JP2005318790A - Charger - Google Patents

Charger Download PDF

Info

Publication number
JP2005318790A
JP2005318790A JP2005090895A JP2005090895A JP2005318790A JP 2005318790 A JP2005318790 A JP 2005318790A JP 2005090895 A JP2005090895 A JP 2005090895A JP 2005090895 A JP2005090895 A JP 2005090895A JP 2005318790 A JP2005318790 A JP 2005318790A
Authority
JP
Japan
Prior art keywords
charging
charging current
current
battery
battery voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005090895A
Other languages
Japanese (ja)
Inventor
Shogo Sumitomo
正吾 住友
Zenichi Hashimoto
善一 橋本
Manabu Yanagisako
学 柳迫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005090895A priority Critical patent/JP2005318790A/en
Publication of JP2005318790A publication Critical patent/JP2005318790A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a charger capable of securing a charging current as large as possible in a short time even in a battery which is charged by a constant charging current and requires a long charging time. <P>SOLUTION: This charger having a function for supplying charging currents of a plurality of stages to the battery rapidly charges the battery by gradually decreasing the charging current to an allowable current corresponding to the reduction of a charging current which the battery can allow with the progress of charging. Furthermore, the charger includes a function for gradually switching a first charging current to an Nth charging current. This stepwise switching is conducted when it is detected that a battery voltage during a charging current-off period reaches a battery voltage VB (N-1) from a prescribed battery voltage VB1 corresponding to each current switching. During the charge period by the Nth charging current, the battery voltage during the charging current-off period reaches a peak in the ending stage of charging. When it is detected that the battery voltage drops after the peak, the charging is completed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、充電器の充電制御技術に関するものである。   The present invention relates to a charging control technique for a charger.

従来の充電器としては、充電開始から充電完了まで定電流による充電を行い、充電末期の電池電圧の電圧降下を検出して充電完了を検出する方式であった。例えば特許文献1には、従来の技術として、定電流制御された充電電流を継続して被充電電池に流し、電池電圧の変化をモニターして充電完了を検出することが記載されている。
特開2000−324709号公報
As a conventional charger, charging was performed with a constant current from the start of charging to the completion of charging, and the completion of charging was detected by detecting a voltage drop in the battery voltage at the end of charging. For example, Patent Literature 1 describes, as a conventional technique, continuously charging a constant current-controlled charging current to a charged battery and monitoring a change in battery voltage to detect completion of charging.
JP 2000-324709 A

しかしながら従来の一定電流を充電開始から充電完了まで流す方式では、その充電電流は充電末期に電池が許容し得る最大電流に制限され、それ以上の充電電流を流すことができなかった。このため、近年のニッケル水素蓄電池の高容量化に伴い、電池が充電末期に許容し得る電流が0.5It程度に制限される電池においては、0.5It定電流による約2時間が充電時間としての最短であった。   However, in the conventional method in which a constant current is supplied from the start of charging to the completion of charging, the charging current is limited to the maximum current that the battery can tolerate at the end of charging, and no more charging current can be supplied. For this reason, with the recent increase in capacity of nickel-metal hydride storage batteries, in batteries where the current that the battery can tolerate at the end of charging is limited to about 0.5 It, the charging time is about 2 hours with a 0.5 It constant current. Was the shortest.

尚、Itは電池の充電電流または放電電流を表す単位であり、電池の定格容量の数値を1Itとしており、例えば容量が2000mAhの電池の場合、1Itは2000mAとなり、0.5Itは1000mAである。   Note that It is a unit representing the charging current or discharging current of the battery, and the numeric value of the rated capacity of the battery is 1 It. For example, in the case of a battery with a capacity of 2000 mAh, 1 It is 2000 mA and 0.5 It is 1000 mA.

図2に従来例による電池電圧と充電電流の時間推移を示すが、充電開始後より0.5Itの充電電流が流れ、その後約2時間が経過し、充電完了が近づくと、電池電圧はピークを迎えその後緩やかに降下する。このピーク後の電池電圧降下を検出して、充電完了とし、充電を終了する。この充電完了付近、特に充電容量が約90%を越えてから充電完了までの期間では、電池内部の圧力が上昇するため、充電電流が電池の許容値を越えている場合、電池の安全弁が作動し、内部よりガスが流出し、電池の性能劣化を起こす可能性がある。   FIG. 2 shows the time transition of the battery voltage and the charging current according to the conventional example. When a charging current of 0.5 It flows after the start of charging, and about 2 hours have passed after that, the battery voltage reaches its peak when the completion of charging approaches. After that, it descends slowly. The battery voltage drop after this peak is detected, charging is completed, and charging is terminated. In the vicinity of this charging completion, especially in the period from when the charging capacity exceeds about 90% until the charging is completed, the pressure inside the battery rises, so if the charging current exceeds the allowable value of the battery, the safety valve of the battery is activated However, gas may flow out from the inside, which may cause deterioration of battery performance.

近年の電池の高容量化に伴い、この電流許容値は下がる傾向にあり、0.5It以上の充電電流を流すと安全弁の作動が発生する電池も出てきている。よって、充電電流の上限はこの充電末期において安全弁を作動させることのない電流値に制限され、充電開始時から0.5Itの充電電流で充電する場合、その充電時間は約2時間が最短であった。   With the recent increase in capacity of batteries, this allowable current value tends to decrease, and some batteries have come to operate when a charging current of 0.5 It or more flows. Therefore, the upper limit of the charging current is limited to a current value that does not activate the safety valve at the end of charging, and when charging with a charging current of 0.5 It from the beginning of charging, the charging time is about 2 hours is the shortest. It was.

また、充電表示については充電中と充電完了の2段階しか表示されないため、充電途中で何%程度充電されているかを知らしめる手段がなく、使用者の使い勝手としてはやや不便さがあった。   In addition, since only two stages of charging and charging completion are displayed for the charging display, there is no means for telling about what percentage of charging is in progress during charging, which is somewhat inconvenient for the user.

本発明は従来より短時間で出来るだけ大きな充電量を確保することが可能な充電器を提供することを目的とする。   An object of this invention is to provide the charger which can ensure as much charge amount as possible in a short time compared with the past.

上記の課題を解決するために、充電器は電池に複数段階の充電電流を供給する機能を有し、充電の進行に伴い電池の許容できる充電電流が低減することに応じて、充電電流を許容電流以下に段階的に低減して、より短時間での急速充電を可能とするものである。   In order to solve the above-mentioned problems, the charger has a function of supplying charging currents of multiple stages to the battery, and the charging current is allowed according to the reduction of the allowable charging current of the battery as the charging progresses. It is reduced stepwise below the current to enable quick charging in a shorter time.

また、第1の充電電流から第N番目の充電電流へ段階的に切替える機能を有するとき、第1番目から第N番目までの充電電流の段階的切替えは、充電電流オフ期間における電池電圧が各々の電流切替えに対して予め設定された電池電圧VB1から電池電圧VB(N−1)に達したことを検出して行い、第N番目の充電電流による充電期間では、充電電流オフ期間における電池電圧が充電末期にピークを迎え、その後電圧降下することを検出して充電完了とする機能を備えている。   In addition, when having a function of switching from the first charging current to the Nth charging current step by step, the stepwise switching of the charging current from the first to the Nth charging is performed by changing the battery voltage during the charging current off period. The battery voltage VB1 is detected when the battery voltage VB (N-1) is reached from the battery voltage VB1 set in advance for the current switching, and the battery voltage in the charging current off period is charged in the Nth charging current charging period. Has a function of detecting that the voltage reaches a peak at the end of charging and then the voltage is dropped to complete charging.

そして充電途中の段階的充電電流の切替えに伴い充電途中での容量表示を行い、また充電完了検出に伴い充電完了表示を行う機能を備えている。   A function is provided for performing capacity display during charging in accordance with stepwise charging current switching in the middle of charging, and displaying charging completion in response to detection of charging completion.

さらに、複数個の電池を直列接続するスイッチ素子と、各電池と並列に接続されたバイパス用スイッチ素子を設け、充電電流をデューティー制御することにより、複数個の電池を同時に充電できるようにすることも可能である。   Furthermore, by providing a switching element for connecting a plurality of batteries in series and a bypass switching element connected in parallel with each battery, the charging current is duty controlled so that a plurality of batteries can be charged simultaneously. Is also possible.

本発明の充電器は、上記構成を有し、充電末期の充電電流が低く制限される電池であっても、より急速充電化を図れるものである。具体的には、定電流充電では充電電流が0.5Itを越えることができない電池であっても、その電池性能を劣化させることなく1時間以内の急速充電を可能とするものである。   The charger according to the present invention has the above-described configuration, and can achieve faster charging even for a battery in which the charging current at the end of charging is limited to be low. Specifically, even a battery whose charging current cannot exceed 0.5 It by constant current charging can be rapidly charged within one hour without deteriorating its battery performance.

また、充電途中の段階的充電電流の切替えに伴い充電途中での容量表示を行うことにより、充電完了に至らずとも短時間で出来るだけ多く充電したいと願う使用者にとっては使い勝手の良い充電器を提供することができる。   In addition, by displaying the capacity in the middle of charging along with the stepwise charging current switching in the middle of charging, a user-friendly charger is available for users who want to charge as much as possible in a short time without reaching completion of charging. Can be provided.

さらに、複数個の電池を直列接続するスイッチ素子と、各電池と並列に接続されたバイパス用スイッチ素子を設けることによって、充電状態の異なる複数個の電池を同時に急速充電することが可能である。   Furthermore, by providing a switch element for connecting a plurality of batteries in series and a bypass switch element connected in parallel with each battery, a plurality of batteries having different charge states can be rapidly charged simultaneously.

(実施の形態1)
本発明のより具体的な実施の形態について、充電電流の段階的切替えが最も少ない実施例として図1を用いて説明する。図1は充電時の電池電圧と充電電流の時間推移を示す図である。充電開始後、第1の充電電流として約3Itの電流を電池に供給し、充電を行う。電流パターンとしては電流オン期間として約1.1秒間電流を流し、次に約0.1秒間の電流オフ期間を設けている。充電電流切替えを行う検出電圧VB1はこの電流オフ期間、つまり電流の流れていないときの電池電圧を検出して行う。
(Embodiment 1)
A more specific embodiment of the present invention will be described with reference to FIG. 1 as an example in which the charging current is gradually switched. FIG. 1 is a diagram showing the time transition of battery voltage and charging current during charging. After the start of charging, a current of about 3 It is supplied to the battery as the first charging current to perform charging. As a current pattern, a current is supplied for about 1.1 seconds as a current on period, and then a current off period of about 0.1 seconds is provided. The detection voltage VB1 for switching the charging current is detected by detecting the battery voltage during this current off period, that is, when no current flows.

これは、本実施形態では第1の充電電流として約7.8Aという大電流を用いているために電流オン期間の電池電圧、つまり電流が流れているときの電池電圧を検出しようとした場合、充電器の出力端子と電池との接触抵抗、端子自体で発生する電圧降下、さらにはプリント基板の銅箔パターンでの電圧降下が、電池電圧に加算されて読み込まれるために、正確な電池電圧を測定するのが非常に困難となる。このために、電流オフ期間の電池電圧を検出するようにしている。電流オフ期間であれば、接触抵抗等における電圧降下が発生しないため、その影響を受けずに電池のみの正確な電圧を検出することができるためである。   This is because, in the present embodiment, since a large current of about 7.8 A is used as the first charging current, the battery voltage during the current on period, that is, the battery voltage when the current is flowing is detected. Since the contact resistance between the output terminal of the charger and the battery, the voltage drop generated at the terminal itself, and the voltage drop in the copper foil pattern of the printed circuit board are added to the battery voltage and read, the accurate battery voltage is It becomes very difficult to measure. For this purpose, the battery voltage during the current off period is detected. This is because the voltage drop in the contact resistance or the like does not occur during the current off period, and the accurate voltage of only the battery can be detected without being affected by the voltage drop.

また、電流切替えのポイントを検出する検出電圧VB1は、あらかじめ実験により10分間の充電で充電する電池の定格容量の50%を充電する電流値を設定し、その時の開路電圧に設定されている。さらに電池電圧は負の温度特性を持っているため、検出電圧VB1には電池電圧の温度特性と同等の温度特性が、あらかじめ実験により求められ、設定されている。そして充電開始後、第1の充電電流による充電が進行するに従い電池電圧が上昇し、電流オフ期間の電池電圧がVB1に達したことを検出して、第1の充電電流による充電を終了する。この第1の充電電流による充電時間は本実施の形態では約10分であり、充電容量としては約50%となる。充電電流の切替えと同時に充電状態を表す表示も切替え、電池定格容量の約50%の充電ができたことを使用者へ知らせることが可能となる。   In addition, the detection voltage VB1 for detecting the current switching point is set to an open circuit voltage at that time by previously setting an electric current value for charging 50% of the rated capacity of the battery charged by charging for 10 minutes by experiment. Further, since the battery voltage has a negative temperature characteristic, a temperature characteristic equivalent to the temperature characteristic of the battery voltage is obtained and set in advance for the detection voltage VB1. Then, after the start of charging, the battery voltage rises as the charging with the first charging current proceeds, and it is detected that the battery voltage during the current off period has reached VB1, and the charging with the first charging current is terminated. The charging time by the first charging current is about 10 minutes in the present embodiment, and the charging capacity is about 50%. Simultaneously with the switching of the charging current, the display indicating the charging state is also switched, so that it is possible to notify the user that charging of about 50% of the battery rated capacity has been completed.

次に第2の充電電流として約1Itの電流に切替えて充電を継続するが、電池電圧はこの時点で一旦低い電圧に下降するが、第2の充電電流による充電が進行するに従い再び上昇する。第2の充電電流による充電期間も、第1の充電電流の期間と同様に約1.1秒の電流オン期間と約0.1秒の電流オフ期間の繰り返しにより、充電を進行し、電流オフ期間での電池電圧を検出し、第3の充電電流への切替え電圧である電池電圧VB2を検出する。そして充電が進行し、電池電圧がVB2に達すると、第2の充電電流による充電を終了する。この第2の充電電流による充電時間は約20分であり、その充電容量は同じく電池定格容量の約30%である。充電開始からの累計では、充電時間としては約30分、トータル充電容量としては約80%となっているが、この充電容量80%においてはまだ電池内圧の著しい上昇は始まっておらず、約1Itの電流により安全弁が作動し電池性能の劣化を起こすことはない。また、ここでも充電電流の切替えと同時に充電状態を表す表示を切替え、約80%の充電ができたことを使用者へ知らせることができる。   Next, charging is continued by switching to a current of about 1 It as the second charging current, but the battery voltage once falls to a low voltage at this point, but rises again as the charging by the second charging current proceeds. Similarly to the first charging current period, the charging period by the second charging current is repeated by repeating a current on period of about 1.1 seconds and a current off period of about 0.1 seconds, and the current is turned off. The battery voltage in the period is detected, and the battery voltage VB2 that is the switching voltage to the third charging current is detected. When the charging proceeds and the battery voltage reaches VB2, the charging by the second charging current is terminated. The charging time by the second charging current is about 20 minutes, and the charging capacity is also about 30% of the battery rated capacity. From the beginning of charging, the charging time is about 30 minutes and the total charging capacity is about 80%. However, at this charging capacity of 80%, the battery internal pressure has not started to rise significantly, and about 1 It The safety valve is activated by this current and battery performance is not degraded. In this case, the display indicating the charging state is switched simultaneously with the switching of the charging current, so that the user can be informed that about 80% of the charging has been completed.

その後、第3の充電電流として約0.5Itの電流に切替えて充電を継続するが、この時点でも電池電圧は一旦下降し、その後上昇する。第3の充電電流による充電期間も第1の充電電流及び第2の充電電流の期間と同様に約1.1秒の電流オン期間と約0.1秒の電流オフ期間の繰り返しにより充電を進行し、電池電圧の検出も同様に電流オフ期間で行う。そして充電が進行し、充電末期において電池電圧はピークを迎え、その後ゆるやかに下降する。この電池電圧のピーク後の電圧降下を検出して充電完了と判断し、表示としては充電完了表示へ切替える。この第3の充電電流による充電時間は約30分であり、その充電容量は電池定格容量の約25%である。この充電完了付近の領域では、充電電流が電池としての許容値である0.5Itとなっているため、安全弁作動による電池性能の劣化は起こらない。充電開始からの累計では、充電時間としては約1時間、トータル充電容量としては約105%となっており、電池として充電完了に至っている。   Thereafter, the charging is continued by switching to a current of about 0.5 It as the third charging current. At this time, the battery voltage once decreases and then increases. As with the first charging current and the second charging current, the charging period of the third charging current proceeds by repeating a current on period of about 1.1 seconds and a current off period of about 0.1 seconds. The battery voltage is also detected during the current off period. Charging proceeds, the battery voltage reaches a peak at the end of charging, and then gradually decreases. A voltage drop after the peak of the battery voltage is detected and it is determined that charging is completed, and the display is switched to a charging completion display. The charging time by the third charging current is about 30 minutes, and the charging capacity is about 25% of the battery rated capacity. In the region near the completion of charging, the charging current is 0.5 It, which is an allowable value for the battery, so that the battery performance does not deteriorate due to the operation of the safety valve. The cumulative total from the start of charging is about 1 hour as the charging time and about 105% as the total charging capacity, and the battery has been fully charged.

(実施の形態2)
本発明を複数個の電池ができる充電器に用いた場合のより具体的な実施の形態について、図3〜図8を用いて説明する。図3は4個の電池が充電できるDC入力タイプの充電器の回路ブロック図である。
(Embodiment 2)
A more specific embodiment when the present invention is used in a charger capable of producing a plurality of batteries will be described with reference to FIGS. FIG. 3 is a circuit block diagram of a DC input type charger capable of charging four batteries.

B1〜B4は充電されるニッケル水素電池である。SW1〜SW4は4個の電池を直列接続するように設けられたスイッチ素子であり、SW5〜SW8は各電池と並列に設けられたバイパス用のスイッチ素子である。SW9は充電制御部で電池電圧を検出するための回路を構成するスイッチ素子である。R1は充電電流検出用の抵抗であり、LED1〜LED3は充電状態表示用のLEDである。その他の回路ブロックとしては、DC/DCコンバータ部、定電流制御部、5V電源部、充電制御部が設けられている。   B1 to B4 are nickel metal hydride batteries to be charged. SW1 to SW4 are switch elements provided to connect four batteries in series, and SW5 to SW8 are bypass switch elements provided in parallel with the batteries. SW9 is a switch element that constitutes a circuit for detecting the battery voltage in the charge controller. R1 is a resistance for detecting a charging current, and LEDs 1 to LED3 are LEDs for displaying a charging state. As other circuit blocks, a DC / DC converter section, a constant current control section, a 5V power supply section, and a charge control section are provided.

上記構成において、入力にDC電源が印加され、電池が接続されると、DC/DCコンバータが発振を開始し、電流検出抵抗R1と定電流制御部により定電流化された充電電流が電池に供給される。B1〜B4までの4個全ての電池が接続された場合、DC/DCコンバータ→SW1→B1→SW2→B2→SW3→B3→SW4→B4の経路で充電電流は流れる。電池が3個で、B2、B3、B4に接続されている場合は、バイパス用スイッチSW5を介して、DC/DCコンバータ→SW5→SW2→B2→SW3→B3→SW4→B4の経路で充電電流が流れる。電池が1個のみで、B4に接続されている場合は、バイパス用スイッチSW5、SW6、SW7を介して、DC/DCコンバータ→SW5→SW6→SW7→SW4→B4の経路で充電電流が流れる。このように電池個数に応じて直列接続用のスイッチ素子SW1〜SW4、及びバイパス用スイッチ素子SW5〜SW8の開閉を組み合わせて、充電回路を形成し、複数個の電池の充電を行う。   In the above configuration, when a DC power source is applied to the input and the battery is connected, the DC / DC converter starts oscillating, and the charging current that is made constant by the current detection resistor R1 and the constant current control unit is supplied to the battery. Is done. When all four batteries B1 to B4 are connected, the charging current flows through the path of DC / DC converter → SW1 → B1 → SW2 → B2 → SW3 → B3 → SW4 → B4. When three batteries are connected to B2, B3, and B4, the charging current passes through the bypass switch SW5 in the path of DC / DC converter → SW5 → SW2 → B2 → SW3 → B3 → SW4 → B4. Flows. When only one battery is connected to B4, the charging current flows through the bypass switches SW5, SW6, and SW7 along the path of DC / DC converter → SW5 → SW6 → SW7 → SW4 → B4. Thus, a charging circuit is formed by combining opening and closing of the switch elements SW1 to SW4 for series connection and the switch elements SW5 to SW8 for bypass according to the number of batteries, and a plurality of batteries are charged.

各電池の電池電圧検出は、任意の時間に設定された充電電流OFF期間に行う。図4に充電電流の波形を示すが、本実施例においては、1.1秒間の充電電流ON期間と0.1秒間の充電電流OFF期間を交互に繰り返している。各電池の電池電圧検出はこの充電電流OFF期間の0.1秒間に行われる。この電池電圧検出時は、まずDC/DCコバータ部を停止し、充電電流を停止する。その後スイッチ素子SW9を閉じ、SW1〜SW9の開閉の組合せにより、各電池の電池電圧を検出する。例えばB1の電池電圧を検出す場合、充電制御部→SW9→SW1→B1→SW6→SW7→SW8の回路を形成して電池B1の電圧検出を行う。このとき、SW5、SW2、SW3、SW4は“開”状態である。   The battery voltage of each battery is detected during the charging current OFF period set at an arbitrary time. FIG. 4 shows the waveform of the charging current. In this embodiment, the charging current ON period of 1.1 seconds and the charging current OFF period of 0.1 seconds are alternately repeated. The battery voltage of each battery is detected for 0.1 seconds during this charging current OFF period. When this battery voltage is detected, the DC / DC converter unit is first stopped to stop the charging current. Thereafter, the switch element SW9 is closed, and the battery voltage of each battery is detected by a combination of opening and closing of SW1 to SW9. For example, when the battery voltage of B1 is detected, the voltage of the battery B1 is detected by forming a circuit of charge control unit → SW9 → SW1 → B1 → SW6 → SW7 → SW8. At this time, SW5, SW2, SW3, and SW4 are in the “open” state.

また、1.1秒間の充電電流ON期間においては、複数個の電池各々に適切な充電電流を流すべく、充電電流のデューティー制御を行っている。本実施形態においては、充電電流は2つの充電電流ピーク値を持ち、この2つの充電電流ピーク値をデューティー制御することにより、3つの充電電流平均値を構成し、充電進行状態に応じて各電池毎に適切な充電電流を流すようにしている。図4に第1の充電電流の構成を、図5に第2の充電電流の構成を、図6に第3の充電電流の構成をする場合の充電電流波形を示す。   In addition, during the charging current ON period of 1.1 seconds, duty control of the charging current is performed so that an appropriate charging current flows through each of the plurality of batteries. In the present embodiment, the charging current has two charging current peak values, and duty control is performed on the two charging current peak values to form three charging current average values, and each battery according to the charging progress state. An appropriate charging current is made to flow every time. FIG. 4 shows a configuration of the first charging current, FIG. 5 shows a configuration of the second charging current, and FIG. 6 shows a charging current waveform in the case of the configuration of the third charging current.

図4において、第1の充電電流の平均値は7.2Aであるが、この7.2Aは充電電流ピーク値7.8Aをデューティー比92%に制御することにより構成されている。図5においては、第2の充電電流の平均値は2.3Aであるが、この2.3Aは充電電流ピーク値7.8Aを同じく29%に制御する手段、及び2.5Aを92%にデューティー制御する手段の2種類の手段により構成されている。また図6においても、第3の充電電流の平均値は1.2Aであるが、この1.2Aは充電電流ピーク値7.8Aを15%にデューティー制御する手段、及び2.5Aを48%にデューティー制御する手段の2種類の手段により構成されている。   In FIG. 4, the average value of the first charging current is 7.2 A. This 7.2 A is configured by controlling the charging current peak value 7.8 A to a duty ratio of 92%. In FIG. 5, the average value of the second charging current is 2.3A, but this 2.3A is a means for controlling the charging current peak value 7.8A to 29%, and 2.5A to 92%. It comprises two types of means for duty control. Also in FIG. 6, the average value of the third charging current is 1.2 A, but this 1.2 A is a means for duty-controlling the charging current peak value 7.8 A to 15%, and 2.5 A is 48%. It is composed of two types of means for duty control.

図7に、上記3つの充電電流平均値を用いて2本の電池を充電する実施例の充電電流平均値の推移を示す。上段に放電により残容量0%となっている電池B1の充電電流平均値の推移を、下段に約30%の残容量がある電池B2の充電電流平均値の推移を示す。充電開始後、期間Aにおいては電池B1及び電池B2に対し共に充電電流平均値7.2Aが流れる。次に充電が進行し、充電制御部により電池B2の第1段目の検出がなされ、電池B2の充電電流のみが平均値2.3Aに切替えられ、電池B1と電池B2で充電電流平均値が異なる期間Bとなる。図8に、この期間Bにおけるデューティー制御が行われている充電電流波形を示す。期間B−1は電池B1及びB2に対し共に充電電流ピーク値7.8Aが流れており、回路接続としてはDC/DCコンバータ→SW1→B1→SW2→B2→SW7→SW8となっている。次に期間B−2においては、SW2が“開”となり、SW6が“閉”となり、回路接続はDC/DCコンバータ→SW1→B1→SW6→SW7→SW8となり、充電電流ピーク値7.8Aが流れるのは電池B1のみとなる。期間B−3は前述の電池電圧検出期間であり、DC/DCコンバータが停止して充電を停止し、充電制御部による電池電圧検出が行われる。この期間B−1から期間B−3までの充電電流ON時間とOFF時間の比率により、前述したように電池B1用には充電電流ピーク値7.8Aを92%にデューティー制御することにより充電電流平均値7.2Aを、電池B2用には充電電流ピーク値7.8Aを29%にデューティー制御することにより充電電流平均値2.3Aを得ている。   FIG. 7 shows the transition of the charging current average value in an example in which two batteries are charged using the above three charging current average values. The transition of the charging current average value of the battery B1 having a remaining capacity of 0% due to discharge in the upper stage and the transition of the charging current average value of the battery B2 having a remaining capacity of about 30% in the lower stage are shown. In the period A after the start of charging, the charging current average value 7.2A flows to both the battery B1 and the battery B2. Next, charging proceeds, the charge control unit detects the first stage of the battery B2, only the charging current of the battery B2 is switched to the average value 2.3A, and the average charging current value of the batteries B1 and B2 is It becomes a different period B. FIG. 8 shows a charging current waveform in which the duty control is performed in this period B. During the period B-1, the charging current peak value 7.8A flows for both the batteries B1 and B2, and the circuit connection is DC / DC converter → SW1 → B1 → SW2 → B2 → SW7 → SW8. Next, in the period B-2, SW2 is “open”, SW6 is “closed”, the circuit connection is DC / DC converter → SW1 → B1 → SW6 → SW7 → SW8, and the charging current peak value 7.8A is Only the battery B1 flows. Period B-3 is the above-described battery voltage detection period. The DC / DC converter stops to stop charging, and the battery voltage is detected by the charge control unit. Based on the ratio of the charging current ON time and the OFF time from the period B-1 to the period B-3, as described above, the charging current peak value 7.8A is duty controlled to 92% for the battery B1, thereby charging current. An average value of 7.2A is obtained, and for battery B2, a charge current average value of 2.3A is obtained by duty-controlling the charge current peak value of 7.8A to 29%.

次に充電が進行し電池B1の充電電流も切替ると図7の期間Cに移行する。期間Cでは充電電流ピーク値は2.5Aに変更され、充電電流ピーク値2.5Aを92%にデューティー制御することにより充電電流平均値2.3Aを得ている。電池B2に対しては期間Bと期間Cでは充電電流平均値は2.3Aと同じであるが、その構成は充電電流ピーク値7.8Aの29%デューティー比から、充電電流ピーク値2.5Aの92%デューティー比に変更されることになる。   Next, when charging progresses and the charging current of the battery B1 is also switched, the period shifts to a period C in FIG. In period C, the charging current peak value is changed to 2.5 A, and the charging current average value 2.3 A is obtained by duty-controlling the charging current peak value 2.5 A to 92%. For the battery B2, the charging current average value in the period B and the period C is the same as 2.3A, but the configuration is the charging current peak value of 2.5A from the 29% duty ratio of the charging current peak value of 7.8A. The duty ratio is changed to 92%.

以降の各期間においても同様にスイッチ素子の開閉時間を制御することにより、各電池に適切な充電電流平均値が流れるように制御を行う。また、電池本数が3本、4本と増えた場合も、同様にスイッチ素子の開閉時間を制御することにより、各電池に適切な充電電流を流すことができ、複数本の電池の充電を可能とするものである。   In each subsequent period, the switching time of the switch element is similarly controlled so that an appropriate charging current average value flows in each battery. In addition, when the number of batteries increases to 3 or 4, similarly, by controlling the switching time of the switch element, an appropriate charging current can be supplied to each battery, and multiple batteries can be charged. It is what.

充電の進行を使用者に知らせるには例えば、図3に示すLED1〜3を用いて、第1の充電電流が流れている状態においてLED1が赤色点灯し、第2の充電電流に切り替わった時点でLED1を緑色点灯に切り替え、LED2を赤色点灯させるといった具合に順次表示して充電完了した時点ではLED1〜3が全て緑色点灯となるようにすれば良い。   In order to inform the user of the progress of charging, for example, using LEDs 1 to 3 shown in FIG. 3, when LED 1 is lit red in the state where the first charging current is flowing and switched to the second charging current. LED1 is switched to green lighting, LED2 is lighted red, and so on, and when charging is completed, LEDs 1 to 3 may all be green.

本発明の充電器は、ニッケル水素蓄電池等の急速充電化において有用な技術である。特に、近年の高容量化に伴い、電池の過充電性能として大電流を受入れられない電池であっても、その性能劣化を発生することなく、より速い急速充電を可能とするものである。   The charger of the present invention is a useful technique for rapid charging of a nickel metal hydride storage battery or the like. In particular, with a recent increase in capacity, even a battery that cannot accept a large current as an overcharge performance of the battery can be rapidly charged without causing performance deterioration.

また、充電途中での段階的電流切替えに伴う充電容量表示を行い、さらにスイッチ素子を設けて複数個の電池を直列接続し、充電電流をデューティー制御することにより、複数個の電池を充電することを可能とし、使用者の使い勝手を著しく向上するものである。   In addition, charging capacity is displayed along with stepwise current switching during charging, and a plurality of batteries are connected in series by switching elements, and charging current is duty controlled to charge multiple batteries. The user-friendliness is remarkably improved.

本発明の一実施の形態による電池電圧と充電電流の推移を示す図The figure which shows transition of the battery voltage and charging current by one embodiment of this invention 従来例の形態による電池電圧と充電電流の推移を示す図The figure which shows transition of the battery voltage and charging current by the form of a prior art example 本発明の一実施例の回路ブロック図The circuit block diagram of one Example of this invention 第1の充電電流の状態図State diagram of the first charging current 第2の充電電流の状態図Second charging current state diagram 第3の充電電流の状態図State diagram of the third charging current 充電電流平均値の推移を示す図Figure showing the transition of the average charging current 期間Bにおける充電電流波形を示す図The figure which shows the charging current waveform in the period B

符号の説明Explanation of symbols

VB1 第1の充電電流の終了を検出する電池電圧
VB2 第2の充電電流の終了を検出する電池電圧
Vb 電池電圧
I 充電電流
SW1〜SW4 電池を直列接続するスイッチ素子
SW5〜SW8 バイパス用スイッチ素子
SW9 電池電圧検出回路を構成するスイッチ素子
R1 電流検出抵抗
LED1〜LED3 充電状態表示用発光ダイオード
VB1 Battery voltage for detecting the end of the first charging current VB2 Battery voltage for detecting the end of the second charging current Vb Battery voltage I Charging current SW1 to SW4 Switch elements SW5 to SW8 for connecting batteries in series SW9 Switch element constituting battery voltage detection circuit R1 Current detection resistor LED1-LED3 Light-emitting diode for charging state display

Claims (4)

充電式電池の充電器において、電池に複数段階の充電電流を供給する機能を有し、充電の進行に伴い電池の許容できる充電電流が低減することに応じて、充電電流を許容電流以下に段階的に低減して、より急速充電化を図ったことを特徴とする充電器。 Rechargeable battery charger has the function of supplying multiple levels of charging current to the battery, and the charging current can be reduced below the allowable current as the battery's allowable charging current decreases with the progress of charging. The battery charger is characterized in that it has been reduced to a faster charge. 第1の充電電流から第N番目の充電電流へ段階的に切替える機能を有するとき、前記第1から第N番目までの充電電流の切替えは、充電電流オフ期間における電池電圧が各々の電流切替えに対して予め設定された電池電圧VB1から電池電圧VB(N−1)に達したことを検出して行い、第N番目の充電電流による充電期間では、充電電流オフ期間における電池電圧が充電末期にピークを迎え、その後電圧降下することを検出して充電完了とする機能を備えた請求項1記載の充電器。 When the first to Nth charging currents have a function of switching from the first charging current to the Nth charging current step by step, the first to Nth charging currents are switched by changing the battery voltage during the charging current off period. On the other hand, it is detected that the battery voltage VB1 reaches the battery voltage VB (N-1) from the preset battery voltage VB1, and during the charging period with the Nth charging current, the battery voltage in the charging current off period is at the end of charging. The charger according to claim 1, which has a function of detecting a voltage drop after reaching a peak and completing charging. 充電途中の段階的充電電流の切替えに伴い充電容量表示を行い、また充電完了検出に伴い充電完了表示を行うことを特徴とする請求項1または2に記載の充電器。 The charger according to claim 1 or 2, wherein a charge capacity display is performed in accordance with switching of a stepwise charge current during charging, and a charge completion display is performed in accordance with detection of charge completion. 複数個の電池を直列接続するスイッチ素子と、各電池と並列に接続されたバイパス用スイッチ素子を設け、充電電流をデューティー制御することにより、複数個の電池を充電できるようにしたことを特徴とする請求項1から3のいずれかに記載の充電器。 A switch element for connecting a plurality of batteries in series and a bypass switch element connected in parallel with each battery are provided, and a plurality of batteries can be charged by duty-controlling the charging current. The charger according to any one of claims 1 to 3.
JP2005090895A 2004-03-30 2005-03-28 Charger Pending JP2005318790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005090895A JP2005318790A (en) 2004-03-30 2005-03-28 Charger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004098992 2004-03-30
JP2005090895A JP2005318790A (en) 2004-03-30 2005-03-28 Charger

Publications (1)

Publication Number Publication Date
JP2005318790A true JP2005318790A (en) 2005-11-10

Family

ID=35445602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005090895A Pending JP2005318790A (en) 2004-03-30 2005-03-28 Charger

Country Status (1)

Country Link
JP (1) JP2005318790A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1841003A1 (en) * 2006-03-30 2007-10-03 Kabushiki Kaisha Toshiba Battery module system, method of charging battery module and charging type vacuum cleaner
JP2007274846A (en) * 2006-03-31 2007-10-18 Sanyo Electric Co Ltd Charger
JP2008220121A (en) * 2007-03-07 2008-09-18 Nagano Japan Radio Co Charging device
WO2009150773A1 (en) * 2008-06-12 2009-12-17 パナソニック株式会社 Charging method and discharging method of lithium ion secondary battery
JP2012037289A (en) * 2010-08-04 2012-02-23 Toshiba Corp Secondary battery device and data creation method used for capacitance estimation
JP2012075260A (en) * 2010-09-29 2012-04-12 Hitachi Ltd Charge control device
WO2013183952A1 (en) * 2012-06-07 2013-12-12 주식회사 엘지화학 Method for charging secondary battery
JP2014533877A (en) * 2011-11-17 2014-12-15 ジェナックス インコーポレイテッド Electrode assembly, manufacturing method thereof, and battery charging and discharging method
JP2014236632A (en) * 2013-06-04 2014-12-15 三菱電機株式会社 Lighting device and illuminating device
JP2015012651A (en) * 2013-06-27 2015-01-19 株式会社豊田自動織機 Method and device for multistage control of charging current
JP2017533691A (en) * 2014-10-30 2017-11-09 エルジー・ケム・リミテッド Battery quick charging method and apparatus
JP2019003954A (en) * 2009-04-16 2019-01-10 ヴァレンス テクノロジー インコーポレーテッドValence Technology,Inc. Battery system

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100903244B1 (en) * 2006-03-30 2009-06-17 가부시끼가이샤 도시바 Assembled battery system, method for charging assembled battery, and charging cleaner
US7723956B2 (en) 2006-03-30 2010-05-25 Kabushiki Kaisha Toshiba Battery module system, method of charging battery module and charging type vacuum cleaner
EP1841003A1 (en) * 2006-03-30 2007-10-03 Kabushiki Kaisha Toshiba Battery module system, method of charging battery module and charging type vacuum cleaner
JP2007274846A (en) * 2006-03-31 2007-10-18 Sanyo Electric Co Ltd Charger
JP2008220121A (en) * 2007-03-07 2008-09-18 Nagano Japan Radio Co Charging device
WO2009150773A1 (en) * 2008-06-12 2009-12-17 パナソニック株式会社 Charging method and discharging method of lithium ion secondary battery
JP2019003954A (en) * 2009-04-16 2019-01-10 ヴァレンス テクノロジー インコーポレーテッドValence Technology,Inc. Battery system
JP2012037289A (en) * 2010-08-04 2012-02-23 Toshiba Corp Secondary battery device and data creation method used for capacitance estimation
JP2012075260A (en) * 2010-09-29 2012-04-12 Hitachi Ltd Charge control device
US9768449B2 (en) 2011-11-17 2017-09-19 Jenax Inc. Electrode assembly, method for fabricating same, and battery charging and discharging method
JP2014533877A (en) * 2011-11-17 2014-12-15 ジェナックス インコーポレイテッド Electrode assembly, manufacturing method thereof, and battery charging and discharging method
WO2013183952A1 (en) * 2012-06-07 2013-12-12 주식회사 엘지화학 Method for charging secondary battery
CN104335445A (en) * 2012-06-07 2015-02-04 株式会社Lg化学 Method for charging secondary battery
US9490642B2 (en) 2012-06-07 2016-11-08 Lg Chem, Ltd. Charging method of secondary battery with constant current using high charge rate
JP2014236632A (en) * 2013-06-04 2014-12-15 三菱電機株式会社 Lighting device and illuminating device
JP2015012651A (en) * 2013-06-27 2015-01-19 株式会社豊田自動織機 Method and device for multistage control of charging current
JP2017533691A (en) * 2014-10-30 2017-11-09 エルジー・ケム・リミテッド Battery quick charging method and apparatus

Similar Documents

Publication Publication Date Title
JP2005318790A (en) Charger
JP4952971B2 (en) Battery life discriminator
US8138726B2 (en) Electronics with multiple charge rate
US20150222132A1 (en) Storage battery management device, and storage battery management method
JP3956932B2 (en) Charger and charging state determination method
JP3901140B2 (en) Charger
WO2007123050A1 (en) Charging circuit and its charging method
KR20050010893A (en) Charger for rechargeable batteries
WO1994002968A1 (en) Device for displaying remaining charge of secondary cell
WO2005076430A1 (en) Combined battery and battery pack
JP2008187790A (en) Charger
JP2007074897A (en) Charger
CN107521369A (en) A kind of method to charging electric vehicle
JPH11341694A (en) Charging method of secondary battery
JP4206348B2 (en) Battery pack and power tool
CN107846046A (en) Charging method, charging device and charging system
JP2005218174A5 (en)
JP2005151740A (en) Charger
JPH07203634A (en) Charger for secondary cell
JP2005287092A (en) Charger and rechargeable electric apparatus set equipped with the same
JPH07282858A (en) Charging method, charging display method, and battery charger for secondary battery
JP2005245056A (en) Battery pack and rechargeable electric appliance set
JP4046139B2 (en) Battery charger
JP4022872B2 (en) Battery charger
JP3894175B2 (en) Charger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080326

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091013