JP2009025229A - Hydrogen sensor - Google Patents

Hydrogen sensor Download PDF

Info

Publication number
JP2009025229A
JP2009025229A JP2007190678A JP2007190678A JP2009025229A JP 2009025229 A JP2009025229 A JP 2009025229A JP 2007190678 A JP2007190678 A JP 2007190678A JP 2007190678 A JP2007190678 A JP 2007190678A JP 2009025229 A JP2009025229 A JP 2009025229A
Authority
JP
Japan
Prior art keywords
hydrogen
detection unit
hydrogen sensor
layer
linear member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007190678A
Other languages
Japanese (ja)
Other versions
JP5039934B2 (en
Inventor
Masataka Araogi
正隆 新荻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2007190678A priority Critical patent/JP5039934B2/en
Publication of JP2009025229A publication Critical patent/JP2009025229A/en
Application granted granted Critical
Publication of JP5039934B2 publication Critical patent/JP5039934B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen sensor capable of improving high-speed responsiveness and detection precision respectively. <P>SOLUTION: The hydrogen sensor 1 is provided with a detector 2 having the characteristic that the detector 2 reacts to hydrogen and thereby its properties change, for detecting hydrogen concentration in the air from changes in the properties of the detector 2, in which the detector 2 is constituted of a linear member 22 with at least a part being bent or curved. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、空気中の水素を検出する水素センサに関する。   The present invention relates to a hydrogen sensor that detects hydrogen in the air.

従来、前記水素センサとして、特許文献1に開示されているように、ガラス基板上にマグネシウム・パラジウム合金層が形成され、そのマグネシウム・パラジウム合金層の上にパラジウムや白金等からなる第一層が形成された構成からなる検出部を有する水素センサが提案されている。この水素センサは、上記した検出部が水素ガスに接触したときにその接触部分の温度が上昇するという特性を利用したものであり、上記温度上昇を電気抵抗の変化として出力して水素を検出する。上記した水素センサによれば、常温作動が可能となる。
特開2007−71547号公報
Conventionally, as the hydrogen sensor, as disclosed in Patent Document 1, a magnesium / palladium alloy layer is formed on a glass substrate, and a first layer made of palladium, platinum, or the like is formed on the magnesium / palladium alloy layer. There has been proposed a hydrogen sensor having a detection unit having a formed configuration. This hydrogen sensor utilizes the characteristic that the temperature of the contact part rises when the above-described detection part comes into contact with hydrogen gas, and detects the hydrogen by outputting the temperature rise as a change in electrical resistance. . According to the hydrogen sensor described above, normal temperature operation is possible.
JP 2007-71547 A

しかしながら、上記した従来の水素センサでは、高速応答性が不十分であり、検出精度も低いという問題が存在する。   However, the conventional hydrogen sensor described above has a problem that high-speed response is insufficient and detection accuracy is low.

本発明は、上記した従来の問題が考慮されたものであり、高速応答性及び検出精度をそれぞれ向上させることができる水素センサを提供することを目的としている。   The present invention takes the above-described conventional problems into consideration, and an object thereof is to provide a hydrogen sensor that can improve high-speed response and detection accuracy.

本発明に係る水素センサは、水素に反応して性質が変化する特性を有する検出部を備え、該検出部の性質変化を基に空気中の水素濃度を検出する水素センサであって、前記検出部が、少なくとも一部が屈曲又は湾曲した線状部材により構成されていることを特徴としている。   A hydrogen sensor according to the present invention is a hydrogen sensor that includes a detection unit having a property that changes its property in response to hydrogen, and that detects a hydrogen concentration in air based on a change in the property of the detection unit. The portion is formed of a linear member that is at least partially bent or curved.

このような特徴により、水素を含む空気が検出部の表面に接触すると、空気中の水素に反応して検出部が性質変化を起こす。例えば、水素に反応して検出部の電気抵抗や光透過率が変化したり検出部が変形したりする。この検出部の性質変化を例えば電気信号等に変換して出力することで空気中の水素が検出される。このとき、上記した検出部は、少なくとも一部が屈曲又は湾曲した線状部材からなるため、水素を含む空気に接触する表面積が大きくなり、水素との反応確率が高くなる。   Due to such characteristics, when air containing hydrogen contacts the surface of the detection unit, the detection unit changes its properties in response to hydrogen in the air. For example, in response to hydrogen, the electrical resistance and light transmittance of the detection unit change or the detection unit is deformed. Hydrogen in the air is detected by converting the change in the properties of the detector into, for example, an electric signal and outputting it. At this time, since the detection unit described above is made of a linear member that is at least partially bent or curved, the surface area in contact with the air containing hydrogen is increased, and the reaction probability with hydrogen is increased.

また、本発明に係る水素センサは、前記検出部が、ミアンダ形状の線状部材からなることが好ましい。
また、本発明に係る水素センサは、前記検出部が、螺旋状の線状部材からなる構成であってもよい。
さらに、本発明に係る水素センサは、前記検出部が、複数の線状部材によりメッシュ状に形成された構成にすることも可能である。
上記した構成により、水素を含む空気に接触する検出部の表面積が極めて大きくなり、水素との反応確率が一層高くなる。
In the hydrogen sensor according to the present invention, it is preferable that the detection unit is made of a meander-shaped linear member.
Moreover, the hydrogen sensor which concerns on this invention may be the structure where the said detection part consists of a helical linear member.
Furthermore, the hydrogen sensor according to the present invention may be configured such that the detection unit is formed in a mesh shape by a plurality of linear members.
With the above-described configuration, the surface area of the detection unit that comes into contact with air containing hydrogen is extremely large, and the probability of reaction with hydrogen is further increased.

また、本発明に係る水素センサは、前記検出部が、水素に反応して発熱する第一層と、該第一層の熱的影響を受けて変形する第二層と、を積層した構成からなることが好ましい。
これにより、水素を含む空気が検出部の表面に接触すると、第一層が水素に反応して発熱し、その熱で第二層が変形する。このように検出部が変形すると電気抵抗が変化するので、電気抵抗値を計測することにより、空気中の水素が検出される。また、検出部の変化を光学等で直接計測してそれを出力することで、空気中の水素を検出することも可能である。
Further, in the hydrogen sensor according to the present invention, the detection unit has a configuration in which a first layer that generates heat in response to hydrogen and a second layer that is deformed by the thermal influence of the first layer are stacked. It is preferable to become.
Thereby, when the air containing hydrogen contacts the surface of the detection unit, the first layer reacts with hydrogen and generates heat, and the heat causes the second layer to deform. Since the electrical resistance changes when the detector is deformed in this way, hydrogen in the air is detected by measuring the electrical resistance value. It is also possible to detect hydrogen in the air by directly measuring the change of the detection unit with an optical device or the like and outputting it.

また、本発明に係る水素センサは、前記検出部の少なくとも一方の端部が台座に支持され、前記検出部の少なくとも中間部が固体に接触しない状態で配置されていることが好ましい。
これにより、検出部の中間部では、検出部の全周に亘って空気に接触するので、水素との反応確率がより一層高くなる。
In the hydrogen sensor according to the present invention, it is preferable that at least one end of the detection unit is supported by a pedestal, and at least an intermediate part of the detection unit is arranged so as not to contact a solid.
Thereby, in the intermediate part of a detection part, since it contacts air over the perimeter of a detection part, the reaction probability with hydrogen becomes still higher.

また、本発明に係る水素センサは、前記検出部が、白金層を備えることが好ましい。
これにより、水素を含む空気が検出部の白金層に接すると、水素に反応して白金層の特性が変化する。
In the hydrogen sensor according to the present invention, the detection unit preferably includes a platinum layer.
Thereby, when the air containing hydrogen contacts the platinum layer of the detection unit, the characteristics of the platinum layer change in response to hydrogen.

また、本発明に係る水素センサは、前記検出部が、パラジウム層及びマグネシウム・パラジウム合金層のうちの少なくとも一方を備える構成であってもよい。
これにより、常温状態でも、水素を含む空気がパラジウム層やマグネシウム・パラジウム合金層に接すると、水素に反応して上記パラジウム層やマグネシウム・パラジウム合金層の特性が変化する。
In the hydrogen sensor according to the present invention, the detection unit may include at least one of a palladium layer and a magnesium / palladium alloy layer.
Thereby, even when air containing hydrogen comes into contact with the palladium layer or the magnesium / palladium alloy layer, the characteristics of the palladium layer or the magnesium / palladium alloy layer change in response to hydrogen.

本発明に係る水素センサによれば、水素を含む空気に接触する表面積が大きくなり、水素との反応確率が高くなるため、応答性を高速化することができるとともに、検出精度を向上させることができる。   According to the hydrogen sensor of the present invention, the surface area in contact with air containing hydrogen is increased, and the probability of reaction with hydrogen is increased, so that the response can be speeded up and the detection accuracy can be improved. it can.

以下、本発明に係る水素センサの第1〜第3の実施の形態について、図面に基いて説明する。   Hereinafter, first to third embodiments of a hydrogen sensor according to the present invention will be described with reference to the drawings.

[第1の実施の形態]
図1は第1の実施の形態における水素センサ1を表した斜視図であり、図2は前記水素センサ1を模式的に表した断面図である。
[First Embodiment]
FIG. 1 is a perspective view showing a hydrogen sensor 1 according to the first embodiment, and FIG. 2 is a cross-sectional view schematically showing the hydrogen sensor 1.

本実施の形態における水素センサ1は、図1、図2に示すように、検出部2の電気抵抗の変化を基に空気中に含まれる水素濃度を検出するセンサであり、検出部2と台座3と出力端子4,4とを備えている。   As shown in FIGS. 1 and 2, the hydrogen sensor 1 in the present embodiment is a sensor that detects the concentration of hydrogen contained in the air based on the change in electrical resistance of the detection unit 2. 3 and output terminals 4 and 4.

台座3は、検出部2を支持するための部材であり、例えばガラス等からなる。台座3は、平面視矩形状の枠状部材であり、矩形の開口3aがあけられた形状を成している。具体的に説明すると、台座3は、互いに間隔をあけて平行に配設された一対の台座本体部30,30と、一対の台座本体部30,30間に架設され互いに間隔をあけて平行に配設された一対の横架部31,31と、を備えている。台座本体部30は、平板状の横架部31よりも厚く、断面形状台形を成している。これら一対の台座本体部30,30と一対の横架部31,31とによって囲まれて上記した開口3aが形成されている。   The pedestal 3 is a member for supporting the detection unit 2 and is made of, for example, glass. The pedestal 3 is a frame-like member having a rectangular shape in plan view, and has a shape in which a rectangular opening 3a is opened. More specifically, the pedestal 3 includes a pair of pedestal main body portions 30 and 30 disposed in parallel with a space between each other, and a pair of pedestal main body portions 30 and 30 installed in parallel with a space between each other. And a pair of horizontal portions 31, 31 arranged. The pedestal main body 30 is thicker than the flat plate-like horizontal portion 31 and has a trapezoidal cross-sectional shape. The above-described opening 3 a is formed by being surrounded by the pair of pedestal main body portions 30, 30 and the pair of horizontal portions 31, 31.

検出部2は、水素に反応して電気抵抗が変化する特性を有するものであり、第二層21の上に第一層20が積層された積層構造になっている。第一層20は、水素に反応して発熱するものであり、例えばパラジウム(Pd)からなる薄膜層である。一方、第二層21は、第一層20の熱的影響を受けて変形するものであり、例えばマグネシウム・パラジウム合金(Mg-Pd)からなる薄膜層である。また、上記した第一層20と第二層21とは、それぞれ水素を吸蔵して膨張するものであり、その膨張率は互いに異なる。   The detection unit 2 has a characteristic that the electric resistance changes in response to hydrogen, and has a laminated structure in which the first layer 20 is laminated on the second layer 21. The first layer 20 generates heat in response to hydrogen, and is a thin film layer made of, for example, palladium (Pd). On the other hand, the second layer 21 is deformed by the thermal influence of the first layer 20, and is a thin film layer made of, for example, a magnesium-palladium alloy (Mg—Pd). Further, the first layer 20 and the second layer 21 described above each store hydrogen and expand, and their expansion rates are different from each other.

また、検出部2は、複数箇所で屈曲された非直線形状を成す1本の線状部材22からなる。具体的に説明すると、検出部2は、平面視ミアンダ形状、つまり矩形状に繰り返し屈曲させたジクザグ状の線状部材22からなる。この検出部2は、上記した台座3の開口3a内に配設されており、その両端がそれぞれ台座3に支持されている。すなわち、検出部2は、上記した一対の台座本体部30,30間に架設されており、検出部2の中間部が他の固体に接触しない状態、つまり宙に浮いた状態で配置されている。   Moreover, the detection part 2 consists of the one linear member 22 which comprises the non-linear shape bent in multiple places. More specifically, the detection unit 2 includes a zigzag linear member 22 that is repeatedly bent into a meander shape in plan view, that is, a rectangular shape. The detection unit 2 is disposed in the opening 3 a of the pedestal 3 described above, and both ends thereof are supported by the pedestal 3. That is, the detection unit 2 is installed between the pair of pedestal main body units 30 and 30 and is arranged in a state where the intermediate part of the detection unit 2 is not in contact with other solids, that is, in a floating state. .

出力端子4,4は、上記した一対の台座本体部30,30上にそれぞれ形成された導電性を有する金属薄膜層であり、検出部2の両端にそれぞれ電気的に接続されている。これらの出力端子4,4は、電気抵抗を計測する図示せぬ計測器に電気的に接続される。   The output terminals 4 and 4 are conductive metal thin film layers formed on the pair of pedestal main body portions 30 and 30, respectively, and are electrically connected to both ends of the detection unit 2. These output terminals 4 and 4 are electrically connected to a measuring instrument (not shown) that measures electric resistance.

次に、上記した構成からなる水素センサ1の作用について説明する。
水素を含む空気が検出部2の表面に接触すると、空気中の水素に反応して検出部2が性質変化を起こす。具体的に説明すると、第一層20が、水素に反応して発熱するとともに水素を吸蔵して膨張する。そして、第二層21が、水素吸蔵により膨張するとともに第一層20の熱により変形する。このとき、第一層20と第二層21の膨張率が異なるため、バイメタル効果により検出部2が変形し、検出部2の電気抵抗値が上昇する。この電気抵抗値の変化は上記した図示せぬ計測器で計測され、電気信号に変換されて出力される。これにより、空気中の水素濃度が検出される。
Next, the operation of the hydrogen sensor 1 having the above configuration will be described.
When air containing hydrogen contacts the surface of the detection unit 2, the detection unit 2 undergoes a property change in response to hydrogen in the air. More specifically, the first layer 20 generates heat in response to hydrogen and absorbs hydrogen to expand. The second layer 21 expands due to hydrogen storage and is deformed by the heat of the first layer 20. At this time, since the expansion rates of the first layer 20 and the second layer 21 are different, the detection unit 2 is deformed due to the bimetal effect, and the electrical resistance value of the detection unit 2 increases. This change in electrical resistance value is measured by the above-described measuring instrument (not shown), converted into an electrical signal, and output. Thereby, the hydrogen concentration in the air is detected.

このとき、検出部2が、複数箇所で屈曲されたミアンダ形状の線状部材22からなるため、出力端子4,4間を直線的に結んだ検出部(以下、直線的な検出部と記す。)と比べて、水素を含む空気に接触する表面積が大きくなる。したがって、水素との反応確率が高くなる。
また、ミアンダ形状の線状部材22からなる検出部2では、線状部材22の全長、つまり電流経路が長くなるため、直線的な検出部と比べて電気抵抗が大きくなる。したがって、検出部2に水素が接触したときの電気抵抗値の変化量も大きくなる。
さらに、上記した水素センサ1では、検出部2の中間部が、検出部2の全周に亘って空気に接触するので、水素との反応確率がより一層高くなる。
At this time, since the detection unit 2 includes the meander-shaped linear member 22 bent at a plurality of locations, the detection unit (hereinafter referred to as a linear detection unit) that linearly connects the output terminals 4 and 4. ), The surface area in contact with the air containing hydrogen is increased. Therefore, the reaction probability with hydrogen is increased.
Moreover, in the detection part 2 which consists of the meander-shaped linear member 22, since the full length of the linear member 22, ie, an electric current path, becomes long, electrical resistance becomes large compared with a linear detection part. Therefore, the amount of change in the electrical resistance value when hydrogen comes into contact with the detection unit 2 also increases.
Furthermore, in the hydrogen sensor 1 described above, the intermediate portion of the detection unit 2 is in contact with air over the entire circumference of the detection unit 2, so that the reaction probability with hydrogen is further increased.

上記した構成の水素センサ1によれば、検出部2における水素を含む空気に接触する表面積が大きい分、水素との反応確率が高くなるため、応答性を高速化することができるとともに、検出精度を向上させることができる。   According to the hydrogen sensor 1 having the above-described configuration, since the surface area contacting the hydrogen-containing air in the detection unit 2 is large, the reaction probability with hydrogen is increased, so that the responsiveness can be increased and the detection accuracy can be increased. Can be improved.

特に、ミアンダ形状の線状部材22からなる検出部2では、水素との反応確率が極めて高くなるため、応答高速性及び検出精度をさらに向上させることができる。
特に、電気抵抗の変化で水素を検出する水素センサ1においては、ミアンダ形状の線状部材22の全長が長い分だけ、電気抵抗の変化量が大きくなるため、水素検出の感度を向上させることができる。
In particular, the detection unit 2 including the meander-shaped linear member 22 has a very high reaction probability with hydrogen, so that the response speed and detection accuracy can be further improved.
In particular, in the hydrogen sensor 1 that detects hydrogen by a change in electrical resistance, the amount of change in electrical resistance increases as the total length of the meander-shaped linear member 22 increases, so that the sensitivity of hydrogen detection can be improved. it can.

また、検出部2が第一層20と第二層21との積層構造になっており、バイメタル効果により水素が検出されるので、検出精度をより一層向上させることができる。
また、上記した構成の水素センサ1によれば、パラジウムからなる第一層20とマグネシウム・パラジウム合金からなる第二層21とからなる検出部2によって水素を検出しているため、常温で作動させることができる。
Moreover, since the detection part 2 has the laminated structure of the 1st layer 20 and the 2nd layer 21, and hydrogen is detected by the bimetal effect, detection accuracy can be improved further.
Moreover, according to the hydrogen sensor 1 having the above-described configuration, hydrogen is detected by the detection unit 2 including the first layer 20 made of palladium and the second layer 21 made of magnesium / palladium alloy. be able to.

[第2の実施の形態]
図3は第2の実施の形態における水素センサ101を表した斜視図である。なお、上述した第1の実施の形態と同様の構成については、同一の符号を付してその説明を省略する。
[Second Embodiment]
FIG. 3 is a perspective view showing the hydrogen sensor 101 according to the second embodiment. In addition, about the structure similar to 1st Embodiment mentioned above, the same code | symbol is attached | subjected and the description is abbreviate | omitted.

本実施の形態における水素センサ101は、螺旋状に湾曲された線状部材122からなる検出部102が備えられている。詳しく説明すると、線状部材122は、螺旋状に巻かれた三次元的形状を成し、台座3の開口3a内に配置され、一対の台座本体部30,30間に架設されている。すなわち、線状部材122の両端は、台座本体部30,30にそれぞれ支持され、線状部材122の中間部は、他の固体に接触しない状態で配置されている。また、線状部材122の両端は、台座本体部30,30上の出力端子4,4にそれぞれ接続されている。   The hydrogen sensor 101 according to the present embodiment is provided with a detection unit 102 formed of a linear member 122 that is curved in a spiral shape. More specifically, the linear member 122 has a three-dimensional shape wound spirally, is disposed in the opening 3 a of the pedestal 3, and is installed between the pair of pedestal main body portions 30 and 30. That is, both ends of the linear member 122 are respectively supported by the pedestal main body portions 30 and 30, and the intermediate portion of the linear member 122 is disposed in a state where it does not contact other solids. Further, both ends of the linear member 122 are connected to output terminals 4 and 4 on the pedestal main body portions 30 and 30, respectively.

このような構成からなる水素センサ101では、水素を含む空気が検出部102の表面に接触すると、バイメタル効果により検出部102が変形して検出部102の電気抵抗値が上昇する。この電気抵抗値の変化を図示せぬ計測器で計測することにより、空気中の水素濃度が検出される。このとき、検出部102が、螺旋形状の線状部材122からなるため、直線的な検出部と比べて、水素を含む空気に接触する表面積が大きなって、水素との反応確率が高くなる。
また、螺旋形状の線状部材122からなる検出部102では、線状部材122の全長が長くなるため、直線的な検出部と比べて電気抵抗が大きくなり、検出部102に水素が接触したときの電気抵抗値の変化量も大きくなる。
In the hydrogen sensor 101 having such a configuration, when air containing hydrogen contacts the surface of the detection unit 102, the detection unit 102 is deformed due to the bimetal effect, and the electrical resistance value of the detection unit 102 increases. By measuring the change in the electrical resistance value with a measuring instrument (not shown), the hydrogen concentration in the air is detected. At this time, since the detection unit 102 includes the spiral linear member 122, the surface area in contact with the air containing hydrogen is larger than that of the linear detection unit, and the probability of reaction with hydrogen increases.
Moreover, in the detection part 102 which consists of the helical linear member 122, since the full length of the linear member 122 becomes long, electrical resistance becomes large compared with a linear detection part, and when hydrogen contacts the detection part 102, The amount of change in the electrical resistance value also increases.

上記した構成の水素センサ101によれば、検出部102が螺旋形状の線状部材122からなり、水素との反応確率が極めて高くなるため、応答高速性及び検出精度を向上させることができる。
特に、電気抵抗の変化で水素を検出する水素センサ101においては、螺旋形状の線状部材122の全長が長い分だけ、電気抵抗の変化量が大きくなるため、水素検出の感度を向上させることができる。
According to the hydrogen sensor 101 having the above-described configuration, the detection unit 102 includes the spiral linear member 122, and the reaction probability with hydrogen is extremely high. Therefore, the response speed and detection accuracy can be improved.
In particular, in the hydrogen sensor 101 that detects hydrogen by a change in electrical resistance, the amount of change in electrical resistance increases as the total length of the helical linear member 122 increases, so that the sensitivity of hydrogen detection can be improved. it can.

[第3の実施の形態]
図4は第3の実施の形態における水素センサ201を表した斜視図である。なお、上述した第1、第2の実施の形態と同様の構成については、同一の符号を付してその説明を省略する。
[Third Embodiment]
FIG. 4 is a perspective view showing the hydrogen sensor 201 according to the third embodiment. In addition, about the structure similar to 1st, 2nd embodiment mentioned above, the same code | symbol is attached | subjected and the description is abbreviate | omitted.

本実施の形態における水素センサ201は、複数の線状部材222によってメッシュ状に形成された検出部202が備えられている。詳しく説明すると、検出部202は、複数の稲妻形状の線状部材222が互い違いに並べられて平面視菱形の孔が複数形成された形状になっている。なお、メッシュ状の検出部202は、複数の線状部材を交差させて配置させることで形成することも可能である。   The hydrogen sensor 201 in the present embodiment includes a detection unit 202 formed in a mesh shape by a plurality of linear members 222. More specifically, the detection unit 202 has a shape in which a plurality of lightning-shaped linear members 222 are alternately arranged to form a plurality of rhombic holes in plan view. Note that the mesh detection unit 202 can also be formed by arranging a plurality of linear members so as to intersect each other.

このような構成からなる水素センサ201では、水素を含む空気が検出部202の表面に接触すると、バイメタル効果により検出部202が変形して検出部202の電気抵抗値が上昇する。この電気抵抗値の変化を図示せぬ計測器で計測することにより、空気中の水素濃度が検出される。このとき、検出部202が、メッシュ状に形成されているため、水素を含む空気に接触する表面積が大きなって、水素との反応確率が高くなる。
また、複数の線状部材222からなるメッシュ状の検出部202では、電流が流れる経路の全長が長くなるため、直線的な検出部と比べて電気抵抗が大きくなり、検出部202に水素が接触したときの電気抵抗値の変化量も大きくなる。
In the hydrogen sensor 201 having such a configuration, when air containing hydrogen comes into contact with the surface of the detection unit 202, the detection unit 202 is deformed due to the bimetal effect, and the electrical resistance value of the detection unit 202 increases. By measuring the change in the electrical resistance value with a measuring instrument (not shown), the hydrogen concentration in the air is detected. At this time, since the detection unit 202 is formed in a mesh shape, the surface area in contact with the air containing hydrogen is large, and the reaction probability with hydrogen is increased.
In addition, in the mesh-shaped detection unit 202 composed of a plurality of linear members 222, the total length of the path through which the current flows is increased, so that the electrical resistance is higher than that of the linear detection unit, and hydrogen contacts the detection unit 202. The amount of change in the electrical resistance value when this occurs is also increased.

上記した構成の水素センサ201によれば、検出部202がメッシュ状に形成されており、水素との反応確率が極めて高くなるため、応答高速性及び検出精度を向上させることができる。
特に、電気抵抗の変化で水素を検出する水素センサ201においては、メッシュ状の検出部202の電流経路が長くなり、電気抵抗の変化量が大きくなるため、水素検出の感度を向上させることができる。
According to the hydrogen sensor 201 having the above-described configuration, the detection unit 202 is formed in a mesh shape, and the reaction probability with hydrogen becomes extremely high. Therefore, the response speed and detection accuracy can be improved.
In particular, in the hydrogen sensor 201 that detects hydrogen by a change in electrical resistance, the current path of the mesh-shaped detection unit 202 becomes longer and the amount of change in electrical resistance becomes larger, so that the sensitivity of hydrogen detection can be improved. .

以上、本発明に係る水素センサの実施の形態について説明したが、本発明は上記した実施の形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。
具体的には、上記した実施の形態では、検出部2,102,202の電気抵抗を計測し、その電気抵抗値の変化を基に水素を検出しているが、本発明は、他の方法により水素を検出することも可能である。例えば、水素によって変形する検出部2,102,202の変位量を光学系の変位センサ等を用いて測定し、その変位量を基に水素を検出することも可能である。また、水素に反応して、光或いは特定の光線の透過率が変化する検出部を形成し、この検出部の透過光や反射光により検出部の透過率を計測し、その検出部の透過率の変化を基に水素を検出することも可能である。
Although the embodiments of the hydrogen sensor according to the present invention have been described above, the present invention is not limited to the above-described embodiments, and can be appropriately changed without departing from the scope of the present invention.
Specifically, in the above-described embodiment, the electrical resistance of the detection units 2, 102, and 202 is measured, and hydrogen is detected based on the change in the electrical resistance value. It is also possible to detect hydrogen. For example, it is possible to measure the amount of displacement of the detectors 2, 102, 202 that are deformed by hydrogen using an optical displacement sensor or the like, and detect hydrogen based on the amount of displacement. In addition, a detection unit that changes the transmittance of light or specific light in response to hydrogen is formed, and the transmittance of the detection unit is measured by the transmitted light or reflected light of the detection unit, and the transmittance of the detection unit It is also possible to detect hydrogen based on this change.

また、上記した実施の形態では、検出部2,102,202が、マグネシウム・パラジウム合金からなる第二層21の上にパラジウムからなる第一層20が積層された構成からなっているが、本発明は、上記した第一層20がマグネシウム・パラジウム合金からなり、第二層21がパラジウムからなる構成にすることも可能であり、或いは、上記した第一層20や第二層21を白金で形成することも可能であり、或いは、第一層20及び第二層21のうちの少なくとも一方を、水素に反応するパラジウムやマグネシウム・パラジウム合金、白金等で形成し、他方を水素に反応しないガラス等の他の材料で形成することも可能である。また、本発明の検出部は、上記したような2層構造のものに限定されず、マグネシウム・パラジウム合金、パラジウム、白金、若しくはガラス等の他の材料によって3層以上に積層させた構成であってもよい。さらに、マグネシウム・パラジウム合金やパラジウム、白金等の水素に反応する材料だけからなる単層構造の検出部であってもよい。   Further, in the above-described embodiment, the detection units 2, 102, 202 have a configuration in which the first layer 20 made of palladium is laminated on the second layer 21 made of magnesium-palladium alloy. In the invention, the first layer 20 can be made of a magnesium-palladium alloy and the second layer 21 can be made of palladium. Alternatively, the first layer 20 and the second layer 21 can be made of platinum. It is also possible to form, or at least one of the first layer 20 and the second layer 21 is formed of palladium that reacts with hydrogen, magnesium-palladium alloy, platinum or the like, and the other does not react with hydrogen. It is also possible to form with other materials. The detection unit of the present invention is not limited to the two-layer structure as described above, and has a configuration in which three or more layers are laminated with other materials such as magnesium / palladium alloy, palladium, platinum, or glass. May be. Further, it may be a detection unit having a single-layer structure made of only a material that reacts with hydrogen, such as magnesium-palladium alloy, palladium, or platinum.

また、上記した第1、第2の実施の形態では、検出部2が1本の線状部材22,122から構成されているが、本発明は、複数のミアンダ形状や螺旋形状の線状部材22,122からなる検出部が備えられた構成にすることも可能であり、例えば、螺旋形状の線状部材122が並列に複数配列された構成にすることも可能である。   In the first and second embodiments described above, the detection unit 2 is composed of a single linear member 22, 122. However, the present invention provides a plurality of meander-shaped or spiral-shaped linear members. For example, a configuration in which a plurality of spiral linear members 122 are arranged in parallel is also possible.

また、上記した実施の形態では、ミアンダ形状の線状部材22からなる検出部2や、螺旋形状の線状部材122からなる検出部102、複数の線状部材222によりメッシュ状に形成された検出部202が備えられているが、本発明の検出部は、上記した形状のものに限定されず、適宜変更可能である。例えば、本発明は、図5に示すような渦巻き形状の線状部材322からなる検出部302を備えた水素センサ301であってもよい。また、本発明は、波形状の線状部材からなる検出部を備えた水素センサであってもよい。   In the above-described embodiment, the detection unit 2 including the meander-shaped linear member 22, the detection unit 102 including the spiral-shaped linear member 122, and the detection formed in a mesh shape by the plurality of linear members 222. Although the unit 202 is provided, the detection unit of the present invention is not limited to the shape described above, and can be changed as appropriate. For example, the present invention may be a hydrogen sensor 301 including a detection unit 302 formed of a spiral linear member 322 as shown in FIG. Further, the present invention may be a hydrogen sensor including a detection unit made of a wavy linear member.

また、上記した実施の形態では、検出部2,102,202の両端が台座本体部30,30に支持され、検出部2,102,202の中間部が固体に接触せず宙に浮いた状態で配置されているが、本発明は、検出部の一端が台座に支持され他端が張り出された片持ち状態にすることも可能である。また、本発明は、検出部の中間部が固体に接触した構成にすることも可能である。例えば、ガラス基板上にパラジウム等をミアンダ形状等にパターン印刷して検出部を形成することも可能である。   Moreover, in above-mentioned embodiment, the both ends of the detection part 2,102,202 are supported by the base main-body parts 30,30, and the intermediate part of the detection part 2,102,202 is the state which floated in the air without contacting solid However, according to the present invention, the detection unit can be in a cantilever state in which one end of the detection unit is supported by the pedestal and the other end is overhanging. The present invention can also be configured such that the middle part of the detection unit is in contact with the solid. For example, the detection unit can be formed by pattern-printing palladium or the like in a meander shape on a glass substrate.

その他、本発明の主旨を逸脱しない範囲で、上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、上記した変形例を適宜組み合わせてもよい。   In addition, in the range which does not deviate from the main point of this invention, it is possible to replace suitably the component in above-mentioned embodiment with a well-known component, and you may combine the above-mentioned modification suitably.

本発明の第1の実施の形態を説明するための水素センサの斜視図である。It is a perspective view of a hydrogen sensor for explaining a 1st embodiment of the present invention. 本発明の第1の実施の形態を説明するための水素センサの模式断面図である。It is a schematic cross section of the hydrogen sensor for demonstrating the 1st Embodiment of this invention. 本発明の第2の実施の形態を説明するための水素センサの斜視図である。It is a perspective view of the hydrogen sensor for demonstrating the 2nd Embodiment of this invention. 本発明の第3の実施の形態を説明するための水素センサの斜視図である。It is a perspective view of the hydrogen sensor for demonstrating the 3rd Embodiment of this invention. 本発明の他の実施の形態を説明するための水素センサの斜視図である。It is a perspective view of a hydrogen sensor for explaining other embodiments of the present invention.

符号の説明Explanation of symbols

1、101、201、301…水素センサ
2、102、202、302…検出部
3…台座
20…第一層
21…第二層
22、122、222、322…線状部材
DESCRIPTION OF SYMBOLS 1, 101, 201, 301 ... Hydrogen sensor 2, 102, 202, 302 ... Detection part 3 ... Base 20 ... First layer 21 ... Second layer 22, 122, 222, 322 ... Linear member

Claims (8)

水素に反応して性質が変化する特性を有する検出部を備え、該検出部の性質変化を基に空気中の水素濃度を検出する水素センサであって、
前記検出部が、少なくとも一部が屈曲又は湾曲した線状部材により構成されていることを特徴とする水素センサ。
A hydrogen sensor comprising a detector having a property that changes its property in response to hydrogen, and detecting the concentration of hydrogen in the air based on the property change of the detector,
The hydrogen sensor, wherein the detection unit is constituted by a linear member at least partially bent or curved.
請求項1記載の水素センサにおいて、
前記検出部が、ミアンダ形状の線状部材からなることを特徴とする水素センサ。
The hydrogen sensor according to claim 1,
The hydrogen sensor according to claim 1, wherein the detection unit is a meander-shaped linear member.
請求項1記載の水素センサにおいて、
前記検出部が、螺旋状の線状部材からなることを特徴とする水素センサ。
The hydrogen sensor according to claim 1,
The hydrogen sensor, wherein the detection unit is formed of a spiral linear member.
請求項1記載の水素センサにおいて、
前記検出部が、複数の線状部材によってメッシュ状に形成されていることを特徴とする水素センサ。
The hydrogen sensor according to claim 1,
The hydrogen sensor, wherein the detection unit is formed in a mesh shape by a plurality of linear members.
請求項1から4の何れか一項に記載の水素センサにおいて、
前記検出部が、水素に反応して発熱する第一層と、該第一層の熱的影響を受けて変形する第二層と、を積層した構成からなることを特徴とする水素センサ。
The hydrogen sensor according to any one of claims 1 to 4,
2. The hydrogen sensor according to claim 1, wherein the detection unit is configured by laminating a first layer that generates heat in response to hydrogen and a second layer that is deformed by the thermal influence of the first layer.
請求項1から5の何れか一項に記載の水素センサにおいて、
前記検出部の少なくとも一方の端部が台座に支持され、前記検出部の少なくとも中間部が固体に接触しない状態で配置されていることを特徴とする水素センサ。
The hydrogen sensor according to any one of claims 1 to 5,
A hydrogen sensor, wherein at least one end of the detection unit is supported by a pedestal, and at least an intermediate part of the detection unit is arranged in a state of not contacting a solid.
請求項1から6の何れか一項に記載の水素センサにおいて、
前記検出部が、白金層を備えることを特徴とする水素センサ。
The hydrogen sensor according to any one of claims 1 to 6,
The hydrogen sensor, wherein the detection unit includes a platinum layer.
請求項1から7の何れか一項に記載の水素センサにおいて、
前記検出部が、パラジウム層及びマグネシウム・パラジウム合金層のうちの少なくとも一方を備えることを特徴とする水素センサ。
The hydrogen sensor according to any one of claims 1 to 7,
The hydrogen sensor, wherein the detection unit includes at least one of a palladium layer and a magnesium-palladium alloy layer.
JP2007190678A 2007-07-23 2007-07-23 Hydrogen sensor Expired - Fee Related JP5039934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007190678A JP5039934B2 (en) 2007-07-23 2007-07-23 Hydrogen sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007190678A JP5039934B2 (en) 2007-07-23 2007-07-23 Hydrogen sensor

Publications (2)

Publication Number Publication Date
JP2009025229A true JP2009025229A (en) 2009-02-05
JP5039934B2 JP5039934B2 (en) 2012-10-03

Family

ID=40397159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007190678A Expired - Fee Related JP5039934B2 (en) 2007-07-23 2007-07-23 Hydrogen sensor

Country Status (1)

Country Link
JP (1) JP5039934B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010119721A1 (en) 2009-04-17 2010-10-21 独立行政法人産業技術総合研究所 Stable artificial bioluminescent enzyme having super-high brightness

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63172948A (en) * 1987-01-12 1988-07-16 Figaro Eng Inc Gas sensor
JP2001296238A (en) * 2000-04-17 2001-10-26 Japan Science & Technology Corp Hydrogen gas sensor
JP2004053542A (en) * 2002-07-24 2004-02-19 National Institute Of Advanced Industrial & Technology Hydrogen sensor using magnesium-nickel alloy thin film and hydrogen concentration measuring method
JP2004125513A (en) * 2002-09-30 2004-04-22 Matsushita Electric Works Ltd Hydrogen sensor and electrolytic water generator equipped with hydrogen sensor
JP2005321215A (en) * 2004-05-06 2005-11-17 Tokyo Gas Co Ltd Catalytic combustion type gas sensor
JP2007064865A (en) * 2005-09-01 2007-03-15 Toshitsugu Ueda Gas sensor and method of manufacturing gas sensor
JP2007071547A (en) * 2005-09-02 2007-03-22 National Institute Of Advanced Industrial & Technology Hydrogen sensor using magnesium-palladium alloy thin film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63172948A (en) * 1987-01-12 1988-07-16 Figaro Eng Inc Gas sensor
JP2001296238A (en) * 2000-04-17 2001-10-26 Japan Science & Technology Corp Hydrogen gas sensor
JP2004053542A (en) * 2002-07-24 2004-02-19 National Institute Of Advanced Industrial & Technology Hydrogen sensor using magnesium-nickel alloy thin film and hydrogen concentration measuring method
JP2004125513A (en) * 2002-09-30 2004-04-22 Matsushita Electric Works Ltd Hydrogen sensor and electrolytic water generator equipped with hydrogen sensor
JP2005321215A (en) * 2004-05-06 2005-11-17 Tokyo Gas Co Ltd Catalytic combustion type gas sensor
JP2007064865A (en) * 2005-09-01 2007-03-15 Toshitsugu Ueda Gas sensor and method of manufacturing gas sensor
JP2007071547A (en) * 2005-09-02 2007-03-22 National Institute Of Advanced Industrial & Technology Hydrogen sensor using magnesium-palladium alloy thin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010119721A1 (en) 2009-04-17 2010-10-21 独立行政法人産業技術総合研究所 Stable artificial bioluminescent enzyme having super-high brightness

Also Published As

Publication number Publication date
JP5039934B2 (en) 2012-10-03

Similar Documents

Publication Publication Date Title
JP5255066B2 (en) Gas sensor with improved selectivity
JP5335233B2 (en) Method of manufacturing a radiation thermal detection device comprising an active microbolometer and a passive microbolometer
US7635091B2 (en) Humidity sensor formed on a ceramic substrate in association with heating components
US20070289356A1 (en) Fluid sensor including an error detection device
US20200003718A1 (en) Sensor for measuring a gas concentration
JP5319027B2 (en) Gas detection device and gas detection method
JP2010122106A (en) Thermoelectric type gas sensor
JP6926040B2 (en) Hydrogen sensor, hydrogen detection method and program
US8161794B2 (en) Sulfur component detecting device
JP5039934B2 (en) Hydrogen sensor
JP6243040B2 (en) Sensor for detecting oxidizable gas
JP4084306B2 (en) Heat flux comparator
US11428659B2 (en) Hydrogen sensor and method for its production, measuring device, and method for measuring a hydrogen concentration
WO2021067756A1 (en) Monolithically integrated and densely packed array sensor platform for ultra-low power gas sensing applications
JP4798961B2 (en) HEATER DEVICE AND GAS SENSOR DEVICE USING THE SAME
JP7486123B2 (en) Gas Sensor Device
JP2007278867A (en) Electrode structure of humidity sensing part
JP5129553B2 (en) Hydrogen detection element
JP2011196896A (en) Contact combustion type gas sensor
JP2006071362A (en) Combustible gas sensor
JP2010230386A (en) Membrane-type gas sensor
JP2005183795A (en) Gas sensor having thermocouple pattern
JP5144090B2 (en) Catalytic combustion type gas sensor and manufacturing method of catalytic combustion type gas sensor
JP5724005B2 (en) Contact combustion type gas sensor
Tajima et al. Micro-Thermoelectric Hydrogen Sensors with Pt Thin Film and Pt∕ Alumina Thick Film Catalysts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120529

R150 Certificate of patent or registration of utility model

Ref document number: 5039934

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees