JP2012055904A - Liquid phase diffusion welding method and welded product - Google Patents

Liquid phase diffusion welding method and welded product Download PDF

Info

Publication number
JP2012055904A
JP2012055904A JP2010199097A JP2010199097A JP2012055904A JP 2012055904 A JP2012055904 A JP 2012055904A JP 2010199097 A JP2010199097 A JP 2010199097A JP 2010199097 A JP2010199097 A JP 2010199097A JP 2012055904 A JP2012055904 A JP 2012055904A
Authority
JP
Japan
Prior art keywords
bonding
bonded
diffusion
temperature
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010199097A
Other languages
Japanese (ja)
Other versions
JP5432866B2 (en
Inventor
Takayuki Yamada
貴之 山田
Hiroharu Kyoda
博治 京田
Hirotada Takada
啓督 高田
Hiroshi Hasegawa
泰士 長谷川
Taku Yoshida
卓 吉田
Masayuki Hashimura
雅之 橋村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Toyota Motor Corp
Original Assignee
Nippon Steel Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Toyota Motor Corp filed Critical Nippon Steel Corp
Priority to JP2010199097A priority Critical patent/JP5432866B2/en
Publication of JP2012055904A publication Critical patent/JP2012055904A/en
Application granted granted Critical
Publication of JP5432866B2 publication Critical patent/JP5432866B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a liquid phase diffusion welding method to weld members mutually to be welded having cylindrical portions at their ends while suppressing generation and inclusion of oxides at the welding portions.SOLUTION: Steel pipes 10A, 10B are welded mutually at opening end faces by disposing a low-melting point welding material 11 with a lower melting point than that of steel between the respective opening end faces of the steel pipes 10A, 10B and then welding the steel pipes 10A, 10B at their opening end faces by pressing the steel pipes 10A, 10B while heating the steel pipes 10A, 10B to a welding temperature which is the melting point of the low-melting point welding material 11 or higher. The oxides generated at the welding portions are pushed out around the welding portions. The material of the low-melting point welding material 11 is diffused in the steel pipes 10A, 10B by heating the steel pipes 10A, 10B to a diffusing temperature higher than the welding temperature while maintaining the pressing state. Then, the steel pipes 10A, 10B are pressed at a pressing force lower than the pressing force in a welding/extracting process while maintaining the heating state and the material of the low-melting point welding material 11 is further diffused in the members to be welded.

Description

本発明は、一対の鋼製の被接合部材を液相拡散接合する方法及びその方法により製造された接合品に係り、特に端部に筒状部分を有した被接合部材同士を好適に接合することができる液相拡散接合方法及びその方法により製造された接合品に関する。   The present invention relates to a method of liquid phase diffusion bonding of a pair of steel members to be bonded and a bonded product manufactured by the method, and particularly, to-be-bonded members having cylindrical portions at their ends are preferably bonded. The present invention relates to a liquid phase diffusion bonding method and a bonded product manufactured by the method.

従来から、被接合部材同士の接合面の間に、接合部材の材料よりも融点の低い低融点接合材を挟持させ、この状態で、被接合部材同士を押圧しながら加熱して、これらの被接合部材同士を、液相拡散接合法により接合する方法が採られることがある(例えば、特許文献1参照)。この方法によれば、被接合部材の部分的な溶融を伴う従来の溶接方法に比べて、接合された接合品の熱変形、化学的な組織の変化等を抑えることができる。   Conventionally, a low-melting-point bonding material having a melting point lower than that of the material of the bonding member is sandwiched between the bonding surfaces of the bonded members, and in this state, the bonded members are heated while being pressed, A method of joining the joining members to each other by a liquid phase diffusion joining method may be employed (see, for example, Patent Document 1). According to this method, compared to the conventional welding method that involves partial melting of the members to be joined, it is possible to suppress thermal deformation, chemical structural change, and the like of the joined product.

例えば、このような液相拡散接合方法として、被接合部材間に、被接合部材の液相線温度以下の融点を有し、かつBを4%以下で含有するインサート材を挿入し、接合部をこのインサート材の液相線温度+50℃から液相線温度+250℃の間に加熱保持し、その温度で、所定の加圧力で加圧しながら、所定時間を保持して液相拡散接合を完了させる鋼材の接合方法が提案されている(例えば、特許文献2参照)。   For example, as such a liquid phase diffusion bonding method, an insert material having a melting point equal to or lower than the liquidus temperature of the member to be bonded and containing B at 4% or less is inserted between the members to be bonded. Is heated and held between the liquidus temperature + 50 ° C and the liquidus temperature + 250 ° C of this insert, and the liquid phase diffusion bonding is completed by holding at that temperature for a predetermined time while pressing with a predetermined pressure. There has been proposed a method for joining steel materials (see, for example, Patent Document 2).

別の態様としては、突き合わせた被接合部材の間に接合材を介在させて、接合部を加熱することにより拡散接合する方法であって、昇温時、接合層の温度が接合材の融点を超え被接合部材の融点未満では圧縮応力の最高値である初期応力を50〜150MPaとし、接合層の温度が接合温度に達した時点では初期応力より小さな圧縮応力10〜45MPaとし、その後も圧縮応力を保ち、接合層の温度が接合温度に達してから30秒間以内に圧縮応力を10MPa未満とする液相拡散接合方法が提案されている(例えば、特許文献3参照)。   Another aspect is a method in which a bonding material is interposed between the butted members to be joined and diffusion bonding is performed by heating the bonding portion. When the temperature rises, the temperature of the bonding layer reduces the melting point of the bonding material. The initial stress, which is the maximum value of the compressive stress, is 50 to 150 MPa when the temperature exceeds the melting point of the member to be joined, and the compressive stress is 10 to 45 MPa smaller than the initial stress when the temperature of the joining layer reaches the joining temperature. A liquid phase diffusion bonding method has been proposed in which the compressive stress is less than 10 MPa within 30 seconds after the temperature of the bonding layer reaches the bonding temperature (see, for example, Patent Document 3).

特開2008−229647号公報JP 2008-229647 A 特開平05−3181343号公報Japanese Patent Laid-Open No. 05-3181343 特開平09−267184号公報JP 09-267184 A

しかしながら、上述した特許文献1〜3の液相拡散接合法を用いて、図8(a)に示すように、筒状部分を有した一対の鋼製の被接合部材として鋼管10A,10Bの間に接合材11を配置して、押し板41,41を介して押圧装置により鋼管10A,10Bを押圧し、酸化雰囲気下で高周波コイルからなるヒータ32により加熱して、これらを接合した場合、図8(b)に示すように、接合材を含む接合部分において相当の酸化物Sが生成されるため、接合品の接合強度が低下することがあった。   However, using the liquid phase diffusion bonding method of Patent Documents 1 to 3 described above, as shown in FIG. 8 (a), a pair of steel members 10A and 10B having a cylindrical portion is used as a member to be joined. When the joining material 11 is disposed on the steel plates 10A and 10B by a pressing device through the pressing plates 41 and 41 and heated by the heater 32 made of a high-frequency coil in an oxidizing atmosphere, these are joined. As shown in FIG. 8B, since a considerable amount of oxide S is generated in the bonded portion including the bonding material, the bonding strength of the bonded product may be reduced.

この酸化物Sの生成の理由としては、以下の理由が考えられる。具体的には、被接合部材の開口端面を含む開先が、熱変形により図8(c)に示すように朝顔状(ラッパ状)に開く(塑性変形する)ため、対峙する接合面は平行に接触しない。この結果、開いた開先は、接合応力で塑性変形し、これが進行するが、この際に、大気を巻き込みため、接合材11を含む接合部分が酸化される。さらに、接合部分の外周から接合部分の大気が拡散して酸化物を成長させ、高温になればなるほど、この現象は顕著になる。   As the reason for the formation of the oxide S, the following reasons can be considered. Specifically, since the groove including the opening end face of the member to be joined opens in a morning glory shape (trumpet shape) as shown in FIG. 8C due to thermal deformation (plastic deformation), the facing joint surfaces are parallel. Do not touch. As a result, the open groove is plastically deformed by the joining stress, and this progresses. At this time, since the atmosphere is entrained, the joining portion including the joining material 11 is oxidized. Furthermore, this phenomenon becomes more prominent as the atmosphere of the joint portion diffuses from the outer periphery of the joint portion to grow an oxide and the temperature rises.

本発明は、このような課題を解決すべくなされたものであり、その目的とするところは、接合部分における酸化物の生成及び介在を抑制しながら、端部に筒状部分を有した被接合部材同士の接合を行うことができる液相拡散接合方法を提供することにある。   The present invention has been made to solve such a problem, and the object of the present invention is to join with a cylindrical portion at the end while suppressing the formation and interposition of oxide in the bonded portion. An object of the present invention is to provide a liquid phase diffusion bonding method capable of bonding members together.

発明者らは、鋭意検討を重ねた結果、上述したように、被接合部材の開口端面を含む開先が開かないようにするためには、被接合部材同士の接合と、被接合部材への接合材の拡散とを、分離して、それぞれの適した条件で行うことが好ましいと考えた。   As a result of intensive studies, the inventors, as described above, in order to prevent the groove including the opening end face of the member to be joined from being opened, joining the members to be joined, and joining the members to be joined. We thought that it was preferable to separate the diffusion of the bonding material under suitable conditions.

すなわち、接合を行う際には、被接合部材同士が熱変形しないように、接合材の拡散時の温度よりも加熱温度を下げて、これを接合温度とすれば、熱変形(塑性変形)による接合界面の酸化物の生成は抑制されると考えた。さらに、この接合の際の被接合部材同士の押圧力により、被接合部材の端面及び接合材を含む接合部分に形成された酸化物を、接合材と共に接合部分の周りに押し出すことができれば、酸化物の生成量は抑制され、生成された酸化物は、接合部分の周りに押し出されると考えた。   That is, when performing bonding, if the heating temperature is set lower than the temperature at the time of diffusion of the bonding material and this is set as the bonding temperature so that the members to be bonded are not thermally deformed, it is caused by thermal deformation (plastic deformation). It was thought that the formation of oxide at the bonding interface was suppressed. Furthermore, if the oxide formed on the joined portion including the end face of the joined member and the joining material can be pushed out together with the joining material by the pressing force between the joined members at the time of joining, It was considered that the amount of product generated was suppressed, and the generated oxide was pushed out around the joint.

ここで、被接合部材同士の接合から、被接合部材への接合材の拡散へ、移行する際には、拡散速度を向上させるために、加熱温度を上昇させる。この上昇した温度を拡散温度とする。この拡散温度までの温度上昇の際には、既に、被接合部材は部分的に接合し、後続の拡散接合工程での被接合材の位置ずれは通常発生しないと考えられるので、被接合部材同士の押圧を下げるのが一般的な考えである。しかし、発明者らは、この温度上昇により、接合部分に発生する、部位毎の熱膨張量の違いによって、接合部分が開口するとの知見を得、温度上昇から所定の時間は、接合時の押圧状態を保持しながら、被接合部材への接合材の拡散を行うべきであると考えた。   Here, when shifting from the joining of the members to be joined to the diffusion of the joining material to the members to be joined, the heating temperature is raised in order to improve the diffusion rate. This increased temperature is taken as the diffusion temperature. When the temperature rises up to this diffusion temperature, the members to be joined are already partly joined, and it is considered that the positional displacement of the materials to be joined in the subsequent diffusion joining process does not normally occur. It is a general idea to lower the pressure of. However, the inventors have obtained the knowledge that the joint part opens due to the difference in thermal expansion amount at each part due to this temperature rise, and the predetermined time from the temperature rise is the pressure during joining. We thought that the bonding material should be diffused to the members to be bonded while maintaining the state.

本発明は、このような一連の考えに基づくものであり、本発明に係る液相拡散接合方法は、端部に筒状部分を有した一対の鋼製の被接合部材の開口端面同士の間に、前記鋼よりも融点の低い低融点接合材を配置する工程と、該低融点接合材の融点以上の接合温度に、前記被接合部材を加熱しながら、前記被接合部材同士を押圧することにより、前記被接合部材同士を前記開口端面で接合し、少なくとも接合部分に生成された酸化物を前記接合部分の周りに押し出す、接合押し出し工程と、該接合押し出し工程時における押圧状態を保持しながら、前記接合温度よりも高い拡散温度に、前記被接合部材を加熱することにより、前記低融点接合材の材料を前記被接合部材に拡散させる第一の拡散工程と、前記第一の拡散工程における加熱状態を保持しながら、前記接合押し出し工程の押圧力よりも低い押圧力で押圧し、前記低融点接合材の材料を前記被接合部材にさらに拡散させる第二の拡散工程と、を少なくとも含むことを特徴とする。   The present invention is based on such a series of ideas, and the liquid phase diffusion bonding method according to the present invention is performed between the open end faces of a pair of steel members to be joined having a cylindrical portion at the end. A step of disposing a low melting point bonding material having a melting point lower than that of the steel, and pressing the members to be bonded together while heating the members to be bonded to a bonding temperature equal to or higher than the melting point of the low melting point bonding material. The joined members are joined at the opening end faces, and at least the oxide generated at the joined portion is pushed out around the joined portion, while maintaining the pressed state at the time of the joined extrusion step In the first diffusion step, the first diffusion step of diffusing the material of the low-melting-point bonding material into the bonded member by heating the bonded member to a diffusion temperature higher than the bonding temperature; Keep heated However, it includes at least a second diffusion step of pressing with a pressing force lower than the pressing force of the bonding and extruding step to further diffuse the material of the low melting point bonding material into the member to be bonded. .

本発明によれば、まず、非接合部材の開口端面同士の間に、低融点接合材を配置する。次に、接合押し出し工程において、該低融点接合材の融点以上の接合温度に、前記被接合部材を加熱しながら、前記被接合部材同士を押圧することにより、前記被接合部材同士を前記開口端面で接合する。これにより、被接合部材同士を接合することができる。さらに、接合部分(被接合部材の端面及び低融点接合材)に生成された酸化物を、押圧力により、溶融した低融点接合材と共に接合部分の周りに押し出す(接合部分から排出する)。これにより、接合温度よりも高い拡散温度に加圧された接合部分の酸化物は、余剰な接合材と共にその周囲に押し出されるため、接合部分の酸化物が介在することを抑制し、接合部分の強度低下を低減することができる。   According to the present invention, first, the low melting point bonding material is disposed between the open end faces of the non-bonding member. Next, in the bonding extrusion step, the members to be bonded are pressed to each other while the members to be bonded are pressed to a bonding temperature equal to or higher than the melting point of the low-melting-point bonding material. Join with. Thereby, to-be-joined members can be joined. Furthermore, the oxide produced | generated by the joining part (the end surface of a to-be-joined member, and a low melting-point joining material) is extruded around a joining part with a pressing force with the molten low melting-point joining material (it discharges | emits from a joining part). As a result, the oxide of the bonded portion pressed to a diffusion temperature higher than the bonding temperature is pushed out to the periphery together with the excess bonding material, so that the oxide of the bonded portion is suppressed from being interposed, Strength reduction can be reduced.

ここで、接合温度とは、低融点接合材の融点以上であって、後述する拡散温度よりも低い温度であり、この温度における押圧力により酸化物を前記接合部分の周りに押し出すことができ、さらに、押圧力により被接合部材の熱変形(塑性変形)を抑制することができる温度であり、好ましくは、低融点接合材の融点からプラス60℃までの範囲がより好ましい。   Here, the bonding temperature is equal to or higher than the melting point of the low-melting-point bonding material and is lower than the diffusion temperature described later, and the oxide can be pushed out around the bonded portion by the pressing force at this temperature, Furthermore, it is the temperature which can suppress the thermal deformation (plastic deformation) of a to-be-joined member by pressing force, Preferably, the range from melting | fusing point of a low melting-point joining material to +60 degreeC is more preferable.

次に、第一の拡散工程において、接合押し出し工程時における押圧状態を保持しながら(すなわち、押圧力を一定に保ちながら)、接合温度よりも高い拡散温度に、被接合部材の接合部分を加熱することにより、低融点接合材の材料である固溶元素を被接合部材に加速的に固溶拡散させると共に、この温度上昇における熱応力で、接合部分が開口することを防止することができる。但し、この状態を保持し続けると、押圧力により被接合部材同士が熱変形により塑性変形するので、以下の第二の拡散工程に移行する。   Next, in the first diffusion step, the bonded portion of the member to be bonded is heated to a diffusion temperature higher than the bonding temperature while maintaining the pressed state during the bonding extrusion step (that is, keeping the pressing force constant). By doing so, the solid solution element which is the material of the low melting point bonding material can be accelerated and dissolved and diffused into the member to be joined, and the joint portion can be prevented from opening due to the thermal stress due to this temperature rise. However, if this state is kept, the members to be joined are plastically deformed by thermal deformation due to the pressing force, so that the process proceeds to the following second diffusion step.

第二の拡散工程では、前記第一の拡散工程における加熱状態を保持しながら、前記接合押し出し工程の押圧力よりも低い押圧力に押圧し、前記低融点接合材の材料である固溶元素を被接合部材にさらに拡散させることができる。低融点接合材に含有させる元素によっては母材である鋼にくらべて材料強度を高くすることができるため、被接合部材の接合部分の部分的な強化を図ることが可能となる。   In the second diffusion step, while maintaining the heating state in the first diffusion step, the solid solution element which is a material of the low melting point bonding material is pressed to a pressing force lower than the pressing force of the bonding extrusion step. It can be further diffused in the member to be joined. Depending on the element contained in the low-melting-point bonding material, the material strength can be made higher than that of steel, which is the base material, so that it is possible to partially strengthen the bonded portion of the member to be bonded.

また、接合部材の接合を液相拡散接合により行うので、圧着接合や摩擦接合などに比べて比較的に低い押圧力で接合できることから、接合部分の残留応力や、加圧による接合部材の変形を抑制することができ、接合部材の溶接が困難とされる高合金鋼、耐熱鋼により製作した場合であっても、容易にこれらを接合することができる。   In addition, since the joining member is joined by liquid phase diffusion joining, it can be joined with a relatively low pressing force compared to crimp joining or friction joining, etc., so that the residual stress at the joining portion or deformation of the joining member due to pressurization can be reduced. Even when it is made of high alloy steel or heat resistant steel that can be suppressed and welding of the joining member is difficult, these can be easily joined.

このようにして、液相拡散接合された接合品は、接合押し出し工程において、拡散温度に相当する第二の加熱温度よりも低い温度で接合を行うので、被接合部材の開口端部を含む開先が、朝顔状に変形し難いため、酸化物の生成を抑制することができる。さらに、押し出し工程により、僅かに生成された酸化物を押し出すので、接合部分に介在する酸化物をも低減することができる。また、この押し出し工程には、低融点接合材中の一部元素が、被接合部材に拡散する。   In this way, the bonded product that has been subjected to liquid phase diffusion bonding is bonded at a temperature lower than the second heating temperature corresponding to the diffusion temperature in the bonding extrusion step. Since the tip is not easily deformed into a morning glory, the generation of oxide can be suppressed. Furthermore, since the oxide produced | generated slightly by the extrusion process is extruded, the oxide which intervenes in a junction part can also be reduced. Moreover, in this extrusion process, some elements in the low melting point bonding material diffuse into the members to be bonded.

本発明にいう「被接合部材」とは、鉄元素を主材とした部材であって、鋼系の接合部材であり、焼き入れ、焼き戻しなどの熱処理が施されていてもよく、接合部材の接合面以外の表面を鍛造により硬化させてもよい。たとえば、鋼系接合部材としては、炭素鋼、合金鋼、非調質材、高炭素鋼、軸受鋼、耐熱鋼、あるいは分散粒子を用いた高ヤング率鋼(分散型高剛性鋼(HMS))などがあげられ、液相拡散接合を行うことができるのであれば、その添加される成分、熱処理、表面加工を含む加工方法などは特に限定されるものではない。   The “member to be joined” in the present invention is a member mainly composed of an iron element, and is a steel-based joining member, which may be subjected to heat treatment such as quenching and tempering. Surfaces other than the joint surface may be hardened by forging. For example, steel-based joining members include carbon steel, alloy steel, non-heat treated material, high carbon steel, bearing steel, heat resistant steel, or high Young's modulus steel using dispersed particles (dispersed high rigidity steel (HMS)). As long as liquid phase diffusion bonding can be performed, the components added, the heat treatment, the processing method including surface processing, and the like are not particularly limited.

また、本発明にいう「液相拡散接合」とは、低融点接合材を介在させて加圧し、低融点接合材(インサートメタル)を液相線直上の温度に加熱することによって溶融させて、被接合部材を接合することをいう。また、液相拡散接合では、被接合部材の接合面を加熱すればよいので、高周波誘導加熱により加熱して接合することがより好ましい。このような高周波誘導加熱により、接合面を急速加熱や局所的加熱をすることができるので、より好適な液相拡散接合を行うことができる。また、被接合部材には、接合のための位置合わせ用のV溝などの溝部や、段付部が形成されていてもよい。   In addition, the “liquid phase diffusion bonding” referred to in the present invention is a method in which a low melting point bonding material is interposed and pressurized, and the low melting point bonding material (insert metal) is melted by heating to a temperature just above the liquidus line, It means joining the members to be joined. Further, in liquid phase diffusion bonding, since the bonding surface of the members to be bonded may be heated, it is more preferable to heat and bond by high frequency induction heating. Such a high-frequency induction heating enables rapid heating or local heating of the bonding surface, so that more suitable liquid phase diffusion bonding can be performed. Further, a groove portion such as a V groove for alignment for bonding or a stepped portion may be formed on the member to be bonded.

より好ましい態様としては、前記接合押し出し工程において、前記接合温度として前記低融点接合材の融点から1130℃までの範囲の温度条件で、前記被接合部材を加熱しながら、10〜25MPaの範囲の第一の押圧力の条件で、60〜600秒間、前記被接合部材同士を押圧することにより、前記被接合部材同士を前記開口端面で接合し、少なくとも前記接合部分に生成された酸化物を前記接合部分の周りに押し出し、前記第一の拡散工程において、前記接合押し出し工程時における押圧状態を保持しながら、前記拡散温度として1200℃〜1250℃の範囲の温度条件で、2〜20秒間、被接合部材を加熱することにより、前記低融点接合材の材料を前記被接合部材に拡散させ、前記第二の拡散工程において、前記第一の拡散工程における加熱状態を保持しながら、2〜4MPaの範囲の第二の押圧力の条件で、前記拡散温度に到達してから200秒以上の間、前記被接合部材同士を押圧することにより、前記低融点接合材の材料を前記被接合部材にさらに拡散させる。   As a more preferred embodiment, in the joining and extruding step, the joining member is heated at a temperature condition ranging from the melting point of the low-melting-point joining material to 1130 ° C., and the member to be joined is heated in the range of 10 to 25 MPa. By pressing the members to be joined together for 60 to 600 seconds under the condition of one pressing force, the members to be joined are joined to each other at the opening end face, and at least the oxide generated in the joining portion is joined to the joining portion. Extruding around the part, and in the first diffusion step, while maintaining the pressing state during the bonding extrusion step, the diffusion temperature is 1200 to 1250 ° C. for 2 to 20 seconds under the temperature condition. By heating the member, the material of the low-melting-point bonding material is diffused in the member to be joined, and in the second diffusion step, the first diffusion step By pressing the members to be bonded together for 200 seconds or more after reaching the diffusion temperature under the condition of the second pressing force in the range of 2 to 4 MPa while maintaining the heating state in the above, The material of the melting point bonding material is further diffused into the member to be bonded.

すなわち、接合押し出し工程において、上述した接合温度の温度条件、及び、第一の押圧力の押圧条件で、上述した時間内で加圧することにより、被接合部材の開口端面を含む開先が朝顔状に開くことなく、被接合部材を好適に接合することができ、接合部分に生成された酸化物を少なくとも接合部分の周りに押し出して、好適に接合部分から排出することができる。   That is, in the joining and extruding step, the groove including the opening end face of the joined member has a morning glory shape by applying pressure within the above-described time under the above-described joining temperature temperature condition and the first pushing pressure condition. The member to be joined can be suitably joined without being opened, and the oxide generated at the joined portion can be pushed out at least around the joined portion and suitably discharged from the joined portion.

すなわち、低融点接合材の融点未満の温度で加熱しても、低融点接合材は溶融しないため、液相拡散接合を行うことはできず、1130℃を超えた場合には、開先が開き易くなり、被接合部材の熱変形(塑性変形)が進行し易くなる。また、第一の押圧力が10MPa未満の場合、酸化物を十分に押し出すことができないことがあり、第一の押圧力が25MPaを超えた場合、開先が熱変形することがある。また、押圧する時間が、60秒未満の場合、被接合部材同士を充分接合できないことがあり、600秒を超えた場合、開先が熱変形することがある。   That is, even when heated at a temperature lower than the melting point of the low melting point bonding material, the low melting point bonding material does not melt, so liquid phase diffusion bonding cannot be performed, and when the temperature exceeds 1130 ° C., the groove opens. It becomes easy and the thermal deformation (plastic deformation) of the member to be joined proceeds easily. Further, when the first pressing force is less than 10 MPa, the oxide may not be sufficiently extruded, and when the first pressing force exceeds 25 MPa, the groove may be thermally deformed. In addition, when the pressing time is less than 60 seconds, the members to be bonded may not be sufficiently bonded. When the pressing time exceeds 600 seconds, the groove may be thermally deformed.

また、第一の拡散工程において、接合押し出し工程時における第一の押圧力の押圧条件で、押圧状態を保持しながら、拡散温度の温度条件で、上述した時間内で被接合部材を加熱することにより、温度変化による熱応力により接合部分が開口することなく、低融点接合材の材料の元素を被接合部材に加速的に固溶拡散させることができる。   Further, in the first diffusion step, the member to be bonded is heated within the above-described time under the temperature condition of the diffusion temperature while maintaining the pressing state with the pressing condition of the first pressing force at the time of the bonding extrusion step. Thus, the element of the material of the low-melting-point bonding material can be accelerated and dissolved in the member to be bonded without opening the bonding portion due to thermal stress due to temperature change.

すなわち、1200℃未満の温度で加熱しても、被接合部材の鋼の中に、低融点接合材の元素を充分に拡散することができない場合があり、1250℃を超えた場合には、被接合部材同士が熱変形し易くなる。また、押圧する時間が、2秒未満の場合には、温度上昇に伴う接合部分の熱応力により接合部分が塑性変形により開口し、接合界面の酸化が生じるおそれがある。一方、20秒を超えた場合、押圧力により接合部分が熱変形(塑性変形)することがあり、同様に界面酸化により、接合部分の強度低下が生じるおそれがある。   That is, even when heated at a temperature of less than 1200 ° C., the elements of the low melting point bonding material may not be sufficiently diffused into the steel of the member to be bonded. The joining members are easily deformed by heat. In addition, when the pressing time is less than 2 seconds, the joint portion may be opened due to plastic deformation due to the thermal stress of the joint portion due to the temperature rise, and the joint interface may be oxidized. On the other hand, when the time exceeds 20 seconds, the bonded portion may be thermally deformed (plastically deformed) by the pressing force, and similarly, the strength of the bonded portion may be reduced due to interface oxidation.

また、第二の拡散工程において、前記加熱状態を保持しながら、第二の押圧力の押圧条件で、上述した時間以上加熱する。これにより、接合部分を変形させることなく、低融点接合材の材料を被接合部材に効率よく拡散させることができる。   In the second diffusion step, heating is performed for the above-described time or longer under the pressing condition of the second pressing force while maintaining the heating state. Thereby, the material of the low melting point bonding material can be efficiently diffused in the member to be bonded without deforming the bonding portion.

すなわち、押圧力が、2MPa未満の場合、冷却時における熱応力による変形を抑えることができないことがあり、4MPaを超えた場合、被接合部材同士がクリープ変形し易くなる。また、前記拡散温度に到達してからの拡散時間が200秒未満の場合、低融点接合材の材料を充分に被接合部材に拡散させることができないことがある。なお、大気中において、第二の拡散工程を行う場合には、接合部分を含む接合品の酸化が生じることがあるため、前記拡散温度に到達してからの拡散時間が400秒未満であることがより好ましい。   That is, when the pressing force is less than 2 MPa, deformation due to thermal stress during cooling may not be suppressed. When the pressing force exceeds 4 MPa, the members to be joined are likely to undergo creep deformation. Further, when the diffusion time after reaching the diffusion temperature is less than 200 seconds, the material of the low-melting-point bonding material may not be sufficiently diffused to the member to be bonded. In addition, when the second diffusion step is performed in the atmosphere, the bonded product including the bonded portion may be oxidized, so that the diffusion time after reaching the diffusion temperature is less than 400 seconds. Is more preferable.

接合部材間のインサート材として用いる前記低融点接合材は、箔、粉末、または接合面への鍍金被膜などの形態であってもよく、接合部材間に介在させることができるのであれば特に限定されるものではない。さらに、低融点接合材は、接合部材よりも融点の低い共晶組成を有する材料からなることが好ましく、シリコン(Si)、鉄(Fe)、ニッケル(Ni)などを主材として、硼素(B)またはリン(P)を含有させてもよく、液相拡散接合ができるのであれば、その主材となる元素及び添加される元素は特に限定されるものではない。   The low-melting-point bonding material used as the insert material between the bonding members may be in the form of foil, powder, or a plating film on the bonding surface, and is particularly limited as long as it can be interposed between the bonding members. It is not something. Further, the low melting point bonding material is preferably made of a material having a eutectic composition having a lower melting point than that of the bonding member. The main material is silicon (Si), iron (Fe), nickel (Ni) or the like, and boron (B ) Or phosphorus (P) may be contained, and as long as liquid phase diffusion bonding can be performed, the element as the main material and the element to be added are not particularly limited.

しかしながら、より好ましくは、前記接合材として、B,Si,及びVを含有するNi基の非晶質合金からなる箔を用いる。本発明によれば、液相拡散接合の際にBを接合部分及びその近傍に拡散させることができる。このように、Bが拡散した接合部分及びその近傍(拡散層)は、Bが鉄組織に固溶しているので、焼入れ性が向上する。この結果、拡散層は、それ以外箇所の鉄組織に比べて硬度が高く、疲労強度も高くなるので、接合品を部分的に強化することができる。さらに、前記低融点接合材は、ニッケル元素を含むので、低融点接合材をニッケル基非晶質合金とすることができ、該非晶質合金とすることにより、さらに好適に液相拡散接合を行うことができる。   However, more preferably, a foil made of a Ni-based amorphous alloy containing B, Si, and V is used as the bonding material. According to the present invention, B can be diffused in the bonding portion and the vicinity thereof during the liquid phase diffusion bonding. Thus, the hardened property is improved at the bonding portion where B is diffused and in the vicinity thereof (diffusion layer) because B is dissolved in the iron structure. As a result, the diffusion layer has higher hardness and higher fatigue strength than the iron structure at other locations, so that the joined product can be partially strengthened. Furthermore, since the low-melting-point bonding material contains nickel element, the low-melting-point bonding material can be a nickel-based amorphous alloy, and liquid phase diffusion bonding is more suitably performed by using the amorphous alloy. be able to.

そして、上述の液相拡散接合方法により製造された接合品としては、接合された部分以外の鋼の組織がベイナイト組織であり、接合された部分の引張り強さが500MPa以上であることがより好ましい。本発明によれば、ベイナイト組織とすることにより、接合品の硬さ分布を均一化することができ、車両のプロペラシャフトに好適に用いることができる。   And as a joined article manufactured by the above-mentioned liquid phase diffusion joining method, it is more preferred that the structure of steel other than the joined part is a bainite structure, and the tensile strength of the joined part is 500 MPa or more. . According to the present invention, by adopting a bainite structure, the hardness distribution of the joined product can be made uniform, and can be suitably used for a propeller shaft of a vehicle.

本発明によれば、酸化物の生成及び介在を抑制しながら、端部に筒状部分を有した被接合部材同士の接合を行うことができる。   ADVANTAGE OF THE INVENTION According to this invention, joining to-be-joined members which have a cylindrical part in the edge part can be performed, suppressing the production | generation and intervention of an oxide.

本実施形態に係る液相拡散接合法を行うための装置構成図。The apparatus block diagram for performing the liquid phase diffusion bonding method which concerns on this embodiment. 本実施形態に係る液相拡散接合法を説明するための図であり、(a)は、配置工程を示した図、(b)は、接合押し出し工程を示した図であり、(c)は、拡散工程前の接合部分の状態を説明するための図。It is a figure for demonstrating the liquid phase diffusion bonding method which concerns on this embodiment, (a) is the figure which showed the arrangement | positioning process, (b) is the figure which showed the joining extrusion process, (c) is The figure for demonstrating the state of the junction part before a diffusion process. 本実施形態に係る接合部材の状態線図。The state line figure of the joining member concerning this embodiment. 図2(b)に示す接合押し出し工程を説明するための図であり、(a)は押し出し前の図、(b)は押し出し後の図。It is a figure for demonstrating the joining extrusion process shown in FIG.2 (b), (a) is a figure before extrusion, (b) is a figure after extrusion. 本実施形態の各工程の時間経過に伴う加熱温度と押圧力(負荷応力)を説明するための図。The figure for demonstrating the heating temperature and pressing force (load stress) accompanying the time passage of each process of this embodiment. 実施例に係る酸化物の量を測定する方法を説明するための図。The figure for demonstrating the method to measure the quantity of the oxide which concerns on an Example. 比較例に係る液相拡散接合法における時間経過に伴う温度分布と押圧力(負荷応力)を説明するための図。The figure for demonstrating the temperature distribution and pressing force (load stress) with time passage in the liquid phase diffusion bonding method which concerns on a comparative example. 従来の液相拡散接合を説明するための図であり、(a)は、その装置構成を説明するための図であり、(b)は、酸化物の生成を説明するための図であり、(c)は、被接合部材の開先の熱変形を説明するための図。It is a figure for demonstrating the conventional liquid phase diffusion joining, (a) is a figure for demonstrating the apparatus structure, (b) is a figure for demonstrating the production | generation of an oxide, (C) is a figure for demonstrating the thermal deformation of the groove of a to-be-joined member.

以下に、本発明の実施形態に係る液相拡散接合方法を説明する。図1は、本実施形態に係る液相拡散接合法を行うための装置構成図であり、図2は、本実施形態に係る液相拡散接合法を説明するための図であり、(a)は、配置工程を示した図、(b)は、接合押し出し工程を示した図であり、(c)は、拡散工程前の接合部分の状態を説明するための図である。   The liquid phase diffusion bonding method according to the embodiment of the present invention will be described below. FIG. 1 is an apparatus configuration diagram for performing the liquid phase diffusion bonding method according to the present embodiment, and FIG. 2 is a diagram for explaining the liquid phase diffusion bonding method according to the present embodiment. FIG. 4 is a diagram showing an arrangement process, FIG. 4B is a diagram showing a bonding extrusion process, and FIG. 4C is a diagram for explaining a state of a bonding portion before a diffusion process.

図3は、本実施形態に係る接合部材の状態線図であり、図4は、図2(b)に示す接合押し出し工程を説明するための図であり、(a)は押し出し前の図、(b)は押し出し後の図である。また、図5は本実施形態の各工程の時間経過に伴う加熱温度と押圧力(負荷応力)を説明するための図である。   FIG. 3 is a state diagram of the joining member according to the present embodiment, FIG. 4 is a diagram for explaining the joining and extruding process shown in FIG. 2 (b), and (a) is a view before extrusion, (B) is the figure after extrusion. Moreover, FIG. 5 is a figure for demonstrating the heating temperature and the pressing force (load stress) accompanying the time passage of each process of this embodiment.

図1及び図2(a)に示すように、本実施形態に係る液相拡散接合法では、端部に筒状部分を有した一対の鋼製の被接合部材として、一対の鋼管10A,10Bを準備する。次に、鋼管10A,10Bの一方側の端部の開口端面同士の間に、鋼管10A,10Bの鋼よりも融点の低い低融点接合材11を配置し、それぞれの他方側の端部に、押し板41,41を配置する。   As shown in FIGS. 1 and 2 (a), in the liquid phase diffusion bonding method according to the present embodiment, a pair of steel pipes 10A and 10B are used as a pair of steel members having a cylindrical portion at the end. Prepare. Next, the low melting point bonding material 11 having a lower melting point than the steel of the steel pipes 10A and 10B is disposed between the open end faces of the one end of the steel pipes 10A and 10B, Push plates 41 and 41 are arranged.

また、低融点接合材11及び鋼管10A,10Bの接合される部分を加熱するように、高周波コイルからなるヒータ32を配置し、窒素ガスチャンバ33でヒータ32と共に鋼管10A,10Bの端部を覆う。さらに、ヒータ32の温度を制御するために、低融点接合材11の近傍に熱電対30を配置する。このような状態で、押し板41,41を介して、押圧装置(図示せず)を用いて、接合部材同士を押圧(加圧)する。ここで、低融点接合材11としては、B,Si,及びVを含有するNi基の非晶質合金からなる箔を用いる。   Further, a heater 32 made of a high-frequency coil is disposed so as to heat the portion where the low melting point bonding material 11 and the steel pipes 10A and 10B are joined, and the ends of the steel pipes 10A and 10B are covered with the heater 32 in the nitrogen gas chamber 33. . Further, in order to control the temperature of the heater 32, a thermocouple 30 is disposed in the vicinity of the low melting point bonding material 11. In this state, the joining members are pressed (pressurized) using the pressing device (not shown) through the pressing plates 41 and 41. Here, as the low melting point bonding material 11, a foil made of a Ni-based amorphous alloy containing B, Si, and V is used.

図2(b)及び図4(a),(b)に示すように、窒素ガスチャンバ33に窒素ガスを供給して、窒素雰囲気下にして、低融点接合材11の融点以上の接合温度に鋼管10A,10Bを加熱しながら、鋼管10A,10B同士を押圧することにより、鋼管10A,10Bを前記開口端面で接合し、さらに、接合された部分(鋼管の端面を及び低融点接合材11)に生成された酸化物Sを、溶融した低融点接合材11の一部と共に接合部分の周りに押し出す(接合押し出し工程)。   As shown in FIG. 2B and FIGS. 4A and 4B, nitrogen gas is supplied to the nitrogen gas chamber 33 to bring it into a nitrogen atmosphere so that the bonding temperature is equal to or higher than the melting point of the low melting point bonding material 11. By pressing the steel pipes 10A and 10B while heating the steel pipes 10A and 10B, the steel pipes 10A and 10B are joined at the opening end faces, and further, the joined parts (the end faces of the steel pipes and the low melting point joining material 11). The oxide S produced in step 1 is extruded around the joint portion together with a part of the molten low melting point bonding material 11 (joint extrusion step).

ここで、低融点接合材11は、図3に示すようにBを3.6質量%含有するときに、液相線温度は、Tm1070℃であることから、具体的には、図5に示すように、この加熱状態で、10〜25MPaの範囲の第一の押圧力の押圧条件で、60〜600秒間、鋼管10A,10Bを押圧し、Tm1070℃〜1130℃の範囲の接合温度に鋼管10A,10Bを加熱することにより、低融点接合材11を溶融させ、鋼管10A,10Bの熱変形を抑制しつつ、鋼管10A,10Bを開口端面で接合する。さらに、接合部分の酸化物は、余剰な低融点接合材11と共にその周囲に押し出されるため、接合部分の酸化物が介在することを抑制し、接合部分の強度低下を低減することができる。   Here, when the low melting point bonding material 11 contains 3.6% by mass of B as shown in FIG. 3, the liquidus temperature is Tm1070 ° C., and specifically, as shown in FIG. 5. Thus, in this heating state, the steel pipes 10A and 10B are pressed for 60 to 600 seconds under the pressing conditions of the first pressing force in the range of 10 to 25 MPa, and the steel pipe 10A is brought to the joining temperature in the range of Tm 1070 ° C. to 1130 ° C. , 10B is heated to melt the low-melting-point bonding material 11, and the steel pipes 10A, 10B are joined at the opening end faces while suppressing thermal deformation of the steel pipes 10A, 10B. Furthermore, since the oxide of the joining portion is pushed out together with the excessive low melting point bonding material 11, it is possible to suppress the presence of the oxide of the joining portion and to reduce the strength reduction of the joining portion.

ここでは、窒素雰囲気下で行ったので酸化物は生成されないが、そもそも鋼管10A,10Bの表面に酸化物が生成されている場合には、酸化物の押し出しは有効である。また、大気雰囲気もしくは酸素濃度100ppm以上の混合ガス雰囲気下でもよい。上述した条件では、鋼管10A,10Bの開口端面を含む開先を変形(塑性変形)させることなく接合することができるため、大気の巻き込みが少なく、酸化物の生成が抑制される。また、たとえ生成されても、生成された酸化物は、押圧力により押し出されつつ、低融点接合材中の一部元素が鋼管の鋼組織に拡散し、図2(c)に示すように鋼組織は等温凝固する。   Here, since the process is performed in a nitrogen atmosphere, no oxide is generated. However, when an oxide is generated on the surfaces of the steel pipes 10A and 10B, the extrusion of the oxide is effective. Further, it may be an air atmosphere or a mixed gas atmosphere having an oxygen concentration of 100 ppm or more. Under the conditions described above, since the groove including the opening end faces of the steel pipes 10A and 10B can be joined without being deformed (plastically deformed), there is little entrainment of air and the generation of oxide is suppressed. Moreover, even if it is generated, the generated oxide is pushed out by the pressing force, while some elements in the low melting point bonding material diffuse into the steel structure of the steel pipe, and as shown in FIG. The tissue will coagulate isothermally.

なお、加熱温度が1130℃を超えた場合、鋼管10A,10Bの開先が熱変形し、鋼管10A,10Bの塑性変形が進行してしまうことがあり、加熱温度が1070℃未満の場合、低融点接合材11が溶融しない。また、第一の押圧力が10MPa未満の場合、酸化物を十分に押し出すことができないことがあり、第一の押圧力が25MPaを超えた場合、上述と同様に鋼管10A,10Bの塑性変形が進行することがある。また、押圧する時間が、60秒未満の場合、被接合部材同士を充分接合できないことがあり、600秒を超えた場合、上述と同様に鋼管10A,10Bの塑性変形が進行することがある。   In addition, when heating temperature exceeds 1130 degreeC, the groove | channel of steel pipe 10A, 10B may thermally deform, and plastic deformation of steel pipe 10A, 10B may advance, and when heating temperature is less than 1070 degreeC, it is low. The melting point bonding material 11 does not melt. Further, when the first pressing force is less than 10 MPa, the oxide may not be sufficiently extruded, and when the first pressing force exceeds 25 MPa, the plastic deformation of the steel pipes 10A and 10B is similar to the above. May progress. In addition, when the pressing time is less than 60 seconds, the members to be bonded may not be sufficiently bonded. When the pressing time exceeds 600 seconds, plastic deformation of the steel pipes 10A and 10B may proceed as described above.

次に、図5に示すように、接合押し出し工程時における押圧状態(10〜25MPaの範囲の第一の押圧力の条件)を保持しながら、第一加熱温度(Tm1070℃〜1130℃の範囲)よりも高い拡散温度(1200℃〜1250℃)で、2〜20秒間、鋼管10A,10Bを加熱することにより、低融点接合材11の材料を構成する元素を鋼管10A,10Bに拡散させる(第一の拡散工程)。これにより、温度上昇による熱応力により接合部分が開口することなく、低融点接合材の材料の元素(B)を鋼管10A,10Bに加速的に固溶拡散させることができる。   Next, as shown in FIG. 5, the first heating temperature (Tm 1070 ° C. to 1130 ° C. range) is maintained while maintaining the pressing state (first pressing force condition in the range of 10 to 25 MPa) during the bonding extrusion process. By heating the steel pipes 10A and 10B at a higher diffusion temperature (1200 ° C. to 1250 ° C.) for 2 to 20 seconds, the elements constituting the material of the low melting point bonding material 11 are diffused into the steel pipes 10A and 10B (first). One diffusion step). Thereby, the element (B) of the material of the low-melting-point bonding material can be accelerated and dissolved in the steel pipes 10A and 10B without opening the bonding portion due to thermal stress due to temperature rise.

すなわち、1200℃未満の温度で加熱しても、鋼管10A,10Bの鋼の中に、接合材のホウ素(B)を充分に拡散することができない場合があり、1250℃を超えた場合には、鋼管10A,10B同士が熱変形により塑性変形し易くなる。また、押圧する時間が、2秒未満の場合には、温度上昇に伴う接合部分の熱応力により接合部分が塑性変形により開口し、接合界面の酸化が生じるおそれがある。一方、20秒を超えた場合、押圧力により接合部分が熱変形(塑性変形)することがあり、同様に界面酸化により、接合部分の強度低下が生じるおそれがある。   That is, even when heated at a temperature of less than 1200 ° C., the bonding material boron (B) may not be sufficiently diffused into the steel of the steel pipes 10A and 10B. The steel pipes 10A and 10B are easily plastically deformed by thermal deformation. In addition, when the pressing time is less than 2 seconds, the joint portion may be opened due to plastic deformation due to the thermal stress of the joint portion due to the temperature rise, and the joint interface may be oxidized. On the other hand, when the time exceeds 20 seconds, the bonded portion may be thermally deformed (plastically deformed) by the pressing force, and similarly, the strength of the bonded portion may be reduced due to interface oxidation.

さらに、図5に示すように、第二の拡散工程において、第一の拡散工程における加熱状態を保持しながら(拡散温度を1200℃〜1250℃一定)、2〜4MPaの範囲の第二の押圧力の条件で、200秒以上の間、鋼管10A,10Bを押圧することにより、低融点接合材11の材料を被接合部材にさらに拡散させる(第二の拡散工程)。これにより、接合部分を変形させることなく、低融点接合材11中の一部元素を鋼管10A,10Bに効率よく拡散させることができる。   Further, as shown in FIG. 5, in the second diffusion step, the second pressing step in the range of 2 to 4 MPa is performed while maintaining the heating state in the first diffusion step (diffusion temperature is constant 1200 to 1250 ° C.). By pressing the steel pipes 10A and 10B for 200 seconds or more under the pressure condition, the material of the low-melting-point bonding material 11 is further diffused in the member to be joined (second diffusion step). Thereby, some elements in the low melting-point joining material 11 can be efficiently diffused in the steel pipes 10A and 10B without deforming the joining portion.

すなわち、押圧力が、2MPa未満の場合、冷却時における熱応力による変形を抑えることができないことがあり、4MPaを超えた場合、鋼管10A,10Bがクリープ変形し易くなる。また、拡散時間が200秒未満の場合、低融点接合材11の材料を充分に鋼管10A,10Bに拡散させることができない場合がある。なお、大気中において、第二の拡散工程を行う場合には、接合部分を含む接合品の酸化が生じることがあるため、400秒未満であることがより好ましい。   That is, when the pressing force is less than 2 MPa, deformation due to thermal stress during cooling may not be suppressed, and when it exceeds 4 MPa, the steel pipes 10A and 10B are likely to undergo creep deformation. Further, when the diffusion time is less than 200 seconds, the material of the low melting point bonding material 11 may not be sufficiently diffused in the steel pipes 10A and 10B. In addition, when performing a 2nd spreading | diffusion process in air | atmosphere, since oxidation of the junction goods containing a junction part may arise, it is more preferable that it is less than 400 seconds.

その後、所定の冷却速度で冷却する。これにより、液相拡散接合方法により製造された接合品は、接合された部分以外の鋼の組織がベイナイト組織であり、接合された部分の引張り強さが500MPa以上となる。鋼の組織をベイナイト組織とすることにより、接合品の硬さ分布を均一化することができ、車両のプロペラシャフトに好適に用いることができる。   Thereafter, cooling is performed at a predetermined cooling rate. Thereby, as for the joined goods manufactured by the liquid phase diffusion joining method, the structure | tissue of steel other than the joined part is a bainite structure, and the tensile strength of the joined part becomes 500 Mpa or more. By making the steel structure a bainite structure, the hardness distribution of the joined product can be made uniform, and can be suitably used for a propeller shaft of a vehicle.

上記実施形態に基づいて以下に実施例を説明する。
(実施例1)
以下に示す方法により液相拡散接合を行った。具体的には、3.5質量%Si−3質量%B−2.5質量%Vを含有し、残部Niよりなる厚さ30μmの非晶質箔(液相線温度Tm=1070℃)を低融点接合材として準備した。外形60.5mm、肉厚1.8mm、長さ92mmの鋼組織がベイナイトであるSTKM−13B−E80(JIS規格)の鋼管を、被接合部材として2本準備した。
Examples will be described below based on the above embodiment.
Example 1
Liquid phase diffusion bonding was performed by the following method. Specifically, an amorphous foil (liquidus temperature Tm = 1070 ° C.) having a thickness of 30 μm and containing 3.5 mass% Si-3 mass% B-2.5 mass% V and the balance being Ni. Prepared as a low melting point bonding material. Two steel pipes of STKM-13B-E80 (JIS standard) having an outer shape of 60.5 mm, a wall thickness of 1.8 mm, and a length of 92 mm and having a steel structure of bainite were prepared as members to be joined.

次に、上述した図1の装置を用いて、鋼管同士の一方側の端部の開口端面同士の間に、非晶質箔を配置し、それぞれの他方側の端部に押し板を配置した。そして、図5に示すように、予め接合応力(第一の押圧力)である初期応力をかけつつ加熱により非晶質箔及び鋼管端部を昇温し、非晶質箔の液相線直上の温度で一定時間保持して、非晶質箔の溶融と等温凝固過程を終了させる工程(接合押し出し工程)と、その後、直ちに昇温し、温度を保持する拡散処理工程(第一の拡散工程+第二の拡散工程)を行った。   Next, using the apparatus of FIG. 1 described above, an amorphous foil is disposed between the open end faces of one end of the steel pipes, and a push plate is disposed at each other end. . Then, as shown in FIG. 5, the amorphous foil and the end of the steel pipe are heated by applying an initial stress that is a joining stress (first pressing force) in advance, and immediately above the liquidus line of the amorphous foil. Holding for a certain period of time at the temperature of the amorphous foil to finish the melting and isothermal solidification process (joining extrusion process), and then a diffusion treatment process (first diffusion process) of immediately raising the temperature and holding the temperature + Second diffusion step).

具体的には、表1の接合処理条件の欄に示すように、雰囲気を大気雰囲気下で、押圧力(初期応力)25MPaをかけつつ、接合温度1080℃、保持時間600秒間として、接合押し出し工程をおこなった。   Specifically, as shown in the column of the bonding treatment conditions in Table 1, the bonding extrusion process is performed under the atmosphere of atmospheric pressure, applying a pressing force (initial stress) of 25 MPa, with a bonding temperature of 1080 ° C. and a holding time of 600 seconds. I did it.

その後直ちに、表1の拡散処理条件の欄に示すように、初期応力(第一の押圧力)25MPaを保持した状態で、拡散温度1200℃に昇温し、この拡散温度を保ったまま応力保持時間10秒間にして、第一の拡散工程を行った。続いて、拡散温度1200℃を保ったまま、最終応力(第二の押圧力)を3MPaにして、第一の拡散工程から第二の拡散工程までの総保持時間300秒間となるように保持し(すなわち第二拡散工程では290秒間となるように保持し)、第二の拡散工程を行った。なお、室温から接合温度に達するまでの加熱速度は特定しないが、ここでは、平均加熱速度5℃/sとなるように、高周波加熱プログラムにより制御した。また、第二の拡散工程後の接合部分の冷却は、400℃まで平均冷却速度1℃/sとなるように高周波加熱プログラムにより制御した。このようにして、鋼管同士を液相拡散接合した接合品を作製した。   Immediately thereafter, as shown in the column of diffusion treatment conditions in Table 1, the temperature was raised to 1200 ° C. while maintaining the initial stress (first pressing force) of 25 MPa, and the stress was maintained while maintaining this diffusion temperature. The first diffusion step was performed for a time of 10 seconds. Subsequently, with the diffusion temperature maintained at 1200 ° C., the final stress (second pressing force) is set to 3 MPa, and the total holding time from the first diffusion step to the second diffusion step is maintained for 300 seconds. (In other words, the second diffusion step was held for 290 seconds), and the second diffusion step was performed. In addition, although the heating rate until it reaches | attains joining temperature from room temperature is not specified, it controlled by the high frequency heating program so that it might become an average heating rate of 5 degree-C / s here. In addition, the cooling of the joint portion after the second diffusion step was controlled by a high-frequency heating program so that the average cooling rate was 1 ° C./s up to 400 ° C. In this way, a joined product in which steel pipes were joined by liquid phase diffusion joining was produced.

(実施例2)
実施例1と同じようにして、液相拡散接合を行い、接合品を作製した。実施例1と相違する点は、表1に示すように、接合処理条件における接合温度を1130℃、保持時間を60秒間、初期応力15MPaにした点である。
(Example 2)
In the same manner as in Example 1, liquid phase diffusion bonding was performed to produce a bonded product. The difference from Example 1 is that, as shown in Table 1, the bonding temperature under the bonding process conditions is 1130 ° C., the holding time is 60 seconds, and the initial stress is 15 MPa.

(実施例3)
実施例1と同じようにして、液相拡散接合を行い、接合品を作製した。実施例1と相違する点は、表1に示すように、接合処理条件における-接合温度を1110℃、保持時間を300秒間、初期応力20MPaにした点と、応力保持時間を20秒間にした点である。
Example 3
In the same manner as in Example 1, liquid phase diffusion bonding was performed to produce a bonded product. The difference from Example 1 is that, as shown in Table 1, the -joining temperature was 1110 ° C., the holding time was 300 seconds, the initial stress was 20 MPa, and the stress holding time was 20 seconds, as shown in Table 1. It is.

(実施例4〜7)
実施例3と同じようにして、液相拡散接合を行い、接合品を作製した。実施例3と相違する点は、表1に示すように拡散処理条件を変更した点である。
(Examples 4 to 7)
In the same manner as in Example 3, liquid phase diffusion bonding was performed to produce a bonded product. The difference from the third embodiment is that the diffusion processing conditions are changed as shown in Table 1.

(実施例8及び9)
実施例1と同じようにして、液相拡散接合を行い、接合品を作製した。実施例1と相違する点は、接合雰囲気を酸素100ppmの窒素雰囲気下にした点と、表1に示すように、接合処理条件及び拡散処理条件を変更した点である。
(Examples 8 and 9)
In the same manner as in Example 1, liquid phase diffusion bonding was performed to produce a bonded product. The difference from Example 1 is that the bonding atmosphere is changed to a nitrogen atmosphere of 100 ppm oxygen and the bonding treatment conditions and the diffusion treatment conditions are changed as shown in Table 1.

(実施例10)
実施例1と同じようにして、液相拡散接合を行い、接合品を作製した。実施例1と相違する点は、雰囲気を窒素雰囲気下にした点と、表1に示すように、接合処理条件及び拡散処理条件を変更した点である。
(Example 10)
In the same manner as in Example 1, liquid phase diffusion bonding was performed to produce a bonded product. The difference from Example 1 is that the atmosphere is changed to a nitrogen atmosphere and that the bonding process conditions and the diffusion process conditions are changed as shown in Table 1.

(比較例1〜5)
実施例1と同じようにして、液相拡散接合を行い、接合品を作製した。比較例1が実施例1と相違する点は、接合処理条件の接合温度を1080℃未満(1040℃)にした点である。比較例2が実施例1と相違する点は、接合保持時間を60秒未満(10秒間)にし、その他の条件は、表1に示す条件にした点である。比較例3が実施例1と相違する点は、初期応力を25MPa超え(30MPa)にした点と、その他の条件は、表1に示す条件にした点である。比較例4が実施例1と相違する点は、拡散温度を1200℃未満(1150℃)にした点と、その他の条件は、表1に示す条件にした点である。比較例5が実施例1と相違する点は、拡散温度を1250℃超え(1300℃)にした点と、その他の条件は、表1に示す条件にした点である。比較例6が実施例1と相違する点は、最終応力を4MPa超え(5MPa)にした点と、その他の条件は、表1に示す条件にした点である。比較例7が実施例1と相違する点は、応力保持時間を20秒超え(30秒間)にした点と、その他の条件は、表1に示す条件にした点である。比較例8が実施例1と相違する点は、総保持時間を200秒未満(30秒間)にし、応力保持時間を20秒超え(30秒間)にした点と、その他の条件は、表1に示す条件にした点である。
(Comparative Examples 1-5)
In the same manner as in Example 1, liquid phase diffusion bonding was performed to produce a bonded product. The difference between Comparative Example 1 and Example 1 is that the bonding temperature under the bonding processing conditions was set to less than 1080 ° C. (1040 ° C.). The comparative example 2 is different from the first embodiment in that the bonding holding time is less than 60 seconds (10 seconds), and other conditions are the conditions shown in Table 1. The comparative example 3 is different from the first embodiment in that the initial stress is over 25 MPa (30 MPa) and the other conditions are the conditions shown in Table 1. Comparative Example 4 is different from Example 1 in that the diffusion temperature is less than 1200 ° C. (1150 ° C.), and other conditions are the conditions shown in Table 1. The difference between Comparative Example 5 and Example 1 is that the diffusion temperature was increased to 1250 ° C. (1300 ° C.), and the other conditions were the conditions shown in Table 1. Comparative Example 6 is different from Example 1 in that the final stress is set to exceed 4 MPa (5 MPa), and the other conditions are the conditions shown in Table 1. The comparative example 7 is different from the first embodiment in that the stress holding time exceeds 20 seconds (30 seconds), and other conditions are the conditions shown in Table 1. Comparative Example 8 differs from Example 1 in that the total holding time was less than 200 seconds (30 seconds), the stress holding time was more than 20 seconds (30 seconds), and other conditions are shown in Table 1. It is the point made into the conditions shown.

(比較例9〜11)
実施例1と同じようにして、液相拡散接合を行い、接合品を作製した。実施例1と異なる点は、図7に示すような温度及び押圧力のプロフィールとなるようにした点である。具体的には、予め接合応力(押圧力)である初期応力(15〜25MPa)をかけつつ、加熱により非晶質箔及び鋼管端部を拡散温度まで昇温する。拡散温度到達後、初期応力を所定の時間(5〜15秒)の間保持し、その後直ちに、クリープによる塑性変形を抑さえるべく、押圧力である最終応力を2〜3MPaにし、拡散温度の保持時間を総保持時間で400〜600秒とした。このようにして、等温凝固、拡散処理をおこなった。各詳細の条件を表2に示した。
(Comparative Examples 9-11)
In the same manner as in Example 1, liquid phase diffusion bonding was performed to produce a bonded product. The difference from the first embodiment is that a temperature and pressing force profile as shown in FIG. 7 is obtained. More specifically, the amorphous foil and the steel pipe end are heated to the diffusion temperature by heating while preliminarily applying an initial stress (15 to 25 MPa), which is a bonding stress (pressing force). After reaching the diffusion temperature, the initial stress is maintained for a predetermined time (5 to 15 seconds), and immediately thereafter, the final stress as the pressing force is set to 2 to 3 MPa in order to suppress plastic deformation due to creep, and the diffusion temperature is maintained. The time was 400 to 600 seconds in terms of the total holding time. In this way, isothermal solidification and diffusion treatment were performed. The detailed conditions are shown in Table 2.

Figure 2012055904
Figure 2012055904

Figure 2012055904
Figure 2012055904

<評価試験>
〔酸化物面積率の測定〕
実施例1〜10及び比較例1〜11の接合品に対して、酸化物面積率の測定をおこなった。具体的には、図6に示すように、接合した接合品(鋼管)の接合部分を長さ方向と平行に切断し、接合面を4断面切り出した。この切断した切断サンプルを樹脂に埋め込み、ナイタール腐食液で腐食し、接合界面の酸化物及びその近傍の組織観察をおこなった。そして、接合界面上に現れた酸化物の総長さ、及び接合部分の総長さを測定し、接合部分の総長さに対する酸化物の総長さの割合の平均値を、酸化物面積率とした。この結果を、以下の表3及び4に示した。
<Evaluation test>
(Measurement of oxide area ratio)
The oxide area ratio was measured for the joined articles of Examples 1 to 10 and Comparative Examples 1 to 11. Specifically, as shown in FIG. 6, the joined portion of the joined product (steel pipe) was cut in parallel with the length direction, and the joint surface was cut into four sections. This cut sample was embedded in a resin and corroded with a nital etchant, and the oxide at the bonding interface and the structure in the vicinity thereof were observed. And the total length of the oxide which appeared on the joining interface and the total length of a junction part were measured, and the average value of the ratio of the total length of the oxide with respect to the total length of a junction part was made into the oxide area ratio. The results are shown in Tables 3 and 4 below.

〔引張り試験〕
実施例1〜10及び比較例1〜11の接合品に対して引張り試験の測定をおこなった。接合品である鋼管から、長さ方向と平行に引張り試験片を切り出した。平行部の幅が10mm、長さ50mmで、平行部中央に接合部が位置するように、接合品から引張り試験片を切り出した。この試験片を、鋼管と同じ曲率を持つ治具で掴み、引張り試験を行い、引張り強さを測定した。この結果を、以下の表3及び4に示した。なお、表の下欄に示すように、A:接合面は、接合界面内の酸化物を起点とする破壊を示している。
[Tensile test]
Tensile test measurements were performed on the joined articles of Examples 1 to 10 and Comparative Examples 1 to 11. A tensile test piece was cut out from the steel pipe, which was a joined product, in parallel with the length direction. A tensile test piece was cut out from the joined product so that the parallel part had a width of 10 mm and a length of 50 mm, and the joined part was located at the center of the parallel part. The specimen was gripped with a jig having the same curvature as that of the steel pipe, a tensile test was performed, and the tensile strength was measured. The results are shown in Tables 3 and 4 below. In addition, as shown in the lower column of the table, A: the joint surface indicates a fracture starting from an oxide in the joint interface.

〔捩り試験〕
実施例1〜10及び比較例1〜8の接合品に対して捩り試験の測定をおこなった。接合品である鋼管の両端にボルト穴を有するフランジを溶接し、捩り試験機にボルトを固定して行った。捩り速度は、0.1°/sとし、捩り角度−捩りトルクのデータから破断捩り角と最大捩りトルクとを測定した。この結果を表3に示す。
[Torsion test]
The torsion test was measured for the joined articles of Examples 1 to 10 and Comparative Examples 1 to 8. A flange having bolt holes was welded to both ends of a steel pipe as a joined product, and the bolt was fixed to a torsion tester. The torsion speed was 0.1 ° / s, and the torsion angle and the maximum torsion torque were measured from the data of torsion angle-torsion torque. The results are shown in Table 3.

Figure 2012055904
Figure 2012055904

Figure 2012055904
Figure 2012055904

〔結果1〕
実施例1〜10及び比較例1〜11のすべての接合品の接合界面(接合部分)は、接合材に含有されるNiにより、焼入れ性が向上し、マルテンサイト組織となった。また界面と連続する母材は、ベイナイト組織であり、接合前の組織形態と同じであった。
[Result 1]
The joining interfaces (joining portions) of all the joined articles of Examples 1 to 10 and Comparative Examples 1 to 11 were improved in the hardenability by Ni contained in the joining material, and became a martensite structure. The base material continuous with the interface had a bainite structure, which was the same as the structure before joining.

〔結果2〕
表3に示すように、実施例1〜7の大気中で接合した接合品は、接合界面の酸化物が面積率で5%以下存在し、引張り試験では、接合部分で破断するものと、接合部分以外で破断するものがあった。実施例8及び9の酸素濃度100ppmを含有する窒素雰囲気下、実施例10の完全な窒素雰囲気下で接合した場合には、接合部分で破断することは皆無であった。接合部分は接合箔と合金化しており、母材より硬さが硬くなっていることが明らかである。よって、接合界面に酸化物がほとんど存在しない低酸素雰囲気で接合した実施例8〜10の接合品は、母材で破断している。
[Result 2]
As shown in Table 3, in the joined products joined in the atmosphere of Examples 1 to 7, the oxide at the joint interface is 5% or less in area ratio, and in the tensile test, the joint breaks at the joint portion. There was something that broke except the part. When joining was performed in the nitrogen atmosphere containing 100 ppm of oxygen in Examples 8 and 9 and in the complete nitrogen atmosphere in Example 10, there was no fracture at the joint. It is apparent that the joined portion is alloyed with the joined foil and is harder than the base material. Therefore, the joined articles of Examples 8 to 10 joined in a low oxygen atmosphere in which almost no oxide is present at the joining interface are broken at the base material.

〔結果3〕
表3に示すように、実施例1〜10の接合品の接合部分の引張り強さは、585MPa以上であった。また、酸化物が生成されていない実施例1〜7の接合部分の引張り強さは、酸化物が生成されていない実施例8〜10と比較して、82%超えの強度が確保されているといえる。
[Result 3]
As shown in Table 3, the tensile strength of the joined portion of the joined articles of Examples 1 to 10 was 585 MPa or more. Moreover, the tensile strength of the junction part of Examples 1-7 in which the oxide is not produced | generated has ensured the intensity | strength exceeding 82% compared with Examples 8-10 in which the oxide is not produced | generated. It can be said.

〔結果4〕
表3に示すように、捩り試験では、実施例1〜7の大気中で接合した接合品は、すべて接合部分で破断したが、いずれも最大捩りトルクを示した捩り角度を超えてから破断している。また、表3に示すように、実施例8及び9の酸素100ppmを含有する窒素雰囲気下で接合した接合品、及び、実施例10の完全な窒素雰囲気下で接合した接合品は、破断せず、接合品全体が塑性変形した。また、実施例1〜7の接合部分の最大捩りトルクは、実施例8〜10の最大捩りトルクと比較して、88%超えとなっている。
[Result 4]
As shown in Table 3, in the torsion test, all of the joined products joined in the atmosphere of Examples 1 to 7 were broken at the joined portion, but all were broken after exceeding the torsion angle showing the maximum torsion torque. ing. Further, as shown in Table 3, the joined product joined in a nitrogen atmosphere containing 100 ppm of oxygen in Examples 8 and 9 and the joined product joined in a complete nitrogen atmosphere in Example 10 did not break. The entire joint was plastically deformed. In addition, the maximum torsional torque of the joint portions of Examples 1 to 7 exceeds 88% compared to the maximum torsional torque of Examples 8 to 10.

〔結果5〕
比較例1及び2の接合品は、実施例1〜10の接合品に比べて、酸化物面積率が高く、引張り強さ及び捩り強さが大幅に低い。また、破壊の起点は、いずれも接合部に生成された酸化物である。
[Result 5]
The joined articles of Comparative Examples 1 and 2 have a higher oxide area ratio and significantly lower tensile strength and torsional strength than the joined articles of Examples 1 to 10. Moreover, the starting point of destruction is an oxide produced | generated in the junction part.

比較例3、及び5〜7の接合品は、引張り試験において、加熱温度と押圧力バランス悪く、塑性変形を起こしており、強度の評価に適さなかった。比較例4の接合品は、酸化物面積率が低いものの、破断位置は接合界面であり、接合箔中の合金が充分に拡散しなかったために、脆化したものと考えられる。比較例8は、酸化物面積率が低く、塑性変形も小さいが、拡散処理時間を短くした結果、引張り試験及び捩り試験において接合面で破断を起こし、実施例1〜10のものに比べて、引張り強さ及び最大捩りトルクは小さいものとなった。   In the tensile test, the bonded products of Comparative Examples 3 and 5 to 7 were poor in balance between the heating temperature and the pressing force, caused plastic deformation, and were not suitable for strength evaluation. Although the bonded product of Comparative Example 4 has a low oxide area ratio, the fracture position is the bonded interface, and the alloy in the bonded foil was not sufficiently diffused, so it is considered that the bonded product was embrittled. In Comparative Example 8, the oxide area ratio is low and the plastic deformation is small, but as a result of shortening the diffusion treatment time, breakage occurred at the joint surface in the tensile test and the torsion test, compared with those in Examples 1 to 10, The tensile strength and the maximum torsion torque were small.

〔結果6〕
表4に示すように、大気中で接合した比較例9〜11の接合品は、大気中で接合した実施例1〜7の接合品に比べて、酸化物面積率が大きく、引張り強さは低かった。比較例9〜11の接合条件では、表2に示すように、初期応力、最終応力は、実施例1〜10と略同等であり、初期応力保持時間は、実施例1〜10の拡散処理(第一の拡散工程)における応力保持時間の範囲内にある。すなわち、表2の条件は、実施例1〜10の接合押し出し工程(接合箔溶融温度(液相線)直上での接合過程)を省略したものと考えることができる。このことから、実施例1〜10の接合押し出し工程の条件が、酸化物の生成を抑制し、健全な接合を行う上で有効であるといえる。
[Result 6]
As shown in Table 4, the bonded articles of Comparative Examples 9 to 11 bonded in the air have a larger oxide area ratio and tensile strength than the bonded articles of Examples 1 to 7 bonded in the air. It was low. In the joining conditions of Comparative Examples 9 to 11, as shown in Table 2, the initial stress and the final stress are substantially the same as those of Examples 1 to 10, and the initial stress holding time is the diffusion treatment of Examples 1 to 10 ( It is within the range of the stress holding time in the first diffusion step). That is, it can be considered that the conditions in Table 2 omit the joining and extruding step (joining process immediately above the joining foil melting temperature (liquidus)) in Examples 1 to 10. From this, it can be said that the conditions of the joining extrusion process of Examples 1 to 10 are effective in suppressing the generation of oxides and performing sound joining.

10A,10B:鋼管、11:低融点接合材、32:ヒータ、33:窒素ガスチャンバ、41:押し板   10A, 10B: Steel pipe, 11: Low melting point bonding material, 32: Heater, 33: Nitrogen gas chamber, 41: Push plate

Claims (4)

端部に筒状部分を有した一対の鋼製の被接合部材の開口端面同士の間に、前記鋼よりも融点の低い低融点接合材を配置する工程と、
該低融点接合材の融点以上の接合温度に、前記被接合部材を加熱しながら、前記被接合部材同士を押圧することにより、前記被接合部材同士を前記開口端面で接合し、少なくとも接合部分に生成された酸化物を前記接合部分の周りに押し出す、接合押し出し工程と、
該接合押し出し工程時における押圧状態を保持しながら、前記接合温度よりも高い拡散温度に、前記被接合部材を加熱することにより、前記低融点接合材の材料を前記被接合部材に拡散させる第一の拡散工程と、
前記第一の拡散工程における加熱状態を保持しながら、前記接合押し出し工程の押圧力よりも低い押圧力で押圧し、前記低融点接合材の材料を前記被接合部材にさらに拡散させる第二の拡散工程と、
を少なくとも含むことを特徴とする液相拡散接合方法。
A step of disposing a low melting point bonding material having a melting point lower than that of the steel between the open end faces of a pair of steel members to be joined having a cylindrical portion at the end, and
The members to be joined are bonded to each other at the opening end surfaces by pressing the members to be joined while heating the members to be joined at a joining temperature equal to or higher than the melting point of the low melting point joining material, A bonding extrusion step of extruding the generated oxide around the bonding portion;
First, the material of the low-melting-point bonding material is diffused in the bonded member by heating the bonded member to a diffusion temperature higher than the bonding temperature while maintaining the pressed state during the bonding extrusion step. The diffusion process of
While maintaining the heating state in the first diffusion step, the second diffusion is performed by pressing with a pressing force lower than the pressing force in the bonding extrusion step, and further diffusing the material of the low melting point bonding material into the bonded member Process,
A liquid phase diffusion bonding method comprising:
前記接合押し出し工程において、前記接合温度として前記低融点接合材の融点から1130℃までの範囲の温度条件で、前記被接合部材を加熱しながら、10〜25MPaの範囲の第一の押圧力の条件で、60〜600秒間、前記被接合部材同士を押圧することにより、前記被接合部材同士を前記開口端面で接合し、少なくとも前記接合部分に生成された酸化物を前記接合部分の周りに押し出し、
前記第一の拡散工程において、前記接合押し出し工程時における押圧状態を保持しながら、前記拡散温度として1200℃〜1250℃の範囲の温度条件で、2〜20秒間、被接合部材を加熱することにより、前記低融点接合材の材料を前記被接合部材に拡散させ、
前記第二の拡散工程において、前記第一の拡散工程における加熱状態を保持しながら、2〜4MPaの範囲の第二の押圧力の条件で、前記拡散温度に到達してから200秒以上の間、前記被接合部材同士を押圧することにより、前記低融点接合材の材料を前記被接合部材にさらに拡散させることを特徴とする請求項1に記載の液相拡散接合方法。
In the bonding extrusion step, a first pressing force condition in the range of 10 to 25 MPa while heating the member to be bonded under the temperature condition in the range from the melting point of the low melting point bonding material to 1130 ° C. as the bonding temperature. Then, by pressing the members to be bonded for 60 to 600 seconds, the members to be bonded are bonded to each other at the opening end surfaces, and at least the oxide generated in the bonding portion is pushed out around the bonding portion,
In the first diffusion step, by maintaining the pressed state at the time of the bonding extrusion step, the member to be bonded is heated for 2 to 20 seconds under the temperature condition in the range of 1200 ° C. to 1250 ° C. as the diffusion temperature. , Diffusing the material of the low-melting-point bonding material into the bonded member
In the second diffusion step, while maintaining the heating state in the first diffusion step, for 200 seconds or more after reaching the diffusion temperature under the condition of the second pressing force in the range of 2 to 4 MPa. 2. The liquid phase diffusion bonding method according to claim 1, wherein the material of the low melting point bonding material is further diffused in the member to be bonded by pressing the members to be bonded to each other.
前記接合材として、B,Si,及びVを含有するNi基の非晶質合金からなる箔を用いることを特徴とする請求項1または2に記載の液相拡散接合方法。   3. The liquid phase diffusion bonding method according to claim 1, wherein a foil made of a Ni-based amorphous alloy containing B, Si, and V is used as the bonding material. 請求項1〜3のいずれかに記載の液相拡散接合方法により製造された接合品であって、
接合された部分以外の鋼の組織がベイナイト組織であり、接合された部分の引張り強さが500MPa以上であることを特徴とする接合品。
A bonded article manufactured by the liquid phase diffusion bonding method according to claim 1,
A bonded product, wherein the structure of the steel other than the bonded part is a bainite structure, and the tensile strength of the bonded part is 500 MPa or more.
JP2010199097A 2010-09-06 2010-09-06 Liquid phase diffusion bonding method and bonded product Expired - Fee Related JP5432866B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010199097A JP5432866B2 (en) 2010-09-06 2010-09-06 Liquid phase diffusion bonding method and bonded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010199097A JP5432866B2 (en) 2010-09-06 2010-09-06 Liquid phase diffusion bonding method and bonded product

Publications (2)

Publication Number Publication Date
JP2012055904A true JP2012055904A (en) 2012-03-22
JP5432866B2 JP5432866B2 (en) 2014-03-05

Family

ID=46053645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010199097A Expired - Fee Related JP5432866B2 (en) 2010-09-06 2010-09-06 Liquid phase diffusion bonding method and bonded product

Country Status (1)

Country Link
JP (1) JP5432866B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014181551A (en) * 2013-03-21 2014-09-29 Nippon Steel & Sumitomo Metal Recessed steel pipe joint, joint steel pipe, and joint method of steel pipe
CN105345252A (en) * 2015-12-04 2016-02-24 南京理工大学 Welding method for high-nitrogen steel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5897485A (en) * 1981-12-04 1983-06-09 Hitachi Ltd Joining method for metals
JP2001087868A (en) * 1999-09-22 2001-04-03 Daido Steel Co Ltd Manufacturing method of metallic tube joined body
JP2005324245A (en) * 2003-06-02 2005-11-24 Nippon Steel Corp Liquid phase diffusion joining method for metal machine parts, and metal machine parts
JP2009131904A (en) * 2009-03-09 2009-06-18 Nippon Steel Corp Method for liquid phase diffusion bonding of machinery parts

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5897485A (en) * 1981-12-04 1983-06-09 Hitachi Ltd Joining method for metals
JP2001087868A (en) * 1999-09-22 2001-04-03 Daido Steel Co Ltd Manufacturing method of metallic tube joined body
JP2005324245A (en) * 2003-06-02 2005-11-24 Nippon Steel Corp Liquid phase diffusion joining method for metal machine parts, and metal machine parts
JP2009131904A (en) * 2009-03-09 2009-06-18 Nippon Steel Corp Method for liquid phase diffusion bonding of machinery parts

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014181551A (en) * 2013-03-21 2014-09-29 Nippon Steel & Sumitomo Metal Recessed steel pipe joint, joint steel pipe, and joint method of steel pipe
CN105345252A (en) * 2015-12-04 2016-02-24 南京理工大学 Welding method for high-nitrogen steel

Also Published As

Publication number Publication date
JP5432866B2 (en) 2014-03-05

Similar Documents

Publication Publication Date Title
Özdemir et al. Effect of rotational speed on the interface properties of friction-welded AISI 304L to 4340 steel
EP3053696B1 (en) Friction stir welding method for structural steel and method of manufacturing joint for structural steel
Tabernig et al. Joining of molybdenum and its application
JP6497451B2 (en) Friction stir welding method and apparatus
US9370846B2 (en) Process for producing combustor structural member, and combustor structural member, combustor for gas turbine and gas turbine
JP6249019B2 (en) Friction welding method
WO2004105994A1 (en) Liquid phase diffusion welding method for metallic machine part and metallic machine part
EP3437782A1 (en) Method and device for friction stir bonding of structural steel
Deng et al. Thermally assisted self-piercing riveting of AA6061-T6 to ultrahigh strength steel
Li et al. Influence of Parent Metal Microstructure and Post‐Weld Heat Treatment on Microstructure and Mechanical Properties of Linear Friction Welded Ti‐6Al‐4V Joint
JP5432866B2 (en) Liquid phase diffusion bonding method and bonded product
KR20180119635A (en) Method and apparatus for friction stir welding of structural steel
JP4456471B2 (en) Liquid phase diffusion bonding method for metal machine parts and metal machine parts
Lim et al. Ti-6Al-4V/SUS316L dissimilar joints with ultrahigh joint efficiency fabricated by a novel pressure-controlled joule heat forge welding method
Fahlström et al. Evaluation of laser weldability of 1800 and 1900 MPa boron steels
Noh et al. Diffusion bonding between ODS ferritic steel and F82H steel for fusion applications
JP2003266182A (en) Friction stir welding method for different kind of metallic material
JP4854754B2 (en) Liquid phase diffusion bonding method for machine parts
Thürer et al. Process chain for the manufacture of hybrid bearing bushings
Ozlati et al. Upset resistance welding of carbon steel to austenitic stainless steel narrow rods
JP2001025885A (en) Friction welding member and its manufacture
Siltanen et al. Preliminary laser welding tests of 22MnB5 steel with a butt joint and lap joint configurations
KR20190039743A (en) Method and apparatus for friction stir welding
Moumi et al. Wire joining by rotary swaging
JP2001287085A (en) Joined body between ferrous alloy member and joining method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131206

R151 Written notification of patent or utility model registration

Ref document number: 5432866

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees