材料コストの上昇が起こるような機械部品の組み立てに適用することが可能で、生産性の向上、更にはコスト低減などの効果も同時に得ることができる。さらに、本発明の実施形態により、一次接合(抵抗溶接)後に接合面に微小な割れが発生した場合でも、その後の二次接合(液相拡散接合)により未溶融非晶質合金箔をさらに溶融し割れに流入させて微小な割れを修復でき、さらに未等温凝固組織からな合金層を完全な等温凝固組織に変える効果が得られるため従来の抵抗溶接法に比べて継手強度及び疲労強度などが高く、品質に優れた接合継ぎ手を得ることができる。   According to the embodiment of the present invention described above, the amount of deformation of the joint can be reduced as compared with the conventional single resistance welding method, and normal machining such as drilling, cutting, cutting, etc. is performed when assembling metal machine parts. Applicable to the assembly of machine parts with shapes that cannot be machined even with full use, or machine parts that contain dissimilar joints of difficult-to-combine materials that are difficult to combine, and machine parts that cause a significant increase in material costs due to machining. It is possible to improve productivity and reduce costs at the same time. Further, according to the embodiment of the present invention, even when a minute crack occurs on the joint surface after the primary joining (resistance welding), the unmelted amorphous alloy foil is further melted by the subsequent secondary joining (liquid phase diffusion joining). It is possible to repair minute cracks by flowing into the cracks, and to obtain an effect of changing the alloy layer from the non-isothermally solidified structure to a completely isothermally solidified structure. A joint with high quality and excellent quality can be obtained.

また、発明の実施形態により、従来の単独の液相拡散接合法に比べて同等以上の継ぎ手品質を維持しつつ、非晶質合金箔の等温凝固保持時間、つまり、接合継ぎ手を非晶質合金箔の融点以上の再加熱温度で保持する時間を大幅に短縮することが可能であることから、従来に比べて、接合継ぎ手の等温凝固保持における結晶粒径の成長による粗大化が大幅に抑制できる。その結果、本発明法により組み立てられた鉄鋼材料と液相拡散接合で形成された継ぎ手部からなる金属機械部品は、接合ままの金属組織における旧γ結晶の最大粒径が500μm以下と小さく、従来の液相拡散接合法で得られる継ぎ手(最大粒径1mmを上回る結晶粒径)に比べて靱性を向上することができる。
さらに、本発明の実施形態における二次接合(液相拡散接合)時には、単独の液相拡散接合時に必須となる接合面の加圧をしないか、あるいは加圧力を低減できるため、簡易的な加圧治具のみで良好な液層拡散接合部を得ることが可能となる。このため、本発明法によれば、高温で接合面を均一加圧するような高度な加圧技術を必要とせずに溶接欠陥の発生がない接合部品質に優れた液層拡散接合を低コストで実現することが可能となる。
Further, according to the embodiment of the invention, the isothermal solidification retention time of the amorphous alloy foil, that is, the joint joint is made of an amorphous alloy while maintaining the joint quality equal to or higher than that of the conventional single liquid phase diffusion joining method. Since it is possible to significantly reduce the time for holding at the reheating temperature above the melting point of the foil, it is possible to greatly suppress the coarsening due to the growth of the crystal grain size in the isothermal solidification holding of the joint joint compared to the conventional case. . As a result, the metal mechanical component consisting of the steel material assembled by the method of the present invention and the joint formed by liquid phase diffusion bonding has a maximum grain size of the old γ crystal in the as-bonded metal structure as small as 500 μm or less. The toughness can be improved as compared with the joint obtained by the liquid phase diffusion bonding method (crystal grain size exceeding the maximum grain size of 1 mm).
Furthermore, during the secondary bonding (liquid phase diffusion bonding) in the embodiment of the present invention, since it is not necessary to pressurize the joint surface during single liquid phase diffusion bonding or the applied pressure can be reduced, simple application is possible. It is possible to obtain a good liquid layer diffusion bonding portion only with the pressure jig. For this reason, according to the method of the present invention, liquid layer diffusion bonding with excellent joint quality that does not require the occurrence of welding defects and does not require advanced pressurization technology that uniformly pressurizes the joint surface at a high temperature at low cost. It can be realized.

したがって、従来の液相拡散接合で組み立てられた金属機械部品において、さらに継ぎ手靭性を向上するために必要とされるQTなどの熱処理を簡略することができ生産性とともに製造コストを低減することが可能となる。   Therefore, it is possible to simplify the heat treatment such as QT required for further improving joint toughness in metal parts assembled by conventional liquid phase diffusion bonding, and to reduce the manufacturing cost as well as the productivity. It becomes.

上記で示した発明の実施形態により、単独の抵抗溶接法や液相拡散接合法などの従来接合法に比べ金属材料の接合継ぎ手を高品質かつ高生産性で製造することが可能である。しかし、図3に示すように被接合材料である金属材料の少なくとも一方が円筒状金属材料11の端部を他方の金属材料12とを突き合わせて一次接合(抵抗溶接)を行なう際には、以下の問題が想定されるため、上記で示した本発明の効果を安定して発揮させ、疲労強度などの継ぎ手品質を安定して向上させるためには、以下に説明する実施形態を用いるのが好ましい。   According to the embodiment of the present invention described above, it is possible to manufacture a joint joint of a metal material with high quality and high productivity as compared with a conventional joining method such as a single resistance welding method or a liquid phase diffusion joining method. However, as shown in FIG. 3, when at least one of the metal materials to be bonded is subjected to primary bonding (resistance welding) by abutting the end of the cylindrical metal material 11 with the other metal material 12, the following is performed. Therefore, in order to stably exhibit the effects of the present invention described above and stably improve the joint quality such as fatigue strength, it is preferable to use the embodiment described below. .

つまり、円筒状金属材料11を金属材料12に突き合わせて一次接合(抵抗溶接)を行なう場合には、図4(図3の断面図)に示すように一次接合時の加圧力14と熱応力により円筒状金属材料11の開先部が外面側方向15、つまりラッパ状に開き、一次接合後の円筒状金属材料11外面側の開先端部13にはノッチ状の開先が残存しやすくなる。本発明では、一次接合後に引き続き行なわれる二次接合(液相拡散接合)により、未溶融非晶質合金箔をさらに溶融しノッチ状の開先残存部に流入させる効果により、従来の単独の抵抗溶接に比べてノッチ状の開先残存部を減少できる。しかし、一次接合後に開先端部の最大残存高さ17が大きくなり過ぎると、引き続き二次接合を行なっても平滑な接合部を得ることは困難となり、開先残存部のノッチ先端が応力集中部となり、継ぎ手特性、特に疲労強度が低下する原因となるので好ましくない。   That is, when primary joining (resistance welding) is performed by abutting the cylindrical metallic material 11 against the metallic material 12, as shown in FIG. 4 (cross-sectional view of FIG. 3), the pressure 14 and the thermal stress at the time of primary joining are used. The groove portion of the cylindrical metal material 11 opens in the outer surface direction 15, that is, in a trumpet shape, and the notch-shaped groove tends to remain on the open tip portion 13 on the outer surface side of the cylindrical metal material 11 after the primary joining. In the present invention, by the secondary bonding (liquid phase diffusion bonding) subsequently performed after the primary bonding, the unmelted amorphous alloy foil is further melted and flows into the notch-shaped groove remaining portion, thereby providing a conventional single resistance. Compared with welding, a notch-shaped groove remaining portion can be reduced. However, if the maximum remaining height 17 of the open tip after the primary joining becomes too large, it becomes difficult to obtain a smooth joint even if secondary joining is continued, and the notch tip of the groove remaining portion becomes a stress concentration part. This is not preferable because it causes a decrease in joint characteristics, particularly fatigue strength.

本発明では、少なくとも一方が円筒状金属材料を一次接合(抵抗溶接)する場合の上記問題を解消し、より安定して継ぎ手特性を向上させるために、さらに、以下のような条件を規定することが好ましい。   In the present invention, in order to eliminate the above-mentioned problem when at least one of the cylindrical metal materials is primarily joined (resistance welding) and to improve the joint characteristics more stably, the following conditions should be further defined. Is preferred.

図5は、円筒状金属材料11の端部と金属材料面とを突き合わせる(加圧していない状態)際に、突き合わせ接点に対する円筒状金属材料の内面側開先高さA及び外面側開先高さBと、突き合わせ接点から外周までの距離Cと、円筒状金属材料11の肉厚tとの関係を説明するための開先断面図を示す。なお、この図の断面方向は、円筒状金属材料11の中心軸を通り接合面に垂直な断面である。   FIG. 5 shows an inner surface side groove height A and an outer surface side groove of the cylindrical metal material with respect to the butt contact when the end portion of the cylindrical metal material 11 and the metal material surface are butted (not pressurized). The groove | channel sectional drawing for demonstrating the relationship between the height B, the distance C from a butt contact to an outer periphery, and the thickness t of the cylindrical metal material 11 is shown. In addition, the cross-sectional direction in this figure is a cross section that passes through the central axis of the cylindrical metal material 11 and is perpendicular to the joint surface.

本発明では、円筒状金属材料11と金属材料12の一次接合時に図4に示すような加圧力14と熱応力により円筒状金属材料11の開先部が外面側方向15に開くことを抑制し、一次接合後の開先端部の最大残存高さ17を低減するために、図5に示す、突き合わせ接点16に対する円筒状金属材料の内面側開先高さA及び外面側開先高さBと、突き合わせ接点16から外周までの距離Cと、円筒状金属材料11の肉厚tとの関係を適正条件とすることが好ましい。   In the present invention, it is possible to prevent the groove portion of the cylindrical metal material 11 from opening in the outer surface side direction 15 by the applied pressure 14 and the thermal stress as shown in FIG. 4 during the primary joining of the cylindrical metal material 11 and the metal material 12. In order to reduce the maximum remaining height 17 of the open tip after the primary joining, the inner surface side groove height A and the outer surface side groove height B of the cylindrical metal material with respect to the butt contact 16 shown in FIG. The relationship between the distance C from the butt contact 16 to the outer periphery and the thickness t of the cylindrical metal material 11 is preferably set as an appropriate condition.

図6は、一次接合前(加圧していない状態)の円筒状金属材料の内面側開先高さAに対する外面側開先高さBの比、つまり、B/Aと一次接合後の開先端部の最大残存高さ17との関係図を示す。なお、円筒状金属材料11の肉厚tに対する突き合わせ接点16から外周までの距離Cの比、つまり、C/tは0.5で行なった。   FIG. 6 shows the ratio of the outer surface side groove height B to the inner surface side groove height A of the cylindrical metallic material before primary bonding (in a state where pressure is not applied), that is, B / A and the open tip after the primary bonding. The relationship figure with the maximum residual height 17 of a part is shown. The ratio of the distance C from the butt contact 16 to the outer periphery with respect to the wall thickness t of the cylindrical metal material 11, that is, C / t was 0.5.

B/Aの値が0.2〜1の条件で、一次接合後の最大残存高さを十分に低減することが可能となることが判る。一方、B/Aの値が0.2未満になると円筒状金属材料11の内面側開先端部の残存高さが大きくなり、また、B/Aの値が1を超えると、円筒状金属材料11の外面側開先端部の残存高さが大きくなり、いずれの場合も一次接合後の開先端部の最大残存高さは0.1mmより高くなる。この場合には、一次接合後に引き続き行なわれる二次接合(液相拡散接合)による開先残存部の修復作用によっても継ぎ手部の開先残存部を十分に低減することが困難となるため好ましくない。   It can be seen that the maximum remaining height after the primary bonding can be sufficiently reduced under the condition that the value of B / A is 0.2 to 1. On the other hand, when the value of B / A is less than 0.2, the remaining height of the open end on the inner surface side of the cylindrical metal material 11 increases, and when the value of B / A exceeds 1, the cylindrical metal material 11, the remaining height of the open end portion on the outer surface side becomes large, and in any case, the maximum remaining height of the open tip portion after the primary joining becomes higher than 0.1 mm. In this case, it is difficult to sufficiently reduce the groove remaining portion of the joint portion by the repair action of the groove remaining portion by the secondary bonding (liquid phase diffusion bonding) performed after the primary bonding, which is not preferable. .

また、図6は、円筒状金属材料11の肉厚tに対する突き合わせ接点16から外周までの距離Cの比、つまり、C/tの値は0.5の条件で行なった結果である。このC/tの値が0.5以下に小さくなる条件では、図4に示すような一次接合時に加圧力14が負荷された場合に、円筒状金属材料11の開先端部を外面側方向15の応力を受けて外面側開先端部が優先的に変形しやすくなるため、一次接合後の開先端部の最大残存高さはより低減する。しかしながら、このC/tの値が0.5よりも大きく場合には、一次接合時に加圧力14が負荷された場合に、円筒状金属材料11の内面側開先端部が優先的に変形しやすくなり、上記B/Aの値が0.2〜1の条件でも、一次接合後の開先端部の最大残存高さを0.1mm以下に低減することができなくなるため好ましくない。   Further, FIG. 6 shows the result obtained when the ratio of the distance C from the butt contact 16 to the outer periphery with respect to the wall thickness t of the cylindrical metal material 11, that is, the value of C / t is 0.5. Under the condition that the value of C / t is reduced to 0.5 or less, when the pressing force 14 is applied during the primary joining as shown in FIG. Since the outer surface side open tip portion is preferentially easily deformed by receiving the stress, the maximum remaining height of the open tip portion after the primary joining is further reduced. However, when the value of C / t is larger than 0.5, the open end on the inner surface side of the cylindrical metal material 11 is likely to be preferentially deformed when the applied pressure 14 is applied during the primary joining. Thus, even if the value of B / A is 0.2 to 1, it is not preferable because the maximum remaining height of the open tip after primary bonding cannot be reduced to 0.1 mm or less.

以上の知見を踏まえ、本発明では、金属材料の少なくとも一方が円筒状金属材料の場合に、この円筒状金属材料の端部と他方の金属材料面とを突き合わせて一次接合(抵抗溶接)をする際に、突き合わせ接点に対する前記円筒状金属材料の内面側開先高さA、及び、外面側開先高さB、並びに、前記突き合わせ接点から外周までの距離Cが下記(1)式を満足するように、前記円筒状の金属材料端部にV字開先を形成することが好ましい。これにより、少なくとも一方が円筒状金属材料の溶接継ぎ手の疲労強度を安定して十分に向上することが可能となる。   Based on the above knowledge, in the present invention, when at least one of the metal materials is a cylindrical metal material, the end portion of the cylindrical metal material and the other metal material surface are brought into contact with each other for primary joining (resistance welding). In this case, the inner surface side groove height A and the outer surface side groove height B of the cylindrical metal material with respect to the butt contact, and the distance C from the butt contact to the outer periphery satisfy the following expression (1). Thus, it is preferable to form a V-shaped groove at the end of the cylindrical metal material. This makes it possible to stably and sufficiently improve the fatigue strength of at least one of the welded joints of the cylindrical metal material.

0.2≦B/A≦1、かつ、C/t≦0.5 ・・・・ (1)
また、上記本発明の実施形態において、図4に示す、一次接合(抵抗溶接)後の円筒状金属材料11の開先端部の最大残存高さ17は、できる限り低減した方が、引き続き行なわれる二次接合(液相拡散接合)時の未溶融非晶質合金箔の溶融、補修作用によって開先端部の未接合残存部は充分に低減し、継ぎ手の疲労強度をより安定して向上するために好ましい。非晶質合金箔の厚みの3倍を超える場合には、二次接合による未溶融非晶質合金箔の溶融、補修作用によっても継ぎ手の疲労強度をより安定して向上させることは困難となる。
0.2 ≦ B / A ≦ 1 and C / t ≦ 0.5 (1)
Further, in the embodiment of the present invention, the maximum remaining height 17 of the open tip portion of the cylindrical metal material 11 after the primary joining (resistance welding) shown in FIG. 4 is continuously reduced as much as possible. In order to improve the fatigue strength of the joint more stably by reducing the unbonded remaining part of the open tip by melting and repairing the unmelted amorphous alloy foil during secondary bonding (liquid phase diffusion bonding). Is preferable. If the thickness of the amorphous alloy foil exceeds three times, it becomes difficult to improve the fatigue strength of the joint more stably by melting and repairing the unmelted amorphous alloy foil by secondary bonding. .

このため、上記本発明の実施形態において、二次接合による未溶融非晶質合金箔の溶融、補修作用効果を考慮して一次接合後の開先端部の最大残存高さを非晶質合金箔の厚みの3倍以下にすることが好ましい。   Therefore, in the embodiment of the present invention described above, the maximum remaining height of the open tip portion after the primary joining is set to the amorphous alloy foil in consideration of the effect of melting and repairing the unmelted amorphous alloy foil by the secondary joining. It is preferable to make it 3 times or less of the thickness.

また、上記本発明の実施形態において、図4に示す、一次接合(抵抗溶接)時の加圧力14や溶接電流が低いなどの条件が適切でない場合には、円筒状金属材料11の一次接合(抵抗溶接)後の開先端部の最大残存高さが上記適正範囲であっても、一次接合後に開先面間に非晶質合金箔が溶融凝固してなる接合合金層を均一に形成することができず、突き合わせ接点近傍は圧着されてもその他の開先面の圧着が不十分となる。また、一次接合(抵抗溶接)時の円筒状金属材料11の外面側方向応力によって生じた残留応力の影響により二次接合までに接合合金層が剥離してしまう可能性も生じる。   In the embodiment of the present invention, when conditions such as the pressure 14 and the welding current at the time of primary joining (resistance welding) shown in FIG. 4 are not appropriate, primary joining of the cylindrical metal material 11 ( Even if the maximum remaining height of the open tip after resistance welding) is within the above-mentioned range, a bonded alloy layer in which the amorphous alloy foil is melted and solidified between the groove surfaces after primary bonding is uniformly formed. However, even if the vicinity of the butt contact is crimped, the crimping of the other groove surfaces becomes insufficient. In addition, there is a possibility that the bonded alloy layer may be separated before the secondary bonding due to the influence of the residual stress generated by the stress on the outer surface side of the cylindrical metal material 11 during the primary bonding (resistance welding).

これらの問題を抑制し、一次接合後に開先面間に均一な接合合金層を形成し、二次接合までに剥離しない密着性の良好な接合合金層を形成するために、上記本発明の実施形態において、一次接合後の継ぎ手効率を0.8以上とするのが好ましい。   In order to suppress these problems, to form a uniform bonded alloy layer between the groove surfaces after primary bonding, and to form a bonded alloy layer with good adhesion that does not peel before secondary bonding, the above-described implementation of the present invention In the embodiment, it is preferable that the joint efficiency after the primary joining is 0.8 or more.

また、上記本発明の実施形態において、二次接合後の開先端部の最大残存高さは、できる限り低い方が開先端部の形状改善のための後加工を用いずに継ぎ手疲労強度をより向上できるため、好ましい。   In the embodiment of the present invention, the maximum remaining height of the open tip after secondary joining is as low as possible without increasing post-processing for improving the shape of the open tip. Since it can improve, it is preferable.

上記本発明の実施形態において、二次接合時の未溶融非晶質合金箔の溶融、補修作用により接合部は平滑にできるが、より継ぎ手の疲労強度向上させるためには、二次接合後の開先端部の最大残存高さを70μm以下とすることが好ましい。   In the embodiment of the present invention, the joint can be smoothed by melting and repairing the unmelted amorphous alloy foil at the time of secondary joining, but in order to further improve the fatigue strength of the joint, The maximum remaining height of the open tip is preferably 70 μm or less.

本発明の効果を以下の実施例により説明する。
(実施例1)
表1に示す記号A〜Cの3種類の化学成分と融点を有する液相拡散用の非晶質合金箔と、表2に示す記号a〜fの化学成分を有する鉄鋼、Ni合金又はTi合金からなる被接合材料を用いて、表3、表4に示す接合条件で金属機械部品を製造した。
得られた金属機械部品は、接合面から引き離す方向での引っ張り試験、および、接合部の0℃でのシャルピー衝撃試験を行い、継手強度及び継手靭性の評価をおこなった。また、金属機械部品の接合応力加圧方向での変形量を測定し、変形量の評価も合わせて行なった。その結果を表3及び表4に示す。
なお、表3及び表4において、継手強度の評価は、母材の引張強さに対する接合継ぎ手の引張強さの比で示した。この値が1の場合は、母材で破断したことを意味し、1以下の場合は、接合部で破断したことを意味する。また、継手靭性の評価は、0℃での吸収エネルギーが21J以上の場合は良好○、21J未満の場合は不良×として示した。
The effects of the present invention are illustrated by the following examples.
(Example 1)
Amorphous alloy foil for liquid phase diffusion having three kinds of chemical components of symbols A to C shown in Table 1 and a melting point, and steel, Ni alloy or Ti alloy having chemical components of symbols a to f shown in Table 2 Metallic mechanical parts were manufactured under the joining conditions shown in Tables 3 and 4 using the materials to be joined.
The obtained metal mechanical parts were subjected to a tensile test in the direction of separating from the joint surface and a Charpy impact test at 0 ° C. of the joint, and the joint strength and joint toughness were evaluated. Further, the amount of deformation of the metal machine part in the direction in which the joining stress was applied was measured, and the amount of deformation was also evaluated. The results are shown in Tables 3 and 4.
In Tables 3 and 4, the joint strength was evaluated by the ratio of the tensile strength of the joint joint to the tensile strength of the base material. When this value is 1, it means that the base material is broken, and when it is 1 or less, it means that the joint is broken. In addition, the evaluation of joint toughness was shown as “good” when the absorbed energy at 0 ° C. was 21 J or more, and “bad” when it was less than 21 J.

なお、表3に示すNo.2〜8は、以下に示すような要領で金属機械部品を製造した。図7および図8は、角断面の配管本体1の内部管路3の長手方向中央部の上面に形成された分岐口4に、別の分岐管2を接合することにより、内部にT分岐配管を有する自動車用金属機械部品を製造する場合の実施例を説明するために模式図である。なお、図7は、自動車用金属機械部品の斜視図であり、図8は、分岐管2の中心軸を通り、内部管路3の中心軸に垂直な断面図を示す。   In addition, No. 2-8 shown in Table 3 manufactured the metal machine component in the way as shown below. 7 and 8 show a T branch pipe inside by joining another branch pipe 2 to the branch port 4 formed in the upper surface of the central portion in the longitudinal direction of the internal pipe line 3 of the pipe body 1 having a square cross section. It is a schematic diagram for demonstrating the Example in the case of manufacturing the metal machine part for motor vehicles which has this. 7 is a perspective view of a metal machine part for an automobile, and FIG. 8 is a cross-sectional view that passes through the central axis of the branch pipe 2 and is perpendicular to the central axis of the internal conduit 3.

図7に示すように接合面となる分岐管2の端部は、予め機械加工により45°の角度を有するV字開先を付与し、分岐管2の開先9と配管本体1の接合面とをリング状の液相拡散接合用合金箔5を介して突合せた後、分岐管2および配管本体1にそれぞれ密着した電極7、10により開先部分に直流電流を流すと同時に、6の方向に加圧応力を負荷した。
なお、加圧応力は分岐管2の上方から油圧で作動する応力伝達板(図示せず)を通じて負荷した。その結果、分岐管2の開先9は圧壊してほぼ分岐管2の厚み8と同一となるまで変形し、また、分岐管2と配管本体1の開先間に介在させた液相拡散接合用合金箔5は、一度溶融後凝固して合金層を形成するものの、接合時間が極く短時間であるために平均厚みが3μmの未等温凝固組織、つまり、拡散律速等温凝固は終了していない、いわゆる「ろう付け組織」となっていた。次に、二次接合として、この接合継ぎ手を高周波誘導加熱コイルおよび抵抗発熱体を有する電気炉で1150℃の再加熱温度に昇温し、所定時間保持することにより一次接合で形成された接合合金層の液相拡散の等温凝固を終了後、冷却した。
As shown in FIG. 7, the end portion of the branch pipe 2 that becomes the joint surface is preliminarily provided with a V-shaped groove having an angle of 45 ° by machining, and the joint surface between the groove 9 of the branch pipe 2 and the pipe body 1. And a ring-like liquid phase diffusion bonding alloy foil 5, and then a DC current is applied to the groove portion by the electrodes 7 and 10 that are in close contact with the branch pipe 2 and the pipe body 1, respectively, A pressurizing stress was applied.
The pressurizing stress was applied from above the branch pipe 2 through a stress transmission plate (not shown) that is hydraulically operated. As a result, the groove 9 of the branch pipe 2 is crushed and deformed until it becomes substantially equal to the thickness 8 of the branch pipe 2, and the liquid phase diffusion bonding interposed between the branch pipe 2 and the groove of the pipe body 1. Although the alloy foil 5 is once melted and solidified to form an alloy layer, since the joining time is extremely short, the non-isothermal solidified structure having an average thickness of 3 μm, that is, diffusion-controlled isothermal solidification has been completed. There was no so-called “brazing organization”. Next, as a secondary joining, the joining joint is heated to a reheating temperature of 1150 ° C. in an electric furnace having a high-frequency induction heating coil and a resistance heating element, and maintained for a predetermined time, thereby forming a joining alloy formed by the primary joining. After completing the isothermal solidification of the liquid phase diffusion of the layer, it was cooled.

また、表3に示すNo.1、9は、以下に示すような要領で金属機械部品を製造した。   Further, Nos. 1 and 9 shown in Table 3 produced metal machine parts in the following manner.

被接合材料として2本の直径5mmφ、長さ50mmの丸棒を用い、開先端面は完全I型となし、開先面粗さをRmax:10μm以下に研削仕上げした。これらの開先間に直径5mmφの液相拡散接合用合金箔を介在させ、次いで、被接合材料に直流電流を流すと同時に加圧応力を負荷して一次接合として抵抗溶接で継ぎ手を形成した。丸棒同士の同軸度に狂いがないことを確認後、100mm長さとなった継ぎ手を二次接合として抵抗発熱体を有する電気炉内で再加熱温度に昇温し、保持した後、冷却した。その後の熱処理は一切実施していない。   Two round bars having a diameter of 5 mmφ and a length of 50 mm were used as the materials to be joined, the open end surface was made completely I-shaped, and the groove surface roughness was ground to Rmax: 10 μm or less. An alloy foil for liquid phase diffusion bonding having a diameter of 5 mmφ was interposed between these grooves, and then a direct current was applied to the material to be joined, and simultaneously, a stress was applied to form a joint by resistance welding as a primary joint. After confirming that the concentricity of the round bars was not distorted, the joint having a length of 100 mm was secondarily joined, heated to a reheating temperature in an electric furnace having a resistance heating element, and then cooled. No subsequent heat treatment was performed.

なお、表4に示すNo.10および11は、上記金属機械部品を製造する際に、二次接合(液相拡散接合)を実施しない比較例を示し、No.12および13は、上記金属機械部品を製造する際に、一次接合(抵抗溶接)を実施しない比較例を示す。また、表4に示すNo.14は、上記金属機械部品を製造する際に一次接合(抵抗溶接)と二次接合(液相拡散接合)を実施するが接合条件は本発明の範囲から外れた比較例を示す。   In addition, No. 10 and 11 shown in Table 4 show the comparative example which does not implement secondary joining (liquid phase diffusion joining), when manufacturing the said metal machine component, No. 12 and 13 are said metal machinery The comparative example which does not implement primary joining (resistance welding) when manufacturing components is shown. In addition, No. 14 shown in Table 4 performs primary joining (resistance welding) and secondary joining (liquid phase diffusion joining) when manufacturing the metal machine part, but the joining conditions are out of the scope of the present invention. A comparative example is shown.

表3に示す結果から、本発明の接合方法により本発明範囲内の接合条件で金属機械部品を製造したNo.1〜9は、いずれも継手強度が常に母材の引張り強さを上回っており、接合応力付加方向の変形量が5%以下と機械部品として使用性能が満足できるものであった。また、液相拡散接合の保持時間が短いために継ぎ手の最大結晶粒度は500μm以下と微細であり継ぎ手靭性も良好であった。   From the results shown in Table 3, No. 1 to 9 produced metal machine parts under the joining conditions within the scope of the present invention by the joining method of the present invention, the joint strength is always higher than the tensile strength of the base material. The deformation amount in the direction in which the joining stress was applied was 5% or less, and the use performance as a machine part was satisfactory. Further, since the holding time of the liquid phase diffusion bonding was short, the maximum crystal grain size of the joint was as fine as 500 μm or less, and the joint toughness was good.

表4に示すNo.10〜14はいずれも本発明法の接合条件の範囲から外れる比較例である。No.10と11は抵抗溶接のみを使用した場合の比較例であり、この場合、No.10では液相拡散接合用非晶質合金箔を介在させているものの、その組織は未等温凝固組織、すなわち、ろうづけ組織であるため、継手強度は母材強度よりも低く、評価の値は基準となる1を下回り、接合部で破断した。特にNo.11は液相拡散接合用非晶質合金箔も使用していない抵抗溶接のみのため、夾雑物や欠陥が接合界面に残留し、継ぎ手強度が低下している。通常の抵抗溶接ではこのような不安定な継手強度となることがあり、その欠陥検出は実質的に不可能である。   Nos. 10 to 14 shown in Table 4 are comparative examples that deviate from the range of joining conditions of the method of the present invention. No. 10 and No. 11 are comparative examples when only resistance welding is used. In this case, although No. 10 has an amorphous alloy foil for liquid phase diffusion bonding interposed, its structure is an unisothermal solidified structure. That is, since it is a brazed structure, the joint strength was lower than the base metal strength, the evaluation value was less than the reference 1, and fractured at the joint. In particular, No. 11 is only resistance welding in which an amorphous alloy foil for liquid phase diffusion bonding is not used, so that impurities and defects remain at the bonding interface, and the joint strength is reduced. In ordinary resistance welding, such an unstable joint strength may be obtained, and its defect detection is virtually impossible.

また、No.12と13は液相拡散接合のみで5MPaの接合応力を付加して接合した比較例である。No.12の比較例では接合保持時間を40秒と短くした場合であるが、継手の結晶粒を小さくすることができたものの、液相拡散接合は全く完了せず、従って継手強度が低下した。No.13の比較例は抵抗溶接の付加を省いたことを補うために液相拡散接合の保持時間を長くとったが、そのために継ぎ手強度は向上したが、金属組織の結晶粒が粗大化したため、0℃での吸収エネルギーが10J未満となり、継ぎ手の靭性が低下した。   Nos. 12 and 13 are comparative examples in which bonding is performed by applying a bonding stress of 5 MPa only by liquid phase diffusion bonding. In the comparative example of No. 12, although the joint holding time was shortened to 40 seconds, the crystal grains of the joint could be reduced, but the liquid phase diffusion joining was not completed at all, and thus the joint strength was reduced. . In the comparative example of No. 13, the retention time of the liquid phase diffusion bonding was increased in order to make up for the addition of resistance welding, but the joint strength was improved for that purpose, but the crystal grains of the metal structure became coarse. The absorbed energy at 0 ° C. was less than 10 J, and the toughness of the joint was lowered.

また、No.14は、二次接合における液相拡散接合温度が820℃と本発明の条件より低く外れ、液相拡散接合用の非晶質合金箔の融点に到達しなかったため、抵抗溶接で形成されたろうづけ組織はさらに硼化物とNi基合金に分離して脆化し、継手強度が分離してしまった。   In No. 14, the liquid phase diffusion bonding temperature in the secondary bonding was 820 ° C., which was lower than the conditions of the present invention, and did not reach the melting point of the amorphous alloy foil for liquid phase diffusion bonding. The formed brazing structure was further separated into a boride and a Ni-based alloy and became brittle, and the joint strength was separated.

Figure 2005324245
Figure 2005324245

Figure 2005324245
Figure 2005324245

Figure 2005324245
Figure 2005324245

Figure 2005324245
Figure 2005324245

(実施例2)
次に、上記実施例1の表3に示すNo.2〜8の本発明例と同様な要領で図8に示す分岐管2と配管本体1を接合する際に、表5、表6および表7に示すように、円筒状金属材料である分岐管2の肉厚tなどの寸法及び突き合わせ時の分岐管2の開先条件(内面側開先高さA、外面側開先高さB、突き合わせ接点から外周までの距離C)を変えた条件で接合し金属機械部品を製造し、継ぎ手の機械的特性、特に疲労強度を測定し評価した。なお、使用した液相拡散用の非晶質合金箔及び被接合材料の化学組成は、実施例1と同様である。また、表5及び6に示す接合条件以外は、実施例1と同様の要領で行なった。
(Example 2)
Next, No. 1 shown in Table 3 of Example 1 above. When the branch pipe 2 and the pipe body 1 shown in FIG. 8 are joined in the same manner as the present invention examples 2 to 8, as shown in Table 5, Table 6 and Table 7, the branch pipe which is a cylindrical metal material 2 under conditions where the thickness t and the like and the groove conditions of the branch pipe 2 at the time of butting (the inner surface side groove height A, the outer surface side groove height B, the distance C from the butt contact to the outer periphery) are changed. Bonded metal machine parts were manufactured, and mechanical properties of joints, particularly fatigue strength, were measured and evaluated. The chemical composition of the liquid phase diffusion amorphous alloy foil and the material to be joined is the same as in Example 1. Moreover, it carried out in the same way as Example 1 except the joining conditions shown in Tables 5 and 6.

得られた金属機械部品は、接合面から引き離す方向での引っ張り試験、および、疲労試験を行い、継手強度及び継手疲労強度の評価をおこなった。その結果を表6及び表7に示す。
なお、表6及び表7において、継手強度の評価は、母材の引張強さに対する接合継ぎ手の引張強さの比で示した。この値が1の場合は、母材で破断したことを意味し、1以下の場合は、接合部で破断したことを意味する。また、継ぎ手の疲労強度を測定し評価は、得られた金属機械部品の内圧疲労試験を行い、応力範囲20〜200MPaで、繰り返し数1000万回(15Hz)の耐久試験後に亀裂及び破断がないものを合格○、亀裂または破断したもの不合格×と評価した。
The obtained metal mechanical parts were subjected to a tensile test and a fatigue test in the direction of separating from the joint surface, and the joint strength and joint fatigue strength were evaluated. The results are shown in Tables 6 and 7.
In Tables 6 and 7, the joint strength was evaluated by the ratio of the tensile strength of the joint joint to the tensile strength of the base material. When this value is 1, it means that the base material is broken, and when it is 1 or less, it means that the joint is broken. In addition, the fatigue strength of the joint is measured and evaluated by conducting an internal pressure fatigue test of the obtained metal machine part, and having no stress and cracking and fracture after a durability test of 10 million times (15 Hz) in a stress range of 20 to 200 MPa. Was evaluated as pass ○, cracked or broken, and rejected ×.

表6に示すNo.15〜28、および、表7に示すNo.29〜32は、何れも、本発明で規定する一次接合(抵抗溶接)と二次接合(液相拡散接合)を行なうことにより、実施例1で示した発明例と同様に継ぎ手強度が母材強度以上になり従来法に比べて継ぎ手特性に優れた結果が得られた。   No. 15 to 28 shown in Table 6 and No. 15 shown in Table 7. Nos. 29 to 32 each have a joint strength similar to that of the example of the invention shown in Example 1 by performing the primary joining (resistance welding) and secondary joining (liquid phase diffusion joining) defined in the present invention. The strength was higher than that of the conventional method, and the joint characteristics were excellent.

これらの発明例のうちで、表6に示すNo.15〜28は、本発明のより好ましい実施形態の中で規定する円筒状金属材料の開先条件が本発明範囲内で行い、一方、表7に示すNo.29〜32は、そのより好ましい本発明範囲を外れた条件で行なった発明例である。   Among these invention examples, Nos. 15 to 28 shown in Table 6 are performed within the scope of the present invention, while the groove condition of the cylindrical metal material defined in the more preferred embodiment of the present invention is the table. No. 7 shown in FIG. 29-32 are invention examples carried out under conditions that are outside the more preferred scope of the present invention.

表6に示すNo.15〜28は、円筒状金属材料である分岐管2の内面側開先高さA及び外面側開先高さB、突き合わせ接点から外周までの距離C、分岐管2の肉厚tとの関係が本発明のより好ましい条件である0.2≦B/A≦1、かつC/t≦0.5の条件を満足しているため、いずれの接合継ぎ手も内圧疲労試験後の破壊はなく、優れた継ぎ手疲労強度が得られた。また、液相拡散接合の保持時間が短いために継ぎ手の最大結晶粒度は500μm以下と微細であり継ぎ手靭性も良好であった。これらの中でも、さらに、一次接合後の開先端部の最大残存高さ、一次接合後の継ぎ手効率、および、二次接合後の開先端部の残存高さの何れの条件も本発明のより好ましい範囲内にあるNo.16〜22、24、26〜28は、これらの好ましい条件の何れかの条件が外れているNo.15、23、25に比べて継ぎ手疲労試験はさらに向上する結果が得られた。   Nos. 15 to 28 shown in Table 6 are the inner surface side groove height A and outer surface side groove height B of the branch pipe 2 which is a cylindrical metal material, the distance C from the butt contact to the outer periphery, Since the relationship with the wall thickness t satisfies the conditions of 0.2 ≦ B / A ≦ 1 and C / t ≦ 0.5, which are more preferable conditions of the present invention, both joints have an internal pressure fatigue test. There was no subsequent failure, and excellent joint fatigue strength was obtained. Further, since the holding time of the liquid phase diffusion bonding was short, the maximum crystal grain size of the joint was as fine as 500 μm or less, and the joint toughness was good. Among these, any of the maximum remaining height of the open tip after primary joining, the joint efficiency after primary joining, and the remaining height of the open tip after secondary joining is more preferable in the present invention. Nos. 16-22, 24, and 26-28 within the range obtained results that the joint fatigue test was further improved as compared with Nos. 15, 23, and 25 where any of these preferable conditions was not satisfied. It was.

一方、表7のNo.29〜32は、いずれも分岐管2の内面側開先高さA及び外面側開先高さB、突き合わせ接点から外周までの距離C、分岐管2の肉厚tとの関係が本発明のより好ましい範囲から外れた発明例である。   On the other hand, Nos. 29 to 32 in Table 7 are all the inner surface side groove height A and outer surface side groove height B of the branch pipe 2, the distance C from the butt contact to the outer periphery, the thickness t of the branch pipe 2. This is an example of the invention in which the relationship with is deviated from the more preferable range of the present invention.

No.29及び30は分岐管2の開先の高さの比B/Aが1より大きい、つまり外面側の開先高さが内面側よりも高い場合である。この場合、もともと外面側が高い上に抵抗溶接中のラッパ状に管が僅かに開くという変形によってより外面側の開先が残存しやすくなり、抵抗溶接後の継ぎ手断面を観察した結果、開先端部の残存高さは100μm以上と大きくなり、継ぎ手効率も低下した。また、No.30は突き合わせ接点の位置が内面側に寄っている、つまりC/t>0.5であるため、内面側の開先が優先的に変形し、その結果外面側の開先端部が大きく残存した。   No. 29 and No. 30 are cases where the groove height ratio B / A of the branch pipe 2 is larger than 1, that is, the groove height on the outer surface side is higher than that on the inner surface side. In this case, the groove on the outer surface side tends to remain due to the deformation that the outer surface side is originally high and the tube is slightly opened in the trumpet shape during resistance welding, and as a result of observing the joint cross section after resistance welding, As a result, the remaining height was increased to 100 μm or more, and the joint efficiency was also lowered. In No. 30, the position of the butt contact is close to the inner surface side, that is, C / t> 0.5, so that the groove on the inner surface side is preferentially deformed, and as a result, the open tip portion on the outer surface side. Remained largely.

No.31は開先の高さの比B/Aは発明範囲内であるが、突き合わせ接点の位置がC/t>0.5である場合で、No.30と同様に開先の内面側に変形が集中したため、外面側の開先端部が残存し、残存高さが100μm以上と大きくなった。   In No. 31, the groove height ratio B / A is within the scope of the invention, but the position of the butt contact is C / t> 0.5, and the inner surface side of the groove as in No. 30 Since the deformation concentrated on the outer surface, the open end portion on the outer surface side remained, and the remaining height increased to 100 μm or more.

以上の結果、No.29〜31は内圧疲労試験において外面側の開先端部から亀裂が発生し所定の繰り返し数に満たない回数で破断した。   As a result of the above, Nos. 29 to 31 cracked at the number of times less than the predetermined number of repetitions due to cracks generated from the open tip on the outer surface side in the internal pressure fatigue test.

No.32は開先の高さの比B/Aが0.2以下、つまり内面側の開先の高さが外面側の開先の高さの5倍以上の例である。この場合、抵抗溶接中外面側の開先が変形し、端部まで密着していたが内面側の開先の残存が多く、開先端部の残存高さは内面側で100μm以上と大きくなった。その結果、比較例32は内圧疲労試験において内面側の開先端部から亀裂が発生し所定の繰り返し数に満たない回数で破断した。   No. 32 is an example in which the groove height ratio B / A is 0.2 or less, that is, the groove height on the inner surface side is five times or more the height of the groove on the outer surface side. In this case, the groove on the outer surface side was deformed during resistance welding, and the groove was in close contact with the end portion, but there was much remaining groove on the inner surface side, and the remaining height of the open tip portion was as large as 100 μm or more on the inner surface side. . As a result, in Comparative Example 32, in the internal pressure fatigue test, a crack was generated from the open tip portion on the inner surface side, and fractured at a number less than the predetermined number of repetitions.

Figure 2005324245
Figure 2005324245

Figure 2005324245
Figure 2005324245

Figure 2005324245
Figure 2005324245

Figure 2005324245
Figure 2005324245

Figure 2005324245
Figure 2005324245

(実施例3)
次に、図9に示すように、従来は鋳造や鍛造削り出し等で製作していた各種原動機用カムシャフトなどの中空の金属機械部品を製造する際に本発明接合法を適用した実施例について説明する。
(Example 3)
Next, as shown in FIG. 9, an embodiment in which the joining method of the present invention is applied when manufacturing hollow metal machine parts such as camshafts for various prime movers that have been conventionally manufactured by casting, forging, or the like. explain.

表1に示す記号A及びBの2種類の化学成分と融点を有する液相拡散用非晶質合金箔と、表2に示す記号a及びbの化学成分を有する鉄鋼からなる被接合材料を用いて、表8に示す接合条件で以下の要領で図9に示す金属機械部品を製造した。
つまり、図9に示すように、接合面となる中空金属材料18の端部に、予め機械加工により45°の角度を有するV字開先を付与し、中空金属材料18の開先19と金属材料20の接合面とをリング状の液相拡散接合用合金箔21を介して突合せた後、中空金属材料18および金属材料20にそれぞれ密着させた電極22、23により開先19部分に直流電流を流すと同時に加圧応力24を負荷した。なお、加圧応力24は中空金属材料18の上方から油圧で作動する応力伝達板(図示せず)を通じて負荷した。その結果、中空金属材料18の開先19は圧壊してほぼ中空金属材料18の厚み25と同一となるまで変形し、また、中空金属材料18と金属材料20の開先間に介在させた液相拡散接合用合金箔21は、一度溶融後凝固して合金層を形成するものの、接合時間が極く短時間であるために平均厚みが3μmの未等温凝固組織、つまり、拡散律速等温凝固は終了していない、いわゆる「ろう付け組織」となっていた。次に、二次接合として、この接合継ぎ手を高周波誘導加熱コイルおよび抵抗発熱体を有する電気炉で表8記載の再加熱温度に昇温し、所定時間保持することにより一次接合で形成された接合合金層の拡散律速等温凝固を終了後、冷却した。
Using an amorphous alloy foil for liquid phase diffusion having two kinds of chemical components of symbols A and B shown in Table 1 and a melting point, and a material to be joined made of steel having chemical components of symbols a and b shown in Table 2 9 was produced under the following conditions under the joining conditions shown in Table 8.
That is, as shown in FIG. 9, a V-shaped groove having an angle of 45 ° is preliminarily applied to the end portion of the hollow metal material 18 to be a joint surface, and the groove 19 and the metal of the hollow metal material 18 are formed. After joining the joining surface of the material 20 through the ring-shaped alloy foil 21 for liquid phase diffusion joining, a direct current is applied to the groove 19 portion by the electrodes 22 and 23 respectively brought into close contact with the hollow metal material 18 and the metal material 20. The pressure stress 24 was applied simultaneously with flowing. The pressurizing stress 24 was applied from above the hollow metal material 18 through a stress transmission plate (not shown) that is hydraulically operated. As a result, the groove 19 of the hollow metal material 18 is crushed and deformed until it becomes substantially the same as the thickness 25 of the hollow metal material 18, and the liquid interposed between the grooves of the hollow metal material 18 and the metal material 20. Although the alloy foil 21 for phase diffusion bonding is once melted and solidified to form an alloy layer, since the bonding time is extremely short, an unisothermal solidification structure having an average thickness of 3 μm, that is, diffusion-controlled isothermal solidification is It was a so-called “brazing organization” that was not finished. Next, as a secondary joining, the joining joint is heated to the reheating temperature shown in Table 8 in an electric furnace having a high frequency induction heating coil and a resistance heating element, and held for a predetermined time, thereby forming a joining by primary joining. After completion of diffusion-controlled isothermal solidification of the alloy layer, the alloy layer was cooled.

得られた金属機械部品は、接合面から引き離す方向での引っ張り試験、および、接合部の0℃でのシャルピー衝撃試験を行い、継手強度及び継手靭性の評価をおこなった。また、金属機械部品の接合応力加圧方向での変形量を測定し、変形量の評価も合わせて行なった。その結果を表8に示す。
なお、表8において、継手強度の評価は、母材の引張強さに対する接合継ぎ手の引張強さの比で示した。この値が1の場合は、母材で破断したことを意味し、1以下の場合は、接合部で破断したことを意味する。また、継手靭性の評価は、0℃での吸収エネルギーが21J以上の場合は良好○、21J未満の場合は不良×として示した。
The obtained metal mechanical parts were subjected to a tensile test in the direction of separating from the joint surface and a Charpy impact test at 0 ° C. of the joint, and the joint strength and joint toughness were evaluated. Further, the amount of deformation of the metal machine part in the direction in which the joining stress was applied was measured, and the amount of deformation was also evaluated. The results are shown in Table 8.
In Table 8, the joint strength was evaluated by the ratio of the tensile strength of the joint joint to the tensile strength of the base material. When this value is 1, it means that the base material is broken, and when it is 1 or less, it means that the joint is broken. In addition, the evaluation of joint toughness was shown as “good” when the absorbed energy at 0 ° C. was 21 J or more, and “bad” when it was less than 21 J.

表8に示す結果から、本発明の接合方法により本発明範囲内の接合条件で金属機械部品を製造したNo33〜35は、いずれも一次接合後の接合層の厚さが平均で10μm以下であり、二次接合後に測定した継手強度が常に母材の引張り強さを上回っていた。また接合応力付加方向の変形量が5%以下と機械部品として使用性能が満足できるものであった。また、液相拡散接合の保持時間が短いために継ぎ手の最大結晶粒度は500μm以下と微細であり継手靭性も良好であった。   From the results shown in Table 8, Nos. 33 to 35, in which metal machine parts were produced under the joining conditions within the scope of the present invention by the joining method of the present invention, the average thickness of the joint layer after primary joining is 10 μm or less on average. The joint strength measured after the secondary joining always exceeded the tensile strength of the base metal. Further, the deformation amount in the joining stress application direction was 5% or less, and the use performance as a machine part was satisfactory. Further, since the holding time of the liquid phase diffusion bonding was short, the maximum crystal grain size of the joint was as fine as 500 μm or less, and the joint toughness was good.

Figure 2005324245
Figure 2005324245

液相拡散接合用非晶質合金箔が溶融、凝固して形成された合金層の厚みと、その合金層の等温凝固が終了するまでの保持時間との関係を示す図。The figure which shows the relationship between the thickness of the alloy layer formed by melt | dissolving and solidifying the amorphous alloy foil for liquid phase diffusion bonding, and the retention time until the isothermal solidification of the alloy layer is complete | finished. 本発明法の2次接合(液相拡散接合)における等温凝固保持時間と接合継ぎ手強度との関係を示す図。The figure which shows the relationship between the isothermal solidification retention time in the secondary joining (liquid phase diffusion joining) of this invention method, and joining joint strength. 円筒状金属材料と金属材料を突合せ接合する場合の実施態様を示す斜視図。The perspective view which shows the embodiment in the case of butt-joining a cylindrical metal material and a metal material. 円筒状金属材料と金属材料の一次接合時の開先断面図。A groove sectional view at the time of primary joining of a cylindrical metal material and a metal material. 金属機械部品を接合する前の鋼管の中心軸を通り接合面に垂直な開先断面図。The groove | channel sectional drawing which passes along the central axis of the steel pipe before joining metal machine parts, and is perpendicular | vertical to a joining surface. 一次接合前の円筒状金属材料の内面側開先高さAに対する外面側開先高さBの比(B/A)と一次接合後の開先端部の最大残存高さとの関係図。The relationship figure of ratio (B / A) of the outer surface side groove height B with respect to the inner surface side groove height A of the cylindrical metal material before primary joining, and the maximum residual height of the open front-end | tip part after primary joining. 角断面配管と分岐管を溶接して金属機械部品を製造する場合の実施態様を示す図。The figure which shows the embodiment in the case of manufacturing a metal machine component by welding square cross-section piping and a branch pipe. 図7における組み立て時の角断面配管の内部管路軸方向からの断面透視図。The cross-sectional perspective view from the internal pipe-axis direction of square cross-section piping at the time of the assembly in FIG. 金属材料と中空金属材料を突合せ接合する場合の実施態様を示す斜視図。The perspective view which shows the embodiment in the case of butt-joining a metal material and a hollow metal material. 金属機械部品を接合する前の中空金属材料の中心軸を通り接合面に垂直な開先断面図。The groove | channel sectional drawing which passes along the central axis of the hollow metal material before joining a metal machine component, and is perpendicular | vertical to a joining surface.

符号の説明Explanation of symbols

A…突き合わせ接点に対する円筒状金属材料の内面側開先高さ
B…突き合わせ接点に対する円筒状金属材料の外面側開先高さ
C…突き合わせ接点から外周までの距離
t…円筒状金属材料の肉厚
1…角断面配管本体
2…分岐管
3…配管内部の管路
4…内部管路から分岐管へ連絡する枝管
5…液相拡散接合用合金箔
6…1次接合の応力負荷方向
7…分岐管側の抵抗溶接用電極
8…分岐管の中心部断面形状
9…抵抗溶接時の開先
10…角断面配管本体の電極
11…円筒状金属材料
12…金属材料
13…一次接合後の円筒状金属材料外面側の開先端部
14…一次接合時の加圧力
15…外面側方向
16…一次接合前の開先の突き合わせ接点
17…一次接合後の開先端部の最大残存高さ
18…中空金属材料
19…開先
20…金属材料
21…非晶質合金箔
22…電極
23…電極
24…一次接合時の加圧力
25…中空金属材料の厚み
A: Groove height on the inner surface side of the cylindrical metal material relative to the butt contact
B ... Outside groove height of cylindrical metal material relative to butt contact
C: Distance t from butt contact to outer periphery ... Thickness 1 of cylindrical metal material ... Square section pipe main body 2 ... Branch pipe 3 ... Pipe inside pipe 4 ... Branch pipe 5 communicating from internal pipe to branch pipe ... Alloy foil 6 for liquid phase diffusion bonding ... Stress load direction 7 for primary bonding ... Electrode for resistance welding 8 on the branch pipe side ... Cross sectional shape 9 at the center of the branch pipe ... Groove 10 for resistance welding ... Electrode 11 ... Cylindrical metal material 12 ... Metal material 13 ... Opening tip 14 on the outer surface side of cylindrical metal material after primary joining ... Pressure 15 at the time of primary joining ... Outer surface side direction 16 ... Butt matching before primary joining Contact point 17: Maximum remaining height of open tip after primary joining 18 ... Hollow metal material 19 ... Groove 20 ... Metal material 21 ... Amorphous alloy foil 22 ... Electrode 23 ... Electrode 24 ... Pressure 25 at the time of primary joining ... Hollow metal material thickness

Claims (14)

金属材料の開先面に液相拡散接合用の非晶質合金箔を介在させ、一次接合として、抵抗溶接により前記非晶質合金箔と前記金属材料とを溶融圧接して継ぎ手部を形成し、次いで、二次接合として、前記継ぎ手部を前記非晶質合金箔の融点以上に再加熱した後、保持して前記継ぎ手部の凝固過程を完了させる液相拡散接合を行うことを特徴とする金属機械部品の液相拡散接合方法。   An amorphous alloy foil for liquid phase diffusion bonding is interposed on the groove surface of the metal material, and as a primary bond, the amorphous alloy foil and the metal material are melt-welded by resistance welding to form a joint portion. Then, as the secondary bonding, the joint portion is reheated to a temperature equal to or higher than the melting point of the amorphous alloy foil, and then liquid phase diffusion bonding is performed to hold and complete the solidification process of the joint portion. Liquid phase diffusion bonding method for metal machine parts. 前記再加熱した後の保持時間が30秒以上であることを特徴とする請求項1記載の金属機械部品の液相拡散接合方法。   2. The liquid phase diffusion bonding method for metal machine parts according to claim 1, wherein a holding time after the reheating is 30 seconds or more. 前記非晶質合金箔の組成が、NiまたはFeを基材とし、拡散原子としてB、P及びCのうちの1種または2種以上を各々0.1〜20.0原子%含有し、さらに、Vを0.1〜10.0原子%含有することを特徴とする請求項1または2記載の金属機械部品の液相拡散接合方法。   The composition of the amorphous alloy foil is based on Ni or Fe, and contains 0.1 to 20.0 atomic percent of one or more of B, P and C as diffusion atoms, V is contained in an amount of 0.1 to 10.0 atomic%, and the liquid phase diffusion bonding method for metal machine parts according to claim 1 or 2. 前記抵抗溶接が、通電加熱方式のスポット溶接、プロジェクション溶接、アップセット溶接およびフラシュバット溶接のうちの何れか1種の溶接方法であり、かつ、前記抵抗溶接による前記非晶質合金箔と前記金属材料との溶融圧接の時間が10秒以下であることを特徴とする請求項1〜3の何れか1項に記載の金属機械部品の液相拡散接合方法。   The resistance welding is a welding method of any one of energization heating type spot welding, projection welding, upset welding, and flash butt welding, and the amorphous alloy foil and the metal by the resistance welding. The method of liquid phase diffusion bonding of metal machine parts according to any one of claims 1 to 3, wherein the time of melt-welding with the material is 10 seconds or less. 前記抵抗溶接における電流量が100 〜100,000A/mm2 であることを特徴とする請求項1〜4の何れか1項に記載の金属機械部品の液相拡散接合方法。 5. The liquid phase diffusion bonding method for metal machine parts according to claim 1, wherein an amount of current in the resistance welding is 100 to 100,000 A / mm 2 . 前記抵抗溶接による前記非晶質合金箔と前記金属材料との溶融圧接における加圧力が10〜1,000MPaであることを特徴とする請求項1〜5のうちの何れか1項に記載の金属機械部品の液相拡散接合方法。   The metal according to any one of claims 1 to 5, wherein the pressure applied in the melt welding between the amorphous alloy foil and the metal material by the resistance welding is 10 to 1,000 MPa. Liquid phase diffusion bonding method for machine parts. 前記抵抗溶接により形成した継ぎ手部の断面組織における未等温凝固組織の加圧方向の厚みが、平均で10μm以下であることを特徴とする請求項1〜6の何れか1項に記載の金属機械部品の液相拡散接合方法。   The metal machine according to any one of claims 1 to 6, wherein the thickness in the pressing direction of the non-isothermal solidified structure in the cross-sectional structure of the joint portion formed by the resistance welding is 10 µm or less on average. Liquid phase diffusion bonding method for parts. 前記抵抗溶接により形成した継ぎ手部の継ぎ手効率が0.5〜2.0であることを特徴とする請求項1〜7の何れか1項に記載の金属機械部品の液相拡散接合方法。
ただし、継ぎ手効率とは、非晶質合金箔と金属材料を溶融圧接した後の継ぎ手部位の面積に対する金属材料の開先面の面積の比とする。
8. The liquid phase diffusion bonding method for metal machine parts according to claim 1, wherein the joint efficiency of the joint portion formed by the resistance welding is 0.5 to 2.0. 9.
However, the joint efficiency is the ratio of the area of the groove surface of the metal material to the area of the joint part after the amorphous alloy foil and the metal material are melt-welded.
前記継ぎ手部の凝固過程の完了後、0.1〜50℃/秒の冷却速度で冷却して継ぎ手部組織を制御することを特徴とする請求項1〜8の何れか1項に記載の金属機械部品の液相拡散接合方法。   The metal according to any one of claims 1 to 8, wherein after the solidification process of the joint portion is completed, the joint portion structure is controlled by cooling at a cooling rate of 0.1 to 50 ° C / second. Liquid phase diffusion bonding method for machine parts. 金属材料と液相拡散接合で形成された継ぎ手部からなる金属機械部品であり、該金属機械部品の接合ままの金属組織における旧γ結晶の最大粒径が500μm以下であることを特徴とする金属機械部品。   A metal machine part comprising a joint formed by liquid phase diffusion bonding with a metal material, wherein the maximum grain size of the old γ crystal in the metal structure of the metal machine part as bonded is 500 μm or less Machine parts. 前記金属材料の少なくとも一方が円筒状金属材料であり、該円筒状金属材料の端部と他方の金属材料面とを突き合わせて前記一次接合をする際に、突き合わせ接点に対する前記円筒状金属材料の内面側開先高さA、及び、外面側開先高さB、並びに、前記突き合わせ接点から外周までの距離Cが下記(1)式を満足するように、前記円筒状の金属材料端部にV字開先を形成することを特徴とする請求項1〜10の何れか1項に記載の金属機械部品の液相拡散接合方法。
0.2≦B/A≦1、かつ、C/t≦0.5 ・・・・ (1)
但し、Aは円筒状金属材料の内面側開先高さ、Bは円筒状金属材料の外面側開先高さ、Cは円筒状金属材料の突き合わせ接点から外周までの距離、tは円筒状金属材料の肉厚をそれぞれ表す。
At least one of the metal materials is a cylindrical metal material, and the inner surface of the cylindrical metal material with respect to the butt contact when the end of the cylindrical metal material and the other metal material surface are abutted to perform the primary joining A side groove height A, an outer surface side groove height B, and a distance C from the butt contact to the outer periphery satisfy the following expression (1). The liquid phase diffusion bonding method for metal machine parts according to claim 1, wherein a shape groove is formed.
0.2 ≦ B / A ≦ 1 and C / t ≦ 0.5 (1)
Where A is the groove height on the inner surface side of the cylindrical metal material, B is the groove height on the outer surface side of the cylindrical metal material, C is the distance from the butt contact point of the cylindrical metal material to the outer periphery, and t is the cylindrical metal material Represents the thickness of each material.
前記一次接合後の開先端部における最大残存高さが前記非晶質合金箔の厚みの3倍以下であることを特徴とする請求項11に記載の金属機械部品の液相拡散接合方法。   12. The liquid phase diffusion bonding method for metal machine parts according to claim 11, wherein the maximum remaining height at the open tip after the primary bonding is three times or less the thickness of the amorphous alloy foil. 前記一次接合後の継ぎ手効率が0.8以上であることを特徴とする請求項11または12に記載の金属機械部品の液相拡散接合方法。   13. The liquid phase diffusion bonding method for metal machine parts according to claim 11 or 12, wherein the joint efficiency after the primary bonding is 0.8 or more. 前記二次接合後の開先端部の最大残存高さが70μm以下であることを特徴とする請求項11〜13の何れか1項に記載の金属機械部品の液相拡散接合方法。   14. The liquid phase diffusion bonding method for metal machine parts according to claim 11, wherein the maximum remaining height of the open tip after the secondary bonding is 70 μm or less.
JP2004149581A 2003-06-02 2004-05-19 Liquid phase diffusion bonding method for metal machine parts Active JP4540392B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2004149581A JP4540392B2 (en) 2003-06-02 2004-05-19 Liquid phase diffusion bonding method for metal machine parts
CN2004800153887A CN1798630B (en) 2003-06-02 2004-06-02 Liquid phase diffusion welding method for metallic machine part and metallic machine part
US10/559,040 US7804039B2 (en) 2003-06-02 2004-06-02 Liquid phase diffusion bonding method of metal machine part and such metal machine part
PCT/JP2004/008011 WO2004105994A1 (en) 2003-06-02 2004-06-02 Liquid phase diffusion welding method for metallic machine part and metallic machine part
KR1020057022990A KR100733524B1 (en) 2003-06-02 2004-06-02 Liquid phase diffusion welding method for metallic machine part and metallic machine part
EP04735820A EP1637270B1 (en) 2003-06-02 2004-06-02 Method of liquid phase diffusion bonding of metallic machine parts
US12/658,343 US20100143747A1 (en) 2003-06-02 2010-02-04 Liquid phase diffusion bonding method of metal machine part and such metal machine part

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003156602 2003-06-02
JP2004118069 2004-04-13
JP2004149581A JP4540392B2 (en) 2003-06-02 2004-05-19 Liquid phase diffusion bonding method for metal machine parts

Publications (2)

Publication Number Publication Date
JP2005324245A true JP2005324245A (en) 2005-11-24
JP4540392B2 JP4540392B2 (en) 2010-09-08

Family

ID=33493936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004149581A Active JP4540392B2 (en) 2003-06-02 2004-05-19 Liquid phase diffusion bonding method for metal machine parts

Country Status (6)

Country Link
US (2) US7804039B2 (en)
EP (1) EP1637270B1 (en)
JP (1) JP4540392B2 (en)
KR (1) KR100733524B1 (en)
CN (1) CN1798630B (en)
WO (1) WO2004105994A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008229647A (en) * 2007-03-19 2008-10-02 Toyota Motor Corp Crankshaft and manufacturing method of crankshaft
WO2011062011A1 (en) 2009-11-19 2011-05-26 新日本製鐵株式会社 Common rail, common rail holder, and method for producing common rail
JP2012055904A (en) * 2010-09-06 2012-03-22 Toyota Motor Corp Liquid phase diffusion welding method and welded product
JP2013158829A (en) * 2012-02-08 2013-08-19 Nippon Steel & Sumitomo Metal Corp Liquid phase diffusion welding joint of steel bar and method of manufacturing the same
CN112247334A (en) * 2020-10-12 2021-01-22 中国航发沈阳黎明航空发动机有限责任公司 Solid phase diffusion welding process for hollow part with complex curved surface welding interface
JP7086429B1 (en) 2021-11-02 2022-06-20 福寿工業株式会社 Liquid phase diffusion bonding method

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5008969B2 (en) * 2006-01-31 2012-08-22 新日本製鐵株式会社 Alloy for liquid phase diffusion bonding
JP5039507B2 (en) 2007-10-31 2012-10-03 日立オートモティブシステムズ株式会社 High pressure fuel supply pump and method of manufacturing the same
BRPI0915440B1 (en) * 2008-07-07 2017-11-14 Constellium Switzerland Ag Process of fusion welding to join aluminum and titanium and joint submitted to brazing
CN102131611B (en) * 2008-08-27 2013-12-04 新日铁住金株式会社 Liquid phase diffusion bonding pipe joint and manufacturing method therefor
EP2305995B1 (en) * 2009-03-12 2018-05-02 Nippon Steel & Sumitomo Metal Corporation Method of producing common rail and common rail
FR2950551B1 (en) * 2009-09-25 2011-10-28 Commissariat Energie Atomique METHOD FOR MANUFACTURING HOT ISOSTATIC COMPRESSION HOLLOW ZONE MODULE
EP2614913B1 (en) * 2010-09-06 2020-06-10 Honda Motor Co., Ltd. Welding method and welding device
WO2012081440A1 (en) * 2010-12-14 2012-06-21 日産自動車株式会社 Bonded object of electroconductive materials
CN102218592B (en) * 2011-05-12 2013-04-24 西北工业大学 Diffusion welding method of titanium or titanium alloy and stainless steel
DE112014001875T5 (en) 2013-04-09 2015-12-24 Aktiebolaget Skf Bearing part and its manufacturing process
US9555500B2 (en) * 2013-04-10 2017-01-31 Aktiebolaget Skf Method of joining two materials by diffusion welding
CN103506754B (en) * 2013-08-02 2015-03-25 济南瑞通铁路电务有限责任公司 Die applied to jointed process of metal strips used in through ground wires
CN104139234B (en) * 2014-08-04 2016-04-20 东莞帕姆蒂昊宇液态金属有限公司 A kind of method for resistance welding of non-crystaline amorphous metal
CN105345252B (en) * 2015-12-04 2017-11-14 南京理工大学 A kind of welding method of high nitrogen steel
JPWO2020235603A1 (en) * 2019-05-21 2020-11-26

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09262684A (en) * 1996-03-29 1997-10-07 Sumitomo Metal Ind Ltd Diffusion welding method for metallic material
JPH1029075A (en) * 1996-07-12 1998-02-03 Nippon Steel Corp Alloy foil for liquid phase diffusion joining joinable in oxidation atmosphere
JPH11285860A (en) * 1998-04-02 1999-10-19 Nippon Steel Corp Liquid phase diffusion joining method in oxidizing atmosphere
JP2001321962A (en) * 2000-05-17 2001-11-20 Nippon Steel Corp Method of liquid-phase diffusion joining for high proof stress, high-toughness joint
JP2002035958A (en) * 2000-05-18 2002-02-05 Nippon Steel Corp Manufacturing method for machine parts using liquid phase diffusion welding

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3446262A1 (en) * 1984-12-19 1986-06-19 Bremer Vulkan AG Schiffbau und Maschinenfabrik, 2820 Bremen Method of producing machine components assembled from individual parts, in particular crankshafts
US4703221A (en) * 1986-04-18 1987-10-27 Ochoa Carlos G Electric lamp and method of making
EP0389625A1 (en) * 1988-02-29 1990-10-03 Kabushiki Kaisha Komatsu Seisakusho Process for resistance diffusion junction
NO179483C (en) * 1989-08-29 1996-10-16 Sumitomo Metal Ind Process for establishing diffusion bonding between corrosion resistant materials
JP2861314B2 (en) * 1990-07-20 1999-02-24 三菱自動車工業株式会社 Resistance welding method using amorphous foil
JP2820613B2 (en) * 1994-03-29 1998-11-05 新日本製鐵株式会社 Liquid phase diffusion bonding alloy foil for heat resistant materials that can be bonded in oxidizing atmosphere
CA2222288A1 (en) * 1996-03-29 1997-10-09 Masakatsu Ueda Method for joining metallic materials by diffusion bonding and joined structure thereby
KR19990036151A (en) 1996-06-04 1999-05-25 다나카 미노루 Fe-based alloy foil for liquid phase diffusion bonding of Fe-based materials that can be bonded in an oxidizing atmosphere
US6098871A (en) * 1997-07-22 2000-08-08 United Technologies Corporation Process for bonding metallic members using localized rapid heating
TW548334B (en) * 1997-08-20 2003-08-21 Jgc Corp Heating furnace and method of manufacturing the same
JPH1190619A (en) 1997-09-16 1999-04-06 Mazda Motor Corp Method and device for joining metallic member
JPH1190620A (en) 1997-09-16 1999-04-06 Mazda Motor Corp Method and device for connecting metal member
JPH1190621A (en) 1997-09-16 1999-04-06 Mazda Motor Corp Method and device for connecting metal member
JP3740858B2 (en) * 1997-09-16 2006-02-01 マツダ株式会社 Joined metal member and method of joining the member
JP3752830B2 (en) * 1998-03-31 2006-03-08 マツダ株式会社 Joined metal member and method of joining the member
US6913842B2 (en) * 2000-05-18 2005-07-05 Fukuju Industry Corporation Ltd. Liquid phase diffusion welded metal-made precision machine component and production method thereof
JP2002086278A (en) * 2000-09-11 2002-03-26 Nippon Steel Corp Manufacturing method of annular and hollow machine parts
JP3801500B2 (en) 2001-12-18 2006-07-26 新日本製鐵株式会社 Manufacturing method of metal machine parts to which liquid phase diffusion bonding is applied and metal machine parts manufactured thereby
US7775414B2 (en) * 2003-10-04 2010-08-17 Siemens Energy, Inc. Consumable insert and method of using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09262684A (en) * 1996-03-29 1997-10-07 Sumitomo Metal Ind Ltd Diffusion welding method for metallic material
JPH1029075A (en) * 1996-07-12 1998-02-03 Nippon Steel Corp Alloy foil for liquid phase diffusion joining joinable in oxidation atmosphere
JPH11285860A (en) * 1998-04-02 1999-10-19 Nippon Steel Corp Liquid phase diffusion joining method in oxidizing atmosphere
JP2001321962A (en) * 2000-05-17 2001-11-20 Nippon Steel Corp Method of liquid-phase diffusion joining for high proof stress, high-toughness joint
JP2002035958A (en) * 2000-05-18 2002-02-05 Nippon Steel Corp Manufacturing method for machine parts using liquid phase diffusion welding

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008229647A (en) * 2007-03-19 2008-10-02 Toyota Motor Corp Crankshaft and manufacturing method of crankshaft
WO2011062011A1 (en) 2009-11-19 2011-05-26 新日本製鐵株式会社 Common rail, common rail holder, and method for producing common rail
CN102292537A (en) * 2009-11-19 2011-12-21 新日本制铁株式会社 Common rail, common rail holder, and method for producing common rail
KR101194512B1 (en) 2009-11-19 2012-10-25 후꾸주 고교 가부시끼 가이샤 Common rail, common rail holder, and method of producing common rail
US8490600B2 (en) 2009-11-19 2013-07-23 Nippon Steel & Sumitomo Metal Corporation Common rail, common rail holder, and method of producing common rail
JP2012055904A (en) * 2010-09-06 2012-03-22 Toyota Motor Corp Liquid phase diffusion welding method and welded product
JP2013158829A (en) * 2012-02-08 2013-08-19 Nippon Steel & Sumitomo Metal Corp Liquid phase diffusion welding joint of steel bar and method of manufacturing the same
CN112247334A (en) * 2020-10-12 2021-01-22 中国航发沈阳黎明航空发动机有限责任公司 Solid phase diffusion welding process for hollow part with complex curved surface welding interface
CN112247334B (en) * 2020-10-12 2022-06-03 中国航发沈阳黎明航空发动机有限责任公司 Solid phase diffusion welding process for hollow part with complex curved surface welding interface
JP7086429B1 (en) 2021-11-02 2022-06-20 福寿工業株式会社 Liquid phase diffusion bonding method
JP2023068384A (en) * 2021-11-02 2023-05-17 福寿工業株式会社 Liquid phase diffusion bonding method

Also Published As

Publication number Publication date
JP4540392B2 (en) 2010-09-08
KR100733524B1 (en) 2007-06-29
EP1637270A4 (en) 2010-03-17
US7804039B2 (en) 2010-09-28
US20100143747A1 (en) 2010-06-10
KR20060033722A (en) 2006-04-19
WO2004105994A1 (en) 2004-12-09
EP1637270B1 (en) 2012-08-08
US20060163321A1 (en) 2006-07-27
CN1798630B (en) 2010-05-26
EP1637270A1 (en) 2006-03-22
CN1798630A (en) 2006-07-05

Similar Documents

Publication Publication Date Title
JP4540392B2 (en) Liquid phase diffusion bonding method for metal machine parts
JP2010059451A (en) Welded joint and manufacturing method therefor
JP4456471B2 (en) Liquid phase diffusion bonding method for metal machine parts and metal machine parts
JP5624901B2 (en) Dissimilar metal joining method between steel plate and aluminum alloy plate and manufacturing method of dissimilar metal joint
EP3727716B1 (en) Method of manufacturing a welded steel part to be used as motor vehicle part
KR102650264B1 (en) Resistance spot welding method and manufacturing method of resistance spot welding seam
JP2006021216A (en) Method for manufacturing tailored blank press formed parts
JP3896031B2 (en) Manufacturing method of high strength UOE steel pipe
JP2002172469A (en) Spot welding method for high strength steel plate
JP7242112B2 (en) Solid point welding method and solid point welding apparatus
JP4583269B2 (en) Manufacturing method of common rail
WO2020105267A1 (en) Joint structure and method for manufacturing joint structure
JP5347416B2 (en) High-strength steel with excellent one-side spot weldability and one-side spot welding method
WO2023234391A1 (en) Spot welded joint and method for manufacturing spot welded joint
JP2000084614A (en) Production of high strength resistance welded steel tube for automobile excellent in toughness
JP3740031B2 (en) Liquid phase diffusion bonding method using groove filler and its joint
JP2001131679A (en) Joint and structure composed of hyperfine-grained steel
JP2023145266A (en) Resistance spot welded joint and method for manufacturing the same
CN117564429A (en) Steel rapid TLP diffusion welding method adopting nonmetallic interlayer
JP3786001B2 (en) Steel, steel structure and joining method
JP2000312977A (en) Jointing method of different metals
JP2006035256A (en) Method for spot welding of high strength steel plate
JP2017060994A (en) Resistance spot weld joint, resistance spot welding method, and manufacturing method for resistance spot weld joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100622

R151 Written notification of patent or utility model registration

Ref document number: 4540392

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250