JP2010059451A - Welded joint and manufacturing method therefor - Google Patents

Welded joint and manufacturing method therefor Download PDF

Info

Publication number
JP2010059451A
JP2010059451A JP2008224644A JP2008224644A JP2010059451A JP 2010059451 A JP2010059451 A JP 2010059451A JP 2008224644 A JP2008224644 A JP 2008224644A JP 2008224644 A JP2008224644 A JP 2008224644A JP 2010059451 A JP2010059451 A JP 2010059451A
Authority
JP
Japan
Prior art keywords
heat treatment
strength
welded joint
spot
tensile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008224644A
Other languages
Japanese (ja)
Inventor
Toru Okada
徹 岡田
Masato Uchihara
正人 内原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2008224644A priority Critical patent/JP2010059451A/en
Publication of JP2010059451A publication Critical patent/JP2010059451A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a welded joint which is small in nugget diameter and is excellent in strength in a peeling direction when high-tension steel sheets having ≥440 MPa tensile strength are subjected to lap resistance welding, and to provide a manufacturing method the welded joint. <P>SOLUTION: When the welded joint is manufactured by applying a spot-welding to a lapped member formed by lapping a plurality of high tension steel sheets of ≥440 MPa the tensile strength, a welding metal for welded joint has chemical composition composed, by mass%, of C×P≤0.0025%, ≤0.015% P, ≤0.01% S, and the spot-welding part is subjected to heat treatment to satisfy 300≤T×(log<SB>10</SB>(t)+1)≤1,000, [wherein, T is the heat-treatment temperature (100°C≤T≤400°C) and t is a heat-treatment time (holding time in the heat-treatment time; min)]. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、溶接継手およびその製造方法に関し、具体的には、主に自動車の組立てで使用される抵抗溶接により製造される、剥離方向強度に優れる溶接継手およびその製造方法に関する。   The present invention relates to a welded joint and a manufacturing method thereof, and more particularly, to a welded joint manufactured by resistance welding mainly used in assembling an automobile and having excellent peel strength and a manufacturing method thereof.

近年、自動車産業分野では、車体の軽量化および衝突安全性の向上を図るため、引張強度が例えば440MPa以上である高張力鋼板の使用が拡大している。
車体の組立てで主に使用されるスポット溶接では、板厚に応じたナゲット径の確保が求められ、基準ナゲット径が得られる電流値からチリ(母材の溶融飛散現象)が発生する電流値までの範囲により表される適正電流範囲が重要な指標とされる。また、スポット溶接継手には、高いせん断強度および剥離方向強度がともに要求される。
In recent years, in the automotive industry field, the use of high-tensile steel plates having a tensile strength of, for example, 440 MPa or more has been expanded in order to reduce the weight of the vehicle body and improve the collision safety.
In spot welding, which is mainly used in the assembly of car bodies, it is required to secure a nugget diameter according to the plate thickness. From the current value at which the standard nugget diameter is obtained to the current value at which dust (melting and scattering phenomenon of the base material) occurs The appropriate current range represented by the range is an important indicator. Further, the spot welded joint is required to have both high shear strength and peel direction strength.

また、スポット溶接部は、引張試験における破断経路がナゲット内(溶融した部分)を通過するナゲット内破断や、この破断経路がナゲットと母材との界面を通過する界面破断よりも、破断経路がナゲットの外部を通過する母材破断となる品質を備えることが望ましい。   In addition, the spot welded portion has a fracture path that is less than the fracture in the nugget where the fracture path in the tensile test passes through the nugget (melted portion) and the interface fracture in which this fracture path passes through the interface between the nugget and the base material. It is desirable to provide a quality that results in a fracture of the base material that passes outside the nugget.

しかし、上述した引張強度が440MPa以上の高張力鋼板のスポット溶接継手の剥離方向強度は、せん断強度よりも弱く、また界面破断した場合の強度低下が著しい。このため、引張強度が440MPa以上の高張力鋼板を自動車の車体へ適用拡大するために、剥離方向強度の向上が求められている。   However, the strength in the peel direction of the spot welded joint of the high-tensile steel plate having a tensile strength of 440 MPa or more is weaker than the shear strength, and the strength is significantly reduced when the interface breaks. For this reason, in order to expand the application of a high-tensile steel sheet having a tensile strength of 440 MPa or more to the body of an automobile, an improvement in peel direction strength is required.

一般的に、スポット溶接継手の剥離方向強度の向上を図るには、ナゲット径を拡大することが有効であるとされる。また、特許文献1〜5には、溶接通電終了後の後通電による改善方法も提案されている。
特開2002−103048号公報 特開2002−103054号公報 平塚一富ら、「耐候性鋼の点溶接におけるテンパ条件選定に関する研究」、溶接学会誌 第39巻(1970) 第3号、39〜49頁 山内信幸ら、‘高張力鋼板のスポット溶接性’、住友金属、Vol.33(1981) No.4、109〜120頁 別所清ら、‘高張力薄鋼板の点溶接’、住友金属、Vol.26(1974) No.2、38〜48頁
In general, it is considered effective to increase the nugget diameter in order to improve the strength in the peeling direction of the spot welded joint. Patent Documents 1 to 5 also propose improvement methods by post-energization after the end of welding energization.
JP 2002-103048 A JP 2002-103054 A Hiratsuka, K. et al., “Study on selection of tempering conditions in spot welding of weathering steel”, Journal of the Japan Welding Society Vol. Nobuyuki Yamauchi et al., “Spot Weldability of High Tensile Steel”, Sumitomo Metals, Vol. 33 (1981) no. 4, pages 109-120 Bessho Kiyoshi et al., “Spot Welding of High Tensile Steel Sheet”, Sumitomo Metals, Vol. 26 (1974) No. 2, pages 38-48

しかし、前者のナゲット径を拡大する手段は、高張力鋼板の場合にはチリが発生しやすいため、限界がある。また、後者の後通電を行う手段は施工時間が増大するため、実用的ではない。   However, the former means for enlarging the nugget diameter has a limit because dust tends to be generated in the case of a high-tensile steel plate. In addition, the latter means for performing subsequent energization is not practical because the construction time increases.

本発明は、引張強度が440MPa以上の高張力鋼板の重ね合わせ抵抗溶接において、小さなナゲット径で剥離方向強度に優れる溶接継手と、その製造方法とを提供することを目的とする。本発明は、特に、溶接継手の板厚中央部に重ね合わせ面が存在する場合でも剥離方向強度に優れた溶接継手と、その製造方法とを提供することを目的とする。   An object of the present invention is to provide a welded joint having a small nugget diameter and excellent peel strength in a lap resistance welding of a high-tensile steel sheet having a tensile strength of 440 MPa or more, and a method for producing the same. In particular, an object of the present invention is to provide a welded joint that is excellent in strength in the peeling direction even when an overlapping surface is present in the center portion of the thickness of the welded joint, and a method for manufacturing the welded joint.

特許文献4、5により開示されるように、高張力鋼板のスポット溶接継手の剥離方向強度の低下原因として、C含有量の増加に伴う溶接金属の硬さ上昇による靭性低下が知られる。また、高張力鋼板におけるPやSの偏析も原因であることが知られる。このP、Sの偏析はC含有量が増加するほど影響を受け易くなる。すなわち、スポット溶接継手の剥離方向の強度の向上のためにはC含有量およびP含有量を低減することが求められるが、Cは、鋼の高強度化には必須の元素であり、欠かすことはできない。   As disclosed in Patent Documents 4 and 5, as a cause of a decrease in peel direction strength of a spot welded joint of a high-tensile steel plate, a decrease in toughness due to an increase in weld metal hardness accompanying an increase in C content is known. It is also known that P and S segregation in the high-tensile steel plate is also the cause. The segregation of P and S is more susceptible to increase as the C content increases. That is, in order to improve the strength in the peeling direction of spot welded joints, it is required to reduce the C content and the P content, but C is an essential element for increasing the strength of steel and is indispensable. I can't.

そこで、本発明者らはさらに検討を重ねた結果、引張強度が440MPa以上の複数の高張力鋼板を重ね合わせて形成される重ね合わせ部材にスポット溶接を行って製造されるスポット溶接継手の剥離方向強度を向上するには、溶接継手の溶接金属のP、Sの含有量を小さくし、かつ、スポット溶接部に特定の条件で熱処理を施せばよいことを知見し、さらに検討を重ねて、本発明を完成した。   Therefore, as a result of further investigations, the present inventors have determined that the peel direction of a spot welded joint manufactured by spot welding on an overlapping member formed by overlapping a plurality of high-tensile steel sheets having a tensile strength of 440 MPa or more. In order to improve the strength, it has been found that the P and S contents of the weld metal of the welded joint should be reduced, and that the spot welds should be heat-treated under specific conditions. Completed the invention.

本発明は、引張強度が440MPa以上の複数の鋼板を重ね合わせて形成される重ね合わせ部材に抵抗溶接を行って溶接部を有する溶接継手を製造する方法であって、溶接継手の溶接金属は、質量%で、C×P≦0.0025、P:0.015%以下、S:0.01%以下である化学成分を有し、溶接部を昇温することにより、この溶接部に、下記式(1)を充足する熱処理温度および熱処理時間で熱処理を施すことを特徴とする溶接継手の製造方法である。
300≦T・(log10(t)+1)≦1000 ・・・・・・・・・・(1)
ただし、式(1)におけるTは熱処理温度(100℃≦T≦400℃)を示し、tは熱処理時間(熱処理温度の保持時間;分)を示す。
The present invention is a method for producing a welded joint having a welded portion by performing resistance welding on an overlapping member formed by superimposing a plurality of steel plates having a tensile strength of 440 MPa or more, wherein the weld metal of the welded joint is: By mass%, C × P ≦ 0.0025, P: 0.015% or less, and S: 0.01% or less. A method for producing a welded joint, characterized in that heat treatment is performed at a heat treatment temperature and a heat treatment time satisfying the formula (1).
300 ≦ T · (log 10 (t) +1) ≦ 1000 (1)
In the formula (1), T represents a heat treatment temperature (100 ° C. ≦ T ≦ 400 ° C.), and t represents a heat treatment time (heat treatment temperature holding time; minutes).

この本発明に係る溶接継手の製造方法では、熱処理が、下記式(2)を充足することが望ましい。
400≦T・(log10(t)+1)≦750 ・・・・・・・・・・(2)
ただし、式(2)におけるTは熱処理温度(150℃≦T≦400℃)を示し、tは熱処理時間(熱処理温度の保持時間;分)を示す。この場合に、熱処理温度Tは200℃以上400℃以下であることが望ましい。
In the method for manufacturing a welded joint according to the present invention, it is desirable that the heat treatment satisfies the following formula (2).
400 ≦ T · (log 10 (t) +1) ≦ 750 (2)
In the formula (2), T represents a heat treatment temperature (150 ° C. ≦ T ≦ 400 ° C.), and t represents a heat treatment time (heat treatment temperature holding time; minutes). In this case, the heat treatment temperature T is desirably 200 ° C. or higher and 400 ° C. or lower.

さらに、熱処理が、下記式(3)を満足することが望ましい。
450≦T・(log10(t)+1)≦700 ・・・・・・・・・・(3)
ただし、式(3)におけるTは熱処理温度(200℃≦T≦300℃)を示し、tは熱処理時間(熱処理温度の保持時間;分)を示す。
Furthermore, it is desirable that the heat treatment satisfies the following formula (3).
450 ≦ T · (log 10 (t) +1) ≦ 700 (3)
In the formula (3), T represents a heat treatment temperature (200 ° C. ≦ T ≦ 300 ° C.), and t represents a heat treatment time (heat treatment temperature holding time; minutes).

これらの本発明に係る溶接継手の製造方法では、例えば、重ね合わせ部材が、その板厚方向の中央部に複数の鋼板の重ね合わせ面が存在する場合に適用すると好適である。ただし、板厚方向の中央部とは、重ね合わせ面と板厚方向の中心線とのずれ量が重ね合わせ部材の合計板厚の10%以内である領域を指す。   In these welded joint manufacturing methods according to the present invention, for example, it is preferable that the overlapping member is applied when the overlapping surface of a plurality of steel plates is present at the center in the thickness direction. However, the central portion in the thickness direction refers to a region where the amount of deviation between the overlapping surface and the center line in the thickness direction is within 10% of the total thickness of the overlapping members.

これらの本発明に係る溶接継手の製造方法では、複数の鋼板が2枚の鋼板であることが望ましい。
別の観点からは、本発明は、上述した本発明に係る製造方法により製造されることを特徴とする溶接継手である。
In the method for manufacturing a welded joint according to the present invention, it is desirable that the plurality of steel plates are two steel plates.
From another viewpoint, the present invention is a welded joint manufactured by the above-described manufacturing method according to the present invention.

本発明により、引張強度が440MPa以上の鋼板からなる重ね合わせ部材に抵抗溶接を行って得られる溶接継手の剥離方向強度を向上できる。特に重ね合わせ部材の板厚中央部が重ね合わせ面となるような板組の溶接継手の剥離方向強度を向上できる。   By this invention, the peeling direction intensity | strength of the welded joint obtained by performing resistance welding to the lamination | stacking member which consists of a steel plate whose tensile strength is 440 Mpa or more can be improved. In particular, it is possible to improve the peeling direction strength of the welded joint of the plate assembly in which the central portion of the thickness of the overlapping member becomes the overlapping surface.

このため、本発明によれば、小さなナゲット径で溶接継手の剥離方向の強度を向上させること、すなわち、剥離方向強度に優れる引張強度が440MPa以上の高張力鋼板の溶接継手と、その製造方法とを提供することができる。   Therefore, according to the present invention, it is possible to improve the strength in the peeling direction of the welded joint with a small nugget diameter, that is, a welded joint of a high-tensile steel plate having a tensile strength of 440 MPa or more, which is excellent in the strength in the peeling direction, Can be provided.

これにより、引張強度が440MPa以上の高張力鋼板を、自動車の車体へ適用拡大することが可能になる。   This makes it possible to expand the application of a high-tensile steel plate having a tensile strength of 440 MPa or more to the vehicle body of an automobile.

以下、本発明に係る溶接継手およびその製造方法を実施するための最良の形態を、添付図面を参照しながら、詳細に説明する。なお、本発明は、スポット溶接、片側スポット溶接、シリーズスポット溶接さらにはダイレクトスポット溶接等の抵抗溶接で製造される点溶接継手であれば広く適用される。以降の説明では、自動車の分野で広く用いられるスポット溶接を例にとる。   The best mode for carrying out a welded joint and a method for producing the same according to the present invention will be described below in detail with reference to the accompanying drawings. The present invention is widely applied to spot welding joints manufactured by resistance welding such as spot welding, one-side spot welding, series spot welding, and direct spot welding. In the following description, spot welding widely used in the field of automobiles is taken as an example.

本実施の形態では、引張強度が440MPa以上の複数の高張力鋼板を重ね合わせて形成される重ね合わせ部材にスポット溶接を行ってスポット溶接部を有するスポット溶接継手を製造する。   In the present embodiment, a spot welded joint having a spot welded portion is manufactured by spot welding a superposed member formed by superposing a plurality of high strength steel plates having a tensile strength of 440 MPa or more.

この際、スポット溶接部を昇温し、この溶接部に下記式(1)を充足する熱処理温度および熱処理時間で熱処理を施すことにより、スポット溶接継手を製造する。
300≦T・(log10(t)+1)≦1000 ・・・・・・・・・・(1)
ただし、式(1)におけるTは熱処理温度(100℃以上400℃以下)を示し、tは熱処理時間(熱処理温度での保持時間;分)を示す。
At this time, the spot welded portion is heated, and the spot welded joint is manufactured by subjecting the welded portion to heat treatment at a heat treatment temperature and a heat treatment time satisfying the following formula (1).
300 ≦ T · (log 10 (t) +1) ≦ 1000 (1)
However, T in Formula (1) shows heat processing temperature (100 degreeC or more and 400 degrees C or less), and t shows heat processing time (holding time in heat processing temperature; minute).

通常のスポット溶接終了後の溶接部は室温まで空冷されるため、スポット溶接部を昇温する必要がある。溶接後の冷却過程で温度を保持する熱処理では、スポット溶接の冷却速度が非常に速いため所定の温度を狙うことが困難である。また、このような熱処理はスポット溶接電極による通電加熱で行わざるをえないが、施工時間の増大や、連続打点性の劣化が生じるため好ましくない。   Since the weld after completion of normal spot welding is air-cooled to room temperature, it is necessary to raise the temperature of the spot weld. In the heat treatment for maintaining the temperature in the cooling process after welding, it is difficult to aim at a predetermined temperature because the cooling rate of spot welding is very fast. Further, such heat treatment must be carried out by energization heating with a spot welding electrode, but this is not preferable because it increases the construction time and deteriorates the continuous spotting property.

本発明者らは、スポット溶接部に熱処理を行った場合に熱処理温度および熱処理時間がスポット溶接部の強度に及ぼす影響を調べるため、溶接金属が質量%で、C:0.17%、P:0.009%、S:0.001%の化学成分を含有するように、表1に示す組成(数値は質量%であり、表に示す以外はFeおよび不可避的不純物)を有する、引張強度780MPaおよび板厚1.8mmの高張力鋼板0a、0bを2枚重ね合わせて、図1に示す形状のL字型引張試験片0を組み立て、このL字型引張試験片0に対して表2に示す溶接条件(電極、加圧力、通電時間、溶接電流およびホールド時間)でスポット溶接を行い、このスポット溶接部0cを常温まで冷却した後に所定の熱処理温度(常温〜400℃)と所定の熱処理時間(0〜300分間)にて加熱保持してから、L字型引張試験片0に引張試験を行うことにより剥離方向強度(L字継手強度)を調査した。なお、以下で、成分%は質量%を表す。   In order to investigate the influence of the heat treatment temperature and the heat treatment time on the strength of the spot weld when the heat treatment is performed on the spot weld, the present inventors have the weld metal in mass%, C: 0.17%, P: A tensile strength of 780 MPa having the composition shown in Table 1 (the numerical value is mass%, and Fe and inevitable impurities other than those shown in the table) so as to contain a chemical component of 0.009% and S: 0.001%. And two high-tensile steel plates 0a and 0b having a plate thickness of 1.8 mm are overlapped to assemble an L-shaped tensile test piece 0 having the shape shown in FIG. Spot welding is performed under the welding conditions shown (electrode, applied pressure, energization time, welding current, and hold time), and after this spot weld 0c is cooled to room temperature, a predetermined heat treatment temperature (room temperature to 400 ° C.) and a predetermined heat treatment time (0-30 Was heated held at minutes), it was investigated peel direction strength (L-shaped joint strength) by conducting a tensile test in an L-shape specimens 0. In the following, component% represents mass%.

結果を表3にまとめて示すとともに、図2および図3にグラフで示す。   The results are summarized in Table 3 and graphically shown in FIGS.

Figure 2010059451
Figure 2010059451

Figure 2010059451
Figure 2010059451

Figure 2010059451
Figure 2010059451

図2は熱処理温度とL字継手強度との関係を示すグラフであり、図3は熱処理時間および熱処理温度と、破断形態との関係を示すグラフである。なお、図2のグラフにおけるL字継手強度は各熱処理温度で得られた最高強度を示す。また、図3のグラフは各熱処理条件でのL字継手強度を示しており、図中の各プロットに記載した母材、ナゲット、界面は、母材破断であること、ナゲット内破断であること、界面破断であることを、それぞれ示す。また、図中のプロットの大きさは強度の大きさを示し、プロットが大きいほど高強度であることを示す。   FIG. 2 is a graph showing the relationship between the heat treatment temperature and the L-shaped joint strength, and FIG. 3 is a graph showing the relationship between the heat treatment time and the heat treatment temperature and the fracture mode. In addition, the L-shaped joint strength in the graph of FIG. 2 shows the highest strength obtained at each heat treatment temperature. Moreover, the graph of FIG. 3 has shown the L-shaped joint intensity | strength in each heat processing conditions, and the base material, nugget, and interface which were described in each plot in the figure are base material fracture | ruptures, and it is a nugget internal fracture | rupture. , Indicating that it is an interfacial fracture. Moreover, the size of the plot in the figure indicates the magnitude of the intensity, and the larger the plot, the higher the intensity.

表3に示すように、本実施の形態の熱処理を行うことにより剥離方向強度を向上でき、さらに、図2にグラフで示すように、熱処理の影響は、100℃程度の熱処理温度から現われ、熱処理温度が高いほど熱処理時間が短くてもスポット溶接部の剥離方向強度が向上するが、表3に示すように、熱処理温度が200℃よりも高い温度域では、熱処理時間が長過ぎる場合にはスポット溶接部の剥離方向強度の上昇は小さくなることがわかる。つまり、スポット溶接部の剥離方向強度を確実に高めるためには、熱処理温度に対して適正な熱処理時間が存在することがわかる。なお、熱処理温度が400℃を超えると、適正な処理時間が狭く実用的でない。   As shown in Table 3, the strength in the peeling direction can be improved by performing the heat treatment of the present embodiment. Furthermore, as shown in the graph of FIG. 2, the influence of the heat treatment appears from the heat treatment temperature of about 100 ° C. As the temperature is higher, the strength in the peeling direction of the spot weld is improved even if the heat treatment time is shorter. However, as shown in Table 3, in the temperature range where the heat treatment temperature is higher than 200 ° C., if the heat treatment time is too long, the spot It can be seen that the increase in the peel direction strength of the welded portion is small. That is, it can be seen that there is an appropriate heat treatment time with respect to the heat treatment temperature in order to reliably increase the strength in the peeling direction of the spot weld. If the heat treatment temperature exceeds 400 ° C., the appropriate treatment time is narrow and impractical.

さらに、表3および図2、3のグラフに示す結果から、以下に列記する事項がわかる。
(a)100℃以上400℃以下の熱処理温度で熱処理を適正時間行うことにより、接合部の剥離方向強度は大幅に向上すること。
Furthermore, the items listed below can be understood from the results shown in Table 3 and the graphs of FIGS.
(A) By performing the heat treatment at a heat treatment temperature of 100 ° C. or higher and 400 ° C. or lower for an appropriate time, the strength in the peeling direction of the joint portion is significantly improved.

(b)300≦T・(log10(t)+1)≦1000の熱処理を行うことにより、剥離方向強度が向上すること。
(c)T・(log10(t)+1)が300未満であると剥離方向強度が小さくなり、また、1000を超えても熱処理に投入するエネルギーに比較して剥離方向強度の向上効果が小さくなること。
(B) The strength in the peeling direction is improved by performing a heat treatment of 300 ≦ T · (log 10 (t) +1) ≦ 1000.
(C) If T · (log 10 (t) +1) is less than 300, the peeling direction strength is small, and even if it exceeds 1000, the effect of improving the peeling direction strength is small compared to the energy input to the heat treatment. To become a.

(d)特に400≦T・(log10(t)+1)≦750の熱処理を行うことにより、母材破断となり、剥離方向強度が大幅に向上すること。
表3に示すように、上述した式(1):300≦T・(log10(t)+1)≦1000を充足する熱処理温度および熱処理時間で熱処理を施すことにより剥離方向強度が向上する。ただし、式(1)におけるTは熱処理温度(100℃≦T≦400℃)を示し、tは熱処理時間(熱処理温度の保持時間;分)を示す。
(D) In particular, by performing a heat treatment of 400 ≦ T · (log 10 (t) +1) ≦ 750, the base material breaks and the strength in the peeling direction is greatly improved.
As shown in Table 3, the strength in the peeling direction is improved by performing heat treatment at a heat treatment temperature and a heat treatment time satisfying the above-described formula (1): 300 ≦ T · (log 10 (t) +1) ≦ 1000. In the formula (1), T represents a heat treatment temperature (100 ° C. ≦ T ≦ 400 ° C.), and t represents a heat treatment time (heat treatment temperature holding time; minutes).

さらに、上述した式(2):400≦T・(log10(t)+1)≦750を充足する熱処理温度および熱処理時間で熱処理を施すことにより母材破断となり、剥離方向強度が大幅に向上する。ただし、式(2)におけるTは熱処理温度(150℃≦T≦400℃)を示し、tは熱処理時間(熱処理温度の保持時間;分)を示す。この場合に、熱処理温度Tは200℃以上400℃以下であることが望ましい。 Furthermore, when the heat treatment is performed at the heat treatment temperature and the heat treatment time satisfying the above-described formula (2): 400 ≦ T · (log 10 (t) +1) ≦ 750, the base material breaks, and the strength in the peeling direction is greatly improved. . In the formula (2), T represents a heat treatment temperature (150 ° C. ≦ T ≦ 400 ° C.), and t represents a heat treatment time (heat treatment temperature holding time; minutes). In this case, the heat treatment temperature T is desirably 200 ° C. or higher and 400 ° C. or lower.

さらに、熱処理が、下記式(3)を満足することが望ましい。
450≦T・(log10(t)+1)≦700 ・・・・・・・・・・(3)
ただし、式(3)におけるTは熱処理温度(200℃≦T≦300℃)を示し、tは熱処理時間(熱処理温度の保持時間;分)を示す。
Furthermore, it is desirable that the heat treatment satisfies the following formula (3).
450 ≦ T · (log 10 (t) +1) ≦ 700 (3)
In the formula (3), T represents a heat treatment temperature (200 ° C. ≦ T ≦ 300 ° C.), and t represents a heat treatment time (heat treatment temperature holding time; minutes).

剥離方向強度は、主に溶接金属の靭性に影響される。引張強度が440MPa以上の高張力鋼板では、母材の高強度化のためC含有量が多く、さらにスポット溶接部は冷却速度が非常に速いため、溶接金属の組織は、Cが過飽和に固溶した靭性の低いマルテンサイト組織になり易い。上記熱処理により、スポット溶接部が焼戻され、溶接金属の靭性が向上するため、剥離方向強度が向上すると推察される。   The strength in the peel direction is mainly affected by the toughness of the weld metal. In high-tensile steel sheets with a tensile strength of 440 MPa or more, the C content is large due to the high strength of the base metal, and the spot welds have a very fast cooling rate. It tends to be a martensitic structure with low toughness. The heat treatment temperes the spot welded portion and improves the toughness of the weld metal, so that it is assumed that the strength in the peeling direction is improved.

次に、溶接継手の溶接金属の化学成分について説明する。
一般的に、スポット溶接継手2の強度特性は、主にスポット溶接部4の溶接金属の化学成分の影響を受ける。
Next, chemical components of the weld metal of the weld joint will be described.
In general, the strength characteristics of the spot weld joint 2 are mainly affected by the chemical components of the weld metal of the spot weld 4.

図4は、スポット溶接継手1、2の剥離方向強度に及ぼす板組みの影響を示す説明図であり、図4(a)は、3枚の高張力鋼板1a〜1cによる3枚重ねスポット溶接部3を有するスポット溶接継手1を示し、図4(b)は2枚の高張力鋼板2a、2bによる2枚重ねスポット溶接部4を有するスポット溶接継手2を示す。なお、図4(a)および図4(b)では、スポット溶接部3、4の内部に示す実線はP、Sの凝固偏析部を示す。   FIG. 4 is an explanatory diagram showing the influence of the plate assembly on the strength in the peeling direction of the spot welded joints 1 and 2, and FIG. 4A is a three-layer spot welded portion of three high-tensile steel plates 1 a to 1 c. 4 shows a spot welded joint 1 having a two-layer spot welded portion 4 made of two high-tensile steel plates 2a and 2b. In FIG. 4A and FIG. 4B, the solid lines shown inside the spot welds 3 and 4 indicate the solidified segregation parts of P and S.

図4(a)に示す3枚の高張力鋼板1a〜1cによる3枚重ねスポット溶接部3を有するスポット溶接継手1、すなわち3枚の高張力鋼板1a〜1cの重ね合わせ部材が、その板厚方向の中央部とは異なる位置に各高張力鋼板1a〜1cの重ね合わせ面が存在する場合には、同図に示すように、白抜き矢印で示す重ね合わせ面に沿うき裂進展ラインと、板厚中央部に実線で示すP、Sの凝固偏析ラインとが一致しない。   The thickness of the spot welded joint 1 having a three-layer spot welded portion 3 made of three high-tensile steel plates 1a to 1c shown in FIG. When there is an overlapping surface of each of the high-tensile steel plates 1a to 1c at a position different from the central portion of the direction, as shown in the figure, a crack growth line along the overlapping surface indicated by a white arrow; The solidification segregation lines of P and S indicated by solid lines in the center of the plate thickness do not match.

これに対し、図4(b)に示す2枚の高張力鋼板2a、2bによる2枚重ねスポット溶接部4を有するスポット溶接継手2、すなわち2枚の高張力鋼板2a、2bの重ね合わせ部材が、その板厚方向の中央部に高張力鋼板2a、2bの重ね合わせ面が存在する場合には、白抜き矢印で示す重ね合わせ面に沿うき裂進展ラインと、板厚中央部に実線で示すP、Sの凝固偏析ラインとが一致する。   In contrast, a spot welded joint 2 having a two-layer spot welded portion 4 made of two high-tensile steel plates 2a and 2b shown in FIG. 4B, that is, an overlapping member of two high-tensile steel plates 2a and 2b. When there is an overlapping surface of the high-tensile steel plates 2a and 2b in the center portion in the thickness direction, a crack propagation line along the overlapping surface indicated by a white arrow and a solid line in the thickness center portion The solidification segregation lines of P and S coincide.

すなわち、図4(b)に示すように、板厚中央部に重ね合わせ面が存在する場合に、溶接金属のP、Sの偏析が剥離方向強度に強い影響を及ぼす。
ところで、同一の鋼種からなる高張力鋼板同士をスポット溶接する場合、溶接金属の化学成分は母材の化学成分と等しい。これに対し、異鋼種からなる高張力鋼板同士を溶接する場合、溶接金属の化学成分は各々の高張力鋼板の化学成分が混合される。本実施の形態では、各々の高張力鋼板の化学成分は溶接金属内で均一に攪拌されるとの前提にたって、一例として、化学成分が異なる高張力鋼板A、Bをスポット溶接した場合における溶接金属の化学成分を以下に説明する。
That is, as shown in FIG. 4B, when there is an overlapping surface at the center of the plate thickness, segregation of P and S of the weld metal has a strong effect on the strength in the peeling direction.
By the way, when spot-welding high-tensile steel plates made of the same steel type, the chemical component of the weld metal is equal to the chemical component of the base material. On the other hand, when welding high-tensile steel plates made of different steel types, the chemical components of the weld metal are mixed with the chemical components of the respective high-tensile steel plates. In this embodiment, based on the premise that the chemical components of each high-strength steel plate are uniformly stirred in the weld metal, as an example, welding is performed when high-tensile steel plates A and B having different chemical components are spot-welded. The chemical components of the metal are described below.

高張力鋼板Aの化学成分、溶融体積をそれぞれC、Vとするとともに、高張力鋼板Bの化学成分、溶融体積をそれぞれC、Vとすると、溶接金属の化学成分は、(C+C)/(V+V)となる。 Chemical composition of high-tensile steel plate A, respectively melt volume C A, together with the V A, the chemical components of the high-tensile steel plate B, C B melt volume respectively, when V B, the chemical components of the weld metal, (C the a V a + C B V B ) / (V a + V B).

本実施の形態では、スポット溶接部におけるP、Sの凝固偏析の影響を抑制するため、溶接継手の溶接金属が、C×P≦0.0025、P:0.015%以下、S:0.010%以下である化学成分を有する。以下にこの理由を説明する。   In the present embodiment, in order to suppress the influence of solidification segregation of P and S in the spot welded portion, the weld metal of the welded joint is C × P ≦ 0.0025, P: 0.015% or less, S: 0.00. It has a chemical component that is 010% or less. The reason for this will be described below.

Cは、溶接金属の硬さおよび強度を上げるのに有効な元素である。しかし、C含有量が高くなり過ぎると溶接金属の硬さが上昇し過ぎるのでナゲットが脆くなり、剥離方向の強度が低下する。溶接金属の靱性は本実施の形態の熱処理により改善され、剥離方向強度が向上すると考えられる。一般に、自動車用高張力鋼板に含まれるC量は0.35%以下であるため、本実施の形態ではC含有量は0.35%以下であることが望ましい。   C is an element effective for increasing the hardness and strength of the weld metal. However, if the C content is too high, the hardness of the weld metal increases too much, so that the nugget becomes brittle and the strength in the peeling direction decreases. It is considered that the toughness of the weld metal is improved by the heat treatment of the present embodiment, and the strength in the peeling direction is improved. Generally, since the amount of C contained in the high-tensile steel sheet for automobiles is 0.35% or less, the C content is desirably 0.35% or less in the present embodiment.

一方、Pは、凝固時にデンドライトの境界に偏析し、溶接金属の靭性を低下させると考えられている。そのため、P含有量が増加すると、スポット溶接継手2の剥離方向強度が低下する。このようなPの偏析に起因した剥離方向強度の低下は、本実施の形態の熱処理のみでは補償できないおそれがあるので、本実施の形態ではP含有量を0.015%以下に抑制することによってPの偏析自体を抑制することが望ましい。   On the other hand, P is considered to segregate at the boundary of dendrites during solidification, thereby reducing the toughness of the weld metal. Therefore, when the P content increases, the strength in the peeling direction of the spot welded joint 2 decreases. Such a decrease in peel direction strength due to the segregation of P may not be compensated only by the heat treatment of the present embodiment. Therefore, in this embodiment, the P content is suppressed to 0.015% or less. It is desirable to suppress the segregation of P itself.

本発明者らは、溶接金属のC含有量およびP含有量がスポット溶接部の強度に及ぼす影響を調べるため、表4に示す組成(表に示す以外はFeおよび不可避的不純物)を有する、板厚1.4mmで引張強度が800MPaの高張力鋼板0a、0bを2枚重ね合わせた重ね合わせ部材である、図1に示す形状のL字型引張試験片0に対して、表5に示す溶接条件(電極、加圧力、通電時間、溶接電流およびホールド時間)でスポット溶接を行い、溶接ままの溶接継手のスポット溶接部0cと、このスポット溶接部0cを常温まで冷却した後に250℃の熱処理温度に20分間の熱処理時間保持して得られた溶接継手のスポット溶接部0cとに対して引張試験を行って、剥離方向強度を比較して調査した。結果を図5のグラフにまとめて示す。   In order to investigate the influence of the C content and P content of the weld metal on the strength of the spot weld, the present inventors have the composition shown in Table 4 (Fe and unavoidable impurities other than those shown in the table), The welding shown in Table 5 is applied to an L-shaped tensile test piece 0 having the shape shown in FIG. 1, which is an overlapping member in which two high-tensile steel plates 0a and 0b having a thickness of 1.4 mm and a tensile strength of 800 MPa are overlapped. Spot welding is performed under the conditions (electrode, applied pressure, energization time, welding current, and hold time), and the spot welded part 0c of the welded joint as-welded and the heat-treated temperature of 250 ° C. after cooling the spot welded part 0c to room temperature A tensile test was performed on the spot welded portion 0c of the welded joint obtained by maintaining the heat treatment time for 20 minutes, and the strength in the peeling direction was compared and investigated. The results are summarized in the graph of FIG.

Figure 2010059451
Figure 2010059451

Figure 2010059451
Figure 2010059451

図5は、溶接継手の破断形態を、この溶接継手の溶接金属のC含有量、P含有量により整理して示すグラフである。図5のグラフにおいて、黒丸印は母材破断であることを示し、白丸印は界面破断であることを示す。   FIG. 5 is a graph showing the fracture form of a welded joint, organized according to the C content and P content of the weld metal of this welded joint. In the graph of FIG. 5, a black circle mark indicates that the base material is broken, and a white circle mark indicates that the interface is broken.

図5に示すグラフから、板厚が同じ2枚の高張力鋼板を重ね合わせた場合には、母材破断であるか界面破断であるかに及ぼすC含有量とP含有量の影響が大きく、(C含有量%×P含有量%)が0.0025以下であれば母材破断となり熱処理により充分な破断強度を有することができるのに対し、(C含有量%×P含有量%)が0.0025を超えると界面破断となり、熱処理による破断強度の向上効果が小さくなることがわかる。   From the graph shown in FIG. 5, when two high-tensile steel plates having the same thickness are stacked, the influence of the C content and the P content on whether the base material fracture or the interface fracture is large, If (C content% × P content%) is 0.0025 or less, the base material breaks and it can have sufficient breaking strength by heat treatment, whereas (C content% × P content%) is When it exceeds 0.0025, interface fracture occurs, and it can be seen that the effect of improving the fracture strength by heat treatment is reduced.

本実施の形態の熱処理により、破断形態が界面破断(ナゲット内破断)から母材破断に変化することにより、溶接継手の剥離方向強度が上昇する。このため、(C含有量%×P含有量%)が0.0025以下の領域では、熱処理による溶接継手の剥離方向強度の向上効果が得られることとなる。   By the heat treatment of the present embodiment, the fracture mode is changed from the interface fracture (break in the nugget) to the base metal fracture, whereby the strength in the peeling direction of the welded joint is increased. For this reason, in the area | region (C content% x P content%) is 0.0025 or less, the improvement effect of the peeling direction strength of the welded joint by heat processing will be acquired.

このように、剥離方向強度は、溶接金属のC含有量が増加するにつれて溶接金属におけるP偏析の影響を受け易くなるため、P含有量はC含有量に応じてC×P≦0.0025とする。   As described above, the strength in the peeling direction is easily affected by P segregation in the weld metal as the C content of the weld metal increases. Therefore, the P content is C × P ≦ 0.0025 according to the C content. To do.

Sは、凝固時にデンドライトの境界に偏析し、溶接金属の靭性を低下させる。そのためS含有量が増加すると、スポット溶接継手の剥離方向強度が低下する。したがって、本実施の形態ではS含有量を0.010%以下に抑制する。なお、最新の製鋼技術によれば、十分低いレベルまで脱硫することができるため、P含有量との兼ね合いもあるため、S含有量は0.003%以下とすることがさらに望ましい。   S segregates at the boundary of the dendrite during solidification and reduces the toughness of the weld metal. Therefore, when the S content increases, the strength in the peeling direction of the spot welded joint decreases. Therefore, in this Embodiment, S content is suppressed to 0.010% or less. According to the latest steelmaking technology, it is possible to desulfurize to a sufficiently low level, and there is also a balance with the P content. Therefore, the S content is more preferably 0.003% or less.

これらの元素以外の溶接金属の元素は、本発明に関しては特段の効果を奏さないため、特に規定する必要はない。440MPa以上の引張強度を得られる母材の化学成分に応じて適宜決定すればよい。   Elements of the weld metal other than these elements do not need to be specified because they do not have a special effect in the present invention. What is necessary is just to determine suitably according to the chemical component of the base material which can obtain the tensile strength of 440 Mpa or more.

本発明者らは、さらに、重ね合わせ面の板厚方向位置と剥離方向強度との関係を調査する試験を行った。
供試材には、Type−A(引張強度780MPa)、Type−B(引張強度1500MPa)の2種類の鋼板を用いた。Type−A、Bはそれぞれ表1、6に示す化学成分であり、表1、6に示す以外の化学成分はFeおよび不可避的不純物である。また、前者は請求項1に記載の範囲内の化学成分を有する鋼板であり、後者は請求項1に記載の範囲外の化学成分を有する鋼板である。
The inventors further conducted a test for investigating the relationship between the position in the thickness direction of the overlapping surface and the strength in the peeling direction.
Two types of steel plates of Type-A (tensile strength 780 MPa) and Type-B (tensile strength 1500 MPa) were used as test materials. Type-A and B are chemical components shown in Tables 1 and 6, respectively. Chemical components other than those shown in Tables 1 and 6 are Fe and inevitable impurities. The former is a steel plate having a chemical component within the range recited in claim 1, and the latter is a steel plate having a chemical component outside the range recited in claim 1.

Figure 2010059451
Figure 2010059451

図6は、スポット溶接継手の剥離方向強度に及ぼす板組みの影響を示す説明図であり、板厚が異なる場合の2枚重ねスポット溶接継手を示す。   FIG. 6 is an explanatory view showing the influence of the plate assembly on the peel direction strength of the spot welded joint, and shows a two-layer spot welded joint when the plate thickness is different.

Type−Aでは板厚1.2〜1.8mm、Type−Bでは板厚1.6〜2.6mmの鋼板5、6を用いて上下の鋼板5、6の板厚を変えた2枚重ね継手7を作成し、溶接ままの剥離方向強度と、熱処理(温度250℃、時間20分)を施した場合の剥離方向強度とを調査した。ここで、図6に示すように重ね合わせ面と板厚方向の中心線との差を「ずれ量」として定義した。   In Type-A, the thickness of the upper and lower steel plates 5, 6 is changed by using two steel plates 5, 6 having a thickness of 1.2-1.8mm, and in Type-B, the thickness of 1.6-2.6mm. The joint 7 was prepared, and the peel direction strength as welded and the peel direction strength when heat treatment (temperature 250 ° C., time 20 minutes) was performed were investigated. Here, as shown in FIG. 6, the difference between the overlapping surface and the center line in the plate thickness direction is defined as the “deviation amount”.

図7は、Type−Bの上下の鋼板5、6の板厚が異なる継手7の剥離方向強度を、合計板厚に対するずれ量(%)で整理した結果を示すグラフである。図7のグラフにおける菱形印および丸印は、それぞれ溶接まま、熱処理を施した場合の剥離方向強度を示す。また、図中の各プロットに記載した母材、ナゲット、界面は、母材破断であること、ナゲット内破断であること、界面破断であることを、それぞれ示す。Type−Bの鋼板では、ずれ量が小さい場合、後熱処理の効果が小さいことが分かる。これは、既述したように板厚中央部に重ね合わせ面が存在する場合には、溶接金属8のP、Sの偏析が剥離方向強度に強い影響を及ぼすためである。   FIG. 7 is a graph showing the results of arranging the peel direction strengths of the joints 7 having different thicknesses of the upper and lower steel plates 5 and 6 of Type-B in terms of the deviation amount (%) with respect to the total plate thickness. The rhombus marks and the circle marks in the graph of FIG. 7 indicate the strength in the peel direction when heat treatment is performed while welding. In addition, the base material, nugget, and interface described in each plot in the figure indicate that the base material is fractured, nugget internal fracture, and interface fracture. In the Type-B steel plate, it can be seen that the effect of the post heat treatment is small when the shift amount is small. This is because the segregation of P and S of the weld metal 8 has a strong influence on the strength in the peeling direction when the overlapping surface exists at the center portion of the plate thickness as described above.

図8は、Type−Aの上下の鋼板5、6の板厚が異なる場合における継手強度上昇率と合計板厚に対するずれ量(%)の関係を示すグラフである。ここで、継手強度上昇率とは、溶接ままの剥離方向強度に対する熱処理後の剥離方向強度(%)である。Type−Aの鋼板5、6では、ずれ量が小さい場合に後熱処理によって剥離方向強度は顕著に上昇することが分かる。重ね合わせ面と板厚方向の中心線とのずれ量が合計板厚の10%以内であることが望ましい。   FIG. 8 is a graph showing the relationship between the joint strength increase rate and the deviation (%) relative to the total plate thickness when the plate thicknesses of the upper and lower steel plates 5 and 6 of Type-A are different. Here, the joint strength increase rate is the peel direction strength (%) after heat treatment with respect to the peel direction strength as-welded. In Type-A steel plates 5 and 6, it can be seen that the strength in the peeling direction is remarkably increased by post-heat treatment when the shift amount is small. It is desirable that the amount of deviation between the overlapping surface and the center line in the thickness direction is within 10% of the total thickness.

すなわち、板厚中央部に重ね合わせ面が存在するように二枚の鋼板を組み合わされた継手の場合には、本発明で規定する熱処理を行うことにより、熱処理を実施しない場合に比べ、剥離方向硬度が大幅に向上する。   That is, in the case of a joint in which two steel plates are combined so that there is an overlapping surface in the central portion of the plate thickness, the peeling direction is reduced by performing the heat treatment specified in the present invention, compared to the case where no heat treatment is performed. Hardness is greatly improved.

このようにして、本実施の形態によれば、小さなナゲット径で溶接継手の剥離方向の強度を向上させること、すなわち、剥離方向強度に優れる引張強度が440MPa以上の高張力鋼板の溶接継手と、その製造方法とが提供される。   Thus, according to the present embodiment, improving the strength in the peeling direction of the welded joint with a small nugget diameter, that is, a welded joint of a high-tensile steel plate having a tensile strength of 440 MPa or more excellent in the peeling direction strength, A manufacturing method thereof is provided.

本実施の形態では、引張強度が440MPa以上の複数の高張力鋼板を重ね合わされて構成される重ね合わせ部材におけるスポット溶接を行われたスポット溶接部の溶接金属が質量%で、C×P≦0.0025、P:0.015%以下、S:0.01%以下である化学成分を有し、そのスポット溶接部に、上記式(1)を充足する熱処理温度および熱処理時間で熱処理を施すので、スポット溶接部が焼戻され、溶接組織の靭性が向上する。これにより、このスポット溶接継手のスポット溶接部を引張試験に供すると、剥離方向強度が向上するようになる。   In the present embodiment, the weld metal of the spot welded portion subjected to spot welding in the overlapping member constituted by overlapping a plurality of high-tensile steel plates having a tensile strength of 440 MPa or more is mass%, and C × P ≦ 0. .0025, P: 0.015% or less, S: 0.01% or less, and the spot welded portion is heat-treated at a heat treatment temperature and a heat treatment time satisfying the above formula (1). The spot weld is tempered and the toughness of the welded structure is improved. Thereby, when the spot weld part of this spot welded joint is subjected to a tensile test, the strength in the peeling direction is improved.

本実施の形態における熱処理の手段は、特定の手段には限定されず、例えば、炉による加熱等、この種の熱処理に用いられるあらゆる手段を用いることができる。ただし、スポット溶接電極による通電加熱による熱処理は、施工時間が増大するといった問題や、連続打点性が劣化するといった問題があり好ましくない。   The heat treatment means in this embodiment is not limited to a specific means, and any means used for this kind of heat treatment such as heating in a furnace can be used. However, heat treatment by energization heating with a spot welding electrode is not preferable because of problems such as an increase in construction time and deterioration in continuous spotting performance.

本発明が対象とする、引張強度が440MPa以上の高張力鋼板は、主に自動車用であるが、自動車用に限定する必要はなく、引張強度が440MPa以上の高強度が要求される他の用途にも当然適用可能である。この高張力鋼板の化学成分は、440MPa以上の引張強度を維持でき、かつ溶接金属が質量%で、C×P≦0.0025、P:0.015%以下、S:0.01%以下である化学成分を有するものであればよく、特定の化学成分には限定されない。   The high-tensile steel sheet having a tensile strength of 440 MPa or more, which is the subject of the present invention, is mainly for automobiles, but is not necessarily limited to automobiles, and is used for other applications that require a high strength of 440 MPa or more. Of course, it is also applicable. The chemical component of this high-tensile steel sheet can maintain a tensile strength of 440 MPa or more, and the weld metal is in mass%, C × P ≦ 0.0025, P: 0.015% or less, S: 0.01% or less. What is necessary is just to have a certain chemical component, and it is not limited to a specific chemical component.

高張力鋼板の板厚も特に規定する必要はない。一般に、自動車用部品や車体で使用される鋼板の板厚は、0.4mm以上4.0mm以下であり、本発明はこの範囲において十分な効果を有する。   The thickness of the high-tensile steel plate need not be specified. In general, the plate thickness of a steel plate used in automobile parts and vehicle bodies is 0.4 mm or more and 4.0 mm or less, and the present invention has a sufficient effect in this range.

高張力鋼板の種類に関しても特に規定する必要はない。例えば、析出強化鋼やDP鋼、TRIP(加工誘起変態)鋼、さらには熱間プレス用鋼板等の、各種の公知の引張強度が440MPa以上の高張力鋼板に適用できる。また、高張力鋼板は、冷延鋼板でもよく、または熱延鋼板でもよい。さらに、高張力鋼板は、めっきを施されない裸鋼板であってもよいし、めっき鋼板であってもよい。   There is no particular need to specify the type of high-tensile steel plate. For example, it can be applied to various known high strength steel plates having a tensile strength of 440 MPa or more, such as precipitation strengthened steel, DP steel, TRIP (work-induced transformation) steel, and steel plates for hot pressing. The high-tensile steel plate may be a cold-rolled steel plate or a hot-rolled steel plate. Further, the high-tensile steel plate may be a bare steel plate that is not plated or a plated steel plate.

さらに、スポット溶接は、通常、重ね合わされた2枚の高張力鋼板に対して行われるが、本発明は、重ね合わされた3枚以上の高張力鋼板に対しても有効である。   Further, spot welding is usually performed on two high-strength steel plates that are overlapped, but the present invention is also effective for three or more high-strength steel plates that are overlapped.

実施例を参照しながら、本発明をさらに具体的に説明する。
本実施例では、上述した図1に示す、高張力鋼板を2枚重ね合わせたL字型引張試験片0と、図9に示す高張力鋼板9a〜9cを3枚重ね合わせたL字型引張試験片9とを用いて、スポット溶接部0c、9dの剥離継手強度に及ぼす熱処理の効果について検討した。
The present invention will be described more specifically with reference to examples.
In this embodiment, the L-shaped tensile test piece 0 in which two high-tensile steel plates are overlapped as shown in FIG. 1 and the L-shaped tensile member in which three high-tensile steel plates 9a to 9c are overlapped as shown in FIG. Using the test piece 9, the effect of heat treatment on the peel joint strength of the spot welds 0c and 9d was examined.

高張力鋼板0a、0b、9a〜9cには、板厚1.8mmの2種類の高張力鋼板Type−A(引張強度:780MPa)、B(引張強度:1500MPa)を用いた。高張力鋼板Type−A、Bはそれぞれ表1、6に示す化学成分である。表1、6に示す以外の化学成分はFeおよび不可避的不純物である。   Two types of high-strength steel plates Type-A (tensile strength: 780 MPa) and B (tensile strength: 1500 MPa) having a thickness of 1.8 mm were used for the high-tensile steel plates 0a, 0b, and 9a to 9c. High-tensile steel plates Type-A and B are chemical components shown in Tables 1 and 6, respectively. Chemical components other than those shown in Tables 1 and 6 are Fe and inevitable impurities.

スポット溶接は、同じ鋼種の高張力鋼板同士の組み合わせについて、2枚重ね合わせ溶接、および3枚重ね合わせ溶接で表7に示す溶接条件(電極、加圧力、通電時間、溶接電流およびホールド時間)で行った。スポット溶接部を常温まで冷却した後、炉に装入し、所定の熱処理温度(300℃)、熱処理時間(5分、10分)の熱処理を実施した。なお、比較のため、熱処理を実施しない試験片も製作した。   Spot welding is a combination of high-strength steel sheets of the same steel type, with the welding conditions (electrode, pressure, energization time, welding current, and hold time) shown in Table 7 for two-ply welding and three-ply welding. went. After the spot weld was cooled to room temperature, it was charged into a furnace and subjected to heat treatment at a predetermined heat treatment temperature (300 ° C.) and heat treatment time (5 minutes, 10 minutes). For comparison, a test piece without heat treatment was also produced.

Figure 2010059451
Figure 2010059451

得られたスポット溶接継手のL字型引張試験片0、9について剥離方向強度を求めた。結果を表8にまとめて示す。   The peel direction strength was determined for the L-shaped tensile test pieces 0 and 9 of the obtained spot welded joint. The results are summarized in Table 8.

Figure 2010059451
Figure 2010059451

Type−Aの高張力鋼板からなる試験片では、溶接金属の化学成分が本発明で規定する範囲を満足しており、本発明で規定する熱処理を行うことにより、2枚重ね合わせおよび3枚重ね合わせのいずれの場合においても剥離継手強度が上昇することがわかる。   In the test piece made of Type-A high-strength steel plate, the chemical composition of the weld metal satisfies the range specified in the present invention, and by performing the heat treatment specified in the present invention, two sheets and three sheets are stacked. It can be seen that the peel joint strength increases in both cases.

これに対し、Type−Bの高抗張力鋼板からなる試験片では、溶接金属の化学成分が本発明で規定する範囲を満足せず、本発明で規定する熱処理を行っても板厚方向の中央部とは異なる位置に重ね合わせ面が存在する3枚重ね合わせの場合には剥離継手強度が上昇するものの、板厚方向の中央部に重ね合わせ面が存在する2枚重ね合わせの場合には剥離継手強度の上昇効果が得られないことがわかる。   On the other hand, in the test piece made of Type-B high tensile strength steel plate, the chemical component of the weld metal does not satisfy the range defined by the present invention, and the central portion in the plate thickness direction is subjected to the heat treatment defined by the present invention. The peel joint strength increases in the case of three-sheet superimposition where the overlap surface exists at a position different from that of the peel joint, but in the case of two-sheet overlap where the overlap surface exists in the center in the thickness direction, the peel joint It can be seen that the effect of increasing the strength cannot be obtained.

2枚重ね合わせのL字型引張試験片の形状を示す説明図である。It is explanatory drawing which shows the shape of the L-shaped tension test piece of 2 sheets overlap. 熱処理温度とL字継手強度との関係を示すグラフである。It is a graph which shows the relationship between heat processing temperature and L-shaped joint strength. 熱処理時間および熱処理温度と破断形態との関係を示すグラフである。It is a graph which shows the relationship between heat processing time and heat processing temperature, and a fracture | rupture form. スポット溶接継手の剥離方向強度に及ぼす板組みの影響を示す説明図であり、図4(a)は、3枚の高張力鋼板による3枚重ねスポット溶接部を有するスポット溶接継手を示し、図4(b)は2枚の高張力鋼板による2枚重ねスポット溶接部を有するスポット溶接継手を示す。FIG. 4A is an explanatory diagram showing the influence of a plate assembly on the peel strength of a spot welded joint, and FIG. 4A shows a spot welded joint having a three-layer spot welded portion made of three high-tensile steel plates. (B) shows a spot welded joint having a two-layer spot welded portion made of two high-tensile steel plates. 溶接継手の破断形態を、この溶接継手の溶接金属のC含有量、P含有量により整理して示すグラフである。It is a graph which arrange | positions and shows the fracture | rupture form of a welded joint according to C content and P content of the weld metal of this welded joint. スポット溶接継手の剥離方向強度に及ぼす板組みの影響を示す説明図であり、板厚が異なる場合の2枚重ねスポット溶接継手を示す。It is explanatory drawing which shows the influence of the board assembly which acts on the peeling direction intensity | strength of a spot welded joint, and shows the 2 sheet | seat spot welded joint in case plate | board thickness differs. Type−Bの上下板厚が異なる継手の剥離方向強度を、合計板厚に対するずれ量(%)で整理したグラフである。It is the graph which arranged the peeling direction intensity | strength of the joint from which the upper and lower plate | board thickness of Type-B differs according to the deviation | shift amount (%) with respect to a total board thickness. Type−Aにおける継手強度上昇率と合計板厚に対するずれ量(%)の関係を示すグラフである。It is a graph which shows the relationship of the deviation | shift amount (%) with respect to the joint intensity | strength increase rate and total plate | board thickness in Type-A. 3枚重ね合わせのL字型引張試験片の形状を示す説明図である。It is explanatory drawing which shows the shape of a 3 sheet L-shaped tension test piece.

符号の説明Explanation of symbols

0 L字型引張試験片
0a、0b 高張力鋼板
0c スポット溶接部
1、2 スポット溶接継手
1a〜1c、2a、2b 高張力鋼板
3 3枚重ねスポット溶接部
4 2枚重ねスポット溶接部
5、6 鋼板
7 2枚重ね継手
8 溶接金属
9 L字型引張試験片
9a〜9c 高張力鋼板
9d スポット溶接部
0 L-shaped tensile test pieces 0a, 0b High-tensile steel plate 0c Spot welded portion 1, 2 Spot welded joints 1a-1c, 2a, 2b High-tensile steel plate 3 Three-layer spot welded portion 4 Two-layer spot welded portion 5, 6 Steel plate 7 Two-lap joint 8 Weld metal 9 L-shaped tensile test pieces 9a to 9c High strength steel plate 9d Spot weld

Claims (5)

引張強度が440MPa以上の複数の鋼板を重ね合わせて形成される重ね合わせ部材に抵抗溶接を行って溶接部を有する溶接継手を製造する方法であって、前記溶接継手の溶接金属は、質量%で、C×P≦0.0025、P:0.015%以下、S:0.01%以下である化学成分を有し、前記溶接部を昇温することにより、該溶接部に下記式(1)を充足する熱処理温度および熱処理時間で熱処理を施すことを特徴とする溶接継手の製造方法。
300≦T・(log10(t)+1)≦1000 ・・・・・・・・・・(1)
ただし、式(1)におけるTは熱処理温度(100℃≦T≦400℃)を示し、tは熱処理時間(熱処理温度の保持時間;分)を示す。
A method for manufacturing a welded joint having a welded portion by performing resistance welding on an overlapping member formed by superimposing a plurality of steel plates having a tensile strength of 440 MPa or more, wherein the weld metal of the welded joint is in mass%. , C × P ≦ 0.0025, P: 0.015% or less, S: 0.01% or less, and by increasing the temperature of the welded portion, the welded portion has the following formula (1 And a heat treatment temperature and a heat treatment time satisfying the above.
300 ≦ T · (log 10 (t) +1) ≦ 1000 (1)
In the formula (1), T represents a heat treatment temperature (100 ° C. ≦ T ≦ 400 ° C.), and t represents a heat treatment time (heat treatment temperature holding time; minutes).
前記熱処理は、下記式(2)を充足する請求項1に記載された溶接継手の製造方法。
400≦T・(log10(t)+1)≦750 ・・・・・・・・・・(2)
ただし、式(2)におけるTは熱処理温度(150℃≦T≦400℃)を示し、tは熱処理時間(熱処理温度の保持時間;分)を示す。
The said heat processing is a manufacturing method of the welded joint described in Claim 1 which satisfies following formula (2).
400 ≦ T · (log 10 (t) +1) ≦ 750 (2)
In the formula (2), T represents a heat treatment temperature (150 ° C. ≦ T ≦ 400 ° C.), and t represents a heat treatment time (heat treatment temperature holding time; minutes).
前記重ね合わせ部材は、その板厚方向の中央部に前記複数の鋼板の重ね合わせ面が存在する請求項1または2に記載された溶接継手の製造方法。
ただし、重ね合わせ部材の板厚方向の中央部とは、重ね合わせ面と板厚方向の中心線とのずれ量が重ね合わせ部材の合計板厚の10%以内である領域を指す。
3. The method for manufacturing a welded joint according to claim 1, wherein the overlapping member has an overlapping surface of the plurality of steel plates at a central portion in a thickness direction thereof.
However, the central portion of the overlapping member in the thickness direction refers to a region where the amount of deviation between the overlapping surface and the center line in the thickness direction is within 10% of the total thickness of the overlapping members.
前記複数の鋼板は2枚の鋼板である請求項1から請求項3までのいずれか1項に記載された溶接継手の製造方法。   The method for manufacturing a welded joint according to any one of claims 1 to 3, wherein the plurality of steel plates are two steel plates. 請求項1から請求項4までのいずれか1項に記載の製造方法により製造されることを特徴とする溶接継手。   A welded joint manufactured by the manufacturing method according to any one of claims 1 to 4.
JP2008224644A 2008-09-02 2008-09-02 Welded joint and manufacturing method therefor Withdrawn JP2010059451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008224644A JP2010059451A (en) 2008-09-02 2008-09-02 Welded joint and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008224644A JP2010059451A (en) 2008-09-02 2008-09-02 Welded joint and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2010059451A true JP2010059451A (en) 2010-03-18

Family

ID=42186582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008224644A Withdrawn JP2010059451A (en) 2008-09-02 2008-09-02 Welded joint and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2010059451A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010090440A (en) * 2008-10-08 2010-04-22 Jfe Steel Corp High-strength steel having excellent one side spot weldability and one side spot welding method
JP2010229538A (en) * 2009-03-30 2010-10-14 Jfe Steel Corp High-tensile strength steel sheet having excellent resistance spot weldability
WO2013076925A1 (en) * 2011-11-25 2013-05-30 Jfeスチール株式会社 Resistance spot welding joint
JP2013126692A (en) * 2013-03-21 2013-06-27 Jfe Steel Corp Resistance spot welding method
JP2013151027A (en) * 2013-03-22 2013-08-08 Jfe Steel Corp Resistance spot welded joint
WO2013161937A1 (en) * 2012-04-25 2013-10-31 新日鐵住金株式会社 Spot-welding joint
WO2014196499A1 (en) 2013-06-05 2014-12-11 新日鐵住金株式会社 Spot welded joint and spot welding method
WO2015115603A1 (en) 2014-01-31 2015-08-06 新日鐵住金株式会社 Spot-welded joint and spot welding method
KR20180043367A (en) 2015-10-16 2018-04-27 신닛테츠스미킨 카부시키카이샤 Spot Welding Joint and Spot Welding Method
JP2019155473A (en) * 2018-03-12 2019-09-19 Jfeスチール株式会社 Method for manufacturing resistance spot welding member
WO2019230580A1 (en) 2018-05-31 2019-12-05 日本製鉄株式会社 Spot welded joint, vehicle framework component provided with spot welded joint, and method of manufacturing spot welded joint
KR20210150563A (en) 2019-05-24 2021-12-10 닛폰세이테츠 가부시키가이샤 Spot weld joint, and method of manufacturing spot weld joint
CN113969343A (en) * 2020-07-24 2022-01-25 中国科学院上海光学精密机械研究所 Method for improving performance of high-strength steel laser tailor-welded joint
CN113999965A (en) * 2020-07-27 2022-02-01 中国科学院上海光学精密机械研究所 Method for improving performance of high-strength steel lap joint welding head

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010090440A (en) * 2008-10-08 2010-04-22 Jfe Steel Corp High-strength steel having excellent one side spot weldability and one side spot welding method
JP2010229538A (en) * 2009-03-30 2010-10-14 Jfe Steel Corp High-tensile strength steel sheet having excellent resistance spot weldability
TWI505890B (en) * 2011-11-25 2015-11-01 Jfe Steel Corp The valuation method of resistance spot welding joint
US9737955B2 (en) 2011-11-25 2017-08-22 Jfe Steel Corporation Welded joint manufactured by method of resistance spot welding
EP3199289A1 (en) * 2011-11-25 2017-08-02 JFE Steel Corporation Method of analysis of a welded joint manufactured by a method of resistance spot welding
WO2013076925A1 (en) * 2011-11-25 2013-05-30 Jfeスチール株式会社 Resistance spot welding joint
JP2013111584A (en) * 2011-11-25 2013-06-10 Jfe Steel Corp Method for evaluating resistance spot welding joint
CN103958110A (en) * 2011-11-25 2014-07-30 杰富意钢铁株式会社 Resistance spot welding joint
KR101923944B1 (en) * 2011-11-25 2018-11-30 제이에프이 스틸 가부시키가이샤 Method of resistance spot welding and method of evaluating welded joint manufactured by method of resistance spot welding
EP2783782A4 (en) * 2011-11-25 2015-09-23 Jfe Steel Corp Resistance spot welding joint
WO2013161937A1 (en) * 2012-04-25 2013-10-31 新日鐵住金株式会社 Spot-welding joint
JP5641158B2 (en) * 2012-04-25 2014-12-17 新日鐵住金株式会社 Spot welded joint
US10081073B2 (en) 2012-04-25 2018-09-25 Nippon Steel & Sumitomo Metal Corporation Spot welded joint
JPWO2013161937A1 (en) * 2012-04-25 2015-12-24 新日鐵住金株式会社 Spot welded joint
KR101592808B1 (en) 2012-04-25 2016-02-05 신닛테츠스미킨 카부시키카이샤 Spot-welding joint
JP2013126692A (en) * 2013-03-21 2013-06-27 Jfe Steel Corp Resistance spot welding method
JP2013151027A (en) * 2013-03-22 2013-08-08 Jfe Steel Corp Resistance spot welded joint
KR20150143818A (en) 2013-06-05 2015-12-23 신닛테츠스미킨 카부시키카이샤 Spot welded joint and spot welding method
US11027361B2 (en) 2013-06-05 2021-06-08 Nippon Steel Corporation Spot-welded joint and spot welding method
WO2014196499A1 (en) 2013-06-05 2014-12-11 新日鐵住金株式会社 Spot welded joint and spot welding method
KR20160067176A (en) 2014-01-31 2016-06-13 신닛테츠스미킨 카부시키카이샤 Spot-welded joint and spot welding method
US10646949B2 (en) 2014-01-31 2020-05-12 Nippon Steel Corporation Spot welded joint and spot welding method
WO2015115603A1 (en) 2014-01-31 2015-08-06 新日鐵住金株式会社 Spot-welded joint and spot welding method
KR20180043367A (en) 2015-10-16 2018-04-27 신닛테츠스미킨 카부시키카이샤 Spot Welding Joint and Spot Welding Method
US10994364B2 (en) 2015-10-16 2021-05-04 Nippon Steel Corporation Spot welded joint and spot welding method
JP2019155473A (en) * 2018-03-12 2019-09-19 Jfeスチール株式会社 Method for manufacturing resistance spot welding member
WO2019230580A1 (en) 2018-05-31 2019-12-05 日本製鉄株式会社 Spot welded joint, vehicle framework component provided with spot welded joint, and method of manufacturing spot welded joint
US20210205915A1 (en) * 2018-05-31 2021-07-08 Nippon Steel Corporation Spot welded joint, vehicle framework component provided with spot welded joint, and method of manufacturing spot welded joint
US12030131B2 (en) 2018-05-31 2024-07-09 Nippon Steel Corporation Spot welded joint, vehicle framework component provided with spot welded joint, and method of manufacturing spot welded joint
KR20210150563A (en) 2019-05-24 2021-12-10 닛폰세이테츠 가부시키가이샤 Spot weld joint, and method of manufacturing spot weld joint
CN113969343A (en) * 2020-07-24 2022-01-25 中国科学院上海光学精密机械研究所 Method for improving performance of high-strength steel laser tailor-welded joint
CN113999965A (en) * 2020-07-27 2022-02-01 中国科学院上海光学精密机械研究所 Method for improving performance of high-strength steel lap joint welding head

Similar Documents

Publication Publication Date Title
JP2010059451A (en) Welded joint and manufacturing method therefor
WO2014196499A1 (en) Spot welded joint and spot welding method
JP5999253B2 (en) Manufacturing method of arc spot welded joint
JP6409470B2 (en) Spot welding method
EP4116455A1 (en) Resistance spot welding method and manufacturing method for resistance spot welded joint
JP2008229720A (en) Spot-welded joint of high-strength steel sheets excellent in tensile strength, automotive component having the same joint, and spot-welding method of high-strength steel sheets
JP5641158B2 (en) Spot welded joint
TW201041683A (en) Steel material for high heat input welding
JP5151615B2 (en) Spot welding method for high strength steel sheet
JPWO2018038045A1 (en) Automotive parts having resistance welds
JP2007332452A (en) High-tensile steel sheet for resistance welding and joining process therefor
WO2017064817A1 (en) Spot welded joint and spot welding method
JP2011067853A (en) Spot welding method for high-strength steel sheet
JP6036438B2 (en) High strength resistance welded joint and manufacturing method thereof
JP2016032834A (en) Lap weld member, lap resistance seam-welding method for the same, and lap weld member for automobile comprising lap weld part
EP3736076B1 (en) Resistance spot welding method, and method for producing resistance-spot-welded joint
JP2010172945A (en) Resistance spot welding method of high-strength steel sheet
JP2009291797A (en) Welded joint and method for producing the same
JP5610660B2 (en) Ferritic stainless steel container excellent in low temperature strength of weld zone and welding method thereof
WO2019230580A1 (en) Spot welded joint, vehicle framework component provided with spot welded joint, and method of manufacturing spot welded joint
JP6885523B2 (en) Manufacturing method of spot welded joints and spot welded joints
Li et al. Experimental Study of Dissimilar Double Pulse Resistance Spot Welded Austenitic Stainless Steel and Weathering Steel
JP4857855B2 (en) Fatigue-resistant cracked steel plate for welding with excellent joint fatigue strength
JP2007308743A (en) High-tensile strength steel plate for resistance welding and method for joining the same
JP5008172B2 (en) High strength steel plate for resistance welding and joining method thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20111206