JP2005321215A - Catalytic combustion type gas sensor - Google Patents

Catalytic combustion type gas sensor Download PDF

Info

Publication number
JP2005321215A
JP2005321215A JP2004137293A JP2004137293A JP2005321215A JP 2005321215 A JP2005321215 A JP 2005321215A JP 2004137293 A JP2004137293 A JP 2004137293A JP 2004137293 A JP2004137293 A JP 2004137293A JP 2005321215 A JP2005321215 A JP 2005321215A
Authority
JP
Japan
Prior art keywords
carrier
catalyst
gas sensor
catalytic combustion
conducting wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004137293A
Other languages
Japanese (ja)
Other versions
JP4084333B2 (en
Inventor
Tatsuo Fujimoto
龍雄 藤本
Kazunari Yamamoto
和成 山本
Kazuyoshi Honda
一賀 本多
Masaaki Sakaguchi
正明 坂口
Shoichi Sakaguchi
正一 坂口
Masanori Enomoto
正徳 榎本
Izumi Hoshihara
泉 星原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAKAGUCHI GIKEN KK
Tokyo Gas Co Ltd
Original Assignee
SAKAGUCHI GIKEN KK
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAKAGUCHI GIKEN KK, Tokyo Gas Co Ltd filed Critical SAKAGUCHI GIKEN KK
Priority to JP2004137293A priority Critical patent/JP4084333B2/en
Publication of JP2005321215A publication Critical patent/JP2005321215A/en
Application granted granted Critical
Publication of JP4084333B2 publication Critical patent/JP4084333B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalytic combustion type gas sensor having a wide detecting concentration range and high sensitivity. <P>SOLUTION: Since the catalytic combustion type gas sensor has a thin-film carrier with in a catalyst mixed and a plurality of pores enabling a combustible gas to be brought into contact with the catalyst in the carrier are formed to the surface of the carrier, a region, where catalytic combustion is performed, is sharply increased and a detection range on a high-concentration side is drastically expanded. Further, since the carrier adheres to a conductor in a thin-film form, the heat capacity of the carrier is largely lowered and the sensitivity in a low-concentration region is enhanced. Accordingly, the detection range on the low-concentration side is also widened. Furthermore, the irregularity of the surface temperature of the carrier is not caused by the lowering of the heat capacity of the carrier and good gas selectivity can be obtained. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

可燃性ガスの接触燃焼により、可燃性ガスの濃度を検出する接触燃焼式ガスセンサに関し、特に、検出可能な濃度範囲が広く、高感度の接触燃焼式ガスセンサ及びその製造方法に関する。   The present invention relates to a catalytic combustion type gas sensor that detects the concentration of a flammable gas by catalytic combustion of a flammable gas, and particularly relates to a highly sensitive catalytic combustion type gas sensor having a wide detectable concentration range and a manufacturing method thereof.

接触燃焼式ガスセンサは、触媒による可燃性ガスの接触燃焼を利用して、それに伴うセンサの温度変化をセンサ抵抗値の変化として検出する方式のセンサである。センサの感度は、可燃性ガスの濃度と良好な比例関係にあるため、ガス濃度の計測及び監視を目的とした機器(たとえば、ガス給湯器の安全装置など)には、接触燃焼式ガスセンサが使用されている。   The catalytic combustion type gas sensor is a sensor of a type that uses catalytic combustion of combustible gas by a catalyst and detects a change in temperature of the sensor as a change in sensor resistance value. Since the sensitivity of the sensor has a good proportional relationship with the concentration of combustible gas, a catalytic combustion type gas sensor is used for equipment for measuring and monitoring the gas concentration (for example, a safety device for a gas water heater). Has been.

図1は、従来の接触燃焼式ガスセンサの構造を説明するための図である。図1(a)は、検知素子としての接触燃焼式ガスセンサの構造を示す図であって、検知素子は、例えば、直径約20μmの白金線コイルを担体としてのアルミナで球状に包むような構造であり、その担体の表面に触媒(例えば、白金、パラジウムなどの貴金属)が担持されている。   FIG. 1 is a view for explaining the structure of a conventional catalytic combustion type gas sensor. FIG. 1A is a diagram showing the structure of a catalytic combustion type gas sensor as a sensing element. The sensing element has a structure in which, for example, a platinum wire coil having a diameter of about 20 μm is wrapped spherically with alumina as a carrier. There is a catalyst (for example, a noble metal such as platinum or palladium) supported on the surface of the carrier.

このような接触燃焼式ガスセンサは、コイルに担体を滴下して付着させ、焼成後、さらに触媒を担体表面に塗布し、焼成することにより製造される。   Such a contact combustion type gas sensor is manufactured by dropping a carrier on a coil and attaching it to the coil. After firing, the catalyst is further applied to the surface of the carrier and then fired.

図1(b)は、接触燃焼式センサを用いた測定装置の基本回路を示す図である。白金コイルは、センサを加熱するヒータとしての役割のほか、可燃性ガスの接触燃焼による温度の変化を捉える温度計としての役割も兼ねている。このため、検知素子E1は、ガスの接触燃焼以外の温度変化、例えば、周囲の温度や風の変化に対しても抵抗値が変化する。これを補償するための温度補償素子E2が用いられる。温度補償素子E2は、検知素子E1と温度特性の同一なものが望ましいため、検知素子E1と同一の白金コイルに触媒を担持しないアルミナを焼結させたものを用いている。図1(b)の回路による測定原理は以下のとおりである。   FIG.1 (b) is a figure which shows the basic circuit of the measuring apparatus using a contact combustion type sensor. In addition to serving as a heater for heating the sensor, the platinum coil also serves as a thermometer that captures changes in temperature due to contact combustion of combustible gas. For this reason, the resistance value of the detection element E1 also changes with respect to temperature changes other than gas catalytic combustion, for example, ambient temperature and wind changes. A temperature compensation element E2 is used to compensate for this. The temperature compensation element E2 is preferably the same in temperature characteristics as the sensing element E1, and therefore, the same platinum coil as the sensing element E1 is obtained by sintering alumina that does not carry a catalyst. The measurement principle by the circuit of FIG. 1 (b) is as follows.

図1(a)のように、可燃性ガスの酸化反応に対して、高い触媒活性を持つ白金やパラジウムを担持したアルミナで白金コイルを包み込んだ検知素子E1に、可燃性ガスを含む空気を接触させると、触媒上で可燃性ガスと空気中の酸素が反応(接触燃焼反応)し、反応熱(燃焼熱)が発生する。この反応熱は可燃性ガスの濃度に比例し、それに応じて白金コイルの抵抗値が増大する。このため、空気中の可燃性ガスの濃度に比例して白金コイルの抵抗値が増大する。これを電気量に変換するために、図1(b)のように、検知素子E1と温度補償素子E2を2辺とするブリッジ回路(他辺は固定抵抗R1、R2)が用いられる。検知素子E1及び補償素子E2には、常時100mA程度の電流が供給され、可燃性ガスが接触燃焼反応を起こすのに必要な温度に保たれている。検知素子E1と温度補償素子E2の電気抵抗が等しくなるように設定されているため、可燃性ガスが含まれていない空気中では、ブリッジ回路は平衡を保ち、A−B間に電位差は生じない。一方、空気中に可燃性ガスがあるときには、その接触燃焼のために、検知素子E1の温度は上昇し、電気抵抗が大きくなるため、A−B間に電位差が生じる。この電位差は可燃性ガス濃度に比例して変化するため、この電位差により、空気中の可燃性ガスの濃度を知ることができる。   As shown in FIG. 1 (a), the air containing flammable gas is brought into contact with the sensing element E1 in which the platinum coil is wrapped with alumina having platinum or palladium having high catalytic activity for the oxidation reaction of the flammable gas. Then, the combustible gas and oxygen in the air react (catalytic combustion reaction) on the catalyst, and reaction heat (combustion heat) is generated. This reaction heat is proportional to the concentration of the combustible gas, and the resistance value of the platinum coil increases accordingly. For this reason, the resistance value of the platinum coil increases in proportion to the concentration of the combustible gas in the air. In order to convert this into an electric quantity, as shown in FIG. 1B, a bridge circuit having two sides of the detection element E1 and the temperature compensation element E2 (the other sides are fixed resistors R1 and R2) is used. The detection element E1 and the compensation element E2 are constantly supplied with a current of about 100 mA, and are maintained at a temperature necessary for the combustible gas to cause a catalytic combustion reaction. Since the electric resistances of the detection element E1 and the temperature compensation element E2 are set to be equal, the bridge circuit is kept in balance in air containing no flammable gas, and no potential difference is generated between A and B. . On the other hand, when there is a flammable gas in the air, the temperature of the sensing element E1 rises due to the contact combustion, and the electrical resistance increases, so that a potential difference occurs between A and B. Since this potential difference changes in proportion to the combustible gas concentration, the concentration of the combustible gas in the air can be known from this potential difference.

しかしながら、従来の接触燃焼式ガスセンサには、次のような課題がある。   However, the conventional catalytic combustion type gas sensor has the following problems.

第一に、筒状のコイルを担体が球状に覆っているため、コイルと球体表面の距離が担体の位置により異なるため、可燃性ガスを燃焼するためにコイルに通電を行ったとき、表面温度がかなりばらつく。そのため、すべての表面温度を被検出可燃性ガスの燃焼温度に保つことができず、被検出可燃性ガス以外のガスも燃焼してしまい、良好な可燃性ガス選択性が得られない。   First, since the carrier covers the cylindrical coil in a spherical shape, the distance between the coil and the surface of the sphere varies depending on the position of the carrier, so that when the coil is energized to burn the combustible gas, the surface temperature Vary considerably. Therefore, not all surface temperatures can be maintained at the combustion temperature of the combustible gas to be detected, and gases other than the combustible gas to be detected are combusted, and good combustible gas selectivity cannot be obtained.

例えば、白金触媒を用いて一酸化炭素を検出する接触燃焼式ガスセンサの場合、コイル温度約160℃で、白金触媒は一酸化炭素ガスと接触燃焼を起こす。一方、白金触媒は、約200℃で、水素ガスと接触燃焼を起こす。従って、担体表面に温度むらが生じ、一部分の温度が上がりすぎると、被検出可燃性ガスではない水素ガスと接触燃焼を起こす可能性があり、ガス選択性の悪化を招く。   For example, in the case of a catalytic combustion type gas sensor that detects carbon monoxide using a platinum catalyst, the platinum catalyst causes catalytic combustion with the carbon monoxide gas at a coil temperature of about 160 ° C. On the other hand, the platinum catalyst causes catalytic combustion with hydrogen gas at about 200 ° C. Therefore, if temperature unevenness occurs on the surface of the carrier and a part of the temperature rises too much, contact combustion may occur with hydrogen gas that is not a combustible gas to be detected, leading to deterioration in gas selectivity.

第二に、担体を球状にするため、担体の表面積に対する質量が大きくなり、センサの熱容量が大きくなるという問題がある。熱容量が大きいと、可燃性ガスが触媒に接触して燃焼するときに、センサ全体が昇温する速度が遅くなり、検出応答性が悪くなり、特に、低濃度領域におけるガスの検出感度が悪化し、低濃度側の検知範囲が狭まる。例えば、従来においては、一酸化炭素ガスの低濃度側における濃度測定は、約0.03%(300ppm)までの測定に限定されていた。また、センサの経年使用により、担体の表面に被検出可燃性ガス以外の他の炭化水素などが燃えずに付着したままの状態となり、担体表面を覆い感度を悪化させる場合がある。このような状態を防止するために、被検出可燃性ガス濃度の検出温度より高い温度に担体の表面温度を上げ、担体表面に付着した被検出可燃ガス以外の炭化水素など燃やすヒートクリーニングを行う必要があるが、熱容量が大きいと、担体表面を昇温させる時間及び昇温後の検出温度までの温度降下にかなり時間がかかるという問題がある。   Second, since the carrier is made spherical, there is a problem that the mass with respect to the surface area of the carrier is increased, and the heat capacity of the sensor is increased. When the heat capacity is large, when the combustible gas comes into contact with the catalyst and burns, the temperature of the entire sensor is increased, the detection response is deteriorated, and the detection sensitivity of the gas particularly in the low concentration region is deteriorated. The detection range on the low density side is narrowed. For example, conventionally, the measurement of the concentration of carbon monoxide gas on the low concentration side is limited to the measurement up to about 0.03% (300 ppm). Further, due to the aging of the sensor, hydrocarbons other than the combustible gas to be detected remain attached to the surface of the carrier without burning, and the carrier surface may be covered to deteriorate the sensitivity. In order to prevent such a situation, it is necessary to raise the surface temperature of the carrier to a temperature higher than the detection temperature of the detected combustible gas concentration, and to perform heat cleaning that burns hydrocarbons other than the detected combustible gas adhering to the carrier surface. However, when the heat capacity is large, there is a problem that it takes a considerable time to raise the temperature of the surface of the carrier and to lower the temperature to the detection temperature after the temperature rise.

第三に、担体のアルミナ表面に微細な孔を作って、ある程度、触媒を担持する表面積を大きくすることができるものの、表面に担持された触媒の燃焼能力を超える高濃度のガスに対しては、燃焼が飽和してしまい、高濃度側の検出範囲は限定される。例えば、従来においては、一酸化炭素ガスの濃度測定においては、約0.3%(3000ppm)程度までの測定しかできなかった。   Thirdly, although the surface area supporting the catalyst can be increased to some extent by making fine pores on the alumina surface of the support, for high concentration gas exceeding the combustion capacity of the catalyst supported on the surface Combustion is saturated, and the detection range on the high concentration side is limited. For example, conventionally, in the measurement of the concentration of carbon monoxide gas, only measurement up to about 0.3% (3000 ppm) was possible.

また、下記の特許文献1(特開2003−121402号公報)は、コイルの両端部の巻回ピッチで中央部の巻回ピッチよりも密に作成することで、優れたガス選択性を有する高感度な接触燃焼式ガスセンサを開示しているとともに、電着により担体をコイルに円筒状に付着させた接触燃焼式ガスセンサについても開示している。   Further, Patent Document 1 (Japanese Patent Laid-Open No. 2003-121402) described below has a high gas selectivity by making the winding pitch at both ends of the coil denser than the winding pitch at the center. A sensitive catalytic combustion type gas sensor is disclosed, and a catalytic combustion type gas sensor in which a carrier is attached to a coil in a cylindrical shape by electrodeposition is also disclosed.

このセンサによれば、円筒状の担体をコイルに付着させる構成により、円筒の中空領域の内面にも表面積を確保することができ、可燃性ガスと触媒との接触面積が向上し、センサの高感度化が図られる。また、コイルと担体表面との距離をほぼ一定にすることができるので、ガス選択性の向上も期待できる。下記特許文献1には、電着による接触燃焼式ガスセンサの製法について次のように記載されている。すなわち、電着樹脂と担体とが適量混合された電着液にコイルを浸し、所定時間通電することにより、コイル線に担体を電着させる。このとき、後に担体の表面に触媒を塗布する表面を形成するため、担体が円筒形状になるまで十分な厚さに電着させる。担体をコイルに円筒形状に付着させた後、焼成し、その後、担体表面に触媒を塗布し、さらに焼成することにより、接触燃焼式ガスセンサが製造される。
特開2003−121402号公報
According to this sensor, the configuration in which the cylindrical carrier is attached to the coil can secure a surface area on the inner surface of the hollow area of the cylinder, and the contact area between the combustible gas and the catalyst is improved. Sensitivity is improved. Further, since the distance between the coil and the carrier surface can be made substantially constant, an improvement in gas selectivity can be expected. The following Patent Document 1 describes a method for producing a catalytic combustion type gas sensor by electrodeposition as follows. That is, the carrier is electrodeposited on the coil wire by immersing the coil in an electrodeposition liquid in which an appropriate amount of the electrodeposition resin and the carrier is mixed and energizing for a predetermined time. At this time, in order to form a surface on which the catalyst is applied later, the electrode is electrodeposited to a sufficient thickness until the carrier has a cylindrical shape. After the carrier is attached to the coil in a cylindrical shape, it is fired, and then the catalyst is applied to the surface of the carrier and further fired to produce a catalytic combustion type gas sensor.
JP 2003-121402 A

しかしながら、上記特許文献1の製造方法により製造される接触燃焼式ガスセンサも、上述した球形状の接触燃焼式ガスセンサと同様の課題を有する。すなわち、担体の表面積に対する質量は依然として大きいため、熱容量も大きく、低濃度領域における感度と検出濃度範囲の向上には、限界がある。また、熱容量が依然として大きいことで、昇温時間に時間がかかるとともに、担体表面に温度むらが生じやすく、良好なガス選択性を得にくい。また、高濃度領域に関しても、円筒形状の担体の内面の面積分だけ、接触面積が増大するので、球形状の接触燃焼式ガスセンサと比較して、若干、検出可能濃度範囲は広がるものの、実用上、従来の球形状の接触燃焼式ガスセンサとさほど変わらない。   However, the catalytic combustion gas sensor manufactured by the manufacturing method of Patent Document 1 also has the same problems as the spherical catalytic combustion gas sensor described above. That is, since the mass with respect to the surface area of the carrier is still large, the heat capacity is also large, and there is a limit in improving the sensitivity and the detection concentration range in the low concentration region. Further, since the heat capacity is still large, it takes a long time to raise the temperature, and temperature unevenness is likely to occur on the surface of the carrier, making it difficult to obtain good gas selectivity. Also, in the high concentration region, the contact area increases by the area of the inner surface of the cylindrical carrier, so that the detectable concentration range is slightly expanded compared to the spherical contact combustion type gas sensor, but in practical use. The conventional spherical contact combustion type gas sensor is not so different.

そこで、本発明の目的は、より検出濃度範囲が広く、高感度の接触燃焼式ガスセンサ及びその製造方法を提供することにある。   Therefore, an object of the present invention is to provide a highly sensitive catalytic combustion gas sensor having a wider detection concentration range and a manufacturing method thereof.

上記目的を達成するための本発明の接触燃焼式ガスセンサは、請求項1に記載の通り、導線に触媒を担持する担体が付着され、当該触媒による可燃性ガスの接触燃焼により、当該可燃性ガスの濃度を検出する接触燃焼式ガスセンサにおいて、前記触媒は、前記担体に混合された状態で担持され、前記担体の表面に、前記担体の内部の触媒を前記可燃性ガスと接触可能にする複数の孔が形成され、前記担体の厚さは、0.1mm乃至0.5mmであることを特徴とする。   In order to achieve the above object, a catalytic combustion type gas sensor according to the present invention has a carrier carrying a catalyst attached to a conducting wire, and the combustible gas is obtained by catalytic combustion of the combustible gas by the catalyst. In the contact combustion type gas sensor for detecting the concentration of the catalyst, the catalyst is supported in a state of being mixed with the carrier, and a plurality of catalysts that make the catalyst inside the carrier come into contact with the combustible gas on the surface of the carrier. A hole is formed, and the thickness of the carrier is 0.1 mm to 0.5 mm.

また、請求項2に記載の接触燃焼式ガスセンサは、請求項1に記載の接触燃焼式ガスセンサにおいて、前記複数の孔が、前記担体の表面の第一の部分から、前記担体の内部を通って、前記担体の表面の第二の部分に貫通する貫通孔を有することを特徴とする。   The catalytic combustion type gas sensor according to claim 2 is the catalytic combustion type gas sensor according to claim 1, wherein the plurality of holes pass from the first part of the surface of the carrier through the inside of the carrier. And a through hole penetrating the second portion of the surface of the carrier.

また、請求項3に記載の接触燃焼式ガスセンサは、請求項1又は2に記載の接触燃焼式ガスセンサにおいて、前記導線がコイル状に構成され、前記担体は円筒形状に前記導線に付着し、前記担体の厚さが、前記担体の外面と内面との間の厚さであることを特徴とする。   Moreover, the catalytic combustion type gas sensor according to claim 3 is the catalytic combustion type gas sensor according to claim 1 or 2, wherein the conducting wire is formed in a coil shape, the carrier is attached to the conducting wire in a cylindrical shape, The thickness of the carrier is a thickness between the outer surface and the inner surface of the carrier.

また、請求項4に記載の接触燃焼式ガスセンサは、請求項1又は2に記載の接触燃焼式ガスセンサにおいて、前記導線が平面の波線状に構成され、前記担体は薄板状に前記導線に付着し、前記担体の厚さが、前記担体の一方の面と他方の面との間の厚さであることを特徴とする。   According to a fourth aspect of the present invention, there is provided the catalytic combustion type gas sensor according to the first or second aspect, wherein the conducting wire is configured as a flat wavy line, and the carrier adheres to the conducting wire in a thin plate shape. The thickness of the carrier is a thickness between one surface and the other surface of the carrier.

また、上記目的を達成するための本発明の接触燃焼式ガスセンサは、請求項5に記載の通り、 導線に触媒を担持する担体が付着され、当該触媒による可燃性ガスの接触燃焼により、当該可燃性ガスの濃度を検出する接触燃焼式ガスセンサにおいて、前記触媒は、前記担体に混合された状態で担持され、前記担体の表面に、前記担体の内部の触媒を前記可燃性ガスと接触可能にする複数の孔が形成され、前記複数の孔は、前記担体の表面の第一の部分から、前記担体の内部を通って、前記担体の表面の第二の部分に貫通する貫通孔を有することを特徴とする。   In order to achieve the above object, the catalytic combustion type gas sensor of the present invention has a carrier supporting a catalyst attached to a conducting wire, and the combustible gas by catalytic combustion of the combustible gas by the catalyst. In the catalytic combustion type gas sensor for detecting the concentration of the volatile gas, the catalyst is supported in a state of being mixed with the carrier, and the catalyst inside the carrier can be brought into contact with the flammable gas on the surface of the carrier. A plurality of holes are formed, the plurality of holes having a through-hole penetrating from a first portion of the surface of the carrier through the inside of the carrier to a second portion of the surface of the carrier. Features.

また、請求項6に記載の接触燃焼式ガスセンサは、請求項5に記載の接触燃焼式ガスセンサにおいて、前記導線がコイル状に構成され、前記担体は円筒形状に前記導線に付着し、前記貫通孔が、前記担体の外面と内面との間を貫通していることを特徴とする。   The catalytic combustion type gas sensor according to claim 6 is the catalytic combustion type gas sensor according to claim 5, wherein the conducting wire is configured in a coil shape, the carrier is attached to the conducting wire in a cylindrical shape, and the through hole Is characterized by penetrating between the outer surface and the inner surface of the carrier.

また、請求項7に記載の接触燃焼式ガスセンサは、請求項5に記載の接触燃焼式ガスセンサにおいて、前記導線が平面の波線状に構成され、前記担体は薄板状に前記導線に付着し、前記貫通孔が、前記担体の一方の面と他方の面との間を貫通していることを特徴とする請求項5に記載の接触燃焼式ガスセンサ。   The catalytic combustion type gas sensor according to claim 7 is the catalytic combustion type gas sensor according to claim 5, wherein the conducting wire is formed in a flat wavy shape, the carrier adheres to the conducting wire in a thin plate shape, 6. The catalytic combustion type gas sensor according to claim 5, wherein the through hole penetrates between one surface and the other surface of the carrier.

また、請求項8に記載の接触燃焼式ガスセンサは、請求項1乃至7のいずれかに記載された接触燃焼式ガスセンサにおいて、水素ガス及び一酸化炭素ガスが混合された可燃性ガスの中から、前記水素ガス又は前記一酸化炭素ガスのいずれか一方のガスの濃度を検出することを特徴とする。   Moreover, the catalytic combustion type gas sensor according to claim 8 is the catalytic combustion type gas sensor according to any one of claims 1 to 7, wherein the catalytic combustion type gas sensor is selected from the combustible gas in which hydrogen gas and carbon monoxide gas are mixed. The concentration of either the hydrogen gas or the carbon monoxide gas is detected.

上記目的を達成するための本発明の接触燃焼式ガスセンサの製造方法は、請求項9に記載の通り、可燃性ガスの接触燃焼により、当該可燃性ガスの濃度を検出する接触燃焼式ガスセンサの製造方法において、電着樹脂、触媒及び担体を含む電着液に導線を浸し、電着により、前記電着樹脂及び前記触媒が混合された前記担体を、前記導線に付着させる電着工程と、前記導線に付着した前記担体から前記電着樹脂が分離するように前記担体を焼成し、当該担体に前記触媒が混合され、内部の触媒を前記可燃性ガスと接触可能にする複数の孔が表面に形成され、前記担体の厚さが、0.1mm乃至0.5mmとなる焼成工程とを有することを特徴とする。   In order to achieve the above object, a method for producing a catalytic combustion type gas sensor according to the present invention provides a method for producing a catalytic combustion type gas sensor that detects the concentration of the combustible gas by the catalytic combustion of the combustible gas. In the method, an electrodeposition step of immersing a conducting wire in an electrodeposition solution containing an electrodeposition resin, a catalyst and a carrier, and attaching the carrier mixed with the electrodeposition resin and the catalyst to the conducting wire by electrodeposition; The support is baked so that the electrodeposition resin is separated from the support attached to the conductor, the catalyst is mixed with the support, and a plurality of holes are provided on the surface to allow the catalyst inside to be in contact with the combustible gas. And a firing step in which the thickness of the carrier is 0.1 mm to 0.5 mm.

また、請求項10に記載の接触燃焼式ガスセンサの製造方法は、請求項9に記載の製造方法において、前記複数の孔が、前記第一の部分から、前記担体の内部を通って、前記第二の部分に貫通する貫通孔を有することを特徴とする。   Further, the manufacturing method of the catalytic combustion type gas sensor according to claim 10 is the manufacturing method according to claim 9, wherein the plurality of holes pass from the first part through the inside of the carrier. It has a through-hole penetrating the second part.

また、請求項11に記載の接触燃焼式ガスセンサの製造方法は、請求項9又は10に記載の製造方法において、前記導線がコイル状に構成され、前記担体は円筒形状に前記導線に付着し、前記担体の厚さが、前記担体の外面と内面との間の厚さであることを特徴とする。   Moreover, the manufacturing method of the catalytic combustion type gas sensor of Claim 11 WHEREIN: The manufacturing method of Claim 9 or 10 WHEREIN: The said conducting wire is comprised by coil shape, the said carrier adheres to the said conducting wire in the shape of a cylinder, The thickness of the carrier is a thickness between an outer surface and an inner surface of the carrier.

また、請求項12に記載の接触燃焼式ガスセンサの製造方法は、請求項9又は10に記載の製造方法において、前記導線が平面の波線状に構成され、前記担体は薄板状に前記導線に付着し、前記担体の厚さが、前記担体の一方の面と他方の面との間の厚さであることを特徴とする。   A method for manufacturing a catalytic combustion type gas sensor according to claim 12 is the method according to claim 9 or 10, wherein the conducting wire is formed in a flat wavy shape, and the carrier is attached to the conducting wire in a thin plate shape. The thickness of the carrier is a thickness between one side and the other side of the carrier.

また、上記目的を達成するための本発明の接触燃焼式ガスセンサ燃焼式ガスセンサの製造方法は、請求項13に記載の通り、可燃性ガスの接触燃焼により、当該可燃性ガスの濃度を検出する接触燃焼式ガスセンサの製造方法において、電着樹脂、触媒及び担体を含む電着液に導線を浸し、電着により、前記電着樹脂及び前記触媒が混合された前記担体を、前記導線に付着させる電着工程と、前記導線に付着した前記担体から前記電着樹脂が分離するように、前記担体を焼成し、当該担体に、前記触媒が混合され、内部の触媒を前記可燃性ガスと接触可能にする複数の孔が表面に形成され、前記複数の孔は、前記担体の表面の第一の部分から、前記担体の内部を通って、前記担体の表面の第二の部分に貫通する貫通孔を有する焼成工程とを有することを特徴とする。   Moreover, the manufacturing method of the contact combustion type gas sensor combustion type gas sensor of the present invention for achieving the above object is a contact method for detecting the concentration of the combustible gas by the contact combustion of the combustible gas as described in claim 13. In the method for manufacturing a combustion type gas sensor, an electric wire is immersed in an electrodeposition liquid containing an electrodeposition resin, a catalyst and a carrier, and the carrier mixed with the electrodeposition resin and the catalyst is attached to the electric wire by electrodeposition. And firing the carrier so that the electrodeposition resin is separated from the carrier adhered to the conductor, and the catalyst is mixed with the carrier so that the catalyst inside can be contacted with the combustible gas. A plurality of holes are formed on the surface, the plurality of holes having through holes penetrating from the first portion of the surface of the carrier through the inside of the carrier to the second portion of the surface of the carrier. Having a firing step It is characterized in.

また、請求項14に記載の接触燃焼式ガスセンサの製造方法は、請求項13に記載の製造方法において、前記導線がコイル状に構成され、前記担体は円筒形状に前記導線に付着し、前記貫通孔が、前記担体の外面と内面との間を貫通していることを特徴とする。   Further, the manufacturing method of the catalytic combustion type gas sensor according to claim 14 is the manufacturing method according to claim 13, wherein the conducting wire is configured in a coil shape, the carrier is attached to the conducting wire in a cylindrical shape, and the penetration is made. A hole is formed between the outer surface and the inner surface of the carrier.

また、請求項15に記載の接触燃焼式ガスセンサの製造方法は、請求項13に記載の製造方法において、前記導線が平面の波線状に構成され、前記担体は薄板状に前記導線に付着し、前記貫通孔が、前記担体の一方の面と他方の面との間を貫通していることを特徴とする。   Moreover, the manufacturing method of the catalytic combustion type gas sensor according to claim 15 is the manufacturing method according to claim 13, wherein the conducting wire is configured in a flat wavy shape, and the carrier adheres to the conducting wire in a thin plate shape, The through hole penetrates between one surface and the other surface of the carrier.

また、請求項16に記載の接触燃焼式ガスセンサの製造方法は、請求項9乃至15のいずれかに記載の製造方法において、前記電着樹脂の重量と前記触媒及び前記担体の合計重量との比が、60:40乃至85:15であることを特徴とする。   The method for producing a catalytic combustion type gas sensor according to claim 16 is the method according to any one of claims 9 to 15, wherein the ratio of the weight of the electrodeposition resin to the total weight of the catalyst and the carrier is used. Is 60:40 to 85:15.

また、請求項17に記載の接触燃焼式ガスセンサ燃焼式ガスセンサの製造方法は、請求項9乃至15のいずれかに記載の製造方法において、前記電着工程で、前記電着液に浸された前記導線に、間欠的に電圧が印加されることを特徴とする。   Moreover, the manufacturing method of the contact combustion type gas sensor combustion type gas sensor according to claim 17 is the manufacturing method according to any one of claims 9 to 15, wherein the electrodeposition step is performed by immersing the electrodeposition liquid in the electrodeposition step. A voltage is intermittently applied to the conducting wire.

本発明の接触燃焼式ガスセンサは、担体が触媒を混合した状態で薄膜状に担持され、担体内部の触媒に可燃性ガスが接触可能な複数の孔が担体表面に形成されるので、触媒による接触燃焼が行われる領域が大幅に増大し、高濃度側の検出範囲が飛躍的に広がる。また、導線に担体を薄膜状に付着させ且つ多孔質にしているので、担体の熱容量が大きく低下し、低濃度領域における感度が向上し、低濃度側の検出範囲も広がる。また、熱容量の低下により、担体の表面温度の温度むらが起きず、良好なガス選択性が得られる。   In the catalytic combustion type gas sensor of the present invention, the carrier is supported in the form of a thin film with the catalyst mixed therein, and a plurality of holes are formed on the surface of the carrier so that the combustible gas can contact the catalyst inside the carrier. The area where combustion is performed is greatly increased, and the detection range on the high concentration side is dramatically expanded. Further, since the carrier is attached to the conductive wire in a thin film and made porous, the heat capacity of the carrier is greatly reduced, the sensitivity in the low concentration region is improved, and the detection range on the low concentration side is widened. Further, due to the decrease in the heat capacity, the temperature unevenness of the surface temperature of the carrier does not occur and good gas selectivity can be obtained.

特に、一酸化炭素ガスの検出に用いる場合、本発明の接触燃焼式ガスセンサは、ほぼ0.005%(50ppm)〜7%(70000ppm)の広い濃度測定範囲を有し、小型・簡易型のセンサにもかかわらず、大規模で大電源を必要とする赤外線方式やガスクロマトグラフィー方式の固定型の濃度測定装置と同等の濃度範囲の測定が可能となる。   In particular, when used for the detection of carbon monoxide gas, the catalytic combustion type gas sensor of the present invention has a wide concentration measurement range of approximately 0.005% (50 ppm) to 7% (70000 ppm), and is a small and simple sensor. Nevertheless, it is possible to measure a concentration range equivalent to that of a fixed concentration measuring device of infrared type or gas chromatography type that requires a large-scale and large power source.

以下、本発明の実施の形態を図面に従って説明する。しかしながら、本発明の技術的範囲は、本実施の形態の範囲に限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the technical scope of the present invention is not limited to the scope of the present embodiment.

本発明の実施の形態における接触燃焼式ガスセンサは、導線に付着する担体に、触媒が混合された状態で担持され、さらに、担体表面に、担体内部の触媒を可燃性ガスと接触可能にする複数の孔が形成されていることを特徴としている。好ましくは、担体が貫通孔を有する程度に多孔質化される。   The catalytic combustion type gas sensor according to the embodiment of the present invention is supported in a state where a catalyst is mixed with a carrier adhering to a conducting wire, and further, a plurality of catalysts capable of contacting the catalyst inside the carrier with a combustible gas on the surface of the carrier. These holes are formed. Preferably, the support is made porous so as to have through holes.

すなわち、担体の表面にのみ触媒が担持されている場合と比較して、担体の内部にも触媒が担持され、その内部にある触媒が、複数の孔から進入する可燃性ガスと接触可能となることで、担体における触媒が接触燃焼できる領域が飛躍的に増大する。また、担体の結晶構造に由来する微細な孔と比較して、担体内部の触媒を可燃性ガスと接触可能にする程度の比較的大きな径の孔が形成されるので、接触燃焼に必要な酸素を担体内部の触媒に供給する十分な通気性も確保される。孔内部の通気性が確保されることから、孔内部への可燃性ガス及び酸素の進入、さらには、接触燃焼による二酸化炭素の孔内部からの排出が効率的に行われる。このため、従来、燃焼飽和のため測定できなかった高濃度の範囲についても、測定可能範囲が大幅に拡大する。例えば、一酸化炭素ガスの検出においては、従来、測定可能濃度の上限が0.5%(5000ppm)程度であったものが、7%(70000ppm)程度まで測定することできるようになる。   That is, compared with the case where the catalyst is supported only on the surface of the carrier, the catalyst is also supported inside the carrier, and the catalyst inside the carrier can come into contact with the combustible gas entering from a plurality of holes. As a result, the area of the carrier where the catalyst can be contact-combusted increases dramatically. In addition, compared to the fine pores derived from the crystal structure of the carrier, pores with a relatively large diameter are formed so that the catalyst inside the carrier can come into contact with the combustible gas. Sufficient breathability is also ensured for supplying the catalyst to the catalyst inside the carrier. Since the air permeability inside the hole is ensured, the inflow of combustible gas and oxygen into the inside of the hole, and further the discharge of carbon dioxide from the inside of the hole by catalytic combustion is performed efficiently. For this reason, the measurable range is greatly expanded even in a high concentration range that could not be measured due to combustion saturation. For example, in the detection of carbon monoxide gas, conventionally, the upper limit of the measurable concentration is about 0.5% (5000 ppm), but it can be measured up to about 7% (70000 ppm).

また、担体を導線に対して薄膜状に付着させ且つ担体を多孔質化し、導線に付着する担体の質量を小さくすることで、担体の熱容量が低下し、低濃度領域における感度も向上させることが可能となる。特に、上述のように、触媒が接触燃焼可能となる表面積を飛躍的に増大させたことに加えて、導線に付着する担体の質量を小さくすることで、低濃度領域における著しい感度向上効果を得ることができる。例えば、一酸化炭素ガスの検出において、従来、測定可能濃度の下限が、0.03%(300ppm)程度であったものが、0.005%(50ppm)程度まで測定することができるようになる。   Also, by attaching the carrier to the conductor in a thin film and making the carrier porous and reducing the mass of the carrier attached to the conductor, the heat capacity of the carrier can be reduced and the sensitivity in the low concentration region can be improved. It becomes possible. In particular, as described above, in addition to dramatically increasing the surface area at which the catalyst can be catalytically combusted, by reducing the mass of the carrier adhering to the conductor, a significant sensitivity improvement effect in a low concentration region is obtained. be able to. For example, in the detection of carbon monoxide gas, conventionally, the lower limit of the measurable concentration is about 0.03% (300 ppm), but it can be measured to about 0.005% (50 ppm). .

以下、本発明の実施の形態における接触燃焼式ガスセンサの構造及び製造方法について詳しく説明する。   Hereinafter, the structure and manufacturing method of the catalytic combustion type gas sensor in the embodiment of the present invention will be described in detail.

図2は、本発明の実施の形態における接触燃焼式ガスセンサの構造の一例を示す外観斜視図である。図2(a)に示すように、本発明の実施の形態における接触燃焼式ガスセンサ10は、コイル線(例えば、白金線又はニッケル線など)12に触媒を担持する担体14が薄膜状に付着した構造を有する。すなわち、担体14が、コイル線12に対して薄膜状に衣のように付着し、コイルの中心部分は中空となる。また、コイル線の巻回ピッチが薄膜の厚さより狭い場合は、隣接するコイル線12に付着する担体同士が接触し、図2(b)に示す接触燃焼式ガスセンサ10ように、コイル線12が薄膜状の担体14で覆われる中空の円筒形状となる。なお、図2及び図3に示されない触媒及び担体14の表面に形成される複数の孔については、図4において説明する。   FIG. 2 is an external perspective view showing an example of the structure of the catalytic combustion type gas sensor in the embodiment of the present invention. As shown in FIG. 2A, in the catalytic combustion type gas sensor 10 according to the embodiment of the present invention, a carrier 14 supporting a catalyst is attached to a coil wire (for example, platinum wire or nickel wire) 12 in a thin film shape. It has a structure. That is, the carrier 14 adheres like a garment to the coil wire 12 like a thin film, and the central portion of the coil becomes hollow. Further, when the winding pitch of the coil wire is narrower than the thickness of the thin film, the carriers adhering to the adjacent coil wire 12 come into contact with each other, and the coil wire 12 is formed like a contact combustion gas sensor 10 shown in FIG. The hollow cylindrical shape covered with the thin film carrier 14 is formed. Note that the catalyst and the plurality of holes formed in the surface of the carrier 14 not shown in FIGS. 2 and 3 will be described with reference to FIG.

図3は、本発明の実施の形態における接触燃焼式ガスセンサの構造の別の例を示す模式図である。図3(a)に示されるように、接触燃焼式ガスセンサ10は、コイル線12に代わって、平らな三角波状の導線13に、担体14が薄膜状に付着した構成であってもよい。図3(b)は、図3(a)の矢印Aの方向から見た図であり、接触燃焼式ガスセンサ10の担体14の厚さが示される。また、図2(b)のコイル線12の場合と同様に、三角波状の導線13のピッチが狭い場合は、図3(c)に示す接触燃焼式ガスセンサ10のように、隣接する導線に付着する担体同士が接触し、薄板状の形状となる。図3(d)は、図3(c)の矢印Bの方向から見た図であり、図3(b)同様に、接触燃焼式ガスセンサ10の担体14の厚さが示される。このような薄板状に構成される接触燃焼式ガスセンサ10は、例えば、プリント基板への適用など、厚さが制限される部位への適用に好適である。また、平面の薄板状であれば、形状は三角波状に限らず、例えば、矩形波状であってもかまわない。   FIG. 3 is a schematic diagram showing another example of the structure of the catalytic combustion type gas sensor in the embodiment of the present invention. As shown in FIG. 3A, the catalytic combustion type gas sensor 10 may have a configuration in which a carrier 14 is attached to a flat triangular wave conductor 13 in a thin film shape instead of the coil wire 12. FIG. 3B is a view as seen from the direction of the arrow A in FIG. 3A, and shows the thickness of the carrier 14 of the catalytic combustion type gas sensor 10. Similarly to the case of the coil wire 12 of FIG. 2B, when the pitch of the triangular wave-like conductor 13 is narrow, it adheres to the adjacent conductor as in the contact combustion type gas sensor 10 shown in FIG. The carriers to be brought into contact with each other form a thin plate shape. FIG. 3D is a view seen from the direction of arrow B in FIG. 3C, and the thickness of the carrier 14 of the catalytic combustion type gas sensor 10 is shown as in FIG. 3B. The catalytic combustion type gas sensor 10 configured in such a thin plate shape is suitable for application to a portion where the thickness is limited, such as application to a printed circuit board. Moreover, as long as it is a flat thin plate shape, the shape is not limited to a triangular wave shape, and may be a rectangular wave shape, for example.

図4は、本発明の実施の形態における接触燃焼式ガスセンサの特徴を説明するための図である。図4(a)は、従来の電着製法により製造される接触燃焼式ガスセンサセンサの断面図であり、点線部分の拡大図も示される。また、図4(b)は、本発明の実施の形態における電着製法により製造される接触燃焼式ガスセンサの断面図であり、点線部分の拡大図も示される。図4では、コイル線12に担体14が円筒形状に付着して構成される接触燃焼式ガスセンサが例示される。   FIG. 4 is a view for explaining the characteristics of the catalytic combustion type gas sensor according to the embodiment of the present invention. Fig.4 (a) is sectional drawing of the contact combustion type gas sensor sensor manufactured by the conventional electrodeposition manufacturing method, and the enlarged view of a dotted-line part is also shown. FIG. 4B is a cross-sectional view of a catalytic combustion type gas sensor manufactured by the electrodeposition method in the embodiment of the present invention, and an enlarged view of a dotted line portion is also shown. FIG. 4 illustrates a contact combustion type gas sensor configured by attaching a carrier 14 to a coil wire 12 in a cylindrical shape.

図4(a)において、従来の電着製法による接触燃焼式ガスセンサは、上述したように、担体14を電着によりコイル線12に付着させ、焼成した後、その表面に触媒16を塗布して形成される。また、従来は、触媒16を、担体の表面に担持することが意図されていたため、焼成の際に、導線に担体とともに付着する電着樹脂が分離するかどうかは考慮されていなかった。このため、焼成により、多少の電着樹脂が分離し、担体の表面に複数の孔が形成されるが、ほとんどは担体の表面付近にとどまる小さく、浅いものである。従って、触媒16は、その担体14の表面及び形成された孔18の浅い部分(表面付近)にしか担持されない。   In FIG. 4 (a), as described above, the catalytic combustion type gas sensor by the conventional electrodeposition manufacturing method attaches the carrier 14 to the coil wire 12 by electrodeposition and bakes it, and then applies the catalyst 16 to the surface. It is formed. Conventionally, since the catalyst 16 is intended to be supported on the surface of the carrier, it has not been considered whether or not the electrodeposition resin adhering to the conductor together with the carrier is separated during firing. For this reason, some electrodeposition resin is separated by firing, and a plurality of pores are formed on the surface of the carrier, but most of them are small and shallow that remain near the surface of the carrier. Therefore, the catalyst 16 is supported only on the surface of the carrier 14 and the shallow portion (near the surface) of the formed hole 18.

また、担体14の表面付近にのみ触媒16を担持させる場合、触媒を担持する表面積を多くするためには、担体に一定の厚さが必要となるため、コイルに付着する担体の膜厚d1は、比較的厚い。その厚さは、例えば、1mm以上である。膜厚が比較的厚いことも、焼成により形成される孔が、担体内部に深く形成されない要因となる。さらに、触媒のほとんどは、担体の表面に付着しているため、燃焼が表面で生じ、表面付近でその燃焼による二酸化炭素が発生するため、可燃性ガス及び酸素が孔内部に入り込みにくい構造なので、結果的に、たとえ孔内部に触媒が付着していても、内部での触媒燃焼が生じにくい環境となっている。   Further, when the catalyst 16 is supported only in the vicinity of the surface of the carrier 14, in order to increase the surface area for supporting the catalyst, the carrier needs to have a certain thickness. Therefore, the thickness d1 of the carrier adhering to the coil is Relatively thick. The thickness is, for example, 1 mm or more. The relatively thick film thickness is also a factor that the holes formed by firing are not deeply formed inside the carrier. Furthermore, since most of the catalyst is attached to the surface of the carrier, combustion occurs on the surface, and carbon dioxide is generated near the surface, so that the combustible gas and oxygen are difficult to enter the pores. As a result, even if the catalyst adheres to the inside of the hole, an environment in which catalytic combustion does not easily occur inside.

一方、図4(b)において、本発明の電着製法による接触燃焼式ガスセンサでは、触媒16が担体14に混合された状態で担持される。従って、触媒16が担体14の表面に限らず、担体14の内部にもほぼ均一に存在する。そして、担体14の表面には、内部の触媒を可燃性ガスと接触可能とするのに必要な通気性を有する程度の大きさ、深さを有する多数の孔18が形成される。特に、円筒形状の担体の外面と内面を貫く貫通孔19が形成されることが好ましい。また、図3(c)に例示したように、導線に担体が薄板状に付着する場合は、貫通孔は、担体の薄板の一方の面から他方の面を貫くものとなる。貫通孔19は、その両端が開口しているため、通気性に特に優れている。このように、通気性が確保された孔が多数形成されることで、担体内部への可燃性ガス及びその燃焼のための酸素の供給、さらには、燃焼後の二酸化炭素の排出がスムーズに行われる。このため、担体の表面のみならず、担体内部での触媒による接触燃焼を効率よく行うことでき、接触燃焼が行われる領域が飛躍的に増大する。従って、高濃度領域における検出可能範囲が大きく拡大する。   On the other hand, in FIG. 4B, in the catalytic combustion type gas sensor according to the electrodeposition method of the present invention, the catalyst 16 is supported in a state of being mixed with the carrier 14. Therefore, the catalyst 16 is present not only on the surface of the carrier 14 but also substantially uniformly inside the carrier 14. A large number of holes 18 are formed on the surface of the carrier 14 having such a size and depth as to have air permeability necessary for allowing the internal catalyst to come into contact with the combustible gas. In particular, it is preferable that a through hole 19 penetrating the outer surface and the inner surface of the cylindrical carrier is formed. Further, as illustrated in FIG. 3C, when the carrier adheres to the conducting wire in a thin plate shape, the through hole penetrates from one surface of the thin plate of the carrier to the other surface. The through-hole 19 is particularly excellent in air permeability because both ends thereof are open. In this way, by forming a large number of holes with air permeability, the supply of combustible gas and oxygen for combustion inside the carrier, and the discharge of carbon dioxide after combustion can be performed smoothly. Is called. For this reason, not only the surface of a support | carrier but the catalytic combustion by the catalyst inside a support | carrier can be performed efficiently, and the area | region where a contact combustion is performed increases dramatically. Therefore, the detectable range in the high density region is greatly expanded.

また、膜厚d2を薄くすることで、焼成の際に、電着樹脂の分離により形成される多数の孔が、相対的に担体内部の深いところまで形成されることになり、また、貫通孔が形成されやすくなる。さらに、膜厚d2を薄くすることで、担体自体の質量が小さくなり、担体の熱容量を下げることができるので、低濃度領域における感度の向上が図られる。本発明の発明者らの実験によれば、好ましい膜厚d2は、0.1mm〜0.5mmである。また、被測定ガス中の可燃性ガスを、担体内部の触媒に接触燃焼可能とし、広い検出濃度範囲を得るためには、電着樹脂の分離により担体表面に形成される孔は、およそ10μm〜60μmの径にすることが望まれる。   In addition, by reducing the film thickness d2, a large number of holes formed by separation of the electrodeposition resin are formed at a relatively deep position inside the carrier during firing, and the through holes are also formed. Is easily formed. Further, by reducing the film thickness d2, the mass of the carrier itself can be reduced and the heat capacity of the carrier can be lowered, so that the sensitivity in the low concentration region can be improved. According to the experiments by the inventors of the present invention, the preferred film thickness d2 is 0.1 mm to 0.5 mm. Further, in order to make the combustible gas in the gas to be measured in contact combustion with the catalyst inside the carrier and to obtain a wide detection concentration range, the hole formed on the surface of the carrier by separation of the electrodeposition resin is approximately 10 μm to It is desired to have a diameter of 60 μm.

上述したように、本発明の実施の形態における接触燃焼式ガスセンサは、従来の電着製法により製造される接触燃焼式ガスセンサと比較して、濃度の検出範囲が低濃度側及び高濃度側の両側において、大きく拡大する顕著な効果を有するが、この点も含めて、本発明の実施の形態における接触燃焼式ガスセンサは、次の点で、非常に優れた効果を有する。   As described above, the contact combustion type gas sensor according to the embodiment of the present invention has a concentration detection range on both the low concentration side and the high concentration side compared to the contact combustion type gas sensor manufactured by the conventional electrodeposition method. However, the catalytic combustion type gas sensor according to the embodiment of the present invention including this point has a very excellent effect in the following points.

(1)触媒が担体に混合された状態で担持され、担体表面に、担体内部の触媒が可燃性ガスと接触可能な通気性のある複数の孔が形成されるので、接触燃焼が行われる領域が飛躍的に増大し、高濃度領域においても、検出可能範囲が大幅に広がる。   (1) A region where catalytic combustion is performed because a plurality of air-permeable holes are formed on the surface of the carrier so that the catalyst inside the carrier can come into contact with the combustible gas. Dramatically increases the detectable range even in a high concentration region.

(2)接触燃焼が行われる領域を十分確保しつつ、担体の質量が大幅に減少し、熱容量が大く低下することから、低濃度側の検出可能範囲が広がり、さらにその領域での感度を安定的に維持される。   (2) The mass of the carrier is greatly reduced and the heat capacity is greatly reduced while sufficiently securing a region where catalytic combustion is performed, so that the detectable range on the low concentration side is expanded, and the sensitivity in that region is further increased. Maintained stably.

(3)導線に担体を薄膜状にして付着させ且つ多孔質化させるため、担体の熱容量が低下するので、担体の表面の温度のばらつきがなくなり、可燃性ガスの種類に対する選択性が向上する。   (3) Since the carrier is attached to the conductive wire in a thin film and is made porous, the heat capacity of the carrier is reduced, so that there is no variation in the temperature of the surface of the carrier and the selectivity to the type of combustible gas is improved.

(4)担体の熱容量が小さいことから、接触燃焼が行われる面積部分に対するヒートクリーニングにおける昇温や昇温後の検出のために適正測定温度(設定温度)に降下するまでの時間が大幅に短縮される。   (4) Since the heat capacity of the carrier is small, the time until the temperature falls to the appropriate measurement temperature (set temperature) for heat-up and detection after heat-up in the area where catalytic combustion is performed is greatly reduced. Is done.

(5)ヒートクリーニングに要する時間が短縮されるので、導線への負荷が軽減され、導線の寿命が延びる。   (5) Since the time required for heat cleaning is shortened, the load on the conducting wire is reduced and the life of the conducting wire is extended.

図5は、本実施の形態における接触燃焼式ガスセンサの製造方法について説明するための図である。本発明の接触燃焼式ガスセンサは、電着塗装手法を用いて、以下のようにして製造される。   FIG. 5 is a diagram for explaining a method of manufacturing the catalytic combustion type gas sensor in the present embodiment. The catalytic combustion type gas sensor of the present invention is manufactured as follows using an electrodeposition coating method.

まず、図5(a)に示すように、15μm〜30μm程度の細線のニッケル(Ni)線や白金(Pt)線からコイル線を作成する。また、コイル線の線材として、Fe−Pd系合金線が用いられてもよい。また、あらかじめ作成されたコイル線が用意されていてもよい。   First, as shown to Fig.5 (a), a coil wire is created from the nickel (Ni) wire and platinum (Pt) wire of a thin wire | line of about 15 micrometers-30 micrometers. In addition, an Fe—Pd alloy wire may be used as the wire of the coil wire. A coil wire prepared in advance may be prepared.

続いて、図5(b)に示すように、担体、触媒、電着樹脂が混合された電着液にコイル線を浸す。そして、コイル線を陰極とし、所定時間、所定電圧を印加し、触媒と電着樹脂が混合された担体をコイル線に電着させる。このとき、電圧を間欠的に印加することが好ましい。電圧を間欠的に印加するのは、電着中の電着液の成分が一定濃度を保つための拡散時間を設けることができ、一定電圧を持続的に印加する場合と比較して、電着液成分の濃度むらを抑えることができるからである。   Subsequently, as shown in FIG. 5B, the coil wire is immersed in an electrodeposition solution in which a carrier, a catalyst, and an electrodeposition resin are mixed. A coil wire is used as a cathode, a predetermined voltage is applied for a predetermined time, and a carrier in which a catalyst and an electrodeposition resin are mixed is electrodeposited on the coil wire. At this time, it is preferable to apply the voltage intermittently. The voltage is intermittently applied because it is possible to provide a diffusion time for maintaining a constant concentration of the components of the electrodeposition liquid during electrodeposition, compared with the case where a constant voltage is applied continuously. This is because the concentration unevenness of the liquid component can be suppressed.

図6は、間欠的に印加される電圧の波形例を示す図である。発明者らの実験においては、周波数10Hz以上であれば、電着状態は良好であるが、それより小さいと、コイル線の両端部での付着が優先的に生じ、担体の付着量にばらつきが生じ、均一性がなくなる。   FIG. 6 is a diagram illustrating a waveform example of the voltage applied intermittently. In the experiments by the inventors, the electrodeposition state is good if the frequency is 10 Hz or more, but if the frequency is smaller than that, adhesion at both ends of the coil wire occurs preferentially, and the amount of adhesion of the carrier varies. Resulting in loss of uniformity.

電着時間は、積算電力量に基づいて決定し、積算電力量が所定量になるように調整する。積算電力量に応じて膜厚が変化するからである。本発明の発明者は、膜厚が0.1mm〜0.5mm(さらに好ましくは、0.15〜0.35mm)の場合に、上述した顕著な特性を有することを見出した。このため、当該膜厚の範囲内になるような積算電力量を求め、設定された電流値及び電圧値に対して、その積算電力量となる電着時間が決められる。膜厚を約0.15〜0.35mmにするための積算電力量は、以下で説明する実施例では、約0.6〜2.0mWである。電着時間が長すぎると、膜厚が当該範囲を超えて厚くなるので、付着量が増え、センサの質量が増大し、熱容量が大きくなるので、感度低下をもたらす。一方、電着時間が短すぎると、付着量が一定せず、コイルに電着液が付着しないむき出し部分が生じてしまう。   The electrodeposition time is determined based on the integrated power amount and adjusted so that the integrated power amount becomes a predetermined amount. This is because the film thickness changes according to the integrated power amount. The inventor of the present invention has found that the above-described remarkable characteristics are obtained when the film thickness is 0.1 mm to 0.5 mm (more preferably, 0.15 to 0.35 mm). For this reason, the integrated electric energy that is within the range of the film thickness is obtained, and the electrodeposition time that becomes the integrated electric energy is determined for the set current value and voltage value. In the embodiment described below, the integrated power amount for making the film thickness about 0.15 to 0.35 mm is about 0.6 to 2.0 mW. If the electrodeposition time is too long, the film thickness becomes thicker than that range, so the amount of adhesion increases, the mass of the sensor increases, and the heat capacity increases, resulting in a decrease in sensitivity. On the other hand, when the electrodeposition time is too short, the amount of adhesion is not constant, and an exposed portion where the electrodeposition liquid does not adhere to the coil is generated.

電着液は、触媒、担体、電着樹脂を含む水溶液であって、それぞれの成分を所定の割合で混合する。各成分の構成割合(重量比)については、電着樹脂:(触媒+担体)が60:40〜85:15であることが好ましい。焼成の際に酸化して孔となる電着樹脂の割合を比較的大きくすることで(最大85%程度)、貫通孔や比較的径が大きく深い孔を多数形成することができ、担体内部の触媒を有効に活用することができる。   The electrodeposition liquid is an aqueous solution containing a catalyst, a carrier, and an electrodeposition resin, and the respective components are mixed at a predetermined ratio. About the component ratio (weight ratio) of each component, it is preferable that electrodeposition resin: (catalyst + support | carrier) is 60: 40-85: 15. By relatively increasing the ratio of the electrodeposition resin that is oxidized during baking to become pores (up to about 85%), a large number of through-holes and relatively large and deep holes can be formed. The catalyst can be used effectively.

電着条件(時間、電圧など)が同一の場合、電着樹脂が少ないと(60%未満)、焼成後の質量が十分減少せず、熱容量が大きくなるので、感度低下を引き起こす。また、電着樹脂が多すぎると(85%超)、質量が小さくなり、熱容量も小さくなるので、感度は向上するが、担体の体積に対する孔部分の割合が大きくなりすぎると、例えば次のような問題が生じる。すなわち、担体の体積に対する孔部分の割合が大きくなりすぎると、担体表面の酸素量(空気層)が増え、比較的高濃度の可燃性ガスを燃焼した場合、担体表面の温度が、高くなりすぎる。例えば、白金(Pt)触媒を用いて、水素ガスと一酸化炭素ガスとが混在するガス中から一酸化炭素ガス濃度を検出する場合において、白金触媒における一酸化炭素ガスを燃焼させるコイル温度は、約160℃であるのに対し、水素を燃焼させるコイル温度は、200℃であり、比較的近い温度にある。従って、一酸化炭素ガスの濃度検出用に接触燃焼式ガスセンサを用いる場合に、担体表面の温度が上がりすぎると、水素の燃焼温度にまで達するおそれがあり、一酸化炭素ガスと水素が混合したガス(一般に都市ガス等炭化水素を燃料としたガスが不完全燃焼したときはこの状態)においては、表面付近で水素をも燃焼してしまい、一酸化炭素ガスの検出選択性の悪化を招いてしまう。   When the electrodeposition conditions (time, voltage, etc.) are the same, if the amount of electrodeposition resin is small (less than 60%), the mass after firing does not decrease sufficiently, and the heat capacity increases, causing a decrease in sensitivity. Further, when the amount of the electrodeposition resin is too much (over 85%), the mass is reduced and the heat capacity is also reduced, so that the sensitivity is improved. However, when the ratio of the pore portion to the volume of the carrier is too large, for example, Problems arise. That is, if the ratio of the pore portion to the volume of the carrier becomes too large, the amount of oxygen (air layer) on the surface of the carrier increases, and the temperature of the surface of the carrier becomes too high when a relatively high concentration of combustible gas is burned. . For example, when a carbon monoxide gas concentration is detected from a gas in which hydrogen gas and carbon monoxide gas are mixed using a platinum (Pt) catalyst, the coil temperature for burning the carbon monoxide gas in the platinum catalyst is: The coil temperature for burning hydrogen is 200 ° C., which is relatively close to about 160 ° C. Therefore, when a contact combustion type gas sensor is used for detecting the concentration of carbon monoxide gas, if the temperature of the support surface rises too much, there is a risk of reaching the combustion temperature of hydrogen, and a gas in which carbon monoxide gas and hydrogen are mixed. (In general, when gas using hydrocarbons as fuel, such as city gas, is incompletely burned), hydrogen is also burned near the surface, leading to poor carbon monoxide gas detection selectivity. .

担体は、通常、アルミナ(Al23)であるが、シリカ(SiO2)や酸化亜鉛(ZnO)などが用いられてもよい。電着樹脂は、例えば、酢酸ビニルとアクリル酸アルキルエステル(アクリル樹脂)の混合物である。 The carrier is usually alumina (Al 2 O 3 ), but silica (SiO 2 ), zinc oxide (ZnO), or the like may be used. The electrodeposition resin is, for example, a mixture of vinyl acetate and an acrylic acid alkyl ester (acrylic resin).

また、触媒は、白金(Pt)、パラジウム(Pd)、ロジウム(Rd)などから、検出したい可燃性ガスの種類に応じて選ばれる。例えば、一酸化炭素ガスの濃度検出には、白金(Pt)が利用される。白金(Pt)触媒において一酸化炭素ガスを燃焼させるコイル温度は、約160℃である。白金触媒において、水素ガスを燃焼させるコイル温度は、200℃であり、一酸化炭素ガスの温度と比較的近い。白金触媒を利用した本実施の形態の接触燃焼式ガスセンサにおいては、コイル線に担体を薄膜状にして付着させるため、コイル線と担体の表面との距離が近くなるとともに、ほぼ一定となるので、担体の表面の温度のばらつきがなくなり、良好な一酸化炭素ガス選択性を得ることができる。従って、一酸化炭素ガスと水素ガスが混合したガスについても、水素ガスを燃焼することなく、一酸化炭素ガスの濃度を正確に検出することができる。   The catalyst is selected from platinum (Pt), palladium (Pd), rhodium (Rd), and the like according to the type of combustible gas to be detected. For example, platinum (Pt) is used for detecting the concentration of carbon monoxide gas. The coil temperature for burning carbon monoxide gas in the platinum (Pt) catalyst is about 160 ° C. In the platinum catalyst, the coil temperature for burning hydrogen gas is 200 ° C., which is relatively close to the temperature of carbon monoxide gas. In the catalytic combustion type gas sensor of the present embodiment using a platinum catalyst, since the carrier is attached to the coil wire in a thin film form, the distance between the coil wire and the surface of the carrier becomes closer and becomes almost constant. There is no variation in temperature on the surface of the carrier, and good carbon monoxide gas selectivity can be obtained. Therefore, the concentration of the carbon monoxide gas can be accurately detected without burning the hydrogen gas even in a gas mixture of the carbon monoxide gas and the hydrogen gas.

また、水素ガスの濃度検出には、パラジウム(Pd)が利用される。パラジウム触媒において、水素ガスを燃焼させるコイル温度は、約150℃であるのに対し、一酸化炭素ガスを燃焼させるコイル温度は、約180℃である。この場合も、水素ガスと一酸化炭素ガスのコイル温度は比較的近い。パラジウムを利用した本発明の実施の形態の接触燃焼式ガスセンサにおいては、良好な水素ガス選択性を得ることができる。すなわち、一酸化炭素ガスと水素ガスが混合したガスについても、一酸化炭素ガスを燃焼することなく、水素ガスの濃度を正確に検出することができる。   Further, palladium (Pd) is used for detecting the concentration of hydrogen gas. In the palladium catalyst, the coil temperature for burning hydrogen gas is about 150 ° C., whereas the coil temperature for burning carbon monoxide gas is about 180 ° C. Also in this case, the coil temperatures of hydrogen gas and carbon monoxide gas are relatively close. In the catalytic combustion type gas sensor of the embodiment of the present invention using palladium, good hydrogen gas selectivity can be obtained. That is, the concentration of the hydrogen gas can be accurately detected without burning the carbon monoxide gas even in a gas mixture of carbon monoxide gas and hydrogen gas.

電着により、図5(c)に示すように、触媒、電着樹脂及び担体の混合物はコイル線に薄膜状に付着し、図2(b)や図3(b)のように、コイル線のピッチが狭い場合は、隣接するコイル線に付着する混合物同士が接触し、外観上、中空薄膜の円筒形状となる。   As shown in FIG. 5 (c), the mixture of the catalyst, the electrodeposition resin and the carrier adheres to the coil wire in a thin film shape by electrodeposition, and the coil wire as shown in FIG. 2 (b) and FIG. 3 (b). When the pitch is narrow, the mixtures adhering to the adjacent coil wires come into contact with each other and form a hollow thin-film cylindrical shape in appearance.

そして、図5(d)に示すように、触媒、電着樹脂及び担体の混合物が薄膜状に付着したコイルを焼成すると、付着した担体に混合されている電着樹脂分が酸化し、分離してしまうので、付着物は、触媒が混合され、複数の孔を有する発泡状態の担体となる。焼成は、空気(酸素)雰囲気中で外部から熱を加えると同時に、コイルに通電し、コイルを加熱することで、内部からも加熱する。焼成は、電着樹脂を分離させるのに必要な条件が設定される。好ましい焼成条件は、雰囲気温度:500〜700℃、コイル印加電圧:3〜5V、焼成時間:10分以上である。雰囲気温度及び印加電圧を、これ以上に上げてしまうと、コイル線(Ni線の場合)が酸化を起こし、コイルの役割を果たさなくなってしまう。また、上記条件以下の場合は、電着樹脂分の燃焼が不十分となり、本発明の接触燃焼式ガスセンサの特性を発揮することができない。   Then, as shown in FIG. 5 (d), when the coil in which the mixture of the catalyst, the electrodeposition resin and the carrier is attached in a thin film is fired, the electrodeposition resin component mixed in the attached carrier is oxidized and separated. Therefore, the deposit becomes a foamed carrier having a plurality of pores mixed with the catalyst. In the firing, heat is applied from the outside in an air (oxygen) atmosphere, and at the same time, the coil is energized to heat the coil, thereby heating from the inside. Firing is performed under conditions necessary for separating the electrodeposition resin. Preferable firing conditions are an atmospheric temperature: 500 to 700 ° C., a coil applied voltage: 3 to 5 V, and a firing time: 10 minutes or more. If the ambient temperature and the applied voltage are increased more than this, the coil wire (in the case of Ni wire) will oxidize and will no longer serve as a coil. Moreover, when the above conditions are satisfied, the electrodeposition resin is not sufficiently combusted and the characteristics of the catalytic combustion type gas sensor of the present invention cannot be exhibited.

以下、本発明の接触燃焼式ガスセンサの実施例について説明する。   Examples of the catalytic combustion type gas sensor of the present invention will be described below.

コイル線は、直径18μm、21ターンの巻回ピッチ0.1mmのニッケル(Ni)線を使用した。   As the coil wire, a nickel (Ni) wire having a diameter of 18 μm and a winding pitch of 0.1 mm with 21 turns was used.

電着液は、触媒、担体、電着樹脂を含む水溶液であって、各成分の構成割合は、触媒:8.5%、担体(アルミナ):6.0%、電着樹脂:55.7%、水:29.8%のものを使用した。また、電着樹脂は、酢酸ビニルとアクリル酸アルキルエステル(アクリル樹脂)の混合物であり、その構成割合は、(構成割合を教えてください)であり、触媒は、白金(Pt)、酸化クロム(Cr23)及び酸化銅(CuO)の混合物で、その構成割合は、モル比で、1:0.5:0.5である。 The electrodeposition liquid is an aqueous solution containing a catalyst, a carrier, and an electrodeposition resin. The constituent ratio of each component is catalyst: 8.5%, carrier (alumina): 6.0%, electrodeposition resin: 55.7. %, Water: 29.8% was used. The electrodeposition resin is a mixture of vinyl acetate and alkyl acrylate (acrylic resin), and the composition ratio is (Please tell me the composition ratio), and the catalyst is platinum (Pt), chromium oxide ( Cr 2 O 3 ) and copper oxide (CuO) are mixed at a molar ratio of 1: 0.5: 0.5.

電着は、電圧を間欠的に印加して行った。最大電圧20V、周波数50Hzの交流電圧を印加し、電流値は20mAとし、印加時間が異なる3つのサンプルセンサを作成した。上述したように、印加時間の相違は、すなわち積算電力量(mW)の相違であって、コイルに付着する担体の膜厚は、積算電力量にほぼ比例する。   Electrodeposition was performed by intermittently applying a voltage. An AC voltage with a maximum voltage of 20 V and a frequency of 50 Hz was applied, the current value was 20 mA, and three sample sensors with different application times were created. As described above, the difference in application time, that is, the difference in accumulated electric energy (mW), and the film thickness of the carrier attached to the coil is substantially proportional to the accumulated electric energy.

作成したサンプルセンサの電着条件を表1に示す。   Table 1 shows the electrodeposition conditions of the prepared sample sensor.

Figure 2005321215
コイルに電着液が付着したセンサの焼成条件は、以下の通りである。
Figure 2005321215
The firing conditions of the sensor with the electrodeposition liquid attached to the coil are as follows.

雰囲気温度:500℃
コイル印加電圧:3V(コイル温度300℃)
焼成時間:10分
図7は、作成したサンプルセンサの一酸化炭素ガス(CO)に対する感度特性を示すグラフであって、図7(a)は、低濃度側の感度特性であって、図7(b)は、高濃度側の感度特性を示す。図7(a)から明らかなように、低濃度側の感度特性に関し、膜厚の比較的厚いセンサ2及びセンサ3と比較して、膜厚の薄いセンサ1は、低濃度側における濃度変化に対するセンサ出力の勾配が大きく、従来測定できなかった0.03%(300ppm)以下の領域においても感度が大きく向上し、約0.005%(50ppm)の濃度から測定可能であることが明らかとなった。
Atmospheric temperature: 500 ° C
Coil applied voltage: 3V (coil temperature 300 ° C)
Baking time: 10 minutes FIG. 7 is a graph showing sensitivity characteristics of the prepared sample sensor with respect to carbon monoxide gas (CO), and FIG. 7A shows sensitivity characteristics on the low concentration side, and FIG. (B) shows sensitivity characteristics on the high density side. As is apparent from FIG. 7A, regarding the sensitivity characteristics on the low concentration side, the sensor 1 with a smaller film thickness is more sensitive to the density change on the lower concentration side than the sensors 2 and 3 with a relatively thick film thickness. Sensitivity is greatly improved even in the region of 0.03% (300ppm) or less, which was not able to be measured in the past, because the gradient of the sensor output is large. It was.

一方、高濃度領域においては、図7(b)から明らかなように、最も膜厚の薄いセンサ1は、濃度3%(30000ppm)を超えても、濃度変化に対してセンサ出力が飽和することなく、良好な相関関係を有し、図示されないが、濃度7%(70000ppm)まで測定可能であることが明らかとなった。センサ2及びセンサ3については、それぞれ濃度2%及び3%の手前で、センサ出力が飽和し、高濃度領域における良好なセンサ出力は得られなかった。これらのセンサは、膜厚が比較的厚く、熱容量も大きいことから感度が上がらず、また、貫通孔も形成されなかったため、担体内部での触媒燃焼が効率的に行われず、触媒燃焼が行われる表面積の拡大効果が得られなかったためと考えられる。   On the other hand, in the high concentration region, as is apparent from FIG. 7B, the sensor 1 with the thinnest film thickness saturates the sensor output with respect to the concentration change even if the concentration exceeds 3% (30000 ppm). However, although it has a good correlation and is not shown in the figure, it was revealed that the concentration can be measured up to 7% (70000 ppm). Regarding the sensor 2 and the sensor 3, the sensor output was saturated before the concentrations of 2% and 3%, respectively, and a good sensor output in the high concentration region was not obtained. These sensors have a relatively large film thickness and a large heat capacity, so the sensitivity is not improved, and no through-holes are formed. Therefore, catalytic combustion is not efficiently performed inside the carrier, and catalytic combustion is performed. This is probably because the surface area expansion effect was not obtained.

従来の接触燃焼式ガスセンサの構造を説明するための図である。It is a figure for demonstrating the structure of the conventional catalytic combustion type gas sensor. 本発明の実施の形態における接触燃焼式ガスセンサの構造を示す外観斜視図である。It is an external appearance perspective view which shows the structure of the contact combustion type gas sensor in embodiment of this invention. 本発明の実施の形態における接触燃焼式ガスセンサの別の構造を示す模式図である。It is a schematic diagram which shows another structure of the contact combustion type gas sensor in embodiment of this invention. 本発明の接触燃焼式ガスセンサの特徴を説明するための図である。It is a figure for demonstrating the characteristic of the contact combustion type gas sensor of this invention. 本実施の形態における接触燃焼式ガスセンサの製造方法について説明するための図である。It is a figure for demonstrating the manufacturing method of the contact combustion type gas sensor in this Embodiment. 間欠的に印加される電圧の波形例を示す図である。It is a figure which shows the waveform example of the voltage applied intermittently. 作成したサンプルセンサの一酸化炭素ガスに対する感度特性を示すグラフである。It is a graph which shows the sensitivity characteristic with respect to the carbon monoxide gas of the produced sample sensor.

符号の説明Explanation of symbols

10:接触燃焼式ガスセンサ、12:コイル線、14:担体、16:触媒、18:孔、19:貫通孔   10: catalytic combustion type gas sensor, 12: coil wire, 14: support, 16: catalyst, 18: hole, 19: through hole

Claims (17)

導線に触媒を担持する担体が付着され、当該触媒による可燃性ガスの接触燃焼により、当該可燃性ガスの濃度を検出する接触燃焼式ガスセンサにおいて、
前記触媒は、前記担体に混合された状態で担持され、前記担体の表面に、前記担体の内部の触媒を前記可燃性ガスと接触可能にする複数の孔が形成され、
前記担体の厚さは、0.1mm乃至0.5mmであることを特徴とする接触燃焼式ガスセンサ。
In a catalytic combustion type gas sensor in which a carrier carrying a catalyst is attached to a conductive wire, and the concentration of the combustible gas is detected by catalytic combustion of the combustible gas by the catalyst,
The catalyst is supported in a state of being mixed with the carrier, and a plurality of holes are formed on the surface of the carrier to allow the catalyst inside the carrier to contact the combustible gas.
The contact combustion type gas sensor according to claim 1, wherein the carrier has a thickness of 0.1 mm to 0.5 mm.
前記複数の孔は、前記担体の表面の第一の部分から、前記担体の内部を通って、前記担体の表面の第二の部分に貫通する貫通孔を有することを特徴とする請求項1に記載の接触燃焼式ガスセンサ。   The plurality of holes have through-holes that penetrate from the first part of the surface of the carrier to the second part of the surface of the carrier through the inside of the carrier. The contact combustion type gas sensor as described. 前記導線はコイル状に構成され、
前記担体は円筒形状に前記導線に付着し、
前記担体の厚さは、前記担体の外面と内面との間の厚さであることを特徴とする請求項1又は2に記載の接触燃焼式ガスセンサ。
The conducting wire is configured in a coil shape,
The carrier adheres to the conducting wire in a cylindrical shape,
The catalytic combustion type gas sensor according to claim 1, wherein the thickness of the carrier is a thickness between an outer surface and an inner surface of the carrier.
前記導線は平面の波線状に構成され、
前記担体は薄板状に前記導線に付着し、
前記担体の厚さは、前記担体の一方の面と他方の面との間の厚さであることを特徴とする請求項1又は2に記載の接触燃焼式ガスセンサ。
The conducting wire is configured in a planar wavy shape,
The carrier adheres to the conducting wire in a thin plate shape,
The catalytic combustion type gas sensor according to claim 1 or 2, wherein the thickness of the carrier is a thickness between one surface and the other surface of the carrier.
導線に触媒を担持する担体が付着され、当該触媒による可燃性ガスの接触燃焼により、当該可燃性ガスの濃度を検出する接触燃焼式ガスセンサにおいて、
前記触媒は、前記担体に混合された状態で担持され、前記担体の表面に、前記担体の内部の触媒を前記可燃性ガスと接触可能にする複数の孔が形成され、
前記複数の孔は、前記担体の表面の第一の部分から、前記担体の内部を通って、前記担体の表面の第二の部分に貫通する貫通孔を有することを特徴とする接触燃焼式ガスセンサ。
In a contact combustion type gas sensor in which a carrier carrying a catalyst is attached to a conductive wire, and the concentration of the combustible gas is detected by contact combustion of the combustible gas by the catalyst,
The catalyst is supported in a state of being mixed with the carrier, and a plurality of holes are formed on the surface of the carrier to allow the catalyst inside the carrier to come into contact with the combustible gas.
The contact combustion type gas sensor, wherein the plurality of holes have through-holes that penetrate from the first part on the surface of the carrier to the second part on the surface of the carrier through the inside of the carrier. .
前記導線はコイル状に構成され、
前記担体は円筒形状に前記導線に付着し、
前記貫通孔は、前記担体の外面と内面との間を貫通していることを特徴とする請求項5に記載の接触燃焼式ガスセンサ。
The conducting wire is configured in a coil shape,
The carrier adheres to the conducting wire in a cylindrical shape,
6. The catalytic combustion gas sensor according to claim 5, wherein the through hole penetrates between an outer surface and an inner surface of the carrier.
前記導線は平面の波線状に構成され、
前記担体は薄板状に前記導線に付着し、
前記貫通孔は、前記担体の一方の面と他方の面との間を貫通していることを特徴とする請求項5に記載の接触燃焼式ガスセンサ。
The conducting wire is configured in a planar wavy shape,
The carrier adheres to the conducting wire in a thin plate shape,
6. The catalytic combustion gas sensor according to claim 5, wherein the through hole penetrates between one surface and the other surface of the carrier.
水素ガス及び一酸化炭素ガスが混合された可燃性ガスの中から、前記水素ガス又は前記一酸化炭素ガスのいずれか一方のガスの濃度を検出することを特徴とする請求項1乃至7のいずれかに記載の接触燃焼式ガスセンサ。   The concentration of either the hydrogen gas or the carbon monoxide gas is detected from a combustible gas in which hydrogen gas and carbon monoxide gas are mixed. A contact combustion gas sensor according to claim 1. 可燃性ガスの接触燃焼により、当該可燃性ガスの濃度を検出する接触燃焼式ガスセンサの製造方法において、
電着樹脂、触媒及び担体を含む電着液に導線を浸し、電着により、前記電着樹脂及び前記触媒が混合された前記担体を、前記導線に付着させる電着工程と、
前記導線に付着した前記担体から前記電着樹脂が分離するように前記担体を焼成し、当該担体に前記触媒が混合され、内部の触媒を前記可燃性ガスと接触可能にする複数の孔が表面に形成され、前記担体の厚さが、0.1mm乃至0.5mmとなる焼成工程とを有することを特徴とする接触燃焼式ガスセンサの製造方法。
In the method of manufacturing a contact combustion type gas sensor that detects the concentration of the combustible gas by contact combustion of the combustible gas,
An electrodeposition step of immersing a conducting wire in an electrodeposition solution containing an electrodeposition resin, a catalyst and a carrier, and attaching the carrier mixed with the electrodeposition resin and the catalyst to the conducting wire by electrodeposition;
The carrier is baked so that the electrodeposition resin is separated from the carrier attached to the conductive wire, the catalyst is mixed with the carrier, and a plurality of holes are provided on the surface to allow the catalyst inside to be in contact with the combustible gas. And a firing step in which the carrier has a thickness of 0.1 mm to 0.5 mm.
前記複数の孔は、前記第一の部分から、前記担体の内部を通って、前記第二の部分に貫通する貫通孔を有することを特徴とする請求項9に記載の接触燃焼式ガスセンサの製造方法。   10. The catalytic combustion type gas sensor according to claim 9, wherein the plurality of holes have through holes penetrating from the first part through the inside of the carrier to the second part. Method. 前記導線はコイル状に構成され、
前記担体は円筒形状に前記導線に付着し、
前記担体の厚さは、前記担体の外面と内面との間の厚さであることを特徴とする請求項9又は10に記載の接触燃焼式ガスセンサ。
The conducting wire is configured in a coil shape,
The carrier adheres to the conducting wire in a cylindrical shape,
The catalytic combustion type gas sensor according to claim 9 or 10, wherein the thickness of the carrier is a thickness between an outer surface and an inner surface of the carrier.
前記導線は平面の波線状に構成され、
前記担体は薄板状に前記導線に付着し、
前記担体の厚さは、前記担体の一方の面と他方の面との間の厚さであることを特徴とする請求項9又は10に記載の接触燃焼式ガスセンサ。
The conducting wire is configured in a planar wavy shape,
The carrier adheres to the conducting wire in a thin plate shape,
The catalytic combustion type gas sensor according to claim 9 or 10, wherein the thickness of the carrier is a thickness between one surface and the other surface of the carrier.
可燃性ガスの接触燃焼により、当該可燃性ガスの濃度を検出する接触燃焼式ガスセンサの製造方法において、
電着樹脂、触媒及び担体を含む電着液に導線を浸し、電着により、前記電着樹脂及び前記触媒が混合された前記担体を、前記導線に付着させる電着工程と、
前記導線に付着した前記担体から前記電着樹脂が分離するように、前記担体を焼成し、当該担体に、前記触媒が混合され、内部の触媒を前記可燃性ガスと接触可能にする複数の孔が表面に形成され、前記複数の孔は、前記担体の表面の第一の部分から、前記担体の内部を通って、前記担体の表面の第二の部分に貫通する貫通孔を有する焼成工程とを有することを特徴とする接触燃焼式ガスセンサの製造方法。
In the method of manufacturing a contact combustion type gas sensor that detects the concentration of the combustible gas by contact combustion of the combustible gas,
An electrodeposition step of immersing a conducting wire in an electrodeposition solution containing an electrodeposition resin, a catalyst and a carrier, and attaching the carrier mixed with the electrodeposition resin and the catalyst to the conducting wire by electrodeposition;
The carrier is baked so that the electrodeposition resin is separated from the carrier attached to the conductor, and the catalyst is mixed with the carrier, so that the catalyst inside can be contacted with the combustible gas. Formed in the surface, and the plurality of holes have a through-hole penetrating from the first part of the surface of the carrier through the inside of the carrier to the second part of the surface of the carrier; A method for producing a contact combustion type gas sensor, comprising:
前記導線はコイル状に構成され、
前記担体は円筒形状に前記導線に付着し、
前記貫通孔は、前記担体の外面と内面との間を貫通していることを特徴とする請求項13に記載の接触燃焼式ガスセンサ。
The conducting wire is configured in a coil shape,
The carrier adheres to the conducting wire in a cylindrical shape,
The catalytic combustion gas sensor according to claim 13, wherein the through hole penetrates between an outer surface and an inner surface of the carrier.
前記導線は平面の波線状に構成され、
前記担体は薄板状に前記導線に付着し、
前記貫通孔は、前記担体の一方の面と他方の面との間を貫通していることを特徴とする請求項13に記載の接触燃焼式ガスセンサ。
The conducting wire is configured in a planar wavy shape,
The carrier adheres to the conducting wire in a thin plate shape,
The catalytic combustion gas sensor according to claim 13, wherein the through hole penetrates between one surface and the other surface of the carrier.
前記電着樹脂の重量と前記触媒及び前記担体の合計重量との比が、60:40乃至85:15であることを特徴とする請求項9乃至15に記載の接触燃焼式ガスセンサの製造方法。   16. The method for producing a catalytic combustion type gas sensor according to claim 9, wherein the ratio of the weight of the electrodeposition resin to the total weight of the catalyst and the carrier is 60:40 to 85:15. 前記電着工程において、前記電着液に浸された前記導線に、間欠的に電圧が印加されることを特徴とする請求項9乃至15のいずれかに記載の接触燃焼式ガスセンサの製造方法。   16. The method for manufacturing a catalytic combustion gas sensor according to claim 9, wherein, in the electrodeposition step, a voltage is intermittently applied to the conducting wire immersed in the electrodeposition liquid.
JP2004137293A 2004-05-06 2004-05-06 Contact combustion type gas sensor Expired - Fee Related JP4084333B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004137293A JP4084333B2 (en) 2004-05-06 2004-05-06 Contact combustion type gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004137293A JP4084333B2 (en) 2004-05-06 2004-05-06 Contact combustion type gas sensor

Publications (2)

Publication Number Publication Date
JP2005321215A true JP2005321215A (en) 2005-11-17
JP4084333B2 JP4084333B2 (en) 2008-04-30

Family

ID=35468625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004137293A Expired - Fee Related JP4084333B2 (en) 2004-05-06 2004-05-06 Contact combustion type gas sensor

Country Status (1)

Country Link
JP (1) JP4084333B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198816A (en) * 2006-01-25 2007-08-09 Taizo Ishikawa Detection circuit using catalytic combustion type gas sensor
JP2008096267A (en) * 2006-10-11 2008-04-24 New Cosmos Electric Corp Catalytic combustion type gas detecting element and manufacturing method therefor
JP2009025229A (en) * 2007-07-23 2009-02-05 Seiko Instruments Inc Hydrogen sensor
JPWO2011145492A1 (en) * 2010-05-17 2013-07-22 本田技研工業株式会社 Contact combustion type gas sensor
JP2016114435A (en) * 2014-12-12 2016-06-23 日本写真印刷株式会社 Contact combustion type hydrogen gas sensor element and contact combustion type hydrogen gas sensor
JP2016114434A (en) * 2014-12-12 2016-06-23 日本写真印刷株式会社 Contact combustion type hydrogen gas sensor element and contact combustion type hydrogen gas sensor
WO2020246228A1 (en) * 2019-06-06 2020-12-10 Nissha株式会社 Concentration ratio calculation method for two-component gas and concentration calculation method for gas to be detected
CN114870838A (en) * 2022-06-09 2022-08-09 上海松柏传感技术有限公司 Hydrogen sensor catalyst, preparation method thereof and hydrogen sensor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198816A (en) * 2006-01-25 2007-08-09 Taizo Ishikawa Detection circuit using catalytic combustion type gas sensor
JP2008096267A (en) * 2006-10-11 2008-04-24 New Cosmos Electric Corp Catalytic combustion type gas detecting element and manufacturing method therefor
JP2009025229A (en) * 2007-07-23 2009-02-05 Seiko Instruments Inc Hydrogen sensor
JPWO2011145492A1 (en) * 2010-05-17 2013-07-22 本田技研工業株式会社 Contact combustion type gas sensor
JP2016114435A (en) * 2014-12-12 2016-06-23 日本写真印刷株式会社 Contact combustion type hydrogen gas sensor element and contact combustion type hydrogen gas sensor
JP2016114434A (en) * 2014-12-12 2016-06-23 日本写真印刷株式会社 Contact combustion type hydrogen gas sensor element and contact combustion type hydrogen gas sensor
WO2020246228A1 (en) * 2019-06-06 2020-12-10 Nissha株式会社 Concentration ratio calculation method for two-component gas and concentration calculation method for gas to be detected
JP2020201049A (en) * 2019-06-06 2020-12-17 Nissha株式会社 Concentration ratio calculation method of two-component gas and concentration calculation method of gas to be detected
CN114870838A (en) * 2022-06-09 2022-08-09 上海松柏传感技术有限公司 Hydrogen sensor catalyst, preparation method thereof and hydrogen sensor

Also Published As

Publication number Publication date
JP4084333B2 (en) 2008-04-30

Similar Documents

Publication Publication Date Title
JP2002048758A (en) Gas sensor element and its manufacturing method
JPH11153571A (en) Oxygen sensor element
JP4084333B2 (en) Contact combustion type gas sensor
JPS6118854A (en) Oxygen concentration detecting element
JP2008286810A (en) Oxygen sensor element
JP4383897B2 (en) Manufacturing method of laminated gas sensor element
JP5965564B1 (en) Ammonia gas sensor and ammonia gas concentration measurement method
EP0059933B1 (en) Solid electrolyte oxygen sensing element of laminated structure with gas diffusion layer on outer electrode
JP4790430B2 (en) Detection circuit using catalytic combustion type gas sensor
JP4617599B2 (en) Gas sensor element and manufacturing method thereof
RU2447426C2 (en) Method and apparatus for detecting pre-explosion concentration of methane in air
JP2005134251A (en) Thin-film gas sensor
JP2008281584A (en) Oxygen sensor element
JP2006133039A (en) Nitrogen oxide sensor
JP2004020377A (en) Catalytic combustion type gas sensor
JP2007322184A (en) Ammonia gas sensor
US11125715B2 (en) Gas sensor
JP2002156355A (en) Gas sensor element and gas concentration measuring device having the same
JPH0875691A (en) Gas sensor
JP6467212B2 (en) Contact combustion type hydrogen gas sensor element and contact combustion type hydrogen gas sensor
JPH06242060A (en) Hydrocarbon sensor
JP2002333426A (en) Gas sensor
JP4084343B2 (en) Contact combustion type gas sensor and combustible gas measuring device
JP4213939B2 (en) Gas detector
JP2018179842A (en) Gas detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080214

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140222

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees