JP4924791B2 - Process for producing conductive polymer particles and conductive polymer particles - Google Patents

Process for producing conductive polymer particles and conductive polymer particles Download PDF

Info

Publication number
JP4924791B2
JP4924791B2 JP2005314473A JP2005314473A JP4924791B2 JP 4924791 B2 JP4924791 B2 JP 4924791B2 JP 2005314473 A JP2005314473 A JP 2005314473A JP 2005314473 A JP2005314473 A JP 2005314473A JP 4924791 B2 JP4924791 B2 JP 4924791B2
Authority
JP
Japan
Prior art keywords
fine particles
conductive polymer
surfactant
organic solvent
polymer fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005314473A
Other languages
Japanese (ja)
Other versions
JP2007119631A (en
Inventor
美加子 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Achilles Corp
Original Assignee
Achilles Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Achilles Corp filed Critical Achilles Corp
Priority to JP2005314473A priority Critical patent/JP4924791B2/en
Publication of JP2007119631A publication Critical patent/JP2007119631A/en
Application granted granted Critical
Publication of JP4924791B2 publication Critical patent/JP4924791B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Description

本発明は、電解重合による、有機溶媒中に安定に分散しうる導電性高分子微粒子の製造方法及びそれにより製造された導電性高分子微粒子に関する。詳細には、π−共役二重結合を有するモノマーと、有機溶媒と、水と、界面活性剤とを混合撹拌してなる乳化溶液中で、超音波を照射しながら該モノマーの電解重合を行ない、その後に水層を除去することにより、有機溶媒中に分散した導電性高分子微粒子を製造する方法及びそれにより製造された導電性高分子微粒子に関する。   The present invention relates to a method for producing conductive polymer fine particles that can be stably dispersed in an organic solvent by electrolytic polymerization, and the conductive polymer fine particles produced thereby. Specifically, in an emulsion solution obtained by mixing and stirring a monomer having a π-conjugated double bond, an organic solvent, water, and a surfactant, electrolytic polymerization of the monomer is performed while irradiating ultrasonic waves. Then, the present invention relates to a method for producing conductive polymer fine particles dispersed in an organic solvent by removing an aqueous layer, and the conductive polymer fine particles produced thereby.

ポリピロール、ポリアニリン、ポリチオフェン等に代表される導電性高分子は、空気中で比較的安定であり、また合成が容易である事から、導電性塗料、防錆塗料、半導体材料等に広く使用されている。特に、ポリピロールは電解コンデンサ、ポリチオフェンは高分子有機EL素子、また、ポリアニリンは二次電池における適用が注目されている。しかしながら、これらの導電性高分子は概して有機溶媒、水に不溶であり、また加熱によって融解させることも不可能であるため、塗料化も含め成形加工が困難であった。   Conductive polymers represented by polypyrrole, polyaniline, polythiophene, etc. are relatively stable in air and easy to synthesize, so they are widely used in conductive paints, rust preventive paints, semiconductor materials, etc. Yes. In particular, polypyrrole is attracting attention as an electrolytic capacitor, polythiophene as a polymer organic EL element, and polyaniline as a secondary battery. However, these conductive polymers are generally insoluble in organic solvents and water, and cannot be melted by heating, so that they are difficult to be molded including coating.

そのため、上記した導電性高分子の加工性に関する問題を解決するための方法が幾つか報告されている。
特許文献1及び特許文献2には、ピロール系化合物を水系媒体中において、水溶性ポリマー、ノニオン系界面活性剤、またはアニオン系界面活性剤等を分散剤とし、重合触媒(酸化剤)を用いて酸化重合する事により、ポリピロール系化合物の微粒子化を行う技術が開示されている。この方法を用いると、均一で安定なポリピロール水分散液を製造する事ができ、エマルジョン、ラテックス等の高分子水溶液と混合して任意の導電性を有する導電性塗料を提供する事が可能となる。
Therefore, several methods for solving the problems related to the processability of the conductive polymer have been reported.
In Patent Document 1 and Patent Document 2, a pyrrole compound is used in an aqueous medium, a water-soluble polymer, a nonionic surfactant, or an anionic surfactant is used as a dispersant, and a polymerization catalyst (oxidant) is used. A technique for forming fine particles of a polypyrrole compound by oxidative polymerization is disclosed. When this method is used, a uniform and stable polypyrrole aqueous dispersion can be produced, and it becomes possible to provide a conductive paint having an arbitrary conductivity by mixing with an aqueous polymer solution such as an emulsion or latex. .

しかし、上記の様に、水系において、界面活性剤、水溶性高分子等の分散安定剤を用いて、酸化剤を触媒として重合する方法では、比較的簡単に、水系溶媒に微分散した導電性高分子を得る事ができるものの、以下に示すような幾つかの問題を含んでいる。
1)分散剤として使用される界面活性剤、水溶性高分子等が、水系の中にそのまま残存する為に、得られた導電性微粒子を用いて導電性塗料等を作製した場合、これら分散剤の影響で、塗膜の強度等の物性が大幅に低下してしまう。例えば、耐水性が極めて弱い塗膜しか得られず、実用に耐えられないものになってしまう。さらに、得られた塗膜の表面抵抗値は、空気中の湿度の影響を大きく受け、本来、湿度依存性のない導電性高分子の特性が大きく損なわれてしまう。
2)触媒として用いた酸化剤がそのまま水溶液中に残る事から、導電性高分子の微粒子が、この残存した酸化剤により過酸化を受け、経時変化によって抵抗値が大きく劣化する等の不具合が生じてしまう。
上記の問題を防ぐ為には、余剰の分散安定剤及び酸化剤を分散液中から適宜除かなくてはならないが、この方法は再沈殿を繰り返すなどの煩雑な操作であり、この間に、微粒子化された導電性高分子が凝集してしまい再分散せず沈降してしまうなど、導電性塗料等の用途には使用できない形状になってしまうことが多々見られる。
However, as described above, in a method using a dispersion stabilizer such as a surfactant or a water-soluble polymer in an aqueous system and polymerizing with an oxidant as a catalyst, the conductivity dispersed in an aqueous solvent is relatively simple. Although a polymer can be obtained, there are some problems as shown below.
1) Since a surfactant, a water-soluble polymer, etc. used as a dispersant remain in an aqueous system as they are, when a conductive paint or the like is produced using the obtained conductive fine particles, these dispersants As a result, physical properties such as the strength of the coating film are significantly reduced. For example, only a coating film with extremely low water resistance can be obtained, and it cannot be put into practical use. Furthermore, the surface resistance value of the obtained coating film is greatly affected by the humidity in the air, and the properties of the conductive polymer that is essentially not dependent on humidity are greatly impaired.
2) Since the oxidizing agent used as the catalyst remains in the aqueous solution as it is, the conductive polymer fine particles are peroxidized by the remaining oxidizing agent, resulting in a problem that the resistance value greatly deteriorates with time. End up.
In order to prevent the above problems, the excess dispersion stabilizer and oxidant must be appropriately removed from the dispersion, but this method is a complicated operation such as repeated reprecipitation. In many cases, the formed conductive polymer agglomerates and settles without being redispersed, resulting in a shape that cannot be used for applications such as conductive paints.

分散剤及び酸化剤を使用しない製造方法を用いれば、上記の問題は回避できるが、その一つの方法として、電解重合を用いて導電性高分子の微粒子を製造する方法が提案されている。
特許文献3には、電解重合を用いる導電性高分子の微粒子化の例が開示されている。ここでは、N−アルキルアニリン又はその誘導体、N−アルキルピロール又はその誘導体、
3−アルキルチオフェン又はその誘導体の少なくとも1種のモノマーを、硝酸イオンより親液性の大きいアニオンを含む溶液中で電解重合する事で、1〜10μmの範囲で所定の
サイズに制御された微粒子が生成されるとしている。
Although the above problem can be avoided by using a manufacturing method that does not use a dispersant and an oxidizing agent, as one method there has been proposed a method of manufacturing conductive polymer fine particles using electrolytic polymerization.
Patent Document 3 discloses an example of making conductive polymer fine particles using electrolytic polymerization. Here, N-alkylaniline or a derivative thereof, N-alkylpyrrole or a derivative thereof,
Fine particles controlled to a predetermined size in the range of 1 to 10 μm are obtained by electropolymerizing at least one monomer of 3-alkylthiophene or a derivative thereof in a solution containing an anion having a higher lyophilicity than nitrate ions. Is going to be generated.

上記の様に、電解重合により導電性高分子の微粒子を製造した場合には、分散安定剤及び酸化剤の分離等の操作が必要ない事から、不純物を含まない微粒子が得られるという点で優れた方法であるといえる。
しかし、特許文献3に記載の電解重合を用いる方法にも以下に示す問題がある。
1)使用できるモノマーとしては、N−アルキルの置換体でなくてはならないが、これら置換体の導電性高分子の場合、抵抗値が無置換に比較して劣るという欠点がある。また、工業的な見知からみると、これら置換体モノマーは、極めて高価であり現実的に使用できるものではない。
2)重合は、硝酸イオンより親液性の大きいアニオンを含む溶液中で行うとしているが、過塩素酸、テトラフルオロホウ酸等を含む液中であり、この系から微粒子を分離回収する工程等が必要になる。
3)ここで得られる微粒子の大きさは、1〜10μmの大きさであるが、この大きさでは
、通常の溶液中では沈降してしまう事から、良好な分散液とする事は困難である。また、得られる微粒子は、電極上に得られる事から、この電極より微粒子だけを分別回収しなければならず、大変な手間となる。
As described above, when conductive polymer fine particles are produced by electrolytic polymerization, it is excellent in that fine particles containing no impurities can be obtained because operations such as separation of a dispersion stabilizer and an oxidizing agent are not necessary. It can be said that
However, the method using electrolytic polymerization described in Patent Document 3 also has the following problems.
1) As a monomer that can be used, it must be an N-alkyl substituted product. However, in the case of these substituted conductive polymers, there is a drawback that the resistance value is inferior to that of an unsubstituted product. Further, from the industrial viewpoint, these substituted monomers are extremely expensive and cannot be practically used.
2) Polymerization is carried out in a solution containing an anion that is more lyophilic than nitrate ions, but in a solution containing perchloric acid, tetrafluoroboric acid, etc., and the steps for separating and recovering fine particles from this system, etc. Is required.
3) Although the size of the fine particles obtained here is 1 to 10 μm, it is difficult to obtain a good dispersion because it settles in a normal solution. . Further, since the obtained fine particles are obtained on the electrode, it is necessary to separate and collect only the fine particles from this electrode, which is very troublesome.

一方、特許文献4には、モノマーを電解重合して有機高分子薄膜電極を得る際に、導電性基材上に超音波を照射する事で高密度で均一性の高い有機高分子薄膜電極が得られることが開示されている。
しかし、これは高密度で均一性の高い導電性高分子膜で被覆された電極を得る為の方法を開示するものであり、微粒子を作製する方法等に関しては、何ら開示されていない。
特開平7−118370号公報 特公平7−78116号公報 特開2004−10858号公報 特開平10−261417号公報
On the other hand, Patent Document 4 discloses an organic polymer thin film electrode having high density and high uniformity by irradiating ultrasonic waves on a conductive substrate when an organic polymer thin film electrode is obtained by electrolytic polymerization of a monomer. It is disclosed that it can be obtained.
However, this discloses a method for obtaining an electrode coated with a conductive polymer film having high density and high uniformity, and there is no disclosure regarding a method for producing fine particles.
Japanese Patent Laid-Open No. 7-118370 Japanese Patent Publication No. 7-78116 JP 2004-10858 A JP-A-10-261417

本発明は、分散剤及び酸化剤を使用しないという点で優れる電解重合を用い、上記に挙げた問題を解決しうる、即ち、窒素原子上にアルキル等の置換基を有さないピロールやアニリン等のπ−共役二重結合を有するモノマーが使用でき、操作が簡単で、且つ有機溶媒中に安定に分散しうる導電性高分子微粒子の製造方法及びそれにより製造された導電性高分子微粒子の提供を課題とする。   The present invention uses an electrolytic polymerization that is superior in that it does not use a dispersant and an oxidizing agent, and can solve the above-mentioned problems, that is, pyrrole, aniline, etc. that do not have a substituent such as alkyl on the nitrogen atom A method for producing conductive polymer fine particles that can be used with a monomer having a π-conjugated double bond, that is easy to operate, and that can be stably dispersed in an organic solvent, and a conductive polymer fine particle produced thereby Is an issue.

本発明者らは、上記課題を解決するために鋭意検討した結果、ピロール等のπ−共役二重結合を有するモノマーと、有機溶媒と、水と、界面活性剤と、所望により、電解質を加えて混合撹拌してなる乳化溶液中で、超音波を照射しながら該モノマーの電解重合を行なうと、水層を除去するだけで有機溶媒中に安定に分散した導電性高分子微粒子が得られる事を見出すに至り、本発明を完成させた。   As a result of intensive studies to solve the above problems, the present inventors have added a monomer having a π-conjugated double bond such as pyrrole, an organic solvent, water, a surfactant, and an electrolyte as required. When the monomer is electropolymerized in an emulsified solution mixed and stirred while irradiating ultrasonic waves, conductive polymer fine particles stably dispersed in an organic solvent can be obtained simply by removing the aqueous layer. As a result, the present invention was completed.

即ち、本発明は、
π−共役二重結合を有するモノマーと、有機溶媒と、水と、界面活性剤とを混合撹拌してなる乳化溶液中で、超音波を照射しながら該モノマーの電解重合を行ない、その後に水層を除去することにより、有機溶媒中に分散した導電性高分子微粒子を製造する方法
に関する。
また、本発明は、
π−共役二重結合を有するモノマーと、有機溶媒と、水と、界面活性剤と、更に、電解質を加えて混合撹拌してなる乳化溶液中で、超音波を照射しながら該モノマーの電解重合を行ない、その後に水層を除去することにより、有機溶媒中に分散した導電性高分子微粒子を製造する方法
に関する。
本発明の好ましい態様は、
界面活性剤が、アニオン系界面活性剤である事を特徴とする前記導電性高分子微粒子の製造方法、
界面活性剤が、ノニオン系界面活性剤である事を特徴とする前記導電性高分子微粒子の製造方法、
超音波の周波数が10〜100KHzの範囲にある事を特徴とする前記導電性高分子微粒子の製造方法、
前記製造方法で製造された導電性高分子微粒子、
平均粒子径が1μm未満の微粒子であることを特徴とする前記導電性高分子微粒子
である。
That is, the present invention
In an emulsified solution obtained by mixing and stirring a monomer having a π-conjugated double bond, an organic solvent, water, and a surfactant, the monomer is subjected to electrolytic polymerization while being irradiated with ultrasonic waves, and then water is added. The present invention relates to a method for producing conductive polymer fine particles dispersed in an organic solvent by removing a layer.
The present invention also provides:
Monomer having a π-conjugated double bond, an organic solvent, water, a surfactant, and an electrolytic polymerization of the monomer while irradiating ultrasonic waves in an emulsion solution obtained by adding an electrolyte and mixing and stirring. The method relates to a method for producing conductive polymer fine particles dispersed in an organic solvent by performing a step and then removing an aqueous layer.
A preferred embodiment of the present invention is:
The method for producing the conductive polymer fine particles, wherein the surfactant is an anionic surfactant,
The method for producing the conductive polymer fine particles, wherein the surfactant is a nonionic surfactant,
The method for producing the conductive polymer fine particles, wherein the ultrasonic frequency is in the range of 10 to 100 KHz,
Conductive polymer fine particles produced by the production method,
The conductive polymer fine particles, wherein the fine particles have an average particle size of less than 1 μm.

本発明の製造方法は、ピロール等のπ−共役二重結合を有するモノマーと、有機溶媒と、水と、界面活性剤と、所望により、電解質を加えて混合撹拌してなる乳化溶液中で、超音波を照射しながら電解重合を行うという簡単な操作で導電性高分子微粒子を製造することが可能であり、また、得られた溶液から水層を除去するだけで有機溶媒中に安定に分散した導電性高分子微粒子を得ることができる。   In the production method of the present invention, a monomer having a π-conjugated double bond such as pyrrole, an organic solvent, water, a surfactant, and, if desired, an electrolyte is added and mixed and stirred in an emulsion solution. Conductive polymer particles can be produced by a simple operation of conducting electropolymerization while irradiating ultrasonic waves, and can be stably dispersed in an organic solvent simply by removing the aqueous layer from the resulting solution. Conductive polymer fine particles can be obtained.

更に、電解重合を行う際の印加電圧を制御することにより、得られる導電性高分子微粒子の導電率をコントロールしうることをも見出した。
従って、本発明の製造方法を用いることにより、望みの導電率を有する、有機溶媒中に安定に分散する導電性高分子微粒子を容易に得ることができる。
Furthermore, it has also been found that the conductivity of the obtained conductive polymer fine particles can be controlled by controlling the applied voltage during the electropolymerization.
Therefore, by using the production method of the present invention, conductive polymer fine particles having a desired conductivity and stably dispersed in an organic solvent can be easily obtained.

本発明の導電性高分子微粒子の製造方法は、特に、乳化溶液中で重合を行うことにより有機溶媒中に安定に分散した導電性高分子微粒子を得ることを特徴とするが、何故、乳化溶液中で重合を行うと有機溶媒中に安定に分散した導電性高分子微粒子が得られるかについては、以下の様に推測される。   The method for producing conductive polymer fine particles according to the present invention is characterized in that conductive polymer fine particles stably dispersed in an organic solvent are obtained by polymerizing in an emulsion solution. Whether or not conductive polymer fine particles that are stably dispersed in an organic solvent can be obtained by polymerization in the following is presumed as follows.

乳化溶液中で電解重合を行うと、乳化滴が立体障害となってポリマーの生長反応を阻害するため、微粒子化したポリマーが生成され、さらにまた乳化滴が生成したポリマー微粒子を保護して粒子の凝集を抑制する作用があると考えられる。このようにして得られたポリマー微粒子が分散した乳化液を解乳化することで、疎水性のポリマー微粒子は有機溶媒層へと移動し、有機溶媒中に安定に分散した導電性高分子微粒子が得られる。   When electropolymerization is carried out in an emulsified solution, the emulsion droplets become steric hindrance and inhibit the polymer growth reaction, so that a finely divided polymer is formed. It is thought that it has the effect | action which suppresses aggregation. By demulsifying the emulsion in which the polymer fine particles thus dispersed are dispersed, the hydrophobic polymer fine particles move to the organic solvent layer, and conductive polymer fine particles stably dispersed in the organic solvent are obtained. It is done.

上記のように、本発明は、乳化溶液中で重合させることにより、溶液中で導電性高分子微粒子を形成させることを可能としたものであり、電極上でしか導電性高分子微粒子又は導電性高分子膜を形成させることができない特許文献3又は特許文献4に記載の発明とはこの点で全く異なっている。   As described above, the present invention makes it possible to form conductive polymer fine particles in a solution by polymerization in an emulsified solution, and conductive polymer fine particles or conductive only on the electrode. This is completely different from the invention described in Patent Document 3 or Patent Document 4 in which a polymer film cannot be formed.

更に詳細に本発明を説明する。
本発明に使用するπ−共役二重結合を有するモノマーとしては、導電性高分子を製造するために使用されるモノマーであれば特に限定されないが、例えば、ピロール、N−メチルピロール、N−エチルピロール、N−フェニルピロール、N−ナフチルピロール、N−
メチル−3−メチルピロール、N−メチル−3−エチルピロール、N−フェニル−3−メチルピロール、N−フェニル−3−エチルピロール、3−メチルピロール、3−エチルピロール、3−n−ブチルピロール、3−メトキシピロール、3−エトキシピロール、3−n−プロポキシピロール、3−n−ブトキシピロール、3−フェニルピロール、3−トルイルピロール、3−ナフチルピロール、3−フェノキシピロール、3−メチルフェノキシピロール、3−アミノピロール、3−ジメチルアミノピロール、3−ジエチルアミノピロール、3−ジフェニルアミノピロール、3−メチルフェニルアミノピロール及び3−フェニルナフチルアミノピロール等のピロール誘導体、アニリン、o−クロロアニリン、m−クロロアニリン、p−クロロアニリン、o−メトキシアニリン、m−メトキシアニリン、p−メトキシアニリン、o−エトキシアニリン、m−エトキシアニリン、p−エトキシアニリン、o−メチルアニリン、m−メチルアニリン及びp−メチルアニリン等のアニリン誘導体、チオフェン、3−メチルチオフェン、3−n−ブチルチオフェン、3−n−ペンチルチオフェン、3−n−ヘキシルチオフェン、3−n−ヘプチルチオフェン、3−n−オクチルチオフェン、3−n−ノニルチオフェン、3−n−デシルチオフェン、3−n−ウンデシルチオフェン、3−n−ドデシルチオフェン、3−メトキシチオフェン、3−ナフトキシチオフェン及び3,4−エチレンジオキシチオフェン等のチオフェン誘導体が挙げられ、好ましくは、ピロール、アニリン、チオフェン及び3,4−エチレンジオキシチオフェン等が挙げられ、また、ピロールが挙げられる。
The present invention will be described in more detail.
The monomer having a π-conjugated double bond used in the present invention is not particularly limited as long as it is a monomer used for producing a conductive polymer, and examples thereof include pyrrole, N-methylpyrrole, and N-ethyl. Pyrrole, N-phenylpyrrole, N-naphthylpyrrole, N-
Methyl-3-methylpyrrole, N-methyl-3-ethylpyrrole, N-phenyl-3-methylpyrrole, N-phenyl-3-ethylpyrrole, 3-methylpyrrole, 3-ethylpyrrole, 3-n-butylpyrrole 3-methoxypyrrole, 3-ethoxypyrrole, 3-n-propoxypyrrole, 3-n-butoxypyrrole, 3-phenylpyrrole, 3-toluylpyrrole, 3-naphthylpyrrole, 3-phenoxypyrrole, 3-methylphenoxypyrrole Pyrrole derivatives such as 3-aminopyrrole, 3-dimethylaminopyrrole, 3-diethylaminopyrrole, 3-diphenylaminopyrrole, 3-methylphenylaminopyrrole and 3-phenylnaphthylaminopyrrole, aniline, o-chloroaniline, m- Chloroaniline, p-chloro Aniline derivatives such as niline, o-methoxyaniline, m-methoxyaniline, p-methoxyaniline, o-ethoxyaniline, m-ethoxyaniline, p-ethoxyaniline, o-methylaniline, m-methylaniline and p-methylaniline Thiophene, 3-methylthiophene, 3-n-butylthiophene, 3-n-pentylthiophene, 3-n-hexylthiophene, 3-n-heptylthiophene, 3-n-octylthiophene, 3-n-nonylthiophene, Preferred examples include thiophene derivatives such as 3-n-decylthiophene, 3-n-undecylthiophene, 3-n-dodecylthiophene, 3-methoxythiophene, 3-naphthoxythiophene and 3,4-ethylenedioxythiophene. Pyrrole, aniline, thiophene and It includes 3,4-ethylenedioxythiophene and the like, also, pyrrole and the like.

本発明に使用する界面活性剤としては、アニオン系界面活性剤およびノニオン系界面活性剤が挙げられ、アニオン系界面活性剤およびノニオン系界面活性剤として通常使用されているものであれば特に限定されないが、複数の疎水性末端を有する分子が安定したミセルを形成させることができるため好ましく、具体的には、ビス(2−エチルヘキシル)スルホこはく酸塩、ビス(2−エチルオクチル)スルホこはく酸塩、ジオクチルスルホこはく酸塩、ジヘキシルスルホこはく酸塩及び分岐鎖型アルキルベンゼンスルホン酸塩等が挙げられ、好ましくは、ビス(2−エチルヘキシル)スルホこはく酸ナトリウム及びビス(2−エチルオクチル)スルホこはく酸ナトリウム等が挙げられ、また、ビス(2−エチルヘキシル)スルホこはく酸ナトリウムが挙げられる。   Examples of the surfactant used in the present invention include anionic surfactants and nonionic surfactants, and are not particularly limited as long as they are usually used as anionic surfactants and nonionic surfactants. Are preferable because molecules having a plurality of hydrophobic ends can form stable micelles. Specifically, bis (2-ethylhexyl) sulfosuccinate, bis (2-ethyloctyl) sulfosuccinate , Dioctylsulfosuccinate, dihexylsulfosuccinate and branched alkylbenzene sulfonate, and the like, preferably sodium bis (2-ethylhexyl) sulfosuccinate and sodium bis (2-ethyloctyl) sulfosuccinate In addition, bis (2-ethylhexyl) sulfosuccinate sodium Umm, and the like.

界面活性剤の使用量としては、有機溶媒と水のO/W型かもしくはW/O型のエマルションを形成する程度であれば特に限定はされないが、使用量が少ないと十分に小さな微粒子として分散する事が難しくなり、使用量が増えると、有機溶媒中に含有される界面活性剤量が多くなる事から、抵抗値の低下が見られ好ましくない。   The amount of the surfactant used is not particularly limited as long as it forms an O / W or W / O emulsion of an organic solvent and water. However, if the amount used is small, the surfactant is dispersed as sufficiently small fine particles. When the amount used is increased, the amount of the surfactant contained in the organic solvent increases, which is not preferable because the resistance value is decreased.

本発明で通常使用される界面活性剤の量は、π−共役二重結合を有するモノマー1molに対し0.2mol未満であることが好ましく、さらに好ましくは0.01mol〜0.15molである。0.01mol未満では収率や分散安定性が低下し、一方、0.2mol以上では得られた導電性微粒子に導電性の湿度依存性が生じてしまう場合がある。   The amount of the surfactant usually used in the present invention is preferably less than 0.2 mol, more preferably 0.01 mol to 0.15 mol, with respect to 1 mol of the monomer having a π-conjugated double bond. If the amount is less than 0.01 mol, the yield and dispersion stability are lowered. On the other hand, if the amount is 0.2 mol or more, the obtained conductive fine particles may have a conductivity humidity dependency.

界面活性剤としてノニオン系界面活性剤を使用して電解重合を行う場合は、反応系中に電解質を添加しないと電解重合が十分に進行しないため、電解質を添加する必要がある。
界面活性剤としてアニオン系界面活性剤を使用して電解重合を行う場合は、アニオン系界面活性剤が電解質として作用するため必ずしも電解質を添加する必要はないが、アニオン系界面活性剤だけで十分に電解重合が進行しない場合は、電解質を添加する必要がある。
電解質は、その一部が電解重合の過程でドーパントとして取り込まれ、生成される導電性微粒子をより低抵抗とすること及び電解重合をより効率的に進行させるという観点から、通常、添加したほうが好ましい。
When electropolymerization is performed using a nonionic surfactant as a surfactant, it is necessary to add an electrolyte because the electropolymerization does not proceed sufficiently unless an electrolyte is added to the reaction system.
When electrolytic polymerization is carried out using an anionic surfactant as the surfactant, it is not always necessary to add an electrolyte because the anionic surfactant acts as an electrolyte, but anionic surfactant alone is sufficient. When electrolytic polymerization does not proceed, it is necessary to add an electrolyte.
In general, it is preferable to add the electrolyte from the viewpoint that a part of the electrolyte is taken in as a dopant in the process of electrolytic polymerization, and that the generated conductive fine particles have a lower resistance and the electrolytic polymerization proceeds more efficiently. .

電解質の具体例としては、アルキルベンゼンスルホン酸塩やアルキルナフタレンスルホ
ン酸塩、パラトルエンスルホン酸塩及びトリフルオロメタンスルホン酸塩等が挙げられ、好ましくは、パラトルエンスルホン酸塩及びトリフルオロメタンスルホン酸テトラブチルアンモニウム等が挙げられる。
Specific examples of the electrolyte include alkylbenzene sulfonate, alkyl naphthalene sulfonate, para-toluene sulfonate, trifluoromethane sulfonate, and the like, preferably para-toluene sulfonate and tetrabutylammonium trifluoromethane sulfonate. Etc.

本発明に使用する有機溶媒は、水と混じる事がなく、導電性微粒子に損傷を与えず、導電性微粒子を分散させうるものであれば特に限定はしないが、具体的には、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、n−ヘキサン、シクロヘキサン等の脂肪族炭化水素類等が挙げられ、好ましくは、トルエン及びキシレンが挙げられ、また、トルエンが挙げられる。   The organic solvent used in the present invention is not particularly limited as long as it does not mix with water, does not damage the conductive fine particles, and can disperse the conductive fine particles. Specifically, benzene, toluene Aromatic hydrocarbons such as xylene, and aliphatic hydrocarbons such as n-hexane and cyclohexane, preferably toluene and xylene, and toluene.

電解重合による導電性高分子微粒子の製造方法は、例えば以下のような工程で行われる:
(a)界面活性剤、有機溶媒、水、π−共役二重結合を有するモノマー及び所望により電解質を添加して混合攪拌し乳化液を調製する工程、
(b)超音波を照射しながら電極を溶液中に入れ電圧を印加して電解重合する工程、
(c)有機相を分液し導電性高分子微粒子を回収する工程。
The method for producing conductive polymer fine particles by electrolytic polymerization is performed, for example, in the following steps:
(A) a step of preparing an emulsion by adding a surfactant, an organic solvent, water, a monomer having a π-conjugated double bond, and an electrolyte if necessary, and stirring the mixture;
(B) a step of electrolytic polymerization by applying a voltage while putting an electrode in a solution while irradiating ultrasonic waves;
(C) A step of separating the organic phase and collecting the conductive polymer fine particles.

前記各工程は、当業者に既知である手段を利用して行うことができる。例えば、乳化液の調製時に行う混合攪拌は、特に限定されないが、例えばマグネットスターラー、攪拌機、ホモジナイザー等を適宜選択して行うことができる。また重合温度は0〜25℃で、好ましくは20℃以下である。また(a)工程において、まず有機溶媒と水と界面活性剤とを混合撹拌して乳化液を調製し、これをモノマーに分散させてもよい。   Each of the above steps can be performed using means known to those skilled in the art. For example, the mixing and stirring performed at the time of preparing the emulsion is not particularly limited. For example, a magnetic stirrer, a stirrer, a homogenizer, or the like can be selected as appropriate. The polymerization temperature is 0 to 25 ° C, preferably 20 ° C or less. In the step (a), an organic solvent, water, and a surfactant may be first mixed and stirred to prepare an emulsion, which may be dispersed in a monomer.

(a)工程において乳化液の有機相を形成する有機溶媒は疎水性であることが好ましい。なかでも、芳香族系の有機溶媒であるトルエンやキシレンは、O/W型エマルションの安定性の観点から好ましい。両性溶媒でも重合を行うことはできるが、生成した導電性微粒子を回収する際の有機相と水相との分離が困難になる。   In the step (a), the organic solvent forming the organic phase of the emulsion is preferably hydrophobic. Of these, toluene and xylene, which are aromatic organic solvents, are preferable from the viewpoint of the stability of the O / W emulsion. Although the polymerization can be carried out with an amphoteric solvent, it becomes difficult to separate the organic phase and the aqueous phase when the produced conductive fine particles are recovered.

電解重合の印加方法は、定電位法、定電流法、電位走査法など、いずれの方法でもよい。印加は、連続的でも断続的であってもよい。
電解重合の際の印加電圧は、電解重合で通常使用される電圧の範囲を使用することが出来るが、用いるモノマーによりそれぞれ重合に適した酸化電位を持っている事から、この適正な酸化電位から選定するのが好ましい。
例えば、ピロールの酸化電位は1.2であり、チオフェンの酸化電位は、2.07である(参照電極:SCE)ため、それらの電圧に近い範囲で印加するのが好ましい。
The application method of electrolytic polymerization may be any method such as a constant potential method, a constant current method, or a potential scanning method. The application may be continuous or intermittent.
The voltage applied during the electropolymerization can be within the voltage range normally used in the electropolymerization. However, since each of the monomers used has an oxidation potential suitable for the polymerization, from this appropriate oxidation potential. It is preferable to select.
For example, since the oxidation potential of pyrrole is 1.2 and the oxidation potential of thiophene is 2.07 (reference electrode: SCE), it is preferable to apply within a range close to these voltages.

電解重合中に用いられる超音波は、乳化を促進する作用と、作用極表面〜近傍で合成される導電性高分子を微粒子化する作用を持ち合わせている。超音波を照射する方法としては、特に限定はされないが、超音波が照射される槽に重合容器を入れ、下から超音波を照射する方法、超音波発生端子(プローブ)を直接重合溶液中に入れる方法等による。振動数及びエネルギー出力は、重合槽内における作用極表面〜近傍にキャビテーションが生じる様に調整すれば良いが、超音波の周波数は、10〜100kHzの範囲である事が望ましい。   The ultrasonic wave used during the electropolymerization has an action of promoting emulsification and an action of making the conductive polymer synthesized from the surface of the working electrode to the vicinity fine particles. The method of irradiating ultrasonic waves is not particularly limited, but a method of irradiating ultrasonic waves from below by placing a polymerization vessel in a tank to be irradiated with ultrasonic waves, an ultrasonic wave generating terminal (probe) directly in the polymerization solution. It depends on how you put it in. The frequency and energy output may be adjusted so that cavitation occurs between and near the working electrode surface in the polymerization tank, but the ultrasonic frequency is preferably in the range of 10 to 100 kHz.

電解重合反応を停止し、乳化液を静置すると、反応系は有機相と水相の二相に分かれるが、この際、未反応のモノマーおよび電解質を使用した場合には電解質等が水相中に溶解して残存する。ここで有機相を分液回収し、好ましくはイオン交換水で数回洗浄すると、有機溶媒に分散した導電性高分子微粒子を入手することができる。乳化液が安定で二相に分かれ難い場合は、無機塩類や酸などを添加する化学的方法や、遠心分離、凍結乾燥のような物理的方法により解乳化を促進させることができる。   When the electropolymerization reaction is stopped and the emulsion is allowed to stand, the reaction system is divided into two phases, an organic phase and an aqueous phase. At this time, when unreacted monomers and electrolytes are used, the electrolyte is in the aqueous phase. Dissolves in and remains. When the organic phase is separated and recovered, and preferably washed several times with ion-exchanged water, conductive polymer fine particles dispersed in an organic solvent can be obtained. When the emulsion is stable and difficult to separate into two phases, demulsification can be promoted by a chemical method in which inorganic salts or acids are added, or a physical method such as centrifugation or lyophilization.

上記の製造法により得られる導電性微粒子は、主としてπ−共役二重結合を有する化合物のポリマーよりなり、そして界面活性剤を含む微粒子である。そしてその特徴は、微細な粒径(平均粒子径が1μm未満)と、有機溶媒中で分散可能であることである。   The conductive fine particles obtained by the above production method are fine particles mainly composed of a polymer of a compound having a π-conjugated double bond and containing a surfactant. And the characteristic is that it can disperse | distribute in an organic solvent with a fine particle size (average particle diameter is less than 1 micrometer).

上記に記載した方法により得られる導電性微粒子は、有機溶媒への分散安定性が高い。そのため導電性微粒子を有機溶媒に分散させた後、慣用の方法で基材上にコーティングし、必要に応じて加熱を行って、乾燥させることによって容易に基材上に導電層を形成させることができる。   The conductive fine particles obtained by the method described above have high dispersion stability in an organic solvent. Therefore, after dispersing the conductive fine particles in an organic solvent, it is possible to easily form a conductive layer on the substrate by coating on the substrate by a conventional method, heating if necessary, and drying. it can.

従って、本発明の製造方法により得られた導電性高分子微粒子は、導電性塗料、防錆塗料、半導体材料等として有用である。   Therefore, the conductive polymer fine particles obtained by the production method of the present invention are useful as conductive paints, rust preventive paints, semiconductor materials and the like.

次に、本発明を実施例により更に詳細に説明するが、本発明は実施例に限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention still in detail, this invention is not limited to an Example.

実施例1
トルエン72gにビス(2−エチルヘキシル)スルホこはく酸ナトリウム1.1gを溶かし、イオン交換水125gを徐々に加えた後、電解質であるパラトルエンスルホン酸塩7.45gを添加しピロール2.67gを加えて十分撹拌して乳化液を作成した。
作成した乳化液が入ったビーカーを超音波洗浄機(井内盛栄堂 VS−100III)の
中に入れ、45kHzの超音波を照射しながら、ニッケル板を電極として
5時間電解重合を行い、灰色の乳化液を得た。電解重合は、液温を15℃程度に制御し、ポテンショスタット(北斗電工 HA−151)により、印加電圧2Vの定電位法で行った。
Example 1
Dissolve 1.1 g of sodium bis (2-ethylhexyl) sulfosuccinate in 72 g of toluene, gradually add 125 g of ion-exchanged water, add 7.45 g of paratoluenesulfonate as an electrolyte, and add 2.67 g of pyrrole. The mixture was sufficiently stirred to prepare an emulsion.
The beaker containing the prepared emulsified liquid is placed in an ultrasonic cleaner (Inoue Seiei VS-100III) and subjected to electropolymerization for 5 hours using a nickel plate as an electrode while irradiating 45 kHz ultrasonic waves, and gray emulsion A liquid was obtained. The electrolytic polymerization was performed by a constant potential method with an applied voltage of 2 V using a potentiostat (Hokuto Denko HA-151) while controlling the liquid temperature to about 15 ° C.

実施例2
電解質であるパラトルエンスルホン酸塩を添加しなかった以外は、実施例1と同様に行い、灰色の乳化液を得た。この乳化液に少量の1M塩酸を加えて解乳化し、ポリピロール微粒子の分散した上層のトルエン層を回収し、黒色のポリピロール分散液を得た。
Example 2
A gray emulsion was obtained in the same manner as in Example 1 except that paratoluenesulfonate, which was an electrolyte, was not added. A small amount of 1M hydrochloric acid was added to this emulsion to demulsify, and the upper toluene layer in which the polypyrrole fine particles were dispersed was collected to obtain a black polypyrrole dispersion.

実施例3
100kHzの超音波を照射した以外は、実施例1と同様に行った。
Example 3
The same operation as in Example 1 was performed except that 100 kHz ultrasonic waves were applied.

実施例4
ピロールの代わりにチオフェンを使用した以外は、実施例1と同様に行った。
Example 4
The same procedure as in Example 1 was performed except that thiophene was used instead of pyrrole.

実施例5
トルエン72gにビス(2−エチルヘキシル)スルホこはく酸ナトリウム1.1gを溶かし、イオン交換水10gを徐々に加えた後、電解質であるトリフルオロメタンスルホン酸テトラブチルアンモニウム0.5gを添加し十分撹拌して乳化液を作成し、ピロール2.67gを加えて更に撹拌した。
上記で調製した溶液が入ったビーカーを超音波洗浄機(井内盛栄堂 VS−100III
)の中に入れ、45kHzの超音波を25分照射し、5分間停止するサイ
クルを10回繰り返し、ニッケル板を電極として5時間電解重合を行い、灰色の乳化液を得た。電解重合は、液温を15℃程度に制御し、ポテンショスタット(北斗電工 HA−151)により、印加電圧2Vの定電位法で行った。
得られた乳化液に200gの水を加えて撹拌した後、少量の1M塩酸を加えて静置し、ポリピロール微粒子の分散した上層のトルエン層を回収し、黒色のポリピロール分散液を
得た。
Example 5
Dissolve 1.1 g of sodium bis (2-ethylhexyl) sulfosuccinate in 72 g of toluene, gradually add 10 g of ion-exchanged water, add 0.5 g of tetrabutylammonium trifluoromethanesulfonate as an electrolyte, and stir well. An emulsion was prepared, and 2.67 g of pyrrole was added and further stirred.
The beaker containing the solution prepared above was subjected to an ultrasonic cleaner (Inoue Seiei VS-100III
), A cycle of irradiating 45 kHz ultrasonic waves for 25 minutes and stopping for 5 minutes was repeated 10 times, and electropolymerization was performed for 5 hours using a nickel plate as an electrode to obtain a gray emulsion. The electrolytic polymerization was performed by a constant potential method with an applied voltage of 2 V using a potentiostat (Hokuto Denko HA-151) while controlling the liquid temperature to about 15 ° C.
After adding 200 g of water to the obtained emulsion and stirring, a small amount of 1M hydrochloric acid was added and allowed to stand, and the upper toluene layer in which the polypyrrole fine particles were dispersed was collected to obtain a black polypyrrole dispersion.

実施例6
印加電圧を1Vにした以外は、実施例1と同様に行った。
Example 6
The same operation as in Example 1 was performed except that the applied voltage was changed to 1V.

比較例1
トルエン72gにビス(2−エチルヘキシル)スルホこはく酸ナトリウム1.1gを溶かし、ピロール2.67gを加えて更に撹拌した。
上記で調製した溶液が入ったビーカーを超音波洗浄機の中に入れ、45kHzの超音波を照射しながら、ニッケル板を電極として5時間電解重合を行った。電解重合は、印加電圧2Vの定電位法により行った。
Comparative Example 1
In 72 g of toluene, 1.1 g of sodium bis (2-ethylhexyl) sulfosuccinate was dissolved, and 2.67 g of pyrrole was added and further stirred.
The beaker containing the solution prepared above was placed in an ultrasonic cleaner, and electrolytic polymerization was performed for 5 hours using a nickel plate as an electrode while irradiating 45 kHz ultrasonic waves. The electrolytic polymerization was performed by a constant potential method with an applied voltage of 2V.

比較例2
ビス(2−エチルヘキシル)スルホこはく酸ナトリウム1.1gをイオン交換水125gに溶解し、ピロール2.67gを加えて更に撹拌した。
上の溶液が入ったビーカーを超音波洗浄機の中に入れ、45kHzの超音波を照射しながら、ニッケル板を電極として2Vの印加電圧で5時間電解重合を行った。
Comparative Example 2
1.1 g of sodium bis (2-ethylhexyl) sulfosuccinate was dissolved in 125 g of ion-exchanged water, and 2.67 g of pyrrole was added and further stirred.
The beaker containing the above solution was placed in an ultrasonic cleaner, and electropolymerization was performed for 5 hours at an applied voltage of 2 V using a nickel plate as an electrode while irradiating ultrasonic waves of 45 kHz.

比較例3
150kHzの超音波(超音波工業 ミドルウェーブ)を照射した以外は、実施例1と同様に行った。
Comparative Example 3
The same operation as in Example 1 was performed except that 150 kHz ultrasonic waves (ultrasonic industry middle wave) were irradiated.

比較例4
実施例1と同配合の溶液に、超音波を照射せず、マグネチックスターラーによる撹拌で溶液の乳化状態を保ちながら、ニッケル板を電極として5時間電解重合を行った。電解重合は、印加電圧2Vの定電位法により行った。
Comparative Example 4
The solution having the same composition as in Example 1 was subjected to electrolytic polymerization for 5 hours using a nickel plate as an electrode while maintaining the emulsified state of the solution by stirring with a magnetic stirrer without irradiating ultrasonic waves. The electrolytic polymerization was performed by a constant potential method with an applied voltage of 2V.

試験例1
実施例1〜5および比較例1〜4で得た導電性高分子微粒子の平均粒子径は、Microtrac Nanotrac UPA−EX150(日機装株式会社製)による粒度分布測定から求めた。結果を表1に表す。
表1

Figure 0004924791
Test example 1
The average particle diameter of the conductive polymer fine particles obtained in Examples 1 to 5 and Comparative Examples 1 to 4 was determined from particle size distribution measurement using Microtrac Nanotrac UPA-EX150 (manufactured by Nikkiso Co., Ltd.). The results are shown in Table 1.
Table 1
Figure 0004924791

Claims (5)

π−共役二重結合を有するモノマーと、有機溶媒と、水と、界面活性剤とを混合撹拌してなる乳化溶液中で、超音波を照射しながら該モノマーの電解重合を行ない、その後に水層を除去することにより、有機溶媒中に分散した導電性高分子微粒子を製造する方法。 In an emulsified solution obtained by mixing and stirring a monomer having a π-conjugated double bond, an organic solvent, water, and a surfactant, the monomer is subjected to electrolytic polymerization while being irradiated with ultrasonic waves, and then water is added. A method of producing conductive polymer fine particles dispersed in an organic solvent by removing the layer. π−共役二重結合を有するモノマーと、有機溶媒と、水と、界面活性剤と、更に、電解質を加えて混合撹拌してなる乳化溶液中で、超音波を照射しながら該モノマーの電解重合を行ない、その後に水層を除去することにより、有機溶媒中に分散した導電性高分子微粒子を製造する方法。 Monomer having a π-conjugated double bond, an organic solvent, water, a surfactant, and an electrolytic polymerization of the monomer while irradiating ultrasonic waves in an emulsion solution obtained by adding an electrolyte and mixing and stirring. A method of producing conductive polymer fine particles dispersed in an organic solvent by performing the step and then removing the aqueous layer. 界面活性剤が、アニオン系界面活性剤である事を特徴とする請求項1又は請求項2記載の導電性高分子微粒子の製造方法。 The method for producing conductive polymer fine particles according to claim 1 or 2, wherein the surfactant is an anionic surfactant. 界面活性剤が、ノニオン系界面活性剤である事を特徴とする請求項2記載の導電性高分子微粒子の製造方法。 The method for producing conductive polymer fine particles according to claim 2, wherein the surfactant is a nonionic surfactant. 超音波の周波数が10〜100KHzの範囲にある事を特徴とする請求項1乃至請求項4の何れか1項に記載の導電性高分子微粒子の製造方法。

The method for producing conductive polymer fine particles according to any one of claims 1 to 4, wherein an ultrasonic frequency is in a range of 10 to 100 KHz.

JP2005314473A 2005-10-28 2005-10-28 Process for producing conductive polymer particles and conductive polymer particles Active JP4924791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005314473A JP4924791B2 (en) 2005-10-28 2005-10-28 Process for producing conductive polymer particles and conductive polymer particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005314473A JP4924791B2 (en) 2005-10-28 2005-10-28 Process for producing conductive polymer particles and conductive polymer particles

Publications (2)

Publication Number Publication Date
JP2007119631A JP2007119631A (en) 2007-05-17
JP4924791B2 true JP4924791B2 (en) 2012-04-25

Family

ID=38143810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005314473A Active JP4924791B2 (en) 2005-10-28 2005-10-28 Process for producing conductive polymer particles and conductive polymer particles

Country Status (1)

Country Link
JP (1) JP4924791B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5318386B2 (en) * 2007-08-31 2013-10-16 アキレス株式会社 Paint in which polypyrrole fine particles and adhesive are dispersed in an organic solvent
CN101932628B (en) * 2008-04-21 2013-02-27 帝化株式会社 Dispersion of electroconductive composition, electroconductive composition, and use thereof
JP5327844B2 (en) * 2008-08-06 2013-10-30 日本カーリット株式会社 Electrolytic polymerization liquid for forming conductive polymer, conductive polymer, solid electrolytic capacitor using the same, and method for producing the same
JP4565522B2 (en) * 2008-10-31 2010-10-20 テイカ株式会社 Method for producing conductive polymer dispersion, conductive polymer dispersion, conductive polymer and use thereof
JP5470831B2 (en) * 2008-12-17 2014-04-16 東洋インキScホールディングス株式会社 Polythiophene composition, conductive film using the same, and laminate
JP5465025B2 (en) 2010-01-27 2014-04-09 Necトーキン株式会社 Conductive polymer suspension and manufacturing method thereof, conductive polymer material, solid electrolytic capacitor and manufacturing method thereof
JP2011224835A (en) * 2010-04-16 2011-11-10 Achilles Corp Method for manufacturing thermal transfer medium
JP5924514B2 (en) * 2011-03-31 2016-05-25 国立大学法人東京工業大学 Manufacturing method of electrode body for solar cell
US9419234B2 (en) 2011-03-31 2016-08-16 Nippon Chemi-Con Corporation Electrode body for solar cell, method for producing the electrode body, and solar cell provided with the electrode body
JP5061262B1 (en) * 2012-03-09 2012-10-31 株式会社フジクラ Conductive polymer composition and conductor
CN104412346A (en) * 2012-06-26 2015-03-11 日本贵弥功株式会社 Dye-sensitized solar cell

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625263B2 (en) * 1987-07-23 1994-04-06 工業技術院長 Method for treating conductive polymer film
JPH04366130A (en) * 1991-06-13 1992-12-18 Bridgestone Corp Production of conductive high-moleculay substance
JP4053671B2 (en) * 1998-09-17 2008-02-27 Tdk株式会社 Manufacturing method of solid electrolytic capacitor
JP4362213B2 (en) * 2000-07-03 2009-11-11 Necトーキン株式会社 Method for peeling electropolymerized conductive polymer film
JP2004010858A (en) * 2002-06-11 2004-01-15 Yamaguchi Technology Licensing Organization Ltd Method for producing electroconductive polymer fine particle and the electroconductive polymer fine particle
JP4022571B2 (en) * 2002-11-11 2007-12-19 国立大学法人東京農工大学 Method for producing polymer fine particles
JP4415341B2 (en) * 2003-02-26 2010-02-17 アキレス株式会社 Polypyrrole conductive paint
JP4385254B2 (en) * 2004-04-28 2009-12-16 アキレス株式会社 Conductive fine particles and method for producing the same

Also Published As

Publication number Publication date
JP2007119631A (en) 2007-05-17

Similar Documents

Publication Publication Date Title
JP4924791B2 (en) Process for producing conductive polymer particles and conductive polymer particles
JP5236879B2 (en) Intrinsically conductive polymer dispersion and method for producing the same
US7947199B2 (en) Conductive polymers consisting of anisotropic morphology particles
Marie et al. Synthesis of polyaniline particles via inverse and direct miniemulsion
KR101003156B1 (en) Method to produce aqueous graphene solution and aqueous conductive polymer solution
Njuguna et al. Recent developments in polyurethane-based conducting composites
CN107108884A (en) For the method for the graphene oxide composite material for preparing polyaniline/reduction
KR20110014554A (en) Method for the production of conductive polymers
WO2004113441A1 (en) Conductive composition, conductive coating material, conductive resin, capacitor, photo-electric converting element, and process for producing the same
CN103443890B (en) Conductive polymer solution and preparation method thereof, conductive polymer material, and the solid electrolytic capacitor using the conductive polymer material and preparation method thereof
Lee et al. Fabrication of nano-structured polythiophene nanoparticles in aqueous dispersion
JP5041138B2 (en) Method for producing polypyrrole fine particles nano-dispersed in organic solvent
JP2008169255A (en) Highly conductive polyaniline having excellent solubility and method for producing the same
JP2009215424A (en) Electroconductive nano sized polymer particles and method for producing the conductive nano sized polymer particles
EP2143767A1 (en) Waterbased compositions for casting or printing
McCullough et al. Polyaniline and polypyrrole templated on self-assembled acidic block copolymers
JP4385254B2 (en) Conductive fine particles and method for producing the same
JP2011192983A (en) Method of manufacturing solid electrolytic capacitor
JP4501030B2 (en) Conductive fine particles and method for producing the same
Martínez-Cartagena et al. A comparative study of biomimetic synthesis of EDOT-pyrrole and EDOT-aniline copolymers by peroxidase-like catalysts: Towards tunable semiconductive organic materials
Lakard et al. Towards carboxylic acid-functionalized aniline monomers: chemical synthesis, electropolymerization and characterization
JP4501031B2 (en) Conductive fine particles and method for producing the same
JP5019201B2 (en) Conductive paint and method for producing the same
Wallace et al. Nanostructure based on inherently conducting polymers
Zheng et al. Facile preparation of soluble and conductive polyaniline in the presence of lignosulfonate and a constant magnetic field (0.4 T)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20110406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4924791

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350