JP2005314197A - High purity silica sol dispersed in hydrophobic organic solvent and its manufacturing method - Google Patents

High purity silica sol dispersed in hydrophobic organic solvent and its manufacturing method Download PDF

Info

Publication number
JP2005314197A
JP2005314197A JP2004151139A JP2004151139A JP2005314197A JP 2005314197 A JP2005314197 A JP 2005314197A JP 2004151139 A JP2004151139 A JP 2004151139A JP 2004151139 A JP2004151139 A JP 2004151139A JP 2005314197 A JP2005314197 A JP 2005314197A
Authority
JP
Japan
Prior art keywords
organic solvent
silica sol
dispersed
hydrophobic organic
purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004151139A
Other languages
Japanese (ja)
Other versions
JP4803630B2 (en
Inventor
Hiroyuki Kida
宏幸 木田
Takao Yanagisawa
孝郎 柳澤
Hideyuki Kunitoki
英之 国時
Akira Nakanaga
陽 中永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuso Chemical Co Ltd
Original Assignee
Fuso Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuso Chemical Co Ltd filed Critical Fuso Chemical Co Ltd
Priority to JP2004151139A priority Critical patent/JP4803630B2/en
Publication of JP2005314197A publication Critical patent/JP2005314197A/en
Application granted granted Critical
Publication of JP4803630B2 publication Critical patent/JP4803630B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high purity silica sol dispersed in a hydrophobic organic solvent stably dispersed in a hydrophobic organic solvent at a high concentration as a raw material for an electronic material, a film material, a polishing agent for an organic surface and the like and its manufacturing method. <P>SOLUTION: The high purity silica sol dispersed in the hydrophobic organic solvent wherein fine silica particles are dispersed in the hydrophobic organic solvent is characterized by having a particle diameter of the silica fine particles of 500 nm or less, containing metallic impurities of 1.0 ppm or less, and being stable for a long term even if containing the fine silica particles of more than 20 wt.%. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は高純度疎水性有機溶媒分散シリカゾル及びその製造方法に関する。本発明の目的は電子材料、膜材料、有機面の研磨剤等の素材として高濃度で疎水性有機溶媒に安定分散した高純度疎水性有機溶媒分散シリカゾル及びその製造方法を提供することにある。
尚、本発明における高純度とは、シリカゾル固形分中の二酸化ケイ素含有量が99.9999%以上、金属不純物含有量が1ppm以下のことである。
The present invention relates to a high-purity hydrophobic organic solvent-dispersed silica sol and a method for producing the same. An object of the present invention is to provide a high-purity hydrophobic organic solvent-dispersed silica sol stably dispersed in a hydrophobic organic solvent at a high concentration as a material such as an electronic material, a film material, and an organic surface abrasive, and a method for producing the same.
The high purity in the present invention means that the silicon dioxide content in the silica sol solid content is 99.9999% or more and the metal impurity content is 1 ppm or less.

従来、シリカゾルは分散媒が水であるために有機物との混合分散性が悪く、有機溶媒と十分混合又は反応させることが困難であった。従って、シリカゾルを広く有機工業に利用するためには、その分散媒を水から有機溶媒に換えた有機溶媒分散シリカゾルを製造する必要がある。   Conventionally, silica sol is poor in mixing and dispersibility with organic substances because the dispersion medium is water, and it has been difficult to sufficiently mix or react with organic solvents. Therefore, in order to widely use the silica sol in the organic industry, it is necessary to produce an organic solvent-dispersed silica sol in which the dispersion medium is changed from water to an organic solvent.

有機溶媒分散シリカゾルは、以下のような方法により製造されている。例えば、珪酸ナトリウムを原料として作られた酸性水性シリカゾルを濃縮し、イソプロピルアルコールなどのアルコールを添加して混合有機溶媒分散シリカゾルを得て、これにシランカップリング剤を添加してシリル化した後、メチルエチルケトン等の疎水性有機溶媒に溶媒置換する方法(特許文献1参照)、珪酸ナトリウムを原料とするアルカリ性水性シリカゾルをイオン交換樹脂で脱イオン化し、このゾルを限外濾過で濃縮後、加熱しつつイソプロパノール蒸気を吹き込む方法(特許文献2参照)などが挙げられる。   The organic solvent-dispersed silica sol is manufactured by the following method. For example, an acidic aqueous silica sol made from sodium silicate as a raw material is concentrated, and an alcohol such as isopropyl alcohol is added to obtain a mixed organic solvent-dispersed silica sol. After adding a silane coupling agent to this, silylation, A method of solvent substitution with a hydrophobic organic solvent such as methyl ethyl ketone (see Patent Document 1), alkaline aqueous silica sol using sodium silicate as a raw material is deionized with an ion exchange resin, this sol is concentrated by ultrafiltration, and then heated. Examples include a method of blowing isopropanol vapor (see Patent Document 2).

特開平11−43319号公報JP 11-43319 A 特開平8−169709号公報JP-A-8-169709

しかしながら、上述した珪酸ナトリウムを原料とする有機溶媒分散シリカゾルの製造方法では、有機溶剤分散シリカゾル中にナトリウム等の金属不純物が残留し、純度が低いといった問題があった。このため、このような製造方法によって製造された有機溶媒分散シリカゾルは、高純度であることが必要とされる半導体や液晶の素材として使用するには不十分であった。またシリカ粉末をシランカップリング剤によって表面処理した後、有機溶媒に分散させる方法は、微粒子の凝集の問題があり、特に粒子径がサブミクロンのサイズ以下のものを製造することは困難であった。
またアルコキシシラン類を出発原料とするコロイダルシリカは、珪酸ナトリウムを原料とするコロイダルシリカと比較して、高濃度まで濃縮すると凝集、ゲル化しやすく、疎水性の強い有機溶媒中ではその傾向が高いため、膜材料などの配合時に不具合が生じていた。また、このゾルを様々な素材の原料として供給する場合、長期の保存安定性が必要となった。尚、凝集とは光子相関法にて測定されたシリカ微粒子の粒子径が初期の測定値の150%以上になったとき、または粘度が初期の測定値の2倍以上になったときのことをいう。
However, the above-described method for producing an organic solvent-dispersed silica sol using sodium silicate as a raw material has a problem that metal impurities such as sodium remain in the organic solvent-dispersed silica sol and the purity is low. For this reason, the organic solvent-dispersed silica sol produced by such a production method has been insufficient for use as a semiconductor or liquid crystal material that is required to have high purity. In addition, the method of dispersing the silica powder in the organic solvent after surface-treating with a silane coupling agent has a problem of aggregation of fine particles, and in particular, it is difficult to produce particles having a particle size of submicron or less. .
In addition, colloidal silica using alkoxysilanes as starting materials is more likely to aggregate and gel when concentrated to a higher concentration than colloidal silica using sodium silicate as a starting material, and this tendency is higher in highly hydrophobic organic solvents. There was a problem when blending film materials. In addition, when this sol is supplied as a raw material for various materials, long-term storage stability is required. Agglomeration means when the particle size of silica fine particles measured by the photon correlation method is 150% or more of the initial measurement value, or when the viscosity is twice or more of the initial measurement value. Say.

本発明は上記課題を解決するためになされたものであって、請求項1に係る発明は、シリカ微粒子が疎水性有機溶媒に分散している高純度疎水性有機溶媒分散シリカゾルであって、該シリカ微粒子の粒子径が500nm以下であり、金属不純物含有量が1.0ppm以下であり、該シリカ微粒子を、20重量%を超えて含有していても長期安定であることを特徴とする高純度疎水性有機溶媒分散シリカゾルに関する。
請求項2に係る発明は、沸点が100℃以上の両親媒性有機溶媒の存在下、シランカップリング剤で表面改質されたアルコキシシランを原料由来とするシリカ微粒子が疎水性有機溶媒に分散していることを特徴とする高純度疎水性有機溶媒分散シリカゾルに関する。
The present invention has been made to solve the above problems, and the invention according to claim 1 is a high-purity hydrophobic organic solvent-dispersed silica sol in which silica fine particles are dispersed in a hydrophobic organic solvent, High purity characterized in that the particle size of the silica fine particles is 500 nm or less, the metal impurity content is 1.0 ppm or less, and the silica fine particles are stable for a long period of time even if it contains more than 20% by weight. The present invention relates to a hydrophobic organic solvent-dispersed silica sol.
In the invention according to claim 2, silica fine particles derived from alkoxysilane surface-modified with a silane coupling agent are dispersed in a hydrophobic organic solvent in the presence of an amphiphilic organic solvent having a boiling point of 100 ° C. or higher. The present invention relates to a high purity hydrophobic organic solvent-dispersed silica sol.

請求項3に係る発明は、少なくとも以下の(a)〜(c)の各工程を含むことを特徴とする高純度疎水性有機溶媒分散シリカゾルの製造方法に関する。
(a)アルコキシシランを原料由来とする高純度親水性有機溶媒分散シリカゾルの親水性有機溶媒を沸点が100℃以上の両親媒性有機溶媒で置換する第一の工程
(b)第一の工程で得られたシリカゾルを酸性下、シランカップリング剤で表面改質する第二の工程
(c)第二の工程で得られたシリカゾルの沸点が100℃以上の両親媒性有機溶媒を疎水性有機溶媒で置換する第三の工程
The invention according to claim 3 relates to a method for producing a high-purity hydrophobic organic solvent-dispersed silica sol, comprising at least the following steps (a) to (c).
(A) The first step (b) in which the hydrophilic organic solvent of the high-purity hydrophilic organic solvent-dispersed silica sol derived from alkoxysilane is replaced with an amphiphilic organic solvent having a boiling point of 100 ° C. or higher. The second step (c) of modifying the surface of the obtained silica sol with an acid and a silane coupling agent (c) The amphiphilic organic solvent having a boiling point of 100 ° C. or higher obtained in the second step is a hydrophobic organic solvent. The third step of replacing with

請求項4に係る発明は、以下の(e)工程を含むことを特徴とする請求項3に記載の高純度疎水性有機溶媒分散シリカゾルの製造方法に関する。
(e)第三の工程で得られたシリカゾル中のシリカ濃度が20重量%を超えるように調整する第四の工程
The invention according to claim 4 relates to a method for producing a high-purity hydrophobic organic solvent-dispersed silica sol according to claim 3, which comprises the following step (e).
(E) Fourth step of adjusting the silica concentration in the silica sol obtained in the third step to exceed 20% by weight

請求項5に係る発明は、前記シランカップリング剤の添加量が、数1の関係を充足することを特徴とする請求項3又は4に記載の高純度疎水性有機溶媒分散シリカゾルの製造方法に関する。   The invention according to claim 5 relates to the method for producing a high-purity hydrophobic organic solvent-dispersed silica sol according to claim 3 or 4, wherein the amount of the silane coupling agent added satisfies the relationship of Equation 1. .

Figure 2005314197
Figure 2005314197

本発明に係る高純度疎水性有機溶媒分散シリカゾルの製造方法は、シリカ微粒子の粒子径が500nm以下であり、シリカ濃度が20重量%超であっても、凝集せず、1年以上にわたって長期安定分散可能な高純度疎水性有機溶媒分散シリカゾルを製造することができる。
本発明に係る高純度疎水性有機溶媒分散シリカゾルは、疎水性有機溶媒にシリカ微粒子が高濃度であっても長期間安定に分散し、且つ高純度であるので、電子材料や膜材料、有機面の研磨材などの素材として好適に使用することができる。
The method for producing a high-purity hydrophobic organic solvent-dispersed silica sol according to the present invention is stable for a long term over 1 year without agglomeration even when the particle size of silica fine particles is 500 nm or less and the silica concentration exceeds 20% by weight. A dispersible high-purity hydrophobic organic solvent-dispersed silica sol can be produced.
The high-purity hydrophobic organic solvent-dispersed silica sol according to the present invention is stably dispersed for a long period of time even if the silica fine particles have a high concentration in the hydrophobic organic solvent and has a high purity. It can be suitably used as a material such as an abrasive.

以下、本発明に係る高純度疎水性有機溶媒分散シリカゾル及びその製造方法について詳述する。
本発明に係る高純度疎水性有機溶媒分散シリカゾルは、アルコキシシランを原料由来とする高純度親水性有機溶媒分散シリカゾルの分散媒を沸点が100℃以上の両親媒性有機溶媒で置換する第一の工程、第一の工程で得られたシリカゾルを酸性下、シランカップリング剤で表面改質する第二の工程、第二の工程で得られたシリカゾルの分散媒を疎水性有機溶媒で置換する第三の工程を含む方法によって製造することができる。
Hereinafter, the high purity hydrophobic organic solvent-dispersed silica sol according to the present invention and the production method thereof will be described in detail.
The high-purity hydrophobic organic solvent-dispersed silica sol according to the present invention is a first method in which a dispersion medium of a high-purity hydrophilic organic solvent-dispersed silica sol derived from alkoxysilane is replaced with an amphiphilic organic solvent having a boiling point of 100 ° C. or higher. Step, a second step of surface modification of the silica sol obtained in the first step with a silane coupling agent under acidic conditions, a step of replacing the dispersion medium of the silica sol obtained in the second step with a hydrophobic organic solvent It can be manufactured by a method including three steps.

本発明に係る高純度疎水性有機溶媒分散シリカゾルを製造するための第一の工程は、アルコキシシランを原料由来とする高純度親水性有機溶媒分散シリカゾルの親水性有機溶媒を沸点が100℃以上の両親媒性有機溶媒で置換する工程である。   The first step for producing the high-purity hydrophobic organic solvent-dispersed silica sol according to the present invention is to use a hydrophilic organic solvent of the high-purity hydrophilic organic solvent-dispersed silica sol derived from alkoxysilane as a raw material having a boiling point of 100 ° C. or higher. This is a step of substitution with an amphiphilic organic solvent.

高純度親水性有機溶媒分散シリカゾルは、アルコキシシランを原料由来とする従来公知のあらゆる方法によって製造される親水性有機溶媒分散シリカゾルを使用することができる。高純度親水性有機溶媒分散シリカゾルの製造方法としては、加水分解可能なケイ素化合物、例えば、テトラメチルシリケート、テトラエチルシリケート、テトライソプロピルシリケート、テトラブチルシリケート、ジメチルジエチルシリケート等のアルコキシシラン類やテトラクロロシラン等のクロロシラン類を、メタノール、エタノール、イソプロパノールなどの親水性有機溶媒中で加水分解することにより得ることができる(ゾル−ゲル法)。また、水分散シリカゾルの分散媒である水を公知の方法、例えば限外濾過膜を使用して親水性有機溶媒と溶媒置換することにより得ることができる。
親水性有機溶媒は特に限定されないが、例えば、メタノール、エタノール、n−プロパノール、イソプロパノールなどの炭素数1〜3の直鎖又は分岐のアルコール類などを例示することができる。
As the high-purity hydrophilic organic solvent-dispersed silica sol, a hydrophilic organic solvent-dispersed silica sol manufactured by any conventionally known method using alkoxysilane as a raw material can be used. As a method for producing a high-purity hydrophilic organic solvent-dispersed silica sol, hydrolyzable silicon compounds such as tetramethyl silicate, tetraethyl silicate, tetraisopropyl silicate, tetrabutyl silicate, dimethyl diethyl silicate, and other alkoxysilanes, tetrachlorosilane, etc. These chlorosilanes can be obtained by hydrolysis in a hydrophilic organic solvent such as methanol, ethanol or isopropanol (sol-gel method). Further, water, which is a dispersion medium of the water-dispersed silica sol, can be obtained by replacing the solvent with a hydrophilic organic solvent using a known method, for example, an ultrafiltration membrane.
Although a hydrophilic organic solvent is not specifically limited, For example, C1-C3 linear or branched alcohols, such as methanol, ethanol, n-propanol, isopropanol, etc. can be illustrated.

沸点が100℃以上の両親媒性有機溶媒としては、n−ブタノール、s−ブタノール、n−ペンタノール、n−ヘキサノール等の炭素数4以上の一価アルコール、エチレングリコール、プロピレングルコール、ジエチレングリコール、トリエチレングリコール等の二価アルコール、グリセリン等の多価アルコール、ポリエチレングリコール、ポリビニルアルコール等の高分子アルコール、エチレングリコールモノエチルエーテル、酢酸エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテルなどを例示することができる。
特に本発明では、沸点が100〜200℃の両親媒性有機溶媒が好ましく、沸点が100〜150℃の両親媒性有機溶媒がより好ましい。
Examples of the amphiphilic organic solvent having a boiling point of 100 ° C. or higher include monohydric alcohols having 4 or more carbon atoms such as n-butanol, s-butanol, n-pentanol, and n-hexanol, ethylene glycol, propylene glycol, diethylene glycol, Examples include dihydric alcohols such as triethylene glycol, polyhydric alcohols such as glycerin, polymeric alcohols such as polyethylene glycol and polyvinyl alcohol, ethylene glycol monoethyl ether, ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether, and the like. it can.
In particular, in the present invention, an amphiphilic organic solvent having a boiling point of 100 to 200 ° C is preferable, and an amphiphilic organic solvent having a boiling point of 100 to 150 ° C is more preferable.

高純度親水性有機溶媒分散シリカゾルの親水性有機溶媒を沸点が100℃以上の両親媒性有機溶媒で置換する方法は特に限定されず、例えば、親水性有機溶媒分散シリカゾルを、親水性有機溶媒の沸点程度の温度に加熱しながら両親媒性有機溶媒を一定量ずつ滴下する方法を例示することができる。この際、置換操作は液温及び塔頂温が置換する溶媒の沸点に達するまで行うことが好ましい。
また、親水性有機溶媒分散シリカゾルを沈殿・分離、遠心分離等により親水性有機溶媒より分離した後に、沸点が100℃以上の両親媒性有機溶媒に再分散させる方法を例示することができる。
The method for replacing the hydrophilic organic solvent of the high-purity hydrophilic organic solvent-dispersed silica sol with an amphiphilic organic solvent having a boiling point of 100 ° C. or higher is not particularly limited. For example, the hydrophilic organic solvent-dispersed silica sol An example is a method in which an amphiphilic organic solvent is dropped by a certain amount while heating to a temperature around the boiling point. At this time, the replacement operation is preferably performed until the liquid temperature and the tower top temperature reach the boiling point of the solvent to be replaced.
Moreover, after separating hydrophilic organic solvent dispersion | distribution silica sol from hydrophilic organic solvent by precipitation, isolation | separation, centrifugation, etc., the method of redispersing in the amphiphilic organic solvent whose boiling point is 100 degreeC or more can be illustrated.

本発明に係る高純度疎水性有機溶媒分散シリカゾルを製造するための第二の工程は、第一の工程で得られたシリカゾルをシランカップリング剤で表面改質する工程である。
第一の工程で得られたシリカゾルをシランカップリング剤で表面改質するには、第一の工程で得られたシリカゾルに酸を添加して酸性に調整した後、シランカップリング剤を加え加熱還流を行うか又は両親媒性有機溶媒の沸点以下の温度、好ましくは100〜200℃程度に加熱することにより、表面改質を行うことができる。
酸・塩基を添加することで、表面改質処理を確実且つ速やかに行うことができる。ただし、塩基性下で処理すると粘度が上昇し、且つシリカ固形分濃度を20重量%以上に上げると不安定になるために、酸を使用することが望ましい。
酸は特に限定されないが、例えば、ギ酸、酢酸等の有機酸や、硫酸、塩酸などの無機酸、強酸性イオン交換樹脂等を例示することができ、酸の添加量は特に限定されないが、好ましくはシリカゾルに対して1〜30重量%が望ましい。またpH領域は特に限定されないが、pH4以下に調整することが望ましい。本発明では酢酸を用いることが工業的に好ましい。
第一の工程で得られたシリカゾルをシランカップリング剤で表面改質することにより、親水性であったシリカゾルを疎水性有機溶媒中で安定に分散させることができる。
The second step for producing the high purity hydrophobic organic solvent-dispersed silica sol according to the present invention is a step of modifying the surface of the silica sol obtained in the first step with a silane coupling agent.
To modify the surface of the silica sol obtained in the first step with a silane coupling agent, acid is added to the silica sol obtained in the first step to adjust the acidity, and then the silane coupling agent is added and heated. Surface modification can be performed by refluxing or heating to a temperature below the boiling point of the amphiphilic organic solvent, preferably about 100 to 200 ° C.
By adding an acid / base, the surface modification treatment can be performed reliably and promptly. However, it is desirable to use an acid because the viscosity increases when treated under basic conditions and becomes unstable when the silica solid content concentration is increased to 20% by weight or more.
The acid is not particularly limited, and examples thereof include organic acids such as formic acid and acetic acid, inorganic acids such as sulfuric acid and hydrochloric acid, strong acid ion exchange resins, and the like. Is preferably 1 to 30% by weight based on silica sol. The pH range is not particularly limited, but it is desirable to adjust to pH 4 or lower. In the present invention, it is industrially preferable to use acetic acid.
By subjecting the silica sol obtained in the first step to surface modification with a silane coupling agent, the hydrophilic silica sol can be stably dispersed in a hydrophobic organic solvent.

使用することができるシランカップリング剤は特に限定されず、一般式1(化1)で示されるものを例示することができ、具体的には、メチルトリメトキシシラン、ジメチルジメトキシシラン、トリメチルメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、トリメチルエトキシシラン、フェニルトリメトキシシラン、ベンジルトリエトキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、ジエトキシメチルフェニルシラン、アリルトリエトキシシラン、ビニルトリエトキシシラン、アミノプロピルトリエトキシシラン、アミノプロピルトリメトキシシラン等の分子中に一種又は二種以上の置換アルキル基、フェニル基、ビニル基、フルオロ基等を有するアルコキシシラン類;トリメチルクロロシラン、ジエチルジクロロシラン等のクロロシラン類などが挙げられる。本発明では、メチルメトキシシラン、メチルエトキシシラン、フェニルトリメトキシシランを使用することが好ましい。   The silane coupling agent that can be used is not particularly limited, and examples thereof include those represented by the general formula 1 (Chemical Formula 1). Specifically, methyltrimethoxysilane, dimethyldimethoxysilane, trimethylmethoxysilane , Methyltriethoxysilane, dimethyldiethoxysilane, trimethylethoxysilane, phenyltrimethoxysilane, benzyltriethoxysilane, propyltrimethoxysilane, propyltriethoxysilane, diethoxymethylphenylsilane, allyltriethoxysilane, vinyltriethoxysilane Alkoxysilanes having one or more substituted alkyl groups, phenyl groups, vinyl groups, fluoro groups, etc. in the molecule such as aminopropyltriethoxysilane, aminopropyltrimethoxysilane; Emissions, and the like chlorosilanes such as diethyl dichlorosilane. In the present invention, it is preferable to use methylmethoxysilane, methylethoxysilane, or phenyltrimethoxysilane.

[化1]
RaMXb
(但し、Rはアルキル基、フルオロ基等の疎水基であり、MはSiであり、Xはハロゲン、アルコキシル基等の官能基であり、aは1〜3の整数であり、bは3〜1の整数である。)
[Chemical 1]
RaMXb
(However, R is a hydrophobic group such as an alkyl group or a fluoro group, M is Si, X is a functional group such as a halogen or an alkoxyl group, a is an integer of 1 to 3, and b is 3 to 3. It is an integer of 1.)

シランカップリング剤の添加量は特に限定されないが、次式(数2)により算出された量に相当する量を添加することが好ましい。0.1より少ないと凝集沈殿物が発生する可能性がある。2.0より多くなるような量を添加すると、製造コストが増大することがある。   The addition amount of the silane coupling agent is not particularly limited, but it is preferable to add an amount corresponding to the amount calculated by the following formula (Equation 2). If it is less than 0.1, agglomerated precipitates may be generated. Adding an amount that is greater than 2.0 may increase manufacturing costs.

Figure 2005314197
Figure 2005314197

本発明に係る高純度疎水性有機溶媒分散シリカゾルを製造するための第三の工程は、第二の工程で得られたシリカゾルの沸点が100℃以上の両親媒性有機溶媒を疎水性有機溶媒で置換する工程である。
第二の工程で得られたシリカゾルの沸点が100℃以上の両親媒性有機溶媒を疎水性有機溶媒で置換する方法は特に限定されず、例えば、第二の工程で得られたシリカゾルを加熱しながら疎水性有機溶媒を一定量ずつ滴下する方法を例示することができる。
この際、置換操作は液温及び塔頂温が置換する疎水性有機溶媒の沸点に達するまで行うことが好ましい。
また、第二の工程で得られたシリカゾルを沈殿・分離、遠心分離等により沸点が100℃以上の両親媒性有機溶媒より分離した後に、疎水性有機溶媒に再分散させる方法を例示することができる。
In the third step for producing the high purity hydrophobic organic solvent-dispersed silica sol according to the present invention, an amphiphilic organic solvent having a boiling point of 100 ° C. or higher obtained from the silica sol obtained in the second step is a hydrophobic organic solvent. It is a step of replacing.
The method of replacing the amphiphilic organic solvent having a boiling point of 100 ° C. or higher with the hydrophobic organic solvent obtained in the second step is not particularly limited. For example, the silica sol obtained in the second step is heated. An example is a method in which a hydrophobic organic solvent is dropped in a predetermined amount.
At this time, the substitution operation is preferably performed until the liquid temperature and the tower top temperature reach the boiling point of the hydrophobic organic solvent to be substituted.
Moreover, after separating the silica sol obtained in the second step from an amphiphilic organic solvent having a boiling point of 100 ° C. or higher by precipitation, separation, centrifugation, etc., the method may be exemplified by redispersing in a hydrophobic organic solvent. it can.

疎水性有機溶媒は、任意の疎水性有機溶媒を使用すればよく、例えば、飽和または不飽和の脂肪族炭化水素類、脂環式炭化水素類、芳香族炭化水素類及びそれらのハロゲン化物、エーテル類、エステル類、アルデヒド類、ケトン類等などが挙げられる。
具体的には、ヘキサン、ヘプタン、オクタン、ノナン、デカン、ウンデカン、ドデカンなどの飽和脂肪族炭化水素類、ヘキセン、ヘプテン、オクテンなどの不飽和脂肪族炭化水素類、シクロヘキサン、メチルシクロヘキサン、デカリンなどの脂環式炭化水素類、ベンゼン、トルエン、キシレン、メシチレン、ドデシルベンゼン、メチルナフタレンなどの芳香族炭化水素類、メチレンクロライド、クロロホルム、エチレンクロライド、クロロベンゼンなどのハロゲン化物、ジブチルエーテル、ジペンチルエーテル、ジヘキシルエーテル、ジヘプチルエーテル、ジオクチルエーテルなどのエーテル類、酢酸エチル、酢酸ブチル、アクリル酸ブチル、メタクリル酸メチル、ヘキサメチレンジアクリレート、トリメチロールプロパントリアクリレート等のエステル類、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類、ナフサ、白灯油などの石油留分類などを例示することができる。
特に本発明では、これらの疎水性有機溶媒のうち、n−ヘプタン、トルエン、キシレン、メシチレンを用いることが好ましい。
Any hydrophobic organic solvent may be used as the hydrophobic organic solvent, for example, saturated or unsaturated aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons and their halides, ethers. , Esters, aldehydes, ketones and the like.
Specifically, saturated aliphatic hydrocarbons such as hexane, heptane, octane, nonane, decane, undecane, dodecane, etc., unsaturated aliphatic hydrocarbons such as hexene, heptene, octene, cyclohexane, methylcyclohexane, decalin, etc. Alicyclic hydrocarbons, aromatic hydrocarbons such as benzene, toluene, xylene, mesitylene, dodecylbenzene, methylnaphthalene, halides such as methylene chloride, chloroform, ethylene chloride, chlorobenzene, dibutyl ether, dipentyl ether, dihexyl ether , Ethers such as diheptyl ether and dioctyl ether, ethyl acetate, butyl acetate, butyl acrylate, methyl methacrylate, hexamethylene diacrylate, trimethylolpropane triacrylate Esters, methyl ethyl ketone, can be exemplified by methyl isobutyl ketone and cyclohexanone, naphtha, a petroleum distillate classification, such as kerosene.
Especially in this invention, it is preferable to use n-heptane, toluene, xylene, and mesitylene among these hydrophobic organic solvents.

さらに本発明では、必要に応じて上記第一から第三の工程に加えて、第三の工程で得られたシリカゾル中のシリカ濃度が20重量%を超えるように調整する第四の工程を付加することができる。
第三の工程で得られたシリカゾルのシリカ濃度を20重量%超となるように調整する方法は特に限定されず、例えば、このシリカゾルを常圧下又は減圧下で加熱濃縮すればよい。
シリカゾル中のシリカ濃度は20重量%以上であれば特に限定されず、好ましくは40重量%以上、より好ましくは40〜50重量%程度とされる。
Furthermore, in the present invention, in addition to the first to third steps described above, a fourth step is added to adjust the silica concentration in the silica sol obtained in the third step to exceed 20% by weight. can do.
The method for adjusting the silica concentration of the silica sol obtained in the third step to be more than 20% by weight is not particularly limited. For example, the silica sol may be heated and concentrated under normal pressure or reduced pressure.
The silica concentration in the silica sol is not particularly limited as long as it is 20% by weight or more, preferably 40% by weight or more, and more preferably about 40 to 50% by weight.

こうして製造された本発明に係る高純度疎水性有機溶媒分散シリカゾルは、シリカ微粒子の粒子径は500nm以下、好ましくは10〜500nmであり、該シリカ微粒子を20重量%超、好ましくは40重量%以上、より好ましくは40〜50重量%含有する。
本発明に係る高純度疎水性有機溶媒分散シリカゾルは、沸点が100℃以上の両親媒性有機溶媒の存在下、シランカップリング剤で表面改質されたシリカ微粒子が疎水性有機溶媒に分散しているから、シリカ微粒子の含有量を20重量%超に調整しても、凝集やゲル化が起らず、長期保存安定に優れる。
またアルコシキシランの加水分解によって製造されたコロイダルシリカを原料とする本発明に係る高純度疎水性有機溶媒分散シリカゾルは、ナトリウム等の金属不純物の含有量が極めて少なく、具体的には、金属不純物含有量が1ppm以下の高純度の疎水性有機溶媒分散シリカゾルを得ることができる。
The high purity hydrophobic organic solvent-dispersed silica sol according to the present invention thus produced has a silica fine particle diameter of 500 nm or less, preferably 10 to 500 nm, and the silica fine particle is more than 20 wt%, preferably 40 wt% or more. More preferably, it contains 40 to 50% by weight.
The high-purity hydrophobic organic solvent-dispersed silica sol according to the present invention is obtained by dispersing silica fine particles surface-modified with a silane coupling agent in a hydrophobic organic solvent in the presence of an amphiphilic organic solvent having a boiling point of 100 ° C. or higher. Therefore, even if the content of the silica fine particles is adjusted to more than 20% by weight, aggregation and gelation do not occur, and the long-term storage stability is excellent.
Further, the high-purity hydrophobic organic solvent-dispersed silica sol according to the present invention using colloidal silica produced by hydrolysis of alkoxysilane has a very low content of metal impurities such as sodium. A high-purity hydrophobic organic solvent-dispersed silica sol having a content of 1 ppm or less can be obtained.

以下、本発明を実施例に基づき説明するが、本発明はこれらの実施例に何ら限定されるものではない。
(試料の調製;実施例1)
高純度メタノール分散シリカゾル(扶桑化学工業株式会社製、PL−7−MA、シリカ濃度15%、比表面積40m/g、比表面積換算の粒径70nm)1500gを常圧下で加熱蒸留しつつ、1−ブタノールの容量を一定に保ちながら滴下し、液温及び塔頂温が置換する溶媒の沸点に達した時点で終了して、1−ブタノール分散ゾルを得た。
このゾルに酢酸を300g添加して、しばらく攪拌した後、メチルトリメトキシシランを100g添加し、加熱還流を行った。このゾルに、常圧下で加熱蒸留しつつ、トルエンを容量を一定に保ちながら滴下し、液温及び塔頂温がトルエンの沸点で安定するところまでトルエン置換を行い、トルエン分散ゾルを得た。
このトルエン分散シリカゾルを、シリカ濃度が40%となるまで加熱濃縮を行い、高濃度シリカゾルを得た。
EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to these Examples at all.
(Sample preparation; Example 1)
While distilling 1500 g of high-purity methanol-dispersed silica sol (manufactured by Fuso Chemical Co., Ltd., PL-7-MA, silica concentration 15%, specific surface area 40 m 2 / g, specific surface area 70 nm particle size) under normal pressure, 1 -Dropping while keeping the volume of butanol constant, the reaction was terminated when the liquid temperature and the tower top temperature reached the boiling point of the solvent to be substituted to obtain 1-butanol-dispersed sol.
To this sol, 300 g of acetic acid was added and stirred for a while, and then 100 g of methyltrimethoxysilane was added and heated to reflux. To this sol, toluene was added dropwise while maintaining the volume constant while heating and distilling under normal pressure, and the toluene substitution was performed until the liquid temperature and the tower top temperature were stabilized at the boiling point of toluene to obtain a toluene-dispersed sol.
The toluene-dispersed silica sol was heated and concentrated until the silica concentration became 40%, to obtain a high-concentration silica sol.

(試料の調製;実施例2)
実施例1のトルエンをキシレンにかえて、その他は同条件でシリカ濃度40%キシレン分散シリカゾルを得た。
(Sample preparation; Example 2)
The toluene of Example 1 was replaced with xylene, and the other conditions were the same, and a silica concentration 40% xylene-dispersed silica sol was obtained.

(試料の調製;実施例3)
実施例1のトルエンをメシチレンにかえて、その他は同条件でシリカ濃度40%メシチレン分散シリカゾルを得た。
(Sample preparation; Example 3)
A mesitylene-dispersed silica sol having a silica concentration of 40% was obtained under the same conditions except that the toluene of Example 1 was replaced with mesitylene.

(試料の調製;実施例4)
実施例1の1−ブタノールを1−メトキシ−2−プロパノ−ルにかえて、その他は同条件でシリカ濃度40%トルエン分散シリカゾルを得た。
(Sample preparation; Example 4)
1-Butanol of Example 1 was replaced with 1-methoxy-2-propanol, and a toluene-dispersed silica sol having a silica concentration of 40% was obtained under the same conditions.

(試料の調製;実施例5)
実施例4のトルエンをキシレンにかえて、その他は同条件でシリカ濃度40%キシレン分散シリカゾルを得た。
(Sample preparation; Example 5)
The toluene in Example 4 was replaced with xylene, and a xylene-dispersed silica sol with a silica concentration of 40% was obtained under the same conditions.

(試料の調製;実施例6)
実施例4のトルエンをメシチレンにかえて、その他は同条件でシリカ濃度40%メシチレン分散シリカゾルを得た。
(Sample preparation; Example 6)
A mesitylene-dispersed silica sol having a silica concentration of 40% was obtained under the same conditions except that the toluene of Example 4 was replaced with mesitylene.

(試料の調製;実施例7)
実施例1の1−ブタノールをエチレングリコールにかえて、その他は同条件でシリカ濃度40%トルエン分散シリカゾルを得た。
(Sample preparation; Example 7)
A toluene-dispersed silica sol having a silica concentration of 40% was obtained under the same conditions except that 1-butanol of Example 1 was replaced with ethylene glycol.

(試料の調製;実施例8)
実施例7のトルエンをキシレンにかえて、その他は同条件でシリカ濃度40%キシレン分散シリカゾルを得た。
(Sample preparation; Example 8)
The toluene in Example 7 was replaced with xylene, and a xylene-dispersed silica sol with a silica concentration of 40% was obtained under the same conditions.

(試料の調製;実施例9)
実施例7のトルエンをメシチレンにかえて、その他は同条件でシリカ濃度40%メシチレン分散シリカゾルを得た。
(Sample preparation; Example 9)
A mesitylene-dispersed silica sol having a silica concentration of 40% was obtained under the same conditions except that the toluene of Example 7 was replaced with mesitylene.

(試料の調製;実施例10)
高純度メタノール分散シリカゾル(扶桑化学工業株式会社製、PL−10−MA、シリカ濃度15%、比表面積25m/g、比表面積換算の粒径110nm)1000gを常圧下で加熱蒸留しつつ、1−ブタノールの容量を一定に保ちながら滴下した。液温及び塔頂温が置換する溶媒の沸点に達した時点で加熱蒸留を終了して、1−ブタノール分散ゾルを得た。
この1−ブタノール分散ゾルに酢酸を300g添加して、しばらく攪拌した後、メチルトリメトキシシランを100g添加し、加熱還流を行った。このゾルに、常圧下で加熱蒸留しつつ、トルエンの容量を一定に保ちながら滴下した。液温及び塔頂温がトルエンの沸点で安定したところまでトルエン置換を行い、トルエン分散ゾルを得た。
このトルエン分散シリカゾルを、シリカ濃度が40%となるまで加熱濃縮を行い、高濃度シリカゾルを得た。
(Sample preparation; Example 10)
While distilling 1000 g of high-purity methanol-dispersed silica sol (manufactured by Fuso Chemical Industry Co., Ltd., PL-10-MA, silica concentration 15%, specific surface area 25 m 2 / g, specific surface area converted particle size 110 nm) under atmospheric pressure, 1 -Dropped while keeping the volume of butanol constant. When the liquid temperature and the tower top temperature reached the boiling point of the solvent to be substituted, the heating distillation was terminated to obtain a 1-butanol-dispersed sol.
To this 1-butanol dispersion sol, 300 g of acetic acid was added and stirred for a while, and then 100 g of methyltrimethoxysilane was added and heated to reflux. To this sol, toluene was added dropwise while keeping the volume of toluene constant while heating and distilling under normal pressure. Toluene substitution was performed until the liquid temperature and tower top temperature were stabilized at the boiling point of toluene, and a toluene-dispersed sol was obtained.
The toluene-dispersed silica sol was heated and concentrated until the silica concentration became 40%, to obtain a high-concentration silica sol.

(試料の調製;実施例11)
実施例10のトルエンをキシレンにかえて、その他は同条件でシリカ濃度40%キシレン分散シリカゾルを得た。
(Sample preparation; Example 11)
The toluene of Example 10 was replaced with xylene, and a xylene-dispersed silica sol with a silica concentration of 40% was obtained under the same conditions.

(試料の調製;実施例12)
実施例10のトルエンをメシチレンにかえて、その他は同条件でシリカ濃度40%メシチレン分散シリカゾルを得た。
(Sample preparation; Example 12)
A mesitylene-dispersed silica sol having a silica concentration of 40% was obtained under the same conditions except that the toluene of Example 10 was replaced with mesitylene.

(試料の調製;実施例13)
実施例10の1−ブタノールを1−メトキシ−2−プロパノールにかえて、その他は同条件でシリカ濃度40%トルエン分散シリカゾルを得た。
(Sample preparation; Example 13)
A toluene-dispersed silica sol having a silica concentration of 40% was obtained under the same conditions except that 1-butanol of Example 10 was replaced with 1-methoxy-2-propanol.

(試料の調製;実施例14)
実施例13のトルエンをキシレンにかえて、その他は同条件でシリカ濃度40%キシレン分散シリカゾルを得た。
(Preparation of sample; Example 14)
The toluene of Example 13 was replaced with xylene, and a xylene-dispersed silica sol having a silica concentration of 40% was obtained under the same conditions as the others.

(試料の調製;実施例15)
実施例13のトルエンをメシチレンにかえて、その他は同条件でシリカ濃度40%メシチレン分散シリカゾルを得た。
(Sample preparation; Example 15)
A mesitylene-dispersed silica sol having a silica concentration of 40% was obtained under the same conditions except that the toluene of Example 13 was replaced with mesitylene.

(試料の調製;実施例16)
実施例10の1−ブタノールをエチレングリコールにかえて、その他は同条件でシリカ濃度40%トルエン分散シリカゾルを得た。
(Sample preparation; Example 16)
A toluene-dispersed silica sol having a silica concentration of 40% was obtained under the same conditions except that 1-butanol of Example 10 was replaced with ethylene glycol.

(試料の調製;実施例17)
実施例16のトルエンをキシレンにかえて、その他は同条件でシリカ濃度40%キシレン分散シリカゾルを得た。
(Sample preparation; Example 17)
The toluene in Example 16 was replaced with xylene, and a xylene-dispersed silica sol having a silica concentration of 40% was obtained under the same conditions as above.

(試料の調製;実施例18)
実施例16のトルエンをメシチレンにかえて、その他は同条件でシリカ濃度40%メシチレン分散シリカゾルを得た。
(Sample preparation; Example 18)
A mesitylene-dispersed silica sol having a silica concentration of 40% was obtained under the same conditions except that the toluene of Example 16 was replaced with mesitylene.

(比較例)
実施例1の酢酸を添加せずに表面処理を行い、トルエン置換を行った。しかし、途中で粘度が急激に上昇し、最終的にゾルが凝集してゲル化した。
(Comparative example)
Surface treatment was performed without adding the acetic acid of Example 1, and toluene substitution was performed. However, the viscosity increased abruptly along the way, and finally the sol aggregated and gelled.

(試験例1)
実施例1〜18の疎水性有機溶媒分散シリカゾルのシリカ粒子の比表面積、粒子径、シリカ濃度、粘度、水分、1ヶ月後及び1年後の凝集の有無、不純物量をそれぞれ測定した。結果を表1及び表2に記載する。
尚、比表面積はシリカゾルを乾燥後、焼成した粉末をBET法で測定した。またシリカゾルの粒子径はBET法で測定した比表面積から換算したものと、光子相関法によるものの2種類で測定した。特に、光子相関法で測定した数値および粘度は、得られたシリカゾルが凝集しているか否かの指標になるために重要である。尚、凝集とは光子相関法にて測定されたシリカ微粒子の粒子径が初期の測定値の150%以上になったとき、または粘度が初期の測定値に比べて2倍以上増加したときのことをいう。
1年後の凝集の有無については、測定の結果、1ヶ月を経過した時点で光子相関法にて測定されたシリカ微粒子の粒子径が初期の測定値の150%以上にならなければ、または粘度が初期の測定値の2倍以上にならなければ、1年後についても粒子は凝集しないことが判明した。
水分はカールフィッシャー水分計を用いて測定した。金属不純物量は原子吸光測定装置を用いて測定した。
(Test Example 1)
The specific surface area, particle diameter, silica concentration, viscosity, moisture, presence / absence of aggregation after 1 month and 1 year, and the amount of impurities were measured for each of the hydrophobic organic solvent-dispersed silica sols of Examples 1-18. The results are listed in Tables 1 and 2.
The specific surface area was measured by drying the silica sol and then baking the powder by the BET method. The particle size of the silica sol was measured in two types, one converted from the specific surface area measured by the BET method and the one based on the photon correlation method. In particular, the numerical value and viscosity measured by the photon correlation method are important because they serve as an indicator of whether or not the obtained silica sol is agglomerated. Agglomeration is when the particle size of silica fine particles measured by the photon correlation method is 150% or more of the initial measurement value, or when the viscosity is increased by 2 times or more compared to the initial measurement value. Say.
As for the presence or absence of aggregation after one year, if the particle diameter of silica fine particles measured by the photon correlation method does not become 150% or more of the initial measurement value after one month has passed, or the viscosity It was found that the particles did not agglomerate even after one year unless the value was more than twice the initial measured value.
The moisture was measured using a Karl Fischer moisture meter. The amount of metal impurities was measured using an atomic absorption measuring device.

Figure 2005314197
Figure 2005314197

Figure 2005314197
Figure 2005314197

(試験例2)
実施例1の原料であるメタノール分散シリカゾルと、実施例1のトルエン分散シリカゾルのSi CP/MAS NMR分析を行った。結果を表3に記載する。
(Test Example 2)
Si CP / MAS NMR analysis of the methanol-dispersed silica sol, which is the raw material of Example 1, and the toluene-dispersed silica sol of Example 1 was performed. The results are listed in Table 3.

Figure 2005314197
Figure 2005314197

表3の記載の通り、実施例1のトルエン分散シリカゾルは、原料であるメタノール分散シリカゾルと比較して、Q2ピーク強度比(Siのシラノール基数が2つ、シロキサン結合数が2つに相当する。)及びQ3ピーク強度比(Siのシラノール基数が1つ、シロキサン結合数が3つに相当する。)が減少し、Q4ピーク強度比(Siのシラノール基数が4つに相当する。)が増大していることが確認された。この結果より、本発明に係る高純度疎水性有機溶媒分散シリカゾルは、シリカ粒子表面のシランカップリング剤による表面改質が確実になされていることが分かる。   As described in Table 3, the toluene-dispersed silica sol of Example 1 has a Q2 peak intensity ratio (corresponding to two Si silanol groups and two siloxane bonds compared to the raw material methanol-dispersed silica sol. ) And Q3 peak intensity ratio (corresponding to one Si silanol group and three siloxane bonds) decreased, and Q4 peak intensity ratio (corresponding to four Si silanol groups) increased. It was confirmed that From this result, it can be seen that the high-purity hydrophobic organic solvent-dispersed silica sol according to the present invention is reliably surface-modified with a silane coupling agent on the surface of the silica particles.

(試験例3)
実施例1〜18で得られた疎水性有機溶媒分散シリカゾルに、シリカゾルと等量の水を添加して1分間激しく混合した後、静置した。実施例1〜18の疎水性有機溶媒分散シリカゾルは、約1時間で水層と有機層の二層に完全に分離した。しかしながらシリカ微粒子の析出は確認されなかった。水層にはシリカ微粒子は全く存在しなかった。
(Test Example 3)
To the hydrophobic organic solvent-dispersed silica sol obtained in Examples 1 to 18, water equivalent to the silica sol was added and mixed vigorously for 1 minute, and then allowed to stand. The hydrophobic organic solvent-dispersed silica sols of Examples 1 to 18 were completely separated into two layers of an aqueous layer and an organic layer in about 1 hour. However, precipitation of silica fine particles was not confirmed. No silica fine particles were present in the aqueous layer.

Claims (5)

シリカ微粒子が疎水性有機溶媒に分散している高純度疎水性有機溶媒分散シリカゾルであって、該シリカ微粒子の粒子径が500nm以下であり、金属不純物含有量が1.0ppm以下であり、該シリカ微粒子を20重量%を超えて含有していても長期安定であることを特徴とする高純度疎水性有機溶媒分散シリカゾル。 A high-purity hydrophobic organic solvent-dispersed silica sol in which silica fine particles are dispersed in a hydrophobic organic solvent, wherein the silica fine particles have a particle diameter of 500 nm or less and a metal impurity content of 1.0 ppm or less. A high-purity hydrophobic organic solvent-dispersed silica sol characterized by being stable for a long period of time even if it contains more than 20% by weight of fine particles. 沸点が100℃以上の両親媒性有機溶媒の存在下、シランカップリング剤で表面改質されたアルコキシシランを原料由来とするシリカ微粒子が疎水性有機溶媒に分散していることを特徴とする高純度疎水性有機溶媒分散シリカゾル。 Silica fine particles derived from alkoxysilane surface-modified with a silane coupling agent in the presence of an amphiphilic organic solvent having a boiling point of 100 ° C. or higher are dispersed in a hydrophobic organic solvent. Purity hydrophobic organic solvent-dispersed silica sol. 少なくとも以下の(a)〜(c)の各工程を含むことを特徴とする高純度疎水性有機溶媒分散シリカゾルの製造方法。
(a)アルコキシシランを原料由来とする高純度親水性有機溶媒分散シリカゾルの親水性有機溶媒を沸点が100℃以上の両親媒性有機溶媒で置換する第一の工程
(b)第一の工程で得られたシリカゾルを酸性下、シランカップリング剤で表面改質する第二の工程
(c)第二の工程で得られたシリカゾルの沸点が100℃以上の両親媒性有機溶媒を疎水性有機溶媒で置換する第三の工程
A method for producing a high-purity hydrophobic organic solvent-dispersed silica sol, comprising at least the following steps (a) to (c):
(A) The first step (b) in which the hydrophilic organic solvent of the high-purity hydrophilic organic solvent-dispersed silica sol derived from alkoxysilane is replaced with an amphiphilic organic solvent having a boiling point of 100 ° C. or higher. The second step (c) of modifying the surface of the obtained silica sol with an acid and a silane coupling agent (c) The amphiphilic organic solvent having a boiling point of 100 ° C. or higher obtained in the second step is a hydrophobic organic solvent. The third step of replacing with
以下の(e)工程を含むことを特徴とする請求項3に記載の高純度疎水性有機溶媒分散シリカゾルの製造方法。
(e)第三の工程で得られたシリカゾル中のシリカ濃度が20重量%を超えるように調整する第四の工程
The method for producing a high-purity hydrophobic organic solvent-dispersed silica sol according to claim 3, comprising the following step (e):
(E) Fourth step of adjusting the silica concentration in the silica sol obtained in the third step to exceed 20% by weight
前記シランカップリング剤の添加量が、数1の関係を充足することを特徴とする請求項3又は4に記載の高純度疎水性有機溶媒分散シリカゾルの製造方法。
Figure 2005314197
The method for producing a high-purity hydrophobic organic solvent-dispersed silica sol according to claim 3 or 4, wherein the addition amount of the silane coupling agent satisfies the relationship of Formula 1.
Figure 2005314197
JP2004151139A 2003-05-21 2004-05-21 Method for producing high purity hydrophobic organic solvent-dispersed silica sol Active JP4803630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004151139A JP4803630B2 (en) 2003-05-21 2004-05-21 Method for producing high purity hydrophobic organic solvent-dispersed silica sol

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003143855 2003-05-21
JP2003143855 2003-05-21
JP2004151139A JP4803630B2 (en) 2003-05-21 2004-05-21 Method for producing high purity hydrophobic organic solvent-dispersed silica sol

Publications (2)

Publication Number Publication Date
JP2005314197A true JP2005314197A (en) 2005-11-10
JP4803630B2 JP4803630B2 (en) 2011-10-26

Family

ID=35442000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004151139A Active JP4803630B2 (en) 2003-05-21 2004-05-21 Method for producing high purity hydrophobic organic solvent-dispersed silica sol

Country Status (1)

Country Link
JP (1) JP4803630B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005200294A (en) * 2003-12-19 2005-07-28 Nissan Chem Ind Ltd Process of producing inorganic oxide organosol
JP2006150300A (en) * 2004-12-01 2006-06-15 Nippon Sheet Glass Co Ltd Hydrophobic organic matter-containing sol solution, and its manufacturing method
WO2008123373A1 (en) * 2007-03-27 2008-10-16 Fuso Chemical Co., Ltd. Colloidal silica, and method for production thereof
JP2011506259A (en) * 2007-12-19 2011-03-03 ワッカー ケミー アクチエンゲゼルシャフト Hydrophobization of silica under oxidizing conditions
WO2011052762A1 (en) 2009-10-29 2011-05-05 堺化学工業株式会社 Method for producing organic solvent dispersion of inorganic oxide microparticles
JP2012501956A (en) * 2008-09-11 2012-01-26 グレース・ゲーエムベーハー・ウント・コムパニー・カーゲー Metal oxide dispersion
JP2012111869A (en) * 2010-11-25 2012-06-14 Jgc Catalysts & Chemicals Ltd Silica sol for polishing, polishing composition and method for producing silica sol for polishing
JP2013511466A (en) * 2009-11-23 2013-04-04 スリーエム イノベイティブ プロパティズ カンパニー Processed porous particles and methods of making and using the same
JP2013075822A (en) * 2012-12-05 2013-04-25 Tokuyama Corp Method for producing surface-treated silica-based particle
JPWO2022009889A1 (en) * 2020-07-07 2022-01-13
WO2023013504A1 (en) * 2021-08-06 2023-02-09 日産化学株式会社 Hydrophobic organic solvent-dispersed silica sol and method for producing same
WO2023032854A1 (en) * 2021-08-31 2023-03-09 日産化学株式会社 Dispersion of surface-treated silica-containing inorganic oxide particles and method for producing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63182204A (en) * 1987-01-22 1988-07-27 Nippon Shokubai Kagaku Kogyo Co Ltd Production of monodisperse body of fine inorganic oxide particle in organic solvent
JPH02160613A (en) * 1988-09-13 1990-06-20 Shin Etsu Chem Co Ltd Production of surface-modified silica
JPH1143319A (en) * 1997-05-26 1999-02-16 Nissan Chem Ind Ltd Production of hydrophobic organo silica sol
JP2001213617A (en) * 2000-01-28 2001-08-07 Jsr Corp Process of producing hydrophobic colloidal silica

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63182204A (en) * 1987-01-22 1988-07-27 Nippon Shokubai Kagaku Kogyo Co Ltd Production of monodisperse body of fine inorganic oxide particle in organic solvent
JPH02160613A (en) * 1988-09-13 1990-06-20 Shin Etsu Chem Co Ltd Production of surface-modified silica
JPH1143319A (en) * 1997-05-26 1999-02-16 Nissan Chem Ind Ltd Production of hydrophobic organo silica sol
JP2001213617A (en) * 2000-01-28 2001-08-07 Jsr Corp Process of producing hydrophobic colloidal silica

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005200294A (en) * 2003-12-19 2005-07-28 Nissan Chem Ind Ltd Process of producing inorganic oxide organosol
JP2006150300A (en) * 2004-12-01 2006-06-15 Nippon Sheet Glass Co Ltd Hydrophobic organic matter-containing sol solution, and its manufacturing method
JP4641412B2 (en) * 2004-12-01 2011-03-02 日本板硝子株式会社 Hydrophobic organic-containing sol solution and method for producing the same
WO2008123373A1 (en) * 2007-03-27 2008-10-16 Fuso Chemical Co., Ltd. Colloidal silica, and method for production thereof
JPWO2008123373A1 (en) * 2007-03-27 2010-07-15 扶桑化学工業株式会社 Colloidal silica and method for producing the same
US9550683B2 (en) 2007-03-27 2017-01-24 Fuso Chemical Co., Ltd. Colloidal silica, and method for production thereof
JP2012211080A (en) * 2007-03-27 2012-11-01 Fuso Chemical Co Ltd Method for producing colloidal silica
JP2011506259A (en) * 2007-12-19 2011-03-03 ワッカー ケミー アクチエンゲゼルシャフト Hydrophobization of silica under oxidizing conditions
JP2012501956A (en) * 2008-09-11 2012-01-26 グレース・ゲーエムベーハー・ウント・コムパニー・カーゲー Metal oxide dispersion
WO2011052762A1 (en) 2009-10-29 2011-05-05 堺化学工業株式会社 Method for producing organic solvent dispersion of inorganic oxide microparticles
JP2013511466A (en) * 2009-11-23 2013-04-04 スリーエム イノベイティブ プロパティズ カンパニー Processed porous particles and methods of making and using the same
JP2012111869A (en) * 2010-11-25 2012-06-14 Jgc Catalysts & Chemicals Ltd Silica sol for polishing, polishing composition and method for producing silica sol for polishing
JP2013075822A (en) * 2012-12-05 2013-04-25 Tokuyama Corp Method for producing surface-treated silica-based particle
JPWO2022009889A1 (en) * 2020-07-07 2022-01-13
WO2022009889A1 (en) * 2020-07-07 2022-01-13 日産化学株式会社 Sol of inorganic oxide dispersed in hydrocarbon and method for producing same
KR20220020431A (en) * 2020-07-07 2022-02-18 닛산 가가쿠 가부시키가이샤 Inorganic oxide sol dispersed in hydrocarbon and manufacturing method thereof
KR102461675B1 (en) 2020-07-07 2022-11-01 닛산 가가쿠 가부시키가이샤 Inorganic oxide sol dispersed in hydrocarbon and manufacturing method thereof
JP7177416B2 (en) 2020-07-07 2022-11-24 日産化学株式会社 Inorganic oxide sol dispersed in hydrocarbon and method for producing the same
US11549019B2 (en) 2020-07-07 2023-01-10 Nissan Chemical Corporation Inorganic oxide sol dispersed in hydrocarbon and production method therefor
WO2023013504A1 (en) * 2021-08-06 2023-02-09 日産化学株式会社 Hydrophobic organic solvent-dispersed silica sol and method for producing same
WO2023032854A1 (en) * 2021-08-31 2023-03-09 日産化学株式会社 Dispersion of surface-treated silica-containing inorganic oxide particles and method for producing same

Also Published As

Publication number Publication date
JP4803630B2 (en) 2011-10-26

Similar Documents

Publication Publication Date Title
TWI436947B (en) Colloidal silica and process for producing the same
US7976812B2 (en) Method for producing non-porous core-porous shell silica
JP4803630B2 (en) Method for producing high purity hydrophobic organic solvent-dispersed silica sol
JP6536821B2 (en) Silica-containing resin composition, method for producing the same, and molded article of silica-containing resin composition
US10106428B2 (en) Method for producing surface-modified silica nanoparticles, and surface-modified silica nanoparticles
TWI741116B (en) Silica particle dispersion liquid and its manufacturing method
KR101454402B1 (en) Method for manufacturing high-purity colloidal silica sol from tetraalkoxy silane under high-temperature condition, and dispersion in organic solvents thereof
WO2009127438A1 (en) Surface modified silicon dioxide particles
JP2004315300A (en) Silica fine particle, silica colloid in which silica fine particles are dispersed and method of manufacturing the same
Lazareva et al. Synthesis of high-purity silica nanoparticles by sol-gel method
JP5627662B2 (en) Method for producing surface-treated silica-based particles
JP2013166667A (en) Fluidizing agent for power and method for producing the same
JP2010143806A (en) Surface-treated silica-based particle and process of manufacturing same
US6638982B2 (en) Method of preparing a fumed metal oxide dispersion
JP6933976B2 (en) Silica-based particle dispersion and its manufacturing method
JP4458396B2 (en) Method for producing high-purity hydrophilic organic solvent-dispersed silica sol, high-purity hydrophilic organic solvent-dispersed silica sol obtained by the method, method for producing high-purity organic solvent-dispersed silica sol, and high-purity organic solvent-dispersed silica sol obtained by the method
JP2003165718A (en) Non-porous spherical silica and method for producing the same
JPWO2003055800A1 (en) Inorganic oxide
US20220128914A1 (en) Hydrophobic silica powder and toner resin particle
JPH054325B2 (en)
TW201139535A (en) Modified cerium(IV) oxide colloidal particles and production method thereof
JP2013060338A (en) Method for producing hydrophobic silica particle
Jeon et al. Surface modification of silica particles with organoalkoxysilanes through two-step (acid-base) process in aqueous solution
JPH0637282B2 (en) Metal oxide composite spherical fine particles and method for producing the same
JP5905767B2 (en) Dispersion stabilization method of neutral colloidal silica dispersion and neutral colloidal silica dispersion excellent in dispersion stability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110405

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110711

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110804

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4803630

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250