JP2005314538A - Conductive fine particle and method for producing the same - Google Patents

Conductive fine particle and method for producing the same Download PDF

Info

Publication number
JP2005314538A
JP2005314538A JP2004133605A JP2004133605A JP2005314538A JP 2005314538 A JP2005314538 A JP 2005314538A JP 2004133605 A JP2004133605 A JP 2004133605A JP 2004133605 A JP2004133605 A JP 2004133605A JP 2005314538 A JP2005314538 A JP 2005314538A
Authority
JP
Japan
Prior art keywords
fine particles
conductive fine
conductive
pyrrole
anionic surfactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004133605A
Other languages
Japanese (ja)
Other versions
JP4385254B2 (en
Inventor
Takanori Ogata
孝徳 緒方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Achilles Corp
Original Assignee
Achilles Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Achilles Corp filed Critical Achilles Corp
Priority to JP2004133605A priority Critical patent/JP4385254B2/en
Publication of JP2005314538A publication Critical patent/JP2005314538A/en
Application granted granted Critical
Publication of JP4385254B2 publication Critical patent/JP4385254B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive fine particle having small particle diameter and high dispersion stability in an organic solvent. <P>SOLUTION: The conductive fine particle is composed of pyrrole and/or a pyrrole derivative, having a particle diameter of 1-30 nm and containing an anionic surfactant. The conductive fine particle is produced e.g. by adding pyrrole and/or pyrrole derivative monomer to an O/W-type emulsion obtained by mixing and stirring an organic solvent, water and an anionic surfactant and carrying out the oxidative polymerization of the monomer. A conductive coating is produced by dispersing the conductive fine particle in an organic solvent. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、導電性微粒子およびその製造方法に関する。詳しくは、粒径が微細で有機溶媒中での良好な分散安定性を有する導電性微粒子に関する。   The present invention relates to conductive fine particles and a method for producing the same. Specifically, the present invention relates to conductive fine particles having a fine particle size and good dispersion stability in an organic solvent.

ポリピロール、ポリチオフェン、ポリアニリンに代表される導電性高分子は、空気中で比較的安定であり、また合成が容易であることから、導電性塗料、防錆塗料、半導体材料、コンデンサ用電解質、有機EL素子の正孔輸送材、二次電池用電極材等の用途で工業的に広く使用されている。特にポリピロールは電解コンデンサ、ポリチオフェンは高分子有機EL素子、またポリアニリンは二次電池における適用が注目されている。しかしながら、これらの導電性高分子は概して不溶であり、また加熱によって融解させることも不可能であるため、成形加工が非常に困難であった。   Conductive polymers represented by polypyrrole, polythiophene, and polyaniline are relatively stable in air and easy to synthesize, so conductive paints, anticorrosive paints, semiconductor materials, capacitor electrolytes, organic EL It is widely used industrially for applications such as element hole transport materials and secondary battery electrode materials. In particular, polypyrrole is attracting attention as an electrolytic capacitor, polythiophene as a polymer organic EL device, and polyaniline as a secondary battery. However, since these conductive polymers are generally insoluble and cannot be melted by heating, the molding process is very difficult.

そこで、上記した導電性高分子の加工性に関する問題を解決する手段として、例えば、溶媒中で等モルのアニオン系界面活性剤とアニリンを反応させ、アニリン−界面活性剤塩を形成した後、反応熱の上昇を抑制しながら酸化剤を添加し、酸化重合することを特徴とする水および/または有機溶媒に可溶なポリアニリンの製造方法が知られている(例えば、特許文献1参照。)。この方法では、アニリンと等モルの界面活性剤とを組み合わせることにより、得られるポリアニリンが各種溶媒、特に水に可溶となり、ポリアニリン溶液の塗布により導電性薄膜を容易に形成することができる。
特許第3426637号公報
Therefore, as a means for solving the problems related to the processability of the conductive polymer, for example, an equimolar anionic surfactant and aniline are reacted in a solvent to form an aniline-surfactant salt. A method for producing polyaniline soluble in water and / or an organic solvent, characterized by adding an oxidizing agent while suppressing an increase in heat and performing oxidative polymerization (see, for example, Patent Document 1). In this method, by combining aniline and an equimolar surfactant, the resulting polyaniline becomes soluble in various solvents, particularly water, and a conductive thin film can be easily formed by applying a polyaniline solution.
Japanese Patent No. 3426637

また、金属、炭素、無機酸化物、無機燐酸塩、無機亜燐酸塩からなる群より選ばれた少なくとも一種の無機微粒子およびπ−共役二重結合を有する有機高分子との複合体からなることを特徴とする導電性高分子複合微粒子も知られている(例えば、特許文献2参照。)。ここで該有機高分子としては、アニリン、ピロール、チオフェンおよびこれらの置換体を使用することができ、こうして得られた導電性高分子複合微粒子は、良好な加工性を有するのみならず、耐熱性、耐水性、金属に対する接着性、導電性、酸化還元性、紫外線・可視光遮断性、隠蔽性、硬さ、磁性等の無機微粒子が元来有する機能も兼備したものとなる。
特開平11−241021号公報
And a composite of at least one kind of inorganic fine particles selected from the group consisting of metal, carbon, inorganic oxide, inorganic phosphate, and inorganic phosphite, and an organic polymer having a π-conjugated double bond. The characteristic conductive polymer composite fine particles are also known (see, for example, Patent Document 2). Here, as the organic polymer, aniline, pyrrole, thiophene and substituted products thereof can be used, and the conductive polymer composite fine particles thus obtained have not only good workability but also heat resistance. It also has the functions inherent to inorganic fine particles such as water resistance, adhesion to metal, conductivity, redox property, ultraviolet / visible light blocking property, hiding property, hardness, and magnetism.
Japanese Patent Application Laid-Open No. 11-241021

さらには、ピロール類をポリビニルアルコールまたはポリビニルアルコールとノニオン系界面活性剤またはアニオン系界面活性剤より選択される一種以上の界面活性剤の存在下で重合することを特徴とするポリピロール類水分散液の製造方法も知られている(例えば、特許文献3参照。)。この方法によれば、均一で安定なポリピロール水分散液を製造することができ、エマルジョン、ラテックス等の高分子水溶液と混合して任意の導電性を有する複雑な形状の成形体を製造することが可能となる。
特公平7−78116号公報
Further, a pyrrole is polymerized in the presence of at least one surfactant selected from polyvinyl alcohol or polyvinyl alcohol and a nonionic surfactant or an anionic surfactant. A manufacturing method is also known (for example, refer to Patent Document 3). According to this method, it is possible to produce a uniform and stable polypyrrole aqueous dispersion, which can be mixed with an aqueous polymer solution such as an emulsion or latex to produce a molded article having a complex shape having arbitrary conductivity. It becomes possible.
Japanese Patent Publication No. 7-78116

ところで、ポリアニリンは導電性の発現にプロトン酸を必要とするが、温度や湿度による経時変化で脱ドープが発生し、酸が遊離して腐食の原因となるという問題がある。例えば、特許第3426637号公報の開示に従って作製したポリアニリンを溶解して得た導電性塗料を5cm×5cmのポリエチレンテレフタレートフィルムにコーティングし、該フィルムで3cm×3cmの純銅製の試験片を挟み、70℃、湿度95%の環境下で24
時間放置すると該試験片に腐食が観察された。この結果より、ポリアニリンは、金属等の酸による分解を受ける材料と接触する用途に用いることができないことは明らかである。さらには、該ポリアニリンは導電性の発現にプロトンが関与しているため、その導電性が湿度によって変化するという問題もある。
By the way, polyaniline requires a protonic acid to develop conductivity, but there is a problem that dedoping occurs due to a change with time due to temperature and humidity, and the acid is liberated and causes corrosion. For example, a conductive paint obtained by dissolving polyaniline prepared in accordance with the disclosure of Japanese Patent No. 3426637 is coated on a 5 cm × 5 cm polyethylene terephthalate film, and a 3 cm × 3 cm pure copper test piece is sandwiched between the films, 70 24 under the environment of ℃ and humidity 95%
Corrosion was observed on the specimen when left for a period of time. From this result, it is clear that polyaniline cannot be used in applications that come into contact with materials that are subject to decomposition by acids such as metals. Furthermore, since the polyaniline has protons involved in the expression of conductivity, there is also a problem that the conductivity varies with humidity.

同様に、特開平11−241021号公報および特公平7−78116号公報に記載されるポリピロールもまた、親水基の影響により、その導電性が湿度依存性を有するものであった。さらには導電性や長期にわたる分散安定性の面でも不十分であった。
また、これらは水溶液中では安定に分散するが、有機溶媒中では分散できず、凝集してしまうものであった。従って、水系塗料に比べ、塗れ性や速乾性、塗膜形成後の塗膜強度が優れている溶剤系の導電性塗料を得ることができなかった。
Similarly, the polypyrrole described in Japanese Patent Application Laid-Open Nos. 11-241021 and 7-78116 also has humidity dependency due to the influence of hydrophilic groups. Furthermore, it was insufficient in terms of conductivity and long-term dispersion stability.
Further, they were stably dispersed in an aqueous solution, but could not be dispersed in an organic solvent and aggregated. Accordingly, it has been impossible to obtain a solvent-based conductive coating material that is superior in wettability, quick-drying property, and coating film strength after coating film formation as compared with water-based coating material.

本発明は上記問題を解決するものであり、有機溶媒への分散安定性に優れた導電性微粒子の提供を目的とする。さらに本発明は、係る導電性微粒子の確実な製造方法、並びに該微粒子を用い優れた性能を有する用途製品、特に溶剤系導電性塗料の提供を目的とする。   The present invention solves the above-described problems, and an object thereof is to provide conductive fine particles having excellent dispersion stability in an organic solvent. Furthermore, an object of the present invention is to provide a reliable method for producing such conductive fine particles and a product for use having excellent performance using the fine particles, particularly a solvent-based conductive coating.

本発明者は鋭意研究を行った結果、有機溶媒に対し分散安定性が良好な導電性微粒子が得られることを見いだした。   As a result of diligent research, the present inventor has found that conductive fine particles having good dispersion stability with respect to an organic solvent can be obtained.

また、特に有機溶媒と、水と、アニオン系界面活性剤とを混合撹拌してなるO/W型の乳化液中に、ピロールおよび/またはピロール誘導体のモノマーを添加し、該モノマーを酸化重合することにより、本発明の導電性微粒子が容易に製造できることを見いだした。   In particular, a monomer of pyrrole and / or a pyrrole derivative is added to an O / W emulsion obtained by mixing and stirring an organic solvent, water, and an anionic surfactant, and the monomer is oxidatively polymerized. Thus, it has been found that the conductive fine particles of the present invention can be easily produced.

従って本発明は、
ピロールおよび/またはピロール誘導体よりなり、粒径が1〜30nmである導電性微粒子であって、アニオン系界面活性剤が含有されてなる導電性微粒子、並びに
有機溶媒と、水と、アニオン系界面活性剤とを混合攪拌してなるO/W型の乳化液中に、ピロールおよび/またはピロール誘導体のモノマーを添加し、該モノマーを酸化重合することを特徴とする前記導電性微粒子の製造方法
に関する。
Therefore, the present invention
Conductive fine particles comprising pyrrole and / or a pyrrole derivative and having a particle diameter of 1 to 30 nm, containing conductive anionic surfactant, an organic solvent, water, and anionic surfactant The present invention relates to the method for producing conductive fine particles, wherein a monomer of pyrrole and / or a pyrrole derivative is added to an O / W type emulsion obtained by mixing and stirring an agent, and the monomer is oxidatively polymerized.

本発明によれば、アニオン系界面活性剤を含み、かつ粒径を1〜30nmとすることで、有機溶媒への分散安定性を有する導電性微粒子を得ることができる。また、これらは乾燥状態では微細な粉末であり、樹脂等に添加することによって導電性を付与できる。   According to the present invention, it is possible to obtain conductive fine particles having an anionic surfactant and having a particle size of 1 to 30 nm and having dispersion stability in an organic solvent. Moreover, these are fine powders in a dry state, and can be imparted with conductivity by being added to a resin or the like.

本発明で得られる導電性微粒子は、主としてピロールおよび/またはピロール誘導体よりなり、そしてアニオン系界面活性剤を含む微粒子である。そしてその特徴は、微細な粒径と、有機溶媒中で分散可能であることである。   The conductive fine particles obtained in the present invention are fine particles mainly composed of pyrrole and / or a pyrrole derivative and containing an anionic surfactant. And the characteristic is that it can disperse | distribute in a fine particle size and an organic solvent.

本発明の導電性微粒子が有する粒径は、具体的には1〜30nmである。この粒径は、従来の導電性微粒子が有する数百nmの粒径と比較して格段に小さい。また、本発明の導電性微粒子は、平均粒径の±5nmの範囲内に全微粒子の90%以上が含まれるという極めて単分散に近い狭い粒径分布を有するものであり、この点でも、粒径分布が広い従来の導電性微粒子と異なるものである。この非常に小さな粒径が、本発明の導電性微粒子が有する長期にわたる分散安定性の要因の1つであると考えられる。また粒径が小さいために、導電性塗料としたときに塗膜が透明性を有すると考えられる。   The particle diameter of the conductive fine particles of the present invention is specifically 1 to 30 nm. This particle size is much smaller than the particle size of several hundred nm that the conventional conductive fine particles have. Further, the conductive fine particles of the present invention have a narrow particle size distribution very close to monodispersion that 90% or more of the total fine particles are included in the range of ± 5 nm of the average particle size. This is different from conventional conductive fine particles having a wide diameter distribution. This very small particle size is considered to be one of the factors of long-term dispersion stability of the conductive fine particles of the present invention. Further, since the particle size is small, it is considered that the coating film has transparency when it is made a conductive paint.

本発明の導電性微粒子は、例えば、O/W型乳化液中にてピロールおよび/またはピロール誘導体のモノマーを酸化重合させて得ることができる。
O/W型乳化液中において重合して得た本発明の導電性微粒子は、図1の模式図で図示されるような構造を有していると予想される。先ず、水と有機溶媒、アニオン系界面活性剤を用いてO/W型エマルションを形成させる。ここで、該アニオン系界面活性剤は、有機溶媒からなる有機相を中心にミセルを形成するため、ミセルの表面側にはアニオン系界面活性剤の親水基が現れる。
この乳化液中にピロールモノマーを添加すると、ピロールモノマーは水相に溶解し、酸化剤を添加することによってポリピロールが形成される。ポリピロールの重合が進行すると、ポリピロールは水相に溶解しにくくなり、アニオン系界面活性剤の親水基を核としてポリピロールの鎖長延長が行われていくのではないかと推測される。
The conductive fine particles of the present invention can be obtained, for example, by oxidative polymerization of pyrrole and / or a pyrrole derivative monomer in an O / W emulsion.
The conductive fine particles of the present invention obtained by polymerization in an O / W type emulsion are expected to have a structure as illustrated in the schematic diagram of FIG. First, an O / W emulsion is formed using water, an organic solvent, and an anionic surfactant. Here, since the anionic surfactant forms micelles around an organic phase composed of an organic solvent, a hydrophilic group of the anionic surfactant appears on the surface side of the micelle.
When a pyrrole monomer is added to the emulsion, the pyrrole monomer is dissolved in the aqueous phase, and a polypyrrole is formed by adding an oxidizing agent. As the polymerization of polypyrrole proceeds, it is presumed that polypyrrole becomes difficult to dissolve in the aqueous phase and that the chain length of polypyrrole is extended with the hydrophilic group of the anionic surfactant as a nucleus.

その結果、ポリピロールは、アニオン系界面活性剤がO/W型エマルションごと覆い、アニオン系界面活性剤はポリピロール粒子中に取り込まれ、アニオン系界面活性剤の親水基がドーパントとしても機能することとなると推測される。
従って、アニオン系界面活性剤がO/W型エマルションの形成のみに用いられている場合には、アニオン系界面活性剤の親水基は、ポリピロール粒子の表面に露出しておらず、当該ポリピロール粒子を用いて塗膜を形成した後にもイオンによる導電性の発現は行われないと考えられる。このことは、アニオン系界面活性剤の添加量が特定範囲内であれは、導電性塗膜の湿度依存性がないのに対し、添加量が増えることによって導電性塗膜の湿度依存性が現れてくるという結果と一致している。
As a result, in the polypyrrole, the anionic surfactant covers the entire O / W emulsion, the anionic surfactant is taken into the polypyrrole particles, and the hydrophilic group of the anionic surfactant functions as a dopant. Guessed.
Therefore, when the anionic surfactant is used only for the formation of the O / W emulsion, the hydrophilic group of the anionic surfactant is not exposed on the surface of the polypyrrole particle, and the polypyrrole particle is Even after the coating film is formed, it is considered that the conductivity is not expressed by ions. This means that if the addition amount of the anionic surfactant is within a specific range, the humidity dependence of the conductive coating film appears as the addition amount increases, whereas the humidity dependence of the conductive coating film does not appear. This is consistent with the result of coming.

また、アニオン系界面活性剤の添加量が多い場合には、塗料中に遊離したアニオン系界面活性剤が存在すると考えられる。
本発明の導電性微粒子は、無機微粒子を核として製造された導電性微粒子と異なり、有機化合物であるアニオン系界面活性剤を核とするため、合成樹脂中への分散性等の面において有利であると思われる。
Moreover, when there is much addition amount of an anionic surfactant, it is thought that the free anionic surfactant exists in a coating material.
Unlike the conductive fine particles produced using inorganic fine particles as the core, the conductive fine particles of the present invention have an anionic surfactant that is an organic compound as a core, which is advantageous in terms of dispersibility in a synthetic resin. It appears to be.

本発明の導電性微粒子の製造では、酸化重合反応が停止されると、反応系は有機相と水相の二相に分かれるが、この際に未反応のモノマー、酸化剤および塩は水相中に溶解して残存する。ここで有機相を分液回収し、イオン交換水で数回洗浄すると、有機溶媒に分散したポリピロール微粒子を入手することができる。   In the production of the conductive fine particles of the present invention, when the oxidative polymerization reaction is stopped, the reaction system is divided into two phases, an organic phase and an aqueous phase. At this time, unreacted monomers, oxidizing agents and salts are in the aqueous phase. Dissolves in and remains. When the organic phase is separated and recovered and washed several times with ion exchange water, polypyrrole fine particles dispersed in an organic solvent can be obtained.

前記製造で使用可能なピロールおよびその誘導体としては、ピロール、N−メチルピロール、N−エチルピロール、N−フェニルピロール、N−ナフチルピロール、N−メチル−3−メチルピロール、N−メチル−3−エチルピロール、N−フェニル−3−メチルピロール、N−フェニル−3−エチルピロール、3−メチルピロール、3−エチルピロール、3−n−ブチルピロール、3−メトキシピロール、3−エトキシピロール、3−n−プロポキシピロール、3−n−ブトキシピロール、3−フェニルピロール、3−トルイルピロール、3−ナフチルピロール、3−フェノキシピロール、3−メチルフェノキシピロール、3−アミノピロール、3−ジメチルアミノピロール、3−ジエチルアミノピロール、3−ジフェニルアミノピロール、3−メチルフェニルアミノピロール、3−フェニルナフチルアミノピロール等が挙げられる。特に好ましいのはピロールである。   Examples of pyrrole and derivatives thereof that can be used in the production include pyrrole, N-methylpyrrole, N-ethylpyrrole, N-phenylpyrrole, N-naphthylpyrrole, N-methyl-3-methylpyrrole, and N-methyl-3-pyrrole. Ethyl pyrrole, N-phenyl-3-methyl pyrrole, N-phenyl-3-ethyl pyrrole, 3-methyl pyrrole, 3-ethyl pyrrole, 3-n-butyl pyrrole, 3-methoxy pyrrole, 3-ethoxy pyrrole, 3- n-propoxypyrrole, 3-n-butoxypyrrole, 3-phenylpyrrole, 3-toluylpyrrole, 3-naphthylpyrrole, 3-phenoxypyrrole, 3-methylphenoxypyrrole, 3-aminopyrrole, 3-dimethylaminopyrrole, 3 -Diethylaminopyrrole, 3-diphenylaminopyrrole 3-methylphenylamino pyrrole, 3-phenyl naphthyl amino pyrrole, and the like. Particularly preferred is pyrrole.

また前記製造に用いるアニオン系界面活性剤としては、種々のものが使用できるが、疎水性末端を複数有するもの(例えば、疎水基に分岐構造を有するものや、疎水基を複数有するもの)が好ましい。このような疎水性末端を複数有するアニオン系界面活性剤を使用することにより、安定したミセルを形成させることができる。
疎水性末端を複数有するアニオン系界面活性剤の中でも、スルホコハク酸ジ−2−エチルヘキシルナトリウム(疎水性末端4つ)、スルホコハク酸ジ−2−エチルオクチルナト
リウム(疎水性末端4つ)および分岐鎖型アルキルベンゼンスルホン酸塩(疎水性末端2つ)が好適に使用できる。
Various anionic surfactants used in the production can be used, but those having a plurality of hydrophobic ends (for example, those having a branched structure in a hydrophobic group or those having a plurality of hydrophobic groups) are preferred. . By using such an anionic surfactant having a plurality of hydrophobic ends, stable micelles can be formed.
Among anionic surfactants having multiple hydrophobic ends, di-2-ethylhexyl sodium sulfosuccinate (4 hydrophobic ends), di-2-ethyloctyl sodium sulfosuccinate (4 hydrophobic ends) and branched type Alkyl benzene sulfonates (two hydrophobic ends) can be suitably used.

反応系中でのアニオン系界面活性剤の量は、ピロールおよび/ピロール誘導体のモノマー1molに対し0.2mol未満であることが好ましく、さらに好ましくは0.05mol〜0.15molである。0.05mol未満では収率や分散安定性が低下し、一方、0.2mol以上では得られた導電性微粒子に導電性の湿度依存性が生じてしまう場合がある。   The amount of the anionic surfactant in the reaction system is preferably less than 0.2 mol, more preferably 0.05 mol to 0.15 mol, relative to 1 mol of the monomer of pyrrole and / or a pyrrole derivative. If the amount is less than 0.05 mol, the yield and the dispersion stability are lowered. On the other hand, if the amount is 0.2 mol or more, the conductive fine particles obtained may have a humidity dependency on the conductivity.

前記製造において乳化液の有機相を形成する有機溶媒は疎水性であることが好ましい。なかでも、芳香族系の有機溶媒であるトルエンやキシレンは、O/W型エマルションの安定性およびピロールモノマーとの親和性の観点から好ましい。両性溶媒でもポリピロールの重合を行うことはできるが、生成した導電性微粒子を回収する際の有機相と水相との分離が困難になる。   In the production, the organic solvent forming the organic phase of the emulsion is preferably hydrophobic. Of these, toluene and xylene, which are aromatic organic solvents, are preferable from the viewpoint of the stability of the O / W emulsion and the affinity with the pyrrole monomer. Although the polypyrrole can be polymerized with an amphoteric solvent, it becomes difficult to separate the organic phase and the aqueous phase when the produced conductive fine particles are recovered.

乳化液における有機相と水相との割合は、水相が75体積%以上であることが好ましい。水相が20体積%以下ではピロールモノマーの溶解量が少なくなり、生産効率が悪くなる。   The ratio of the organic phase to the aqueous phase in the emulsion is preferably 75% by volume or more in the aqueous phase. When the water phase is 20% by volume or less, the amount of pyrrole monomer dissolved is reduced and the production efficiency is deteriorated.

前記製造で使用する酸化剤としては、例えば、硫酸、塩酸、硝酸およびクロロスルホン酸のような無機酸、アルキルベンゼンスルホン酸およびアルキルナフタレンスルホン酸のような有機酸、過硫酸カリウム、過硫酸アンモニウムおよび過酸化水素のような過酸化物が使用できる。これらは単独で使用しても、二種類以上を併用してもよい。塩化第二鉄等のルイス酸でもポリピロールを重合できるが、生成した粒子が凝集し、ポリピロールを微分散できない場合がある。特に好ましい酸化剤は、過硫酸アンモニウム等の過硫酸塩である。   Examples of the oxidizing agent used in the production include inorganic acids such as sulfuric acid, hydrochloric acid, nitric acid and chlorosulfonic acid, organic acids such as alkylbenzenesulfonic acid and alkylnaphthalenesulfonic acid, potassium persulfate, ammonium persulfate and peroxidation. Peroxides such as hydrogen can be used. These may be used alone or in combination of two or more. Polypyrrole can be polymerized even with a Lewis acid such as ferric chloride, but the produced particles may aggregate and the polypyrrole may not be finely dispersed. Particularly preferred oxidizing agents are persulfates such as ammonium persulfate.

反応系中での酸化剤の量は、ピロールおよび/またはピロール誘導体のモノマー1molに対して0.1mol以上、0.8mol以下であることが好ましく、さらに好ましくは0.2〜0.6molである。0.1mol未満ではモノマーの重合度が低下し、導電性微粒子を分液回収することが困難になり、一方、0.8mol以上ではポリピロールが凝集して導電性微粒子の粒径が大きくなり、分散安定性と塗膜の透明性が悪化する。   The amount of the oxidizing agent in the reaction system is preferably 0.1 mol or more and 0.8 mol or less, more preferably 0.2 to 0.6 mol with respect to 1 mol of the monomer of pyrrole and / or pyrrole derivative. . If the amount is less than 0.1 mol, the degree of polymerization of the monomer decreases, making it difficult to separate and collect the conductive fine particles. On the other hand, if the amount is 0.8 mol or more, the polypyrrole aggregates to increase the particle size of the conductive fine particles. Stability and transparency of the coating deteriorate.

前記導電性微粒子の製造方法は、例えば以下のような工程で行われる:
(a)アニオン系界面活性剤、有機溶媒および水を混合攪拌し乳化液を調製する工程、
(b)ピロールおよび/またはピロール誘導体のモノマーを乳化液中に分散させる工程、(c)モノマーを酸化重合しアニオン系界面活性剤にポリピロールを接触吸着させる工程、
(d)有機相を分液し導電性微粒子を回収する工程。
The method for producing the conductive fine particles is performed, for example, in the following steps:
(A) a step of preparing an emulsion by mixing and stirring an anionic surfactant, an organic solvent and water;
(B) a step of dispersing a monomer of pyrrole and / or a pyrrole derivative in an emulsion, (c) a step of oxidative polymerization of the monomer to cause polyanol to contact and adsorb on an anionic surfactant,
(D) A step of separating the organic phase and collecting the conductive fine particles.

前記各工程は、当業者に既知である手段を利用して行うことができる。例えば、乳化液の調製時に行う混合攪拌は、特に限定されないが、例えばマグネットスターラー、攪拌機、ホモジナイザー等を適宜選択して行うことができる。また重合温度は0〜25℃で、好ましくは20℃以下である。重合温度が25℃を越えると副反応が起こるので好ましくない。   Each of the above steps can be performed using means known to those skilled in the art. For example, the mixing and stirring performed at the time of preparing the emulsion is not particularly limited. For example, a magnetic stirrer, a stirrer, a homogenizer, or the like can be selected as appropriate. The polymerization temperature is 0 to 25 ° C, preferably 20 ° C or less. If the polymerization temperature exceeds 25 ° C., side reactions occur, which is not preferable.

こうして得られた本発明の導電性微粒子において、有機溶媒への分散安定性の高い導電性微粒子は、導電性塗料の導電性成分として好ましく使用することができる。該導電性塗料は本発明の導電性微粒子を有機溶媒に分散してなり、さらに用途や塗布対象物等の必要に応じて、分散安定剤、増粘剤、インキバインダ等の樹脂を加えることも可能である。
また、これらの導電性微粒子は、乾燥させて粉末状の導電性微粒子とすることができ、該粉末状導電性微粒子は、合成樹脂成型品等に導電性充填材等として用いることもできる。
In the conductive fine particles of the present invention thus obtained, conductive fine particles having high dispersion stability in an organic solvent can be preferably used as the conductive component of the conductive paint. The conductive paint is obtained by dispersing the conductive fine particles of the present invention in an organic solvent, and a resin such as a dispersion stabilizer, a thickener, and an ink binder may be added as required for the purpose of use and application. Is possible.
In addition, these conductive fine particles can be dried to form powdered conductive fine particles, and the powdered conductive fine particles can also be used as a conductive filler or the like in a synthetic resin molded product or the like.

また、本発明の導電性塗料を基材に塗布し、乾燥させることによって導電性薄膜を得ることができる。塗布する対象は特に限定されないが、導電性塗料中に含まれる有機溶媒により損傷を受けないよう選択する必要がある。また塗布方法も特に限定されず、例えばグラビア印刷機、インクジェット印刷機、ディッピング、スピンコーター、ロールコーター等を用いて、印刷またはコーティングすることができる。こうして得られる導電性薄膜は、1012Ω以下、より特には109Ω以下の抵抗値を示す。 Moreover, a conductive thin film can be obtained by applying the conductive paint of the present invention to a substrate and drying it. The object to be applied is not particularly limited, but it is necessary to select it so as not to be damaged by the organic solvent contained in the conductive paint. Also, the coating method is not particularly limited, and printing or coating can be performed using, for example, a gravure printing machine, an inkjet printing machine, dipping, a spin coater, a roll coater, or the like. The conductive thin film thus obtained exhibits a resistance value of 10 12 Ω or less, more particularly 10 9 Ω or less.

また本発明の導電性微粒子は、導電性塗料以外にも、防錆塗料、半導体材料、コンデンサ用電解質、有機EL素子の正孔輸送材、二次電池用電極材等の様々な用途に好ましく適用することができる。   In addition to the conductive paint, the conductive fine particles of the present invention are preferably applied to various applications such as a rust preventive paint, a semiconductor material, a capacitor electrolyte, a hole transport material for an organic EL element, and an electrode material for a secondary battery. can do.

以下の実施例により本発明をより詳しく説明する。但し、実施例は本発明を説明するためのものであり、いかなる方法においても本発明を限定することを意図しない。   The following examples illustrate the invention in more detail. However, the examples are for illustrating the present invention and are not intended to limit the present invention in any way.

実施例1
スルホコハク酸ジ−2−エチルヘキシルナトリウム1.5mmolをトルエン50mLに溶解し、さらにイオン交換水100mLを加え20℃に保持しつつ乳化するまで攪拌した。得られた乳化液にピロールモノマー21.2mmolを加え、30分攪拌し、次いで0.2M過硫酸アンモニウム水溶液50mL(0.4mol相当)を少量ずつ滴下し、4時間反応を行った。反応終了後、有機相を回収し、イオン交換水で数回洗浄して、トルエン中に分散した状態で黒色の導電性微粒子を得た。
Example 1
1.5 mmol of di-2-ethylhexyl sodium sulfosuccinate was dissolved in 50 mL of toluene, and further 100 mL of ion-exchanged water was added and stirred until emulsification was maintained at 20 ° C. To the obtained emulsion, 21.2 mmol of pyrrole monomer was added and stirred for 30 minutes, and then 50 mL (corresponding to 0.4 mol) of a 0.2 M aqueous ammonium persulfate solution was added dropwise little by little to react for 4 hours. After completion of the reaction, the organic phase was recovered, washed several times with ion exchange water, and black conductive fine particles were obtained in a state dispersed in toluene.

図2は、実施例1の導電性微粒子の電子顕微鏡写真を表す図である。
図2から明らかなように、実施例1の導電性微粒子は非常に均一な粒径を有するものである。
FIG. 2 is an electron micrograph of conductive fine particles of Example 1.
As is apparent from FIG. 2, the conductive fine particles of Example 1 have a very uniform particle size.

また図3は、本願の実施例1、並びに特開平11−241021号公報および特公平7−78116号公報に記載の方法に従って製造した導電性微粒子の粒径分布を図示するグラフである。
図3から明らかなように、本発明の導電性微粒子は従来技術のものと比較して遥かに微細な粒径を有する。さらにその粒径の分布は単分散に近いものである。このような微細な粒径と狭い粒径分布とが、本発明の導電性微粒子が分散安定性において良好な結果を示す一つの要因であると考えられる。
尚、本粒径分布は、Microtrac社製Nanotrac UPA150を用いてレーザードップラー法により測定した結果である。
本発明の実施例1の方法によって得られた導電性微粒子は、平均粒径が2.5nmであり、±0.8nmの範囲内に99%が含まれていた。
FIG. 3 is a graph illustrating the particle size distribution of the conductive fine particles produced according to the method described in Example 1 of the present application and in Japanese Patent Application Laid-Open Nos. 11-241021 and 7-78116.
As is apparent from FIG. 3, the conductive fine particles of the present invention have a much finer particle size than those of the prior art. Furthermore, the particle size distribution is close to monodisperse. Such a fine particle size and a narrow particle size distribution are considered to be one factor that the conductive fine particles of the present invention show good results in dispersion stability.
In addition, this particle size distribution is the result measured by the laser Doppler method using Microtrac Nanotrac UPA150.
The conductive fine particles obtained by the method of Example 1 of the present invention had an average particle size of 2.5 nm, and 99% was contained within a range of ± 0.8 nm.

実施例2〜7および比較例1〜2
実施例1に記載した方法に従い、アニオン系界面活性剤の種類や添加量、酸化剤の種類や添加量を表1に示すように変化させ、導電性微粒子の製造を行った。
また、比較例1として界面活性剤を用いないもの、比較例2としてピロールの代わりにアニリンを用いたものを製造した。
Examples 2-7 and Comparative Examples 1-2
According to the method described in Example 1, the type and amount of an anionic surfactant and the type and amount of an oxidizing agent were changed as shown in Table 1 to produce conductive fine particles.
Further, Comparative Example 1 was prepared without using a surfactant, and Comparative Example 2 was prepared using aniline instead of pyrrole.

次いで、実施例1〜7および比較例1〜2において得られた導電性微粒子を同一の方法を用いて導電性塗料とし、該導電性塗料をガラス板に塗布して得られる導電性薄膜の特性
について評価した。評価は、導電性塗膜の抵抗値(Ω)、導電性塗料の分散安定性、導電性塗膜の透明性、導電性塗膜が示す抵抗値の湿度依存性について以下に示す基準で評価した。
分散安定性(溶媒:トルエン)
○:1ヶ月以上安定に分散している
△:1週間で凝集が起こり沈殿する
×:分散してもすぐ凝集する
透明性
○:目視で透明である
△:塗膜中に黒い点が見える
▲:塗膜が濁って見える
×:厚い塗膜しかできず、塗膜が不透明である
湿度依存性
○:湿度30%の場合と湿度70%の場合とにおける抵抗値の差が一桁以下
×:湿度30%の場合と湿度70%の場合とにおける抵抗値の差が一桁以上
結果を以下の表1に示す。また表1でピロール、界面活性剤、酸化剤について示される数値は、有機溶媒50mL当りの添加量(mmol)を示す。
Next, the conductive fine particles obtained in Examples 1 to 7 and Comparative Examples 1 and 2 were made into a conductive paint using the same method, and the properties of the conductive thin film obtained by applying the conductive paint to a glass plate Was evaluated. The evaluation was based on the following criteria for the resistance value (Ω) of the conductive coating, the dispersion stability of the conductive coating, the transparency of the conductive coating, and the humidity dependence of the resistance value of the conductive coating. .
Dispersion stability (solvent: toluene)
○: stably dispersed for more than 1 month Δ: aggregation occurs and precipitates in 1 week ×: aggregation immediately after dispersion Transparency ○: transparent by visual observation Δ: black dots are visible in the coating film ▲ : The coating film appears cloudy ×: Only a thick coating film can be formed, and the coating film is opaque Humidity dependency ○: The difference in resistance value between the case of 30% humidity and 70% humidity is one digit or less ×: The difference in resistance between the case of 30% humidity and the case of 70% humidity is one digit or more. The results are shown in Table 1 below. Moreover, the numerical value shown about pyrrole, surfactant, and oxidizing agent in Table 1 shows the addition amount (mmol) per 50 mL of organic solvents.

また、実施例および比較例において、FT−IR(KBr法)によって、導電性微粒子に界面活性剤が含有されていることを確認した。
実施例1におけるFT−IRのチャート、ポリピロールのFT−IRのチャート、および界面活性剤スルホコハク酸ジ−2−エチルヘキシルナトリウムのFT−IRのチャートをそれぞれ図4、図、5および図6に示す。
In Examples and Comparative Examples, it was confirmed by FT-IR (KBr method) that the conductive fine particles contained a surfactant.
The chart of FT-IR in Example 1, the chart of FT-IR of polypyrrole, and the chart of FT-IR of surfactant sodium di-2-ethylhexyl sulfosuccinate are shown in FIG. 4, FIG. 5, and FIG. 6, respectively.

Figure 2005314538
界面活性剤1:スルホコハク酸ジ−2−エチルヘキシルナトリウム(疎水性末端4つ)
界面活性剤2:ペンタデシルベンゼンスルホン酸ナトリウム(疎水性末端2つ)
酸化剤:過硫酸アンモニウム
Figure 2005314538
Surfactant 1: Sodium di-2-ethylhexyl sulfosuccinate (4 hydrophobic ends)
Surfactant 2: Sodium pentadecylbenzenesulfonate (two hydrophobic ends)
Oxidizing agent: ammonium persulfate

実施例1〜3および6で示される本発明の導電性微粒子は、有機溶媒への分散安定性が良好であり、導電性塗料として十分に使用可能である、また、導電性微粒子を有機溶媒に分散させたものを基材に塗布した場合の透明性および抵抗値の湿度依存性も良好であり、非常に好ましいものであった。
実施例4、5および7で示される本発明の導電性微粒子は、有機溶媒への分散安定性が、実施例1〜3よりも少し劣るものであったが、使用前にきちんと撹拌して使用すれば、
導電性塗料として十分に使用可能である。
比較例1では、微粒子を形成することができず、比較例2では湿度依存性が大きい。
The conductive fine particles of the present invention shown in Examples 1 to 3 and 6 have good dispersion stability in an organic solvent, and can be sufficiently used as a conductive coating material. The conductive fine particles can be used as an organic solvent. When the dispersed material was applied to a substrate, the transparency and the humidity dependency of the resistance value were also good and very favorable.
The conductive fine particles of the present invention shown in Examples 4, 5 and 7 were slightly inferior in dispersion stability to organic solvents than Examples 1 to 3, but were used with proper stirring before use. if,
It can be used satisfactorily as a conductive paint.
In Comparative Example 1, fine particles cannot be formed, and in Comparative Example 2, the humidity dependency is large.

図7は、本願の実施例1および6の導電性微粒子、並びに特許第3426637号公報、特開平11−241021号公報および特公平7−78116号公報に記載の方法に従って製造した導電性微粒子について、導電性微粒子から導電性塗料を製造し、該導電性塗料の塗布により導電性薄膜を形成した場合に、該薄膜の抵抗値と該薄膜が曝される環境の湿度との関係を図示するグラフである。
図7から明らかなように、本発明に従うと、導電性薄膜はその導電性に湿度依存が見られず、グラフはX軸に略平行なものとなった。
一方、比較例および従来技術に従って得られる導電性薄膜は、導電性に湿度依存があり、湿度の増加と共に抵抗値が急落するので、グラフは右下がりとなった。
FIG. 7 shows the conductive fine particles of Examples 1 and 6 of the present application, and the conductive fine particles produced according to the methods described in Japanese Patent No. 3426637, Japanese Patent Laid-Open No. 11-244101, and Japanese Patent Publication No. 7-78116. In the graph which shows the relation between the resistance value of the thin film and the humidity of the environment to which the thin film is exposed when the conductive paint is manufactured from the conductive fine particles and the conductive thin film is formed by applying the conductive paint. is there.
As is apparent from FIG. 7, according to the present invention, the conductive thin film showed no humidity dependence on its conductivity, and the graph was substantially parallel to the X axis.
On the other hand, the conductive thin film obtained according to the comparative example and the prior art has humidity dependency on the conductivity, and the resistance value suddenly drops as the humidity increases.

図1は、本発明の導電性微粒子の予想される構造を図示する模式図である。FIG. 1 is a schematic diagram illustrating the expected structure of the conductive fine particles of the present invention. 図2は、実施例1で製造した導電性微粒子の電子顕微鏡写真を表す図である。FIG. 2 is a view showing an electron micrograph of the conductive fine particles produced in Example 1. 図3は、本発明および従来技術の導電性微粒子の粒径分布を図示するグラフである。FIG. 3 is a graph illustrating the particle size distribution of the conductive fine particles of the present invention and the prior art. 図4は、実施例1で得られた導電性微粒子のFT−IRチャートである。4 is an FT-IR chart of the conductive fine particles obtained in Example 1. FIG. 図5は、ポリピロールのFT−IRチャートである。FIG. 5 is an FT-IR chart of polypyrrole. 図6は、界面活性剤スルホコハク酸ジ−2−エチルヘキシルナトリウムのFT−IRチャートである。FIG. 6 is an FT-IR chart of surfactant sodium di-2-ethylhexyl sulfosuccinate. 図7は、本発明および従来技術の導電性微粒子から形成した導電性薄膜の抵抗値と湿度との相関関係を図示するグラフである。FIG. 7 is a graph illustrating the correlation between the resistance value and humidity of a conductive thin film formed from conductive fine particles of the present invention and the prior art.

符号の説明Explanation of symbols

1 導電性微粒子
2 アニオン系界面活性剤
21 親水性部分
22 疎水性部分
3 ポリピロール
4 水相
5 有機相
DESCRIPTION OF SYMBOLS 1 Electroconductive fine particle 2 Anionic surfactant 21 Hydrophilic part 22 Hydrophobic part 3 Polypyrrole 4 Water phase 5 Organic phase

Claims (6)

ピロールおよび/またはピロール誘導体よりなり、粒径が1〜30nmである導電性微粒子であって、アニオン系界面活性剤が含有されてなる導電性微粒子。 Conductive fine particles made of pyrrole and / or a pyrrole derivative and having a particle diameter of 1 to 30 nm and containing an anionic surfactant. 前記アニオン系界面活性剤が、複数の疎水性末端を有する分子であることを特徴とする請求項1記載の導電性微粒子。 The conductive fine particles according to claim 1, wherein the anionic surfactant is a molecule having a plurality of hydrophobic ends. 有機溶媒と、水と、アニオン系界面活性剤とを混合攪拌してなるO/W型の乳化液中に、ピロールおよび/またはピロール誘導体のモノマーを添加し、該モノマーを酸化重合することを特徴とする請求項1または2に記載の導電性微粒子の製造方法。 A pyrrole and / or pyrrole derivative monomer is added to an O / W type emulsion obtained by mixing and stirring an organic solvent, water, and an anionic surfactant, and the monomer is oxidatively polymerized. The method for producing conductive fine particles according to claim 1 or 2. 前記アニオン系界面活性剤の量は、前記モノマー1molに対して0.05〜0.15molであることを特徴とする、請求項3記載の製造方法。 The method according to claim 3, wherein the amount of the anionic surfactant is 0.05 to 0.15 mol with respect to 1 mol of the monomer. 前記酸化重合に用いる酸化剤の量は、前記モノマー1molに対して0.2〜0.6molであることを特徴とする、請求項3記載の製造方法。 The production method according to claim 3, wherein the amount of the oxidizing agent used for the oxidative polymerization is 0.2 to 0.6 mol with respect to 1 mol of the monomer. 請求項1または2に記載の導電性微粒子を有機溶媒中に分散させてなることを特徴とする導電性塗料。 A conductive paint comprising the conductive fine particles according to claim 1 dispersed in an organic solvent.
JP2004133605A 2004-04-28 2004-04-28 Conductive fine particles and method for producing the same Expired - Lifetime JP4385254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004133605A JP4385254B2 (en) 2004-04-28 2004-04-28 Conductive fine particles and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004133605A JP4385254B2 (en) 2004-04-28 2004-04-28 Conductive fine particles and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005314538A true JP2005314538A (en) 2005-11-10
JP4385254B2 JP4385254B2 (en) 2009-12-16

Family

ID=35442300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004133605A Expired - Lifetime JP4385254B2 (en) 2004-04-28 2004-04-28 Conductive fine particles and method for producing the same

Country Status (1)

Country Link
JP (1) JP4385254B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006182958A (en) * 2004-12-28 2006-07-13 Achilles Corp Conductive particulate and method for producing the same
JP2006182959A (en) * 2004-12-28 2006-07-13 Achilles Corp Conductive particulate and method for producing the same
JP2007270180A (en) * 2006-03-30 2007-10-18 Achilles Corp Method of manufacturing plated film with patterned metal film using reducing polymer particle deposited thereon
JP2007270179A (en) * 2006-03-30 2007-10-18 Achilles Corp Method of manufacturing plated film with patterned metal film using reducing polymer particle deposited thereon
JP2008049542A (en) * 2006-08-23 2008-03-06 Achilles Corp Antistatic release film
JP2008088233A (en) * 2006-09-29 2008-04-17 Achilles Corp Conductive coating material and method for producing the same
JP2009057484A (en) * 2007-08-31 2009-03-19 Achilles Corp Coating material having polypyrrole microparticles and adhesive dispersed in organic solvent
WO2014091751A1 (en) * 2012-12-11 2014-06-19 昭和電工株式会社 Method for producing dispersion liquid containing conductive polymerizable composition, and dispersion liquid containing conductive polymerizable composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4924791B2 (en) * 2005-10-28 2012-04-25 アキレス株式会社 Process for producing conductive polymer particles and conductive polymer particles

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006182958A (en) * 2004-12-28 2006-07-13 Achilles Corp Conductive particulate and method for producing the same
JP2006182959A (en) * 2004-12-28 2006-07-13 Achilles Corp Conductive particulate and method for producing the same
JP4501030B2 (en) * 2004-12-28 2010-07-14 アキレス株式会社 Conductive fine particles and method for producing the same
JP4501031B2 (en) * 2004-12-28 2010-07-14 アキレス株式会社 Conductive fine particles and method for producing the same
JP2007270180A (en) * 2006-03-30 2007-10-18 Achilles Corp Method of manufacturing plated film with patterned metal film using reducing polymer particle deposited thereon
JP2007270179A (en) * 2006-03-30 2007-10-18 Achilles Corp Method of manufacturing plated film with patterned metal film using reducing polymer particle deposited thereon
JP2008049542A (en) * 2006-08-23 2008-03-06 Achilles Corp Antistatic release film
JP2008088233A (en) * 2006-09-29 2008-04-17 Achilles Corp Conductive coating material and method for producing the same
JP2009057484A (en) * 2007-08-31 2009-03-19 Achilles Corp Coating material having polypyrrole microparticles and adhesive dispersed in organic solvent
WO2014091751A1 (en) * 2012-12-11 2014-06-19 昭和電工株式会社 Method for producing dispersion liquid containing conductive polymerizable composition, and dispersion liquid containing conductive polymerizable composition
JPWO2014091751A1 (en) * 2012-12-11 2017-01-05 昭和電工株式会社 Method for producing dispersion containing conductive polymer composition and dispersion containing conductive polymer composition

Also Published As

Publication number Publication date
JP4385254B2 (en) 2009-12-16

Similar Documents

Publication Publication Date Title
Tian et al. Recent progress in the preparation of polyaniline nanostructures and their applications in anticorrosive coatings
Palaniappan et al. Polyaniline materials by emulsion polymerization pathway
US8344062B2 (en) Dispersions of intrinsically conductive polymers
US7947199B2 (en) Conductive polymers consisting of anisotropic morphology particles
US7105237B2 (en) Substituted thieno[3,4-B]thiophene polymers, method of making, and use thereof
WO2004113441A1 (en) Conductive composition, conductive coating material, conductive resin, capacitor, photo-electric converting element, and process for producing the same
JP5514596B2 (en) Conductive dispersion
JP4385254B2 (en) Conductive fine particles and method for producing the same
KR101050523B1 (en) Method for preparing core-shell structured nanoparticles comprising vinyl or acrylic polymer core and conductive polymer shell
DE69919661T2 (en) Process for the preparation of a layer of conductive polythiophene at low temperature
WO2014201471A1 (en) Conjugated polymers for conductive coatings and devices
JP4501030B2 (en) Conductive fine particles and method for producing the same
KR101890308B1 (en) Multi-layered conductive nano particles and preparation method of the same
JP4501031B2 (en) Conductive fine particles and method for producing the same
TW200938601A (en) Process for the preparation of coatings exhibiting increased conductivity based on polythiophene and its derivatives
JP5050360B2 (en) Water-based conductive resin emulsion
JP5105409B2 (en) Antistatic sheet for molding
JP5019201B2 (en) Conductive paint and method for producing the same
KR101300774B1 (en) Composition of carbon nanotube dispersion solution including acrylic water borne polymer and transparent conductive film using the same
JP4470175B2 (en) Conductive fine particle aqueous dispersion and process for producing the same
JP2008074894A (en) Method for producing nano-particle of conductive polymer using ionic liquid and method for producing conductive polymer composite material using the same
JP2021105072A (en) Method for manufacturing high conductive composite, method for manufacturing aqueous dispersion of high conductive composite, method for manufacturing organic solvent dispersion of high conductive composite, conductive film and method for manufacturing the same
TWI675893B (en) Antistatic coating composition with various surface resistance according to the dilution
JP7262068B1 (en) Carbon material dispersion and its use
JP4816875B2 (en) Conductive composite film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090915

R150 Certificate of patent or registration of utility model

Ref document number: 4385254

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250