JP2005323200A - Differential output circuit - Google Patents

Differential output circuit Download PDF

Info

Publication number
JP2005323200A
JP2005323200A JP2004140238A JP2004140238A JP2005323200A JP 2005323200 A JP2005323200 A JP 2005323200A JP 2004140238 A JP2004140238 A JP 2004140238A JP 2004140238 A JP2004140238 A JP 2004140238A JP 2005323200 A JP2005323200 A JP 2005323200A
Authority
JP
Japan
Prior art keywords
potential
output terminal
switch
points
output circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004140238A
Other languages
Japanese (ja)
Inventor
Hidekazu Kikuchi
秀和 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2004140238A priority Critical patent/JP2005323200A/en
Publication of JP2005323200A publication Critical patent/JP2005323200A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Logic Circuits (AREA)
  • Dc Digital Transmission (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce radiation noise and power supply/ground noise and to attain low power consumption. <P>SOLUTION: A differential output circuit comprises resistors 21 to 23 which are connected in series to form potential points 24, 25 obtained by dividing potential between power supply potential and ground potential, a smoothing capacitor 26 connected between both the potential points 24, 25, a first switch 27 inserted between the potential point 24 having higher potential out of the potential points 24, 25 and a first output terminal 28, a second switch 30 inserted between the potential point 25 having lower potential out of the potential points 24, 25 and the first output terminal 28, a third switch 33 inserted between the potential point 25 and a second output terminal 34, and a fourth switch 36 inserted between the potential point 24 and the second output terminal 34. The first and second switches 27, 30 and the third and fourth switches 33, 36 are respectively complementarily opened and closed to simultaneously obtain logical output signals to be transited to mutually opposite polarities from the first and second output terminals 28, 34. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は論理出力回路に適用して好適な差動出力回路に関する。   The present invention relates to a differential output circuit suitable for application to a logic output circuit.

従来、論理出力回路として、図3に示す如きCMOS(complementary metal oxide semiconductor)のインバータ型の出力回路が広く用いられている。図3において、1はデータの入力端子を示し、この入力端子1をp形のMOSトランジスタ2のゲートに接続すると共にn形のMOSトランジスタ3のゲートに接続し、例えば2.5Vの電源電圧が供給される電源端子4をMOSトランジスタ2のソースに接続し、このMOSトランジスタ2のドレインをMOSトランジスタ3のドレインに接続し、このMOSトランジスタ3のソースを接地し、このMOSトランジスタ2及び3の夫々のドレインの接続点である出力端子5を例えば容量性負荷6を介して接地する。   Conventionally, a CMOS (complementary metal oxide semiconductor) inverter type output circuit as shown in FIG. 3 has been widely used as a logic output circuit. In FIG. 3, reference numeral 1 denotes a data input terminal. This input terminal 1 is connected to the gate of the p-type MOS transistor 2 and to the gate of the n-type MOS transistor 3, and a power supply voltage of, for example, 2.5 V is applied. The power supply terminal 4 to be supplied is connected to the source of the MOS transistor 2, the drain of the MOS transistor 2 is connected to the drain of the MOS transistor 3, the source of the MOS transistor 3 is grounded, and each of the MOS transistors 2 and 3 is connected. The output terminal 5, which is a connection point of the drains, is grounded via a capacitive load 6, for example.

この図3に示す論理出力回路の論理出力信号の振幅は電源電圧例えば2.5Vと同じで大きいので、信号線からのノイズの輻射が大きく、また容量性負荷6を駆動した場合には、その充放電で生じるパルス状の電流が駆動トランジスタを介して電源もしくはグランドに流れ込むので、これらに大きなノイズを生じてしまう不都合がある。   Since the amplitude of the logic output signal of the logic output circuit shown in FIG. 3 is the same as the power supply voltage, for example, 2.5 V, the noise radiation from the signal line is large, and when the capacitive load 6 is driven, Since the pulsed current generated by charging / discharging flows into the power supply or ground via the driving transistor, there is a disadvantage that large noise is generated in these.

また、従来、図4に示す如き、負荷抵抗とソースカップル(エミッタカップルでも良い)の差動スイッチと定電流源からなるCML(current mode logic)回路構成の差動出力回路が提案されている。   Conventionally, as shown in FIG. 4, a differential output circuit having a CML (current mode logic) circuit configuration composed of a load resistor, a source-coupled (or emitter-coupled) differential switch, and a constant current source has been proposed.

この図4につき説明するに、図4において、10は例えば2.5Vの電源電圧が供給される電源端子を示し、この電源端子10を例えば3.3KΩの負荷抵抗11aを介して差動スイッチを構成するn形のMOSトランジスタ12aのドレインに接続すると共に電源端子10を例えば3.3KΩの負荷抵抗11bを介して差動スイッチを構成するn形のMOSトランジスタ12bのドレインに接続する。   4, in FIG. 4, reference numeral 10 denotes a power supply terminal to which a power supply voltage of, for example, 2.5 V is supplied. The power supply terminal 10 is connected to a differential switch via a load resistor 11 a of 3.3 KΩ, for example. The power source terminal 10 is connected to the drain of the n-type MOS transistor 12b constituting the differential switch through the load resistor 11b of 3.3 KΩ, for example, while being connected to the drain of the n-type MOS transistor 12a.

このMOSトランジスタ12a及び12bの夫々のソースを互に接続し、このソースの接続点を定電流回路13を介して接地する。データ入力端子14aに得られるデータをMOSトランジスタ12aのゲートに供給すると共にデータ入力端子14bに得られる反転データをMOSトランジスタ12bのゲートに供給する。   The sources of the MOS transistors 12 a and 12 b are connected to each other, and the connection point of the sources is grounded via the constant current circuit 13. Data obtained at the data input terminal 14a is supplied to the gate of the MOS transistor 12a, and inverted data obtained at the data input terminal 14b is supplied to the gate of the MOS transistor 12b.

この負荷抵抗11a及びMOSトランジスタ12aのドレインの接続点を一方の出力端子15aに接続し、この一方の出力端子15aを容量性負荷16aを介して接地すると共に負荷抵抗11b及びMOSトランジスタ12bのドレインの接続点を他方の出力端子15bに接続し、この他方の出力端子15bを容量性負荷16bを介して接地する。   The connection point between the load resistor 11a and the drain of the MOS transistor 12a is connected to one output terminal 15a. The one output terminal 15a is grounded via the capacitive load 16a and the drain of the load resistor 11b and the MOS transistor 12b is connected. The connection point is connected to the other output terminal 15b, and the other output terminal 15b is grounded via the capacitive load 16b.

この図4のCML回路より成る差動出力回路は、小振幅かつ差動の論理出力信号が得られるため信号線からのノイズ輻射は小さく、容量性負荷16a,16bを駆動したときの電流は電源にもグランドにも大きなノイズは生じない。   Since the differential output circuit composed of the CML circuit of FIG. 4 can obtain a differential logic output signal with a small amplitude, the noise radiation from the signal line is small, and the current when driving the capacitive loads 16a and 16b is the power supply. In addition, there is no significant noise on the ground.

しかし、図4に示す如き差動出力回路では論理出力信号の振幅電圧を負荷抵抗11a,11bの抵抗値で除した値に相当する定電流を常に流しておかなければならず、消費電流が大きいという不都合がある。   However, in the differential output circuit as shown in FIG. 4, a constant current corresponding to the value obtained by dividing the amplitude voltage of the logic output signal by the resistance value of the load resistors 11a and 11b must be kept flowing, resulting in large current consumption. There is an inconvenience.

例えば論理出力信号の振幅を500mVとしたとき差動スイッチの切り替わりが無限に速かったとしても負荷抵抗11a,11b例えば3.3KΩと容量性負荷16a,16b例えば2pFの作る積分時定数によって出力の遷移は制限される。   For example, even when the switching of the differential switch is infinitely fast when the amplitude of the logic output signal is 500 mV, the output transition is caused by the integration time constant formed by the load resistors 11a and 11b, for example, 3.3 KΩ and the capacitive loads 16a, 16b, for example, 2 pF Is limited.

例えば25MHzの論理出力信号を500mV振幅まで振り切るためには積分時定数が半周期20nSの1/3である6.7nS以下にする必要があり、これは負荷抵抗11a,11bを3.3KΩ以下にするということであり、500mVの論理出力信号の振幅を得るには定電流回路13の定電流を150μA以上とする必要がある。   For example, in order to swing a 25 MHz logic output signal up to 500 mV amplitude, the integration time constant needs to be 6.7 nS or less, which is 1/3 of a half cycle of 20 nS, which makes the load resistances 11 a and 11 b less than 3.3 KΩ. Therefore, in order to obtain the amplitude of the logic output signal of 500 mV, the constant current of the constant current circuit 13 needs to be 150 μA or more.

そこで特許文献1や特許文献2に電源電圧よりも低い電圧のハイレベル信号とグランドレベルよりも高い電圧のローレベル信号とをレギュレータ回路で作り、このハイレベル信号のレギュレータ回路及びローレベル信号のレギュレータ回路と出力端子との間に相補的に開閉するスイッチを設けて、出力端子に論理出力信号を得るようにしたものが記載されている。   Therefore, in Patent Documents 1 and 2, a high-level signal having a voltage lower than the power supply voltage and a low-level signal having a voltage higher than the ground level are formed by a regulator circuit, and the regulator circuit for the high-level signal and the regulator for the low-level signal A switch in which a complementary open / close switch is provided between a circuit and an output terminal to obtain a logic output signal at the output terminal is described.

この特許文献1及び特許文献2に記載の技術によれば、振幅の小さい論理出力信号とすることができ、大きな輻射ノイズを出さないようにできると共に上述CML回路より成る差動出力回路のような常時流し続ける大きな電流は必要ないので消費電力も小さい。
特許第3142416号公報 特開2000−68813号公報
According to the techniques described in Patent Document 1 and Patent Document 2, a logic output signal having a small amplitude can be obtained, so that a large radiation noise can be prevented and a differential output circuit composed of the above-described CML circuit is used. Since a large current that constantly flows is not necessary, power consumption is small.
Japanese Patent No. 3142416 JP 2000-68813 A

然しながら、特許文献1及び特許文献2に記載された技術に用いられたレギュレータ回路はソースフォロア回路であったり、ドレイン電圧をゲートにフィードバックしたソース接地増幅回路であるから、その出力インピーダンスは小さく、容量性負荷を駆動するパルス状の電流はスイッチ経由でこれらのレギュレータ回路を通って、電源やグランドに流れ込む。   However, since the regulator circuit used in the techniques described in Patent Document 1 and Patent Document 2 is a source follower circuit or a source-grounded amplifier circuit that feeds back the drain voltage to the gate, its output impedance is small, and the capacitance The pulsating current that drives the capacitive load flows through these regulator circuits via a switch and flows into the power supply and ground.

従って、この特許文献1及び特許文献2に記載の技術においても、電源やグランドに生じるノイズについては、図4のCMOSのインバータ型の論理出力回路並みに大きいという不都合があった。   Therefore, the techniques described in Patent Document 1 and Patent Document 2 also have a disadvantage that noise generated in the power supply and ground is as large as that of the CMOS inverter type logic output circuit of FIG.

本発明は斯る点に、輻射ノイズ及び電源、グランドノイズを小さくすると共に低消費電力とすることを目的とする。   In view of the above, an object of the present invention is to reduce radiation noise, power supply, and ground noise and to reduce power consumption.

本発明差動出力回路は電源電位とグランド電位との間の電位を分圧して第1及び第2の電位を得る第1及び第2の電位点を形成する直列接続された第1、第2及び第3の抵抗と、この第1及び第2の電位点間に接続された平滑容量と、この第1及び第2の電位点のうち高い電位の第1の電位点と第1の出力端子との間に挿入された第1のスイッチと、この第1及び第2の電位点のうち低い電位の第2の電位点とこの第1の出力端子との間に挿入された第2のスイッチと、この第2の電位点と第2の出力端子との間に挿入された第3のスイッチと、この第1の電位点とこの第2の出力端子との間に挿入された第4のスイッチとを有し、この第1及び第2のスイッチとこの第3及び第4のスイッチとを夫々相補的に開閉し、この第1及び第2の出力端子に同時に反対の極性に遷移する論理出力信号を得るようにしたものである。   The differential output circuit of the present invention divides a potential between a power supply potential and a ground potential to form first and second potential points that obtain first and second potentials, and are connected in series. And a third resistor, a smoothing capacitor connected between the first and second potential points, a first potential point having a higher potential of the first and second potential points, and a first output terminal And a second switch inserted between the first output terminal and the second potential point having a lower potential among the first and second potential points. A third switch inserted between the second potential point and the second output terminal, and a fourth switch inserted between the first potential point and the second output terminal. The first and second switches and the third and fourth switches are complementarily opened and closed, and the first and second outputs. Is obtained so as to obtain a logic output signal that transitions to the opposite polarity at the same time to the terminal.

本発明によれば電源電位とグランド電位との間の電位を第1、第2及び第3の抵抗で分圧して第1及び第2の電位を得るようにし、この第1及び第2の電位を論理出力信号のハイレベル信号及びローレベル信号とすると共に差動で出力信号を得るようにしたので論理出力信号を差動の小振幅信号とすることができ、出力信号線からの輻射ノイズを非常に小さくできる。   According to the present invention, the first and second potentials are obtained by dividing the potential between the power supply potential and the ground potential by the first, second, and third resistors, and the first and second potentials are obtained. Since the logic output signal is a high level signal and a low level signal and the output signal is obtained differentially, the logic output signal can be a differential small amplitude signal, and radiation noise from the output signal line can be reduced. Can be very small.

また、本発明によれば、この第1及び第2の電位間に平滑容量を設けたので、この第1及び第2の電位は安定し、この第1、第2及び第3の抵抗の抵抗値を比較的大きくできるのでこの第1、第2及び第3の抵抗の直列回路に流す電流が小さくなり、消費電力を小さくできる。   According to the present invention, since the smoothing capacitor is provided between the first and second potentials, the first and second potentials are stable, and the resistances of the first, second, and third resistors are stable. Since the value can be made relatively large, the current flowing through the series circuit of the first, second and third resistors is reduced, and the power consumption can be reduced.

更に、本発明においては、立ち上がり遷移時の駆動電流はこの平滑容量を流れ電源・グランドをほとんど通らないから電源・グランドノイズが極めて小さくなる。   Further, in the present invention, the drive current at the rising transition flows through the smoothing capacitor and hardly passes through the power source / ground, so that the power source / ground noise becomes extremely small.

以下図1を参照して本発明差動出力回路を実施するための最良の形態の例につき説明する。   An example of the best mode for carrying out the differential output circuit of the present invention will be described below with reference to FIG.

図1において、20は例えば2.5Vの電源電圧が供給される電源端子を示し、この電源端子20を抵抗21、抵抗22及び抵抗23の直列回路を介して接地する。この抵抗21,22及び23の夫々の抵抗値は比較的高く例えば10KΩとする。   In FIG. 1, reference numeral 20 denotes a power supply terminal to which a power supply voltage of 2.5 V, for example, is supplied. The resistance values of the resistors 21, 22 and 23 are relatively high, for example, 10 KΩ.

本例においては抵抗21及び22の接続点24に論理出力信号のハイレベル信号(第1の電位)Hを得るようにすると共に抵抗22及び23の接続点25にこの論理出力信号のローレベル信号(第2の電位)Lを得るようにする。   In this example, a high level signal (first potential) H of the logic output signal is obtained at the connection point 24 of the resistors 21 and 22, and the low level signal of the logic output signal is obtained at the connection point 25 of the resistors 22 and 23. (Second potential) L is obtained.

本例においては、この接続点24を比較的大きな容量例えば5pFの平滑容量(バイパス容量)26を介して接続点25に接続する。   In this example, the connection point 24 is connected to the connection point 25 via a relatively large capacity, for example, a smoothing capacity (bypass capacity) 26 of 5 pF.

また本例においては、ハイレベル信号Hが得られる接続点24をスイッチを構成するn形のMOSトランジスタ27のドレインに接続し、このMOSトランジスタ27のソースを一方の出力端子28に接続し、この一方の出力端子28を容量性負荷29を介して接地する。   In this example, the connection point 24 from which the high level signal H is obtained is connected to the drain of the n-type MOS transistor 27 constituting the switch, and the source of the MOS transistor 27 is connected to one output terminal 28. One output terminal 28 is grounded via a capacitive load 29.

また、ローレベル信号Lが得られる接続点25をスイッチを構成するn形のMOSトランジスタ30のドレインに接続し、このMOSトランジスタ30のソースを一方の出力端子28に接続する。この場合、データ入力端子31及び32に供給されるデータ及び反転データによりこのMOSトランジスタ27及び30は相補的に駆動する如くする。   Further, the connection point 25 from which the low level signal L is obtained is connected to the drain of the n-type MOS transistor 30 constituting the switch, and the source of the MOS transistor 30 is connected to one output terminal 28. In this case, the MOS transistors 27 and 30 are driven complementarily by the data supplied to the data input terminals 31 and 32 and the inverted data.

また、ローレベル信号Lが得られる接続点25をスイッチを構成するn形のMOSトランジスタ33のドレインに接続し、このMOSトランジスタ33のソースを他方の出力端子34に接続し、この他方の出力端子34を容量性負荷35を介して接地する。   The connection point 25 from which the low level signal L is obtained is connected to the drain of the n-type MOS transistor 33 constituting the switch, the source of the MOS transistor 33 is connected to the other output terminal 34, and the other output terminal is connected. 34 is grounded via a capacitive load 35.

またハイレベル信号Hが得られる接続点24をスイッチを構成するn形のMOSトランジスタ36のドレインに接続し、このMOSトランジスタ36のソースを他方の出力端子34に接続する。この場合データ入力端子31及び32に供給されるデータ及び反転データによりMOSトランジスタ33及び36は相補的に駆動される。   Further, the connection point 24 from which the high level signal H is obtained is connected to the drain of the n-type MOS transistor 36 constituting the switch, and the source of the MOS transistor 36 is connected to the other output terminal 34. In this case, the MOS transistors 33 and 36 are driven in a complementary manner by the data supplied to the data input terminals 31 and 32 and the inverted data.

図1に示す差動出力回路の論理出力信号のハイレベル信号H及びローレベル信号Lを求めるにはスイッチを構成するMOSトランジスタ27,30,33,36と容量性負荷29,35をスイッチドキャパシタ構成の抵抗とみなして計算する。   In order to obtain the high level signal H and the low level signal L of the logic output signal of the differential output circuit shown in FIG. 1, the MOS transistors 27, 30, 33 and 36 and the capacitive loads 29 and 35 constituting the switch are switched capacitors. Calculated as the resistance of the configuration.

ここでデータの周波数をf、容量性負荷29,35の容量値をCLとしたとき、このスイッチドキャパシタ構成の抵抗をRscしたとき、この抵抗Rscは以下の通りである。
Rsc=1/f×2×CL
Here, when the frequency of the data is f and the capacitance value of the capacitive loads 29 and 35 is CL, the resistance Rsc of the switched capacitor configuration is as follows.
Rsc = 1 / f × 2 × CL

電源電圧をVDD、抵抗21,22及び23の夫々の抵抗値をR1,R2及びR3としたとき、ハイレベル信号H、ローレベル信号Lの平均値は以下の分圧の式で決まる。抵抗22はスイッチドキャパシタ抵抗Rscと並列接続となる。
VDD:H:L=(R1+R2//Rsc+R3):(R2//Rsc+R3):R3
平滑容量26の容量値を十分大きくしたときはハイレベル信号H及びローレベル信号Lは略この分圧の式で決まる一定の値となる。
When the power supply voltage is VDD and the resistance values of the resistors 21, 22 and 23 are R1, R2 and R3, the average values of the high level signal H and the low level signal L are determined by the following voltage division formulas. The resistor 22 is connected in parallel with the switched capacitor resistor Rsc.
VDD: H: L = (R1 + R2 // Rsc + R3): (R2 // Rsc + R3): R3
When the capacitance value of the smoothing capacitor 26 is sufficiently increased, the high level signal H and the low level signal L are substantially constant values determined by this partial pressure expression.

従って、本例によれば一方及び他方の出力端子28及び34には、夫々このハイレベル信号H及びローレベル信号Lの小振幅な差動の論理出力信号が得られる。   Therefore, according to the present example, differential logic output signals having small amplitudes of the high level signal H and the low level signal L are obtained at the one and other output terminals 28 and 34, respectively.

具体的な例として、電源電圧を2.5Vとし、容量性負荷29,35の容量値を2pFとし、データの周波数を25MHzとし、ハイレベル信号Hとローレベル信号Lとの振幅を500mVとする場合につき説明する。   As a specific example, the power supply voltage is 2.5 V, the capacitance values of the capacitive loads 29 and 35 are 2 pF, the data frequency is 25 MHz, and the amplitude of the high level signal H and the low level signal L is 500 mV. I will explain the case.

この場合、スイッチドキャパシタ抵抗Rscは
Rsc=1/(25×106×4×10-12)=106/100=10KΩ
である。
伝送する信号が連続クロックでなくNRZ信号である場合も考えて、信号パターンによる出力レベルの大幅な変動を避けるために、このスイッチドキャパシタ抵抗Rscと並列となる抵抗22の抵抗値R2をこの抵抗Rscの抵抗値と同等の10KΩとし、R2//Rscを5KΩとする。
In this case, the switched capacitor resistor Rsc is Rsc = 1 / (25 × 10 6 × 4 × 10 -12) = 10 6/100 = 10KΩ
It is.
Considering the case where the signal to be transmitted is not a continuous clock but an NRZ signal, the resistance value R2 of the resistor 22 in parallel with the switched capacitor resistor Rsc is set to this resistor in order to avoid a large fluctuation in output level due to the signal pattern. It is set to 10 KΩ equivalent to the resistance value of Rsc, and R2 // Rsc is set to 5 KΩ.

このハイレベル信号Hとローレベル信号Lの振幅を電源電圧2.5Vの1/5の500mVにするには、抵抗21及び23の抵抗値R1及びR3を夫々10KΩとすれば良い。この場合平滑容量26は大きいほど良いが、容量性負荷29,35の容量値の5倍程度で良い。   In order to set the amplitudes of the high level signal H and the low level signal L to 500 mV which is 1/5 of the power supply voltage 2.5V, the resistance values R1 and R3 of the resistors 21 and 23 may be set to 10 KΩ. In this case, the larger the smoothing capacity 26 is, the better, but it may be about 5 times the capacity value of the capacitive loads 29 and 35.

この具体例の場合、消費電流は
2.5V/(10KΩ+5KΩ+10KΩ)=100μA
となり、図4の定電流150μAより小さい。
In this specific example, the current consumption is 2.5 V / (10 KΩ + 5 KΩ + 10 KΩ) = 100 μA
Thus, the constant current is smaller than 150 μA in FIG.

また、この差動出力回路の立ち上がり遷移時の容量性負荷29を充電し、容量性負荷35を放電するときの駆動電流は矢印aで示す如く、平滑容量26→MOSトランジスタ27→一方の出力端子28→容量性負荷29→グランド→容量性負荷35→他方の出力端子34→MOSトランジスタ33→平滑容量26と流れ、また容量性負荷35を充電し、容量性負荷29を放電するときも同様であり、電源・グランドをほとんど通らないから、電源・グランドノイズが極めて小さい。   Further, the drive current when charging the capacitive load 29 and discharging the capacitive load 35 at the rising transition of the differential output circuit is as shown by an arrow a. Smoothing capacitor 26 → MOS transistor 27 → one output terminal 28 → capacitive load 29 → ground → capacitive load 35 → the other output terminal 34 → MOS transistor 33 → smoothing capacitor 26, and the same applies when the capacitive load 35 is charged and the capacitive load 29 is discharged. Yes, the power supply / ground noise is extremely small because it hardly passes through the power supply / ground.

本例によれば電源電圧とグランド電位との間の電位を第1、第2及び第3の抵抗21,22及び23で分圧して第1及び第2の電位H及びLを得るようにし、この第1及び第2の電位H及びLを論理出力信号のハイレベル信号H及びローレベル信号Lとすると共に差動で出力信号を得るようにしたので論理出力信号を差動の小振幅信号とすることができ、出力信号線からの輻射ノイズを非常に小さくできる。   According to this example, the first and second potentials H and L are obtained by dividing the potential between the power supply voltage and the ground potential by the first, second, and third resistors 21, 22, and 23, Since the first and second potentials H and L are set to the high level signal H and the low level signal L of the logic output signal and the output signal is obtained differentially, the logic output signal is changed to the differential small amplitude signal. The radiation noise from the output signal line can be made very small.

また、本例によれば、この第1及び第2の電位H及びL間に平滑容量26を設けたので、この第1及び第2の電位H及びLは安定し、この第1、第2及び第3の抵抗21,22及び23の抵抗値R1,R2及びR3を比較的大きくできるので、この第1、第2及び第3の抵抗21,22及び23の直列回路に流す電流が小さくなり、消費電力を小さくできる。   In addition, according to the present example, since the smoothing capacitor 26 is provided between the first and second potentials H and L, the first and second potentials H and L are stable. Since the resistance values R1, R2 and R3 of the third resistors 21, 22 and 23 can be made relatively large, the current flowing through the series circuit of the first, second and third resistors 21, 22 and 23 is reduced. , Power consumption can be reduced.

更に、本例においては、立ち上がり遷移時の駆動電流はこの平滑容量26を流れ電源・グランドをほとんど通らないから電源・グランドノイズが極めて小さくなる。
そして更に本例のバイアスは受動素子からなる単純な回路で生成されていることから異常発振や不安定を生じる危険性が無く、抵抗の比のみが正確であればよいので製造が容易である。
Further, in this example, since the drive current at the rising transition flows through the smoothing capacitor 26 and hardly passes the power source / ground, the power source / ground noise becomes extremely small.
Further, since the bias of this example is generated by a simple circuit composed of passive elements, there is no risk of causing abnormal oscillation or instability, and it is easy to manufacture because only the resistance ratio needs to be accurate.

図2は本発明を実施するための最良の形態の他の例を示す。この図2につき説明するに図1に対応する部分には同一符号を付しその詳細説明は省略する。   FIG. 2 shows another example of the best mode for carrying out the present invention. In the description of FIG. 2, the same reference numerals are given to the portions corresponding to FIG.

この図2例は図1例の抵抗22を可変抵抗37で構成し、自動抵抗制御回路38によりハイレベル信号Hとローレベル信号Lとの差の電圧を検出し、この差の電圧が一定例えば500mVになるように制御するようにしたものである。その他は図1例と同様に構成する。   In the example of FIG. 2, the resistor 22 of FIG. 1 is configured by a variable resistor 37, and the automatic resistance control circuit 38 detects the voltage difference between the high level signal H and the low level signal L. The control is performed so as to be 500 mV. The rest of the configuration is the same as in FIG.

この図2の具体例につき説明するに入力データが最大周波数でトグルした場合、最小のスイッチドキャパシタ抵抗Rscが10KΩであったとし、このときのハイレベル信号Hとローレベル信号Lとの電圧差即ち論理振幅が500mVとなるようにするには抵抗21及び23の抵抗値を20KΩとする。この状態可変抵抗37は抵抗値が無限大となるように調整する。この場合可変抵抗37の抵抗値を10KΩ〜∞に可変できる如くする。   2, when the input data is toggled at the maximum frequency, it is assumed that the minimum switched capacitor resistance Rsc is 10 KΩ, and the voltage difference between the high level signal H and the low level signal L at this time. That is, in order to make the logical amplitude 500 mV, the resistance values of the resistors 21 and 23 are set to 20 KΩ. The state variable resistor 37 is adjusted so that the resistance value becomes infinite. In this case, the resistance value of the variable resistor 37 can be varied from 10 KΩ to ∞.

データが静止状態かそれに近い状態になるとスイッチドキャパシタ抵抗Rscの抵抗値は無限大に近づく、このときは可変抵抗37の抵抗値を10KΩに調整すれば論理出力信号の振幅を500mVに保つことができる。   When the data is at or near the static state, the resistance value of the switched capacitor resistor Rsc approaches infinity. In this case, if the resistance value of the variable resistor 37 is adjusted to 10 KΩ, the amplitude of the logic output signal can be maintained at 500 mV. it can.

データが静止状態と最大周波数のトグル状態の間において、このスイッチドキャパシタ抵抗Rscと可変抵抗37の抵抗値R4の並列抵抗値が10KΩに調整されればハイレベル信号Hとローレベル信号Lとの振幅即ち論理出力信号の振幅を500mVに保つことができる。   If the parallel resistance value of the switched capacitor resistor Rsc and the resistance value R4 of the variable resistor 37 is adjusted to 10 KΩ between the static state and the maximum frequency toggle state, the high level signal H and the low level signal L The amplitude, ie the amplitude of the logic output signal, can be kept at 500 mV.

本例においては、自動抵抗制御回路38でハイレベル信号Hとローレベル信号Lとの電圧差を検出し、この電圧差が500mVに保つように例えば接続点24にドレイン、接続点25にソースを接続したMOSトランジスタのベースに自動抵抗制御回路38のこの差に応じた出力信号を供給するようにする。   In this example, the automatic resistance control circuit 38 detects the voltage difference between the high level signal H and the low level signal L, and for example, the drain is connected to the connection point 24 and the source is connected to the connection point 25 so that the voltage difference is maintained at 500 mV. An output signal corresponding to the difference of the automatic resistance control circuit 38 is supplied to the base of the connected MOS transistor.

この図2例においても、図1例と同様の作用効果が得られることは容易に理解できよう。   In the example of FIG. 2, it can be easily understood that the same effect as that of the example of FIG. 1 can be obtained.

上述例ではスイッチをMOSトランジスタを用いて構成した例につき述べたが、このスイッチをその他のスイッチ素子で構成しても良いことは勿論である。   In the above-described example, an example in which the switch is configured by using a MOS transistor has been described, but it is needless to say that the switch may be configured by other switch elements.

また本発明は上述例に限ることなく本発明の要旨を逸脱することなくその他種々の構成が採り得ることは勿論である。   Further, the present invention is not limited to the above-described examples, and various other configurations can be adopted without departing from the gist of the present invention.

本発明差動出力回路を実施するための最良の形態の例を示す構成図である。It is a block diagram which shows the example of the best form for implementing this invention differential output circuit. 本発明を実施するための最良の形態の他の例を示す構成図である。It is a block diagram which shows the other example of the best form for implementing this invention. 従来の論理出力回路の例を示す構成図である。It is a block diagram which shows the example of the conventional logic output circuit. 従来の差動出力回路の例を示す構成図である。It is a block diagram which shows the example of the conventional differential output circuit.

符号の説明Explanation of symbols

20‥‥電源端子、21,22,23‥‥抵抗、26‥‥平滑容量、27,30,33,36‥‥MOSトランジスタ、28‥‥一方の出力端子、29,35‥‥容量性負荷、31,32‥‥データ入力端子   20... Power supply terminal 21, 22, 23... Resistor 26... Smoothing capacity 27, 30, 33, 36 MOS transistor 28 28 One output terminal 29 35 Capacitive load 31, 32 ... Data input terminal

Claims (3)

電源電位とグランド電位との間の電位を分圧して第1及び第2の電位を得る第1及び第2の電位点を形成する直列接続された第1、第2及び第3の抵抗と、
前記第1及び第2の電位点間に接続された平滑容量と、
前記第1及び第2の電位点のうち高い電位の第1の電位点と第1の出力端子との間に挿入された第1のスイッチと、
前記第1及び第2の電位点のうち低い電位の第2の電位点と前記第1の出力端子との間に挿入された第2のスイッチと、
前記第2の電位点と第2の出力端子との間に挿入された第3のスイッチと、
前記第1の電位点と前記第2の出力端子との間に挿入された第4のスイッチとを有し、前記第1及び第2のスイッチと前記第3及び第4のスイッチとを夫々相補的に開閉し、前記第1及び第2の出力端子に同時に反対の極性に遷移する論理出力信号を得るようにしたことを特徴とする差動出力回路。
First, second and third resistors connected in series to divide the potential between the power supply potential and the ground potential to form first and second potential points for obtaining the first and second potentials;
A smoothing capacitor connected between the first and second potential points;
A first switch inserted between a first potential point of a higher potential of the first and second potential points and a first output terminal;
A second switch inserted between a second potential point having a lower potential of the first and second potential points and the first output terminal;
A third switch inserted between the second potential point and a second output terminal;
A fourth switch inserted between the first potential point and the second output terminal, and the first and second switches are complementary to the third and fourth switches, respectively. The differential output circuit is characterized in that a logic output signal that opens and closes at the same time and transitions to the opposite polarity at the first and second output terminals simultaneously is obtained.
請求項1記載の差動出力回路において、
前記第2の抵抗を可変抵抗で構成し、前記第1及び第2の電位点の電位差を制御するようにしたことを特徴とする差動出力回路。
The differential output circuit according to claim 1,
The differential output circuit characterized in that the second resistor is composed of a variable resistor, and the potential difference between the first and second potential points is controlled.
請求項1記載の差動出力回路において、
前記第2の抵抗を可変抵抗で構成し、前記可変抵抗を前記第1及び第2の電位点の電位差が一定になるように自動抵抗制御回路で制御するようにしたことを特徴とする差動出力回路。
The differential output circuit according to claim 1,
The differential is characterized in that the second resistor is constituted by a variable resistor, and the variable resistor is controlled by an automatic resistance control circuit so that the potential difference between the first and second potential points is constant. Output circuit.
JP2004140238A 2004-05-10 2004-05-10 Differential output circuit Pending JP2005323200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004140238A JP2005323200A (en) 2004-05-10 2004-05-10 Differential output circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004140238A JP2005323200A (en) 2004-05-10 2004-05-10 Differential output circuit

Publications (1)

Publication Number Publication Date
JP2005323200A true JP2005323200A (en) 2005-11-17

Family

ID=35470130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004140238A Pending JP2005323200A (en) 2004-05-10 2004-05-10 Differential output circuit

Country Status (1)

Country Link
JP (1) JP2005323200A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008054034A (en) * 2006-08-24 2008-03-06 Sony Corp Driving circuit
JP2012151579A (en) * 2011-01-18 2012-08-09 Daikin Ind Ltd Transmission circuit and air conditioning apparatus using the same
US9559872B2 (en) 2013-04-01 2017-01-31 Fujitsu Limited Signal transmission system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008054034A (en) * 2006-08-24 2008-03-06 Sony Corp Driving circuit
JP2012151579A (en) * 2011-01-18 2012-08-09 Daikin Ind Ltd Transmission circuit and air conditioning apparatus using the same
US9559872B2 (en) 2013-04-01 2017-01-31 Fujitsu Limited Signal transmission system
JPWO2014162491A1 (en) * 2013-04-01 2017-02-16 富士通株式会社 Signal transmission system, transmission circuit, reception circuit, signal transmission method, and signal reception method

Similar Documents

Publication Publication Date Title
KR0132641B1 (en) Substrate circuit
US20080246511A1 (en) Differential Drive Circuit and Electronic Apparatus Incorporating the Same
KR100425474B1 (en) Data output method and data output circuit for applying reduced precharge level
CN210168031U (en) Circuit
TWI283096B (en) Constant current circuit and charging pump circuit of ring oscillator
US20060176085A1 (en) Comparator circuit with reduced switching noise
JP2011142173A (en) Control circuit and laser diode driving circuit
US8742790B1 (en) Circuits and methods for level shifting a signal
US6803799B1 (en) Low power flip flop
JP2005223872A (en) Differential driving circuit and electronic equipment integrating thereof
KR102371785B1 (en) Crystal oscillation circuit and electronic timepiece
JP3948621B2 (en) Interface circuit
KR101100668B1 (en) Output circuit
CN110611497A (en) Comparator and oscillation circuit
JP2005323200A (en) Differential output circuit
JP2000111867A (en) Liquid crystal driving power source circuit
JPWO2006087845A1 (en) Level shift circuit and semiconductor integrated circuit having the same
KR100453424B1 (en) Semiconductor integrated circuit
JP5402368B2 (en) Differential amplifier
JP5035017B2 (en) Oscillator circuit
KR100668455B1 (en) Variable gain amplifier
KR100214434B1 (en) Data holding circuit and buffer circuit
JP7338985B2 (en) drive circuit
JP4414560B2 (en) Sense amplifier
JP2004023195A (en) Oscillation circuit