JP2005313342A - Conductive film and its manufacturing method - Google Patents

Conductive film and its manufacturing method Download PDF

Info

Publication number
JP2005313342A
JP2005313342A JP2004130947A JP2004130947A JP2005313342A JP 2005313342 A JP2005313342 A JP 2005313342A JP 2004130947 A JP2004130947 A JP 2004130947A JP 2004130947 A JP2004130947 A JP 2004130947A JP 2005313342 A JP2005313342 A JP 2005313342A
Authority
JP
Japan
Prior art keywords
transparent conductive
coating layer
conductive film
film
conductive coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004130947A
Other languages
Japanese (ja)
Other versions
JP4481713B2 (en
Inventor
Masato Asai
真人 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Film Solutions Ltd
Original Assignee
Teijin DuPont Films Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin DuPont Films Japan Ltd filed Critical Teijin DuPont Films Japan Ltd
Priority to JP2004130947A priority Critical patent/JP4481713B2/en
Publication of JP2005313342A publication Critical patent/JP2005313342A/en
Application granted granted Critical
Publication of JP4481713B2 publication Critical patent/JP4481713B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive film having excellent transparency and conductivity and excellent in solvent resistance. <P>SOLUTION: The conductive film is constituted by laminating a base material film, a transparent conductive coating film layer and a protective layer with a thickness of 3-50 nm comprising a reaction product of a metal alkoxide in this order. The total light transmissivity thereof is 60% or above and the surface resistance on the protective layer side of the conductive film is 10-1×10<SP>5</SP>Ω/square. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は導電性フィルムに関し、さらに詳しくは液晶ディスプレイ(LCD)透明タッチパネル、有機エレクトロルミネッセンス素子、無機エレクトロルミネッセンスランプ等の透明電極や電磁波シールド材として好適に使用される透明導電性フィルムに関するものである。   The present invention relates to a conductive film, and more particularly to a transparent conductive film suitably used as a transparent electrode such as a liquid crystal display (LCD) transparent touch panel, an organic electroluminescence element, an inorganic electroluminescence lamp, or an electromagnetic shielding material. .

従来から液晶ディスプレイ、透明タッチパネル等の透明電極や電磁波シールド材として透明導電性フィルムが好適に用いられている。これら透明導電性フィルムとしては、ポリエチレンテレフタレート(PET)、トリアセチルセルロース(TAC)等の透明フィルム表面の少なくとも片面に、酸化インジウム(In)、酸化錫(SnO)、およびInとSnOの混合焼結体(ITO)を真空蒸着法、スパッタリング法、イオンプレーティング法などのドライプロセスによって設けたものが良く知られている。 Conventionally, a transparent conductive film is suitably used as a transparent electrode such as a liquid crystal display or a transparent touch panel, or as an electromagnetic shielding material. These transparent conductive films include indium oxide (In 2 O 3 ), tin oxide (SnO 2 ), and In 2 O on at least one surface of a transparent film surface such as polyethylene terephthalate (PET) or triacetyl cellulose (TAC). It is well known that a mixed sintered body (ITO) of 3 and SnO 2 is provided by a dry process such as vacuum deposition, sputtering, or ion plating.

これらの透明導電性フィルムは、ウェブ状での連続加工や打ち抜き加工があり、また、表面加工中も曲げられた状態で用いられたり、また保管されたりするため、このような加工工程や保管している間に、クラックが発生して表面抵抗が増大したりすることがあった。   These transparent conductive films have web-like continuous processing and punching processes, and are used and stored in a bent state during surface processing. During this time, cracks may occur and the surface resistance may increase.

一方、透明基材フィルムの上に、導電性高分子をウェット塗布することによって形成された透明導電塗膜層は、膜自体に柔軟性があり、クラックなどの問題は生じない。また、導電性高分子のウェット塗布によって透明導電性フィルムを得る方法は、ドライプロセスを用いないため製造コストが比較的安く、コーティングスピードも一般的に速く、生産性に優れるという利点もある。このような導電性高分子のウェット塗布によって得られる透明導電性フィルムは、これまで一般的に用いられてきたポリチオフェン、ポリアニリン、ポリピロール等は、開発の初期段階では高い導電性が得られないために帯電防止用途などに使用が限定されていたり、導電塗膜層自体の色相が問題となったりしていた。しかし、最近では製法の改良などによりこれらの問題も改善されてきている。例えば、3,4−ジアルコキシチオフェンをポリアニオン存在下で酸化重合することによって得られるポリ(3,4−ジアルコキシチオフェン)とポリアニオンとからなる導電性高分子(特許文献1)は、近年の製法の改良(特許文献2および特許文献3)などにより、高い光線透過率を保ったまま非常に低い表面抵抗を発現している。   On the other hand, the transparent conductive coating layer formed by wet-coating a conductive polymer on a transparent substrate film has flexibility in the film itself and does not cause problems such as cracks. In addition, the method of obtaining a transparent conductive film by wet application of a conductive polymer has advantages that the manufacturing cost is relatively low because the dry process is not used, the coating speed is generally high, and the productivity is excellent. The transparent conductive films obtained by wet coating of such conductive polymers are polythiophene, polyaniline, polypyrrole, etc. that have been generally used so far because high conductivity cannot be obtained in the initial stage of development. Use has been limited to antistatic applications or the like, and the hue of the conductive coating layer itself has been a problem. However, these problems have recently been improved by improving the production method. For example, a conductive polymer (Patent Document 1) comprising a poly (3,4-dialkoxythiophene) obtained by oxidative polymerization of 3,4-dialkoxythiophene in the presence of a polyanion and a polyanion is a recent production method. (Patent Document 2 and Patent Document 3) improve the surface resistance while maintaining a high light transmittance.

しかしながら、これらの導電性高分子を透明導電塗膜層として用いた透明導電性フィルムの場合、その後の加工工程における膜表面の耐溶剤性や耐水性が課題となっていた。この問題を解決すべく、かかる導電性高分子にバインダー成分となる高分子材料を添加して塗膜を形成する方法や、シランカップリング剤を用いて塗膜強度(特許文献4)や耐水性(特許文献5)を向上させる方法が提案されたが、耐溶剤性、特にアルコール類、エステル類などに対する耐溶剤性の改善は未だ十分ではなかった。   However, in the case of a transparent conductive film using these conductive polymers as a transparent conductive coating layer, solvent resistance and water resistance on the film surface in subsequent processing steps have been problems. In order to solve this problem, a method of forming a coating film by adding a polymer material as a binder component to such a conductive polymer, coating film strength (Patent Document 4) and water resistance using a silane coupling agent Although a method for improving (Patent Document 5) has been proposed, improvement in solvent resistance, particularly solvent resistance to alcohols, esters and the like has not been sufficient.

特開平1−313521号公報Japanese Patent Laid-Open No. 1-313521 特開2002−193972号公報JP 2002-193972 A 特開2003−286336号公報JP 2003-286336 A 特開平10−88030号公報JP-A-10-88030 特開2002−60763号公報JP 2002-60763 A

本発明の課題は、上記従来技術の有する問題の解消、すなわち、優れた透明性と導電性とを有し、かつ耐溶剤性にも優れた透明導電性フィルムの提供にある。   An object of the present invention is to solve the above-described problems of the prior art, that is, to provide a transparent conductive film having excellent transparency and conductivity and excellent solvent resistance.

本発明者らは、上記の課題を達成するため鋭意検討した結果、導電性高分子を用いた透明導電塗膜層上に特定の材料からなる保護層を特定の厚みで形成した場合に、表面抵抗値に著しい影響を与えることなく、耐溶剤性を改善できることを見出し、本発明に到達した。   As a result of intensive studies to achieve the above-mentioned problems, the present inventors have found that when a protective layer made of a specific material is formed with a specific thickness on a transparent conductive coating layer using a conductive polymer, The present inventors have found that the solvent resistance can be improved without significantly affecting the resistance value, and have reached the present invention.

かくして本発明によれば、本発明の目的は、基材フィルム、透明導電塗膜層および金属アルコキシドの反応生成物からなる厚みが3〜50nmの保護層がこの順で積層された導電性フィルムであって、全光線透過率が60%以上で、かつ導電性フィルムの保護層側の表面抵抗が10〜1×10Ω/□の範囲にある導電性フィルムによって達成される。 Thus, according to the present invention, an object of the present invention is a conductive film in which a protective film having a thickness of 3 to 50 nm comprising a base film, a transparent conductive coating layer and a reaction product of a metal alkoxide is laminated in this order. And it is achieved by a conductive film having a total light transmittance of 60% or more and a surface resistance on the protective layer side of the conductive film in the range of 10 to 1 × 10 5 Ω / □.

また、本発明によれば、本発明の導電性フィルムの好ましい態様として、該透明導電塗膜層が、以下の一般式

Figure 2005313342
(ここで、式中、RおよびRは相互に独立して水素またはC1−4のアルキル基を表すか、あるいは一緒になって任意に置換されてもよいC1−4のアルキレン基を表す)で表される繰り返し単位からなるポリカチオン状のポリチオフェンと、ポリアニオンとの導電性高分子からなること、該透明導電塗膜層が、該導電性高分子とテトラアルコキシシランおよびアルコキシ基以外の反応性の官能基を有するトリアルコキシシランからなる群より選ばれた少なくとも一種の反応生成物とからなること、該透明導電塗膜層が、該導電性高分子とグリシドキシ基を有したトリアルコキシシランの反応生成物とからなること、該保護層がアルコキシシランの反応生成物からなること、該透明導電塗膜層の表面抵抗が10〜1×10Ω/□の範囲にあることの少なくともいずれか一つを具備する導電性フィルムも提供される。 Further, according to the present invention, as a preferred embodiment of the conductive film of the present invention, the transparent conductive coating layer has the following general formula:
Figure 2005313342
(Wherein, R 1 and R 2 each independently represent hydrogen or a C 1-4 alkyl group, or a C 1-4 alkylene group which may be optionally substituted together) ) A polycationic polythiophene composed of a repeating unit represented by formula (II) and a polyanion and a conductive polymer, and the transparent conductive coating layer reacts with the conductive polymer other than tetraalkoxysilane and alkoxy groups. Comprising at least one reaction product selected from the group consisting of trialkoxysilane having a functional functional group, and the transparent conductive coating layer of trialkoxysilane having a glycidoxy group with the conductive polymer. be made of the reaction product, that the protective layer comprises a reaction product of the alkoxysilane, the surface resistance of the transparent conductive coating layer is 10~1 × 10 5 Ω / □ range of Conductive films comprising at least one of the in also provided.

さらにまた、本発明によれば、基材フィルムの片面に、透明導電塗膜層を形成し、さらにその上に金属アルコキシドの反応生成物からなる厚みが3〜50nmの保護層を形成することを特徴とする導電性フィルムの製造方法も提供される。   Furthermore, according to the present invention, a transparent conductive coating layer is formed on one side of the base film, and a protective layer having a thickness of 3 to 50 nm made of a reaction product of a metal alkoxide is further formed thereon. Also provided is a method for producing a featured conductive film.

本発明の透明導電性フィルムは、基材フィルム、透明導電塗膜層および金属アルコキシドの反応生成物からなる保護層がこの順で積層されていることが必要である。透明導電塗膜層が導電性フィルムの表面に位置すると、保護層による耐溶剤性向上効果が発現できない。   The transparent conductive film of the present invention requires that a protective film composed of a base film, a transparent conductive coating layer and a reaction product of a metal alkoxide is laminated in this order. When the transparent conductive coating layer is located on the surface of the conductive film, the effect of improving the solvent resistance by the protective layer cannot be exhibited.

また、本発明の透明導電性フィルムは、全光線透過率が60%以上であることが必要である。全光線透過率が下限未満であると、液晶ディスプレイ、透明タッチパネル等の透明電極や電磁波シールド材として用いたときに、十分な透明性が得られがたい。好ましい全光線透過率は、65%以上、さらに70%以上である。このような全光線透過率は、後述の基材フィルム、透明導電塗膜層および保護層の選定によって適宜調整できる。   The transparent conductive film of the present invention needs to have a total light transmittance of 60% or more. When the total light transmittance is less than the lower limit, it is difficult to obtain sufficient transparency when used as a transparent electrode such as a liquid crystal display or a transparent touch panel or an electromagnetic shielding material. A preferable total light transmittance is 65% or more, and further 70% or more. Such a total light transmittance can be suitably adjusted by selection of the below-mentioned base film, transparent conductive coating layer, and protective layer.

さらにまた、かつ導電性フィルムの保護層側の表面抵抗が10〜1×10Ω/□の範囲にあることが必要である。導電性フィルムの保護層側の表面抵抗が上限を超えると、液晶ディスプレイ、透明タッチパネル等の透明電極や電磁波シールド材として用いたときに電極として十分に機能しなかったり、十分な電磁波シールド特性が得られない。一方、下限未満にすることは、製造工程が不安定化しやすい。好ましい表面抵抗は、10〜1×10Ω/□、さらに10〜5×10Ω/□である。この観点から、保護層が形成される透明導電塗膜層の表面抵抗も、10〜1×10Ω/□、さらに10〜1×10Ω/□、特に10〜5×10Ω/□での範囲にあることが好ましい。 Furthermore, the surface resistance on the protective layer side of the conductive film needs to be in the range of 10 to 1 × 10 5 Ω / □. If the surface resistance on the protective layer side of the conductive film exceeds the upper limit, it may not function as an electrode when used as a transparent electrode or electromagnetic shielding material for liquid crystal displays, transparent touch panels, etc., or sufficient electromagnetic shielding characteristics will be obtained. I can't. On the other hand, making it below the lower limit tends to destabilize the manufacturing process. A preferable surface resistance is 10 to 1 × 10 4 Ω / □, and further 10 to 5 × 10 3 Ω / □. From this viewpoint, the surface resistance of the transparent conductive coating layer on which the protective layer is formed is also 10 to 1 × 10 5 Ω / □, more preferably 10 to 1 × 10 4 Ω / □, particularly 10 to 5 × 10 3 Ω / □. It is preferable that it is in the range of □.

本発明によれば、導電性高分子を用いた透明導電塗膜層上に、特定の材料からなる保護層を特定の厚みで形成しており、その結果、表面抵抗値に著しい影響を与えることなく、耐溶剤性を向上させることができ、優れた透明性、導電性および耐溶剤性を兼備する透明導電性フィルムを生産性良く提供することができる。またこの手法によって生産された透明導電性フィルムは液晶ディスプレイ(LCD)透明タッチパネル、有機エレクトロルミネッセンス素子、無機エレクトロルミネッセンスランプ等の透明電極や電磁波シールド材として好適に使用できる。   According to the present invention, a protective layer made of a specific material is formed with a specific thickness on a transparent conductive coating layer using a conductive polymer, and as a result, the surface resistance value is significantly affected. Therefore, the solvent resistance can be improved, and a transparent conductive film having excellent transparency, conductivity and solvent resistance can be provided with high productivity. Moreover, the transparent conductive film produced by this method can be suitably used as a transparent electrode such as a liquid crystal display (LCD) transparent touch panel, an organic electroluminescence element, an inorganic electroluminescence lamp, or an electromagnetic shielding material.

本発明の導電性フィルムを、まず図1を用いて説明する。図1は、本発明の導電性フィルムの断面図、すなわち層構成の一例を示す。図1中の、符号1は基材フィルム、符号2は透明導電塗膜層および符号3は保護層を示す。図1から分かるように、本発明の導電性フィルムは、基材フィルムの片面に、透明導電塗膜層がまず積層され、該透明導電塗膜層の上にさらに保護層が積層されたものであり、このような構成を有するものであれば、例えば反射防止層などの他の機能層が、本発明の目的を損なわない限りにおいて、さらに形成されていても良いことは容易に理解されるであろう。   First, the conductive film of the present invention will be described with reference to FIG. FIG. 1 shows a cross-sectional view of the conductive film of the present invention, that is, an example of a layer structure. In FIG. 1, reference numeral 1 denotes a base film, reference numeral 2 denotes a transparent conductive coating layer, and reference numeral 3 denotes a protective layer. As can be seen from FIG. 1, the conductive film of the present invention is one in which a transparent conductive coating layer is first laminated on one side of a base film, and a protective layer is further laminated on the transparent conductive coating layer. If it has such a configuration, it is easily understood that other functional layers such as an antireflection layer may be further formed as long as the object of the present invention is not impaired. I will.

以下、本発明の導電性フィルムを形成する各層について、さらに詳述する。
本発明における透明導電塗膜層は、表面抵抗を下げられ、かつ透明性も具備するものであれば特に制限されないが、例えば特開2002−60763号公報で挙げられているような以下の一般式

Figure 2005313342
で表される繰り返し単位からなるからなるカチオン状のポリチオフェン(以下、“ポリ(3,4−ジ置換チオフェン)”と称することがある)と、ポリアニオンとを含んでなる導電性高分子(a)からなることが好ましい。すなわち、この導電性高分子(a)はポリ(3,4−ジ置換チオフェン)とポリアニオンとの複合化合物である。 Hereinafter, each layer forming the conductive film of the present invention will be described in more detail.
The transparent conductive coating layer in the present invention is not particularly limited as long as the surface resistance can be lowered and also has transparency. For example, the following general formula as described in JP-A-2002-60763 is used.
Figure 2005313342
A conductive polymer (a) comprising a cationic polythiophene comprising a repeating unit represented by the formula (hereinafter sometimes referred to as “poly (3,4-disubstituted thiophene)”) and a polyanion. Preferably it consists of. That is, the conductive polymer (a) is a composite compound of poly (3,4-disubstituted thiophene) and a polyanion.

この導電性高分子(a)を構成するポリ(3,4−ジ置換チオフェン)のRおよびRは相互に独立して水素またはC1−4のアルキル基を表すか、あるいは一緒になって任意に置換されてもよいC1−12のアルキレン基である。RおよびRが一緒になって形成される、置換基を有してもよいC1−12のアルキレン基の代表例は、1,2−アルキレン基(例えば、1,2−シクロヘキシレンおよび2,3−ブチレンなど)である。RおよびRが一緒になって形成されるC1−12のアルキレン基の好適な例は、メチレン、1,2−エチレンおよび1,3−プロピレン基であり、1,2−エチレン基が特に好適である。具体例としては、アルキル置換されていてもよいメチレン基、C1−12のアルキル基もしくはフェニル基で置換されていてもよい1,2−エチレン基、1,3−プロピレン基が挙げられる。 R 1 and R 2 of the poly (3,4-disubstituted thiophene) constituting the conductive polymer (a) each independently represent hydrogen or a C 1-4 alkyl group, or together It is an optionally substituted C1-12 alkylene group. Representative examples of the optionally substituted C1-12 alkylene group formed by combining R 1 and R 2 are 1,2-alkylene groups (for example, 1,2-cyclohexylene and 2 , 3-butylene, etc.). Suitable examples of the C1-12 alkylene group formed by combining R 1 and R 2 are methylene, 1,2-ethylene and 1,3-propylene groups, Is preferred. Specific examples include a methylene group which may be alkyl-substituted, a 1,2-ethylene group which may be substituted with a C1-12 alkyl group or a phenyl group, and a 1,3-propylene group.

導電性高分子(a)を構成するポリアニオンとしては、高分子状カルボン酸類(例えばポリアクリル酸、ポリメタクリル酸、ポリマレイン酸など)、高分子状スルホン酸(例えばポリエチレンスルホン酸、ポリビニルスルホン酸など)などがあげられる。これらの高分子状カルボン酸及びスルホン酸類は、ビニルカルボン酸及びビニルスルホン酸類と他の重合可能な低分子化合物、例えばアクリレート類およびスチレンなどとの共重合体であってもよい。これらポリアニオンの中でもポリスチレンスルホン酸およびその全べてもしくは一部が金属塩であるものが好ましく用いられる。   Examples of the polyanion constituting the conductive polymer (a) include polymeric carboxylic acids (for example, polyacrylic acid, polymethacrylic acid, polymaleic acid), and polymeric sulfonic acids (for example, polyethylene sulfonic acid, polyvinyl sulfonic acid). Etc. These polymeric carboxylic acids and sulfonic acids may be copolymers of vinyl carboxylic acids and vinyl sulfonic acids with other polymerizable low molecular compounds such as acrylates and styrene. Among these polyanions, those having polystyrene sulfonic acid and all or part of which are metal salts are preferably used.

本発明における透明導電塗膜層を形成するコーティング組成物は上述の導電性高分子を水に分散させた液を主成分として用いるが、必要に応じてポリエステル、ポリアクリル、ポリウレタン、ポリ酢酸ビニル、ポリビニルブチラールなどの適当な有機高分子材料をバインダーとして添加することができる。   The coating composition for forming the transparent conductive coating layer in the present invention uses as a main component a liquid in which the above-described conductive polymer is dispersed in water, but if necessary, polyester, polyacryl, polyurethane, polyvinyl acetate, A suitable organic polymer material such as polyvinyl butyral can be added as a binder.

また、かかる透明導電塗膜層を形成するコーティング組成物には必要に応じて、バインダーを溶解させる目的、もしくは透明基材フィルムへの濡れ性を改善する目的、固形分濃度を調整する目的で水と相溶性のある適当な溶媒を添加することができる。添加する溶媒の例としては、アルコール類(メタノール、エタノール、プロパノール、イソプロパノールなど)、アミド類(ホルムアミド、N,N−ジメチルホルムアミド、アセトアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、N−メチルプロピオンアミド)などが好ましく用いられる。   In addition, the coating composition for forming such a transparent conductive coating layer is water for the purpose of dissolving the binder, improving the wettability to the transparent substrate film, or adjusting the solid content concentration, if necessary. A suitable solvent that is compatible with can be added. Examples of the solvent to be added include alcohols (methanol, ethanol, propanol, isopropanol, etc.), amides (formamide, N, N-dimethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, N-methyl Propionamide) and the like are preferably used.

またかかる透明導電塗膜層を形成するコーティング組成物には必要に応じて得られる塗膜強度を向上させる目的で、さらにアルコキシシランを添加してもよい。このアルコキシシランは、加水分解され、その後の縮合反応された反応生成物の形態で透明導電塗膜層中に存在する。アルコキシシランの例としては、メチルトリアセトキシシラン、ジメチルジアセトキシシラン、トリメチルアセトキシシラン、テトラアセトキシシラン、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン、テトライソブトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、トリメチルエトキシシラン、フェニルトリエトキシシランなどがあげられる。上記アルコキシシランの加水分解/縮合を効率よく進行させるためには触媒が必要となる。触媒としては酸性触媒または塩基性触媒を用いることができる。酸性触媒としては、酢酸、塩酸、硝酸等の無機酸、酢酸、クエン酸、プロピオン酸、しゅう酸、p−トルエンスルホン酸等の有機酸等が好適である。塩基性触媒としてはアンモニア、トリエチルアミン、トリプロピルアミン等の有機アミン化合物、ナトリウムメトキシド、カリウムメトキシド、カリウムエトキシド、水酸化ナトリウム、水酸化カリウム等のアルカリ金属化合物などが好適である。   Moreover, you may add an alkoxysilane further to the coating composition which forms this transparent conductive coating layer for the purpose of improving the coating-film intensity | strength obtained as needed. This alkoxysilane is present in the transparent conductive coating layer in the form of a reaction product obtained by hydrolysis and subsequent condensation reaction. Examples of alkoxysilanes include methyltriacetoxysilane, dimethyldiacetoxysilane, trimethylacetoxysilane, tetraacetoxysilane, tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, tetraisobutoxysilane, methyltriethoxysilane, dimethyldi Examples include ethoxysilane, trimethylethoxysilane, and phenyltriethoxysilane. A catalyst is required to efficiently proceed the hydrolysis / condensation of the alkoxysilane. An acidic catalyst or a basic catalyst can be used as the catalyst. As the acidic catalyst, inorganic acids such as acetic acid, hydrochloric acid and nitric acid, and organic acids such as acetic acid, citric acid, propionic acid, oxalic acid and p-toluenesulfonic acid are suitable. As the basic catalyst, organic amine compounds such as ammonia, triethylamine and tripropylamine, and alkali metal compounds such as sodium methoxide, potassium methoxide, potassium ethoxide, sodium hydroxide and potassium hydroxide are suitable.

また本発明における透明導電塗膜層形成用のコーティング組成物には基材に対する濡れ性を向上させる目的で、少量の界面活性剤を加えても良い。好ましい界面活性剤としては、非イオン性界面活性剤(例えば、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンアルキルエーテル、ソルビタン脂肪酸エステルなど)、およびフッ素系界面活性剤(例えばフルオロアルキルカルボン酸塩、パーフルオロアルキルベンゼンスルホン酸塩、パーフルオロアルキル4級アンモニウム、パーフルオロアルキルポリオキシエチレンエタノールなど)があげられる。   In addition, a small amount of a surfactant may be added to the coating composition for forming a transparent conductive coating layer in the present invention for the purpose of improving the wettability with respect to the substrate. Preferred surfactants include nonionic surfactants (eg, polyoxyethylene alkylphenyl ether, polyoxyethylene alkyl ether, sorbitan fatty acid ester, etc.), and fluorosurfactants (eg, fluoroalkylcarboxylates, Fluoroalkylbenzene sulfonate, perfluoroalkyl quaternary ammonium, perfluoroalkyl polyoxyethylene ethanol, etc.).

本発明における保護層は、金属アルコキシドの加水分解後の縮合反応生成物から形成されるものである。好適に用いられる金属アルコキシドは下記一般式で示される化合物である。   The protective layer in the present invention is formed from a condensation reaction product after hydrolysis of the metal alkoxide. The metal alkoxide preferably used is a compound represented by the following general formula.

Figure 2005313342
ここで、上記一般式中の、RおよびRは、それぞれメチル基、エチル基、ノルマルプロピル基、イソプロピル基、ノルマルブチル基、イソブチル基、アセトキシ基などが例示でき、Mは金属元素を表し、好ましくはAl、Si、Ti、Zrであり、中でも特にSiが好ましい。また、上記式におけるmは金属元素Mの価数を示し、nは金属元素Mに付加するアルコキシ基の数を示し、nはmと同じかそれよりも小さい数である。これら化合物の中でも加水分解可能な物質が好ましく、好ましい金属アルコキシドとしては、メチルトリアセトキシシラン、ジメチルジアセトキシシラン、トリメチルアセトキシシラン、テトラアセトキシシラン、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン、テトライソブトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、トリメチルエトキシシラン、フェニルトリエトキシシラン、γ―グリシドキシトリメトキシシランなどがあげられる。上記アルコキシシランの加水分解/縮合を効率よく進行させるためには触媒が必要となる。好適に用いられる触媒としては、上述の透明導電塗膜層で説明したものと同様なものが挙げられる。
Figure 2005313342
Here, R 3 and R 4 in the above general formula can be exemplified by a methyl group, an ethyl group, a normal propyl group, an isopropyl group, a normal butyl group, an isobutyl group, an acetoxy group, etc., and M represents a metal element. Of these, Al, Si, Ti, and Zr are preferable, and Si is particularly preferable. In the above formula, m represents the valence of the metal element M, n represents the number of alkoxy groups added to the metal element M, and n is the same as or smaller than m. Of these compounds, hydrolyzable substances are preferred, and preferred metal alkoxides include methyltriacetoxysilane, dimethyldiacetoxysilane, trimethylacetoxysilane, tetraacetoxysilane, tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, tetra Examples include isobutoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, trimethylethoxysilane, phenyltriethoxysilane, and γ-glycidoxytrimethoxysilane. A catalyst is required to efficiently proceed the hydrolysis / condensation of the alkoxysilane. As a catalyst used suitably, the thing similar to what was demonstrated by the above-mentioned transparent conductive coating layer is mentioned.

かかる保護層を形成するコーティング組成物に用いる溶媒としては、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、酢酸エチル、酢酸ブチル、酢酸イソブチル等のエステル類メチルエチルケトン、メチルイソブチルケトン等のケトン類、テトラヒドロフラン等のエーテル類、メタノール、エタノール、イソプロピルアルコール、n−ブタノール、プロピレングリコール等のアルコール類などがあげられ、中でもアルコール類、ケトン類、エーテル類、エステル類が好ましい。   Solvents used in the coating composition for forming such a protective layer include aromatic hydrocarbons such as benzene, toluene, and xylene, esters such as ethyl acetate, butyl acetate, and isobutyl acetate, methyl ethyl ketone, and ketones such as methyl isobutyl ketone, Examples include ethers such as tetrahydrofuran, alcohols such as methanol, ethanol, isopropyl alcohol, n-butanol, and propylene glycol. Of these, alcohols, ketones, ethers, and esters are preferable.

かかる保護層を透明導電塗膜層上に形成しても表面抵抗値に大きな影響を与えない原因は明らかになっていないが、保護層の形成時に透明導電塗膜層の一部が保護層形成用コーティング組成物中に一部溶解し、形成される塗膜が両層の材料の混合物になっている可能性が考えられる。これらの観点から、保護層の厚みは、3〜50nmの範囲にあることが必要である。保護層の厚みが下限未満だと、十分な耐溶剤性が得られず、他方上限を超えると、表面抵抗が著しく低下する。好ましい保護層の厚みは、5〜40nmの範囲である。   Although the reason why the surface resistance value is not greatly affected even if such a protective layer is formed on the transparent conductive coating layer is not clear, a part of the transparent conductive coating layer is formed when the protective layer is formed. It is conceivable that a part of the coating composition is dissolved in the coating composition and the formed coating film is a mixture of the materials of both layers. From these viewpoints, the thickness of the protective layer needs to be in the range of 3 to 50 nm. When the thickness of the protective layer is less than the lower limit, sufficient solvent resistance cannot be obtained, and when the thickness exceeds the upper limit, the surface resistance is significantly reduced. A preferable thickness of the protective layer is in the range of 5 to 40 nm.

本発明における基材フィルムとしては、特に制限はないが、(メタ)アクリル系樹脂、ポリスチレン、ポリ酢酸ビニル、ポリエチレンやポリプロピレンのようなポリオレフィン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリイミド、ポリアミド、ポリスルホン、ポリカーボネート、ポリエチレンテレフタラート(以下、PETと称することがある。)、ポリエチレンナフタレート(以下、PENと称することがある。)などのポリエステル及びこれらの共重合体やアミノ基エポキシ基、ヒドロキシル基、カルボニル基等の官能基で一部変性した樹脂、トリアセチルセルロース(TAC)からなるフィルムが好適である。これらの基材フィルムのうち、機械特性や透明性、生産コストの点からポリエステル(PET、PENおよびそれらの共重合体)フィルムが特に好ましい。基材フィルムの厚みは特に制限されないが、500μm以下が好ましい。500μmより厚い場合は剛性が強すぎて、得られた反射防止フィルムのディスプレイへの貼り付け時の取り扱いが困難である。   The base film in the present invention is not particularly limited, but (meth) acrylic resin, polystyrene, polyvinyl acetate, polyolefin such as polyethylene and polypropylene, polyvinyl chloride, polyvinylidene chloride, polyimide, polyamide, polysulfone, Polyesters such as polycarbonate, polyethylene terephthalate (hereinafter sometimes referred to as PET), polyethylene naphthalate (hereinafter sometimes referred to as PEN), copolymers thereof, amino group epoxy groups, hydroxyl groups, carbonyls A film made of a resin partially modified with a functional group such as a group or a triacetyl cellulose (TAC) is preferable. Of these substrate films, polyester (PET, PEN and their copolymers) films are particularly preferred from the viewpoints of mechanical properties, transparency, and production costs. The thickness of the base film is not particularly limited, but is preferably 500 μm or less. When it is thicker than 500 μm, the rigidity is too strong and it is difficult to handle the obtained antireflection film when it is attached to a display.

保護層や透明導電塗膜層を形成する際の塗布方法としては、それ自体公知の方法を使用でき、例えばリップダイレクト法、コンマコーター法、スリットリバース法、ダイコーター法、グラビアロールコーター法、ブレードコーター法、スプレーコーター法、エアーナイフコート法、ディップコート法、バーコーター法などが好ましく挙げられる。熱硬化性樹脂をバインダーとして用いた場合には、低屈折化合物の塗設はそれぞれを形成する成分を含む塗液を基材に塗布し、加熱乾燥させて塗膜を形成させる。加熱条件としては80〜160℃で10〜120秒間、特に100〜150℃で20〜60秒間が好ましい。UV硬化性樹脂またはEB硬化性樹脂をバインダーとして用いた場合には、一般的には予備乾燥を行った後、紫外線照射または電子線照射を行なう。   As a coating method for forming the protective layer and the transparent conductive coating layer, known methods can be used, for example, lip direct method, comma coater method, slit reverse method, die coater method, gravure roll coater method, blade Preferred examples include the coater method, spray coater method, air knife coat method, dip coat method, and bar coater method. When a thermosetting resin is used as a binder, the coating of the low refractive compound is performed by applying a coating liquid containing components for forming each of the low refractive compounds to a substrate and drying by heating to form a coating film. The heating conditions are preferably 80 to 160 ° C. for 10 to 120 seconds, particularly preferably 100 to 150 ° C. for 20 to 60 seconds. In the case where a UV curable resin or an EB curable resin is used as a binder, generally, after preliminary drying, ultraviolet irradiation or electron beam irradiation is performed.

また、基材フィルムに塗布する際に、必要に応じて、密着性、塗工性を向上させるための予備処理として、フィルム表面にコロナ放電処理、プラズマ放電処理などの物理的表面処理を施すか、または、製膜中または製膜後に有機樹脂系や無機樹脂系の塗料を塗布して塗膜密着層を形成する化学的表面処理を施すことが好ましい。   In addition, when applying to the base film, if necessary, physical surface treatment such as corona discharge treatment or plasma discharge treatment is applied to the film surface as a pretreatment for improving adhesion and coating properties. Alternatively, it is preferable to apply a chemical surface treatment for forming a coating film adhesion layer by applying an organic resin-based or inorganic resin-based paint during or after film formation.

以下、実施例をあげて本発明をさらに詳細に説明する。なお、実施例中の評価は以下のように行った。
(1)膜厚
保護層の膜厚およびは、反射分光膜厚計(大塚電子製、商品名「FE−3000」)によって、300〜800nmの反射率を測定し、代表的な屈折率の波長分散の近似式としてn−k Cauchyの分散式を引用し、スペクトルの実測値とフィッティングさせることにより膜厚と屈折率を求めた。
透明導電塗膜層の厚みは打点式の厚み計にて、任意の位置10点を測定し、それらの平均値を厚みとした。
(2)全光線透過率およびヘイズ
JIS K7150に従い、スガ試験機(株)製のヘイズメーターHCM−2Bにて測定した。
(3)耐溶剤性
エタノールと酢酸エチルとをそれぞれしみ込ませたガーゼを、150g/cmの一定荷重で、試料の保護層側表面を10往復こすった後、塗膜の状態を目視にて評価した。判定は以下の規準で行った
○・・・塗膜のはがれがない
×・・・塗膜のはがれがある
(4)表面抵抗
三菱化学社製Lorester MCP−T600を用いて、JIS K7194に準拠して測定した。
測定は任意の箇所を5回測定し、それらの平均値とした。
Hereinafter, the present invention will be described in more detail with reference to examples. In addition, evaluation in an Example was performed as follows.
(1) Film thickness The film thickness of the protective layer is measured by a reflectance spectral film thickness meter (trade name “FE-3000” manufactured by Otsuka Electronics Co., Ltd.), and the wavelength of a typical refractive index is measured. The dispersion formula of nk Cauchy was cited as an approximate expression of dispersion, and the film thickness and refractive index were obtained by fitting with the measured values of the spectrum.
The thickness of the transparent conductive coating layer was measured at 10 arbitrary positions with a dot type thickness meter, and the average value thereof was taken as the thickness.
(2) Total light transmittance and haze Measured with a haze meter HCM-2B manufactured by Suga Test Instruments Co., Ltd. according to JIS K7150.
(3) Solvent resistance Gauze soaked with ethanol and ethyl acetate was rubbed 10 times on the protective layer side surface of the sample with a constant load of 150 g / cm 2 , and the state of the coating film was visually evaluated. did. Judgment was made according to the following criteria: ○: No peeling of coating film ×: Peeling of coating film (4) Surface resistance Using Lorester MCP-T600 manufactured by Mitsubishi Chemical Corporation, in accordance with JIS K7194 Measured.
The measurement was performed five times at an arbitrary location, and the average value thereof was taken.

[実施例1]
<透明導電塗膜層の形成>
ポリ(3,4−エチレンジオキシチオフェン)とポリスチレンスルホン酸を主成分とし、シランカップリング剤とを含んでなる導電性塗料(日本アグファ・ゲバルト(株)社製、商品名:Orgacon S−300)をマイヤーバーを用いて基材フィルム(PETフィルム、帝人デュポンフィルム株式会社製、商品名O3PF8W−100)上に塗工し、120℃で1分間の乾燥を行い、透明導電塗膜層を得た。透明導電塗膜層の厚みは1.0μmであった。
[Example 1]
<Formation of transparent conductive coating layer>
Conductive paint comprising poly (3,4-ethylenedioxythiophene) and polystyrenesulfonic acid as main components and containing a silane coupling agent (manufactured by Nippon Agfa Gevaert Co., Ltd., trade name: Orgacon S-300) ) On a base film (PET film, manufactured by Teijin DuPont Films, trade name: O3PF8W-100) using a Mayer bar, and dried at 120 ° C. for 1 minute to obtain a transparent conductive coating layer. It was. The thickness of the transparent conductive coating layer was 1.0 μm.

<保護層の形成>
テトラエトキシシラン22.5gとメチルトリエトキシシラン2.5g、シリコーンオイル0.25g、エタノール18.8g、n−プロパノール18.8gを混合し攪拌した溶液中に、予めイオン交換水17.5gと0.001Nの塩酸6.0g混合しておいた溶液を加え、全量投入後10分間攪拌し、その後20時間静置することで加水分解反応を進行させた。この液をエタノールにて3倍に希釈したものを上述の透明導電塗膜層の上にマイヤーバーを用いて塗工し、保護層を形成し透明導電性フィルムを得た。保護層の膜厚は10nmであった。
得られた導電性フィルムの特性を表1に示す。
<Formation of protective layer>
In a solution in which 22.5 g of tetraethoxysilane, 2.5 g of methyltriethoxysilane, 0.25 g of silicone oil, 18.8 g of ethanol, and 18.8 g of n-propanol were mixed and stirred, 17.5 g and 0 of ion-exchanged water were previously added. A solution prepared by mixing 6.0 g of 0.001N hydrochloric acid was added, the whole amount was added, stirred for 10 minutes, and then allowed to stand for 20 hours to proceed the hydrolysis reaction. A solution obtained by diluting this solution with ethanol three times was coated on the above-mentioned transparent conductive coating layer using a Mayer bar to form a protective layer to obtain a transparent conductive film. The thickness of the protective layer was 10 nm.
Table 1 shows the properties of the obtained conductive film.

[実施例2]
透明導電塗膜層の膜厚を1.5μmとした以外は実施例1と同様な操作を繰り返した。得られた導電性フィルムの特性を表1に示す。
[Example 2]
The same operation as in Example 1 was repeated except that the film thickness of the transparent conductive coating layer was 1.5 μm. Table 1 shows the properties of the obtained conductive film.

[実施例3]
透明導電塗膜層の膜厚を2μmとした以外は実施例1と同様な操作を繰り返した。得られた導電性フィルムの特性を表1に示す。
[Example 3]
The same operation as in Example 1 was repeated except that the film thickness of the transparent conductive coating layer was 2 μm. Table 1 shows the properties of the obtained conductive film.

[実施例4]
保護層の厚みを25nmにした以外は、実施例1と同様な操作を繰り返した。得られた導電性フィルムの特性を表1に示す。
[Example 4]
The same operation as in Example 1 was repeated except that the thickness of the protective layer was 25 nm. Table 1 shows the properties of the obtained conductive film.

[実施例5]
保護層の厚みを5nmにした以外は、実施例1と同様な操作を繰り返した。得られた導電性フィルムの特性を表1に示す。
[Example 5]
The same operation as in Example 1 was repeated except that the thickness of the protective layer was changed to 5 nm. Table 1 shows the properties of the obtained conductive film.

[比較例1]
保護層を形成しなかった以外は実施例1と同様な操作を繰り返した。得られた導電性フィルムの特性を表1に示す。
[Comparative Example 1]
The same operation as in Example 1 was repeated except that the protective layer was not formed. Table 1 shows the properties of the obtained conductive film.

[比較例2]
保護層の厚みを70nmにした以外は実施例1と同様な操作を繰り返した。得られた導電性フィルムの特性を表1に示す。
[Comparative Example 2]
The same operation as in Example 1 was repeated except that the thickness of the protective layer was changed to 70 nm. Table 1 shows the properties of the obtained conductive film.

[比較例3]
保護層の厚みを2nmにした以外は実施例1と同様な操作を繰り返した。得られた導電性フィルムの特性を表1に示す。
[Comparative Example 3]
The same operation as in Example 1 was repeated except that the thickness of the protective layer was 2 nm. Table 1 shows the properties of the obtained conductive film.

Figure 2005313342
Figure 2005313342

表1からわかるように、透明導電塗膜層上に特定の厚みで保護層を形成することで表面抵抗値に大きな影響を与えることなく耐溶剤性を大幅に向上させることができる。   As can be seen from Table 1, by forming a protective layer with a specific thickness on the transparent conductive coating layer, the solvent resistance can be greatly improved without greatly affecting the surface resistance value.

本発明の反射防止フィルムの断面図の一例を示す。An example of sectional drawing of the antireflection film of the present invention is shown.

符号の説明Explanation of symbols

1 基材フィルム
2 透明導電塗膜層
3 保護層
1 base film 2 transparent conductive coating layer 3 protective layer

Claims (7)

基材フィルム、透明導電塗膜層および金属アルコキシドの反応生成物からなる厚みが3〜50nmの保護層がこの順で積層された導電性フィルムであって、
全光線透過率が60%以上で、かつ導電性フィルムの保護層側の表面抵抗が10〜1×10Ω/□の範囲にあることを特徴とする導電性フィルム。
A protective film having a thickness of 3 to 50 nm comprising a base film, a transparent conductive coating layer and a reaction product of a metal alkoxide is laminated in this order,
A conductive film having a total light transmittance of 60% or more and a surface resistance on the protective layer side of the conductive film in the range of 10 to 1 × 10 5 Ω / □.
該透明導電塗膜層が、以下の一般式
Figure 2005313342
(ここで、式中、RおよびRは相互に独立して水素またはC1−4のアルキル基を表すか、あるいは一緒になって任意に置換されてもよいC1−12のアルキレン基を表す)で表される繰り返し単位からなるポリカチオン状のポリチオフェンと、ポリアニオンとの導電性高分子からなる請求項1に記載の導電性フィルム。
The transparent conductive coating layer has the following general formula
Figure 2005313342
(Wherein, R 1 and R 2 each independently represent hydrogen or a C 1-4 alkyl group, or a C 1-12 alkylene group which may be optionally substituted together) The conductive film according to claim 1, comprising a conductive polymer of a polycationic polythiophene comprising a repeating unit represented by formula (II) and a polyanion.
該透明導電塗膜層が、該導電性高分子とテトラアルコキシシランおよびアルコキシ基以外の反応性の官能基を有するトリアルコキシシランからなる群より選ばれた少なくとも一種の反応生成物とからなる請求項2記載の導電性フィルム。   The transparent conductive coating layer comprises at least one reaction product selected from the group consisting of the conductive polymer and a tetraalkoxysilane and a trialkoxysilane having a reactive functional group other than an alkoxy group. 2. The conductive film according to 2. 該透明導電塗膜層が、該導電性高分子とグリシドキシ基を有したトリアルコキシシランの反応生成物とからなる請求項3に記載の導電性フィルム。   The conductive film according to claim 3, wherein the transparent conductive coating layer comprises the conductive polymer and a reaction product of trialkoxysilane having a glycidoxy group. 該保護層がアルコキシシランの反応生成物からなる請求項1〜4のいずれかに記載の導電性フィルム。   The conductive film according to claim 1, wherein the protective layer comprises a reaction product of alkoxysilane. 該透明導電塗膜層の表面抵抗が10〜1×10Ω/□の範囲にある請求項1に記載の導電性フィルム。 The conductive film according to claim 1, wherein the transparent conductive coating layer has a surface resistance in the range of 10 to 1 × 10 5 Ω / □. 基材フィルムの片面に、透明導電塗膜層を形成し、さらにその上に金属アルコキシドの反応生成物からなる厚みが3〜50nmの保護層を形成することを特徴とする導電性フィルムの製造方法。   A method for producing a conductive film, comprising: forming a transparent conductive coating layer on one side of a substrate film; and further forming a protective layer having a thickness of 3 to 50 nm comprising a reaction product of a metal alkoxide on the transparent conductive coating layer .
JP2004130947A 2004-04-27 2004-04-27 Conductive film and method for producing the same Expired - Lifetime JP4481713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004130947A JP4481713B2 (en) 2004-04-27 2004-04-27 Conductive film and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004130947A JP4481713B2 (en) 2004-04-27 2004-04-27 Conductive film and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005313342A true JP2005313342A (en) 2005-11-10
JP4481713B2 JP4481713B2 (en) 2010-06-16

Family

ID=35441279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004130947A Expired - Lifetime JP4481713B2 (en) 2004-04-27 2004-04-27 Conductive film and method for producing the same

Country Status (1)

Country Link
JP (1) JP4481713B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006282942A (en) * 2005-04-04 2006-10-19 Teijin Dupont Films Japan Ltd Transparent electroconductive coating composition, transparent electroconductive film obtained by applying the same and method for producing the same
JP2006282941A (en) * 2005-04-04 2006-10-19 Teijin Dupont Films Japan Ltd Antistatic coating composition, antistatic film obtained by applying the same and method for producing the same
JP2006289780A (en) * 2005-04-11 2006-10-26 Teijin Dupont Films Japan Ltd Conductive film
WO2007058119A1 (en) * 2005-11-16 2007-05-24 Nagase Chemtex Corporation Conductive resin composition, conductive film comprising the same, and resistive-film switch employing the same
JP2007142334A (en) * 2005-11-22 2007-06-07 Gunze Ltd Electromagnetic wave shielding material and method of manufacturing same
JP2007329302A (en) * 2006-06-08 2007-12-20 Iwate Univ Method of manufacturing electromagnetic-wave shield substrate
JP2008098104A (en) * 2006-10-16 2008-04-24 Dainippon Printing Co Ltd Conductive pattern substrate and its manufacturing method
WO2008120443A1 (en) * 2007-03-29 2008-10-09 Nagase Chemtex Corporation Conductive multilayer body
WO2008149410A1 (en) * 2007-05-31 2008-12-11 Fujitsu Limited Coordinate input device and process for manufacturing the same
JP2009178897A (en) * 2008-01-30 2009-08-13 Teijin Dupont Films Japan Ltd Electroconductive film and method of manufacturing the same
WO2009119563A1 (en) * 2008-03-25 2009-10-01 東レ株式会社 Electrically conductive complex and process for production thereof
JP2009302432A (en) * 2008-06-17 2009-12-24 Bridgestone Corp Method of manufacturing conductive member
WO2011093480A1 (en) * 2010-01-26 2011-08-04 帝人デュポンフィルム株式会社 Electrically conductive film
JP4977796B1 (en) * 2011-11-10 2012-07-18 尾池工業株式会社 Conductive film
JP2012160290A (en) * 2011-01-31 2012-08-23 Toray Ind Inc Method for producing conductive complex
JP2012231059A (en) * 2011-04-27 2012-11-22 Nissei Eco Co Ltd Electromagnetic wave shield cover and method of manufacturing the same
JP2013010298A (en) * 2011-06-30 2013-01-17 Oji Holdings Corp Conductive laminated body and touch panel using the same
JP2015057829A (en) * 2014-09-22 2015-03-26 株式会社ニッセイ エコ Electromagnetic wave shield cover, and method of manufacturing the same
CN104931842A (en) * 2015-05-25 2015-09-23 朱华兵 Circuit board electroluminescent detection system and detection method
JP2016195965A (en) * 2015-04-02 2016-11-24 新日鐵住金株式会社 Manufacturing method of coating base material

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006282941A (en) * 2005-04-04 2006-10-19 Teijin Dupont Films Japan Ltd Antistatic coating composition, antistatic film obtained by applying the same and method for producing the same
JP2006282942A (en) * 2005-04-04 2006-10-19 Teijin Dupont Films Japan Ltd Transparent electroconductive coating composition, transparent electroconductive film obtained by applying the same and method for producing the same
JP2006289780A (en) * 2005-04-11 2006-10-26 Teijin Dupont Films Japan Ltd Conductive film
JP4700391B2 (en) * 2005-04-11 2011-06-15 帝人デュポンフィルム株式会社 Conductive film
JPWO2007058119A1 (en) * 2005-11-16 2009-04-30 ナガセケムテックス株式会社 Conductive resin composition, conductive film using the same, and resistance film type switch using the same
WO2007058119A1 (en) * 2005-11-16 2007-05-24 Nagase Chemtex Corporation Conductive resin composition, conductive film comprising the same, and resistive-film switch employing the same
JP2007142334A (en) * 2005-11-22 2007-06-07 Gunze Ltd Electromagnetic wave shielding material and method of manufacturing same
JP2007329302A (en) * 2006-06-08 2007-12-20 Iwate Univ Method of manufacturing electromagnetic-wave shield substrate
JP4719886B2 (en) * 2006-06-08 2011-07-06 国立大学法人岩手大学 Method for manufacturing electromagnetic shielding substrate
JP2008098104A (en) * 2006-10-16 2008-04-24 Dainippon Printing Co Ltd Conductive pattern substrate and its manufacturing method
WO2008120443A1 (en) * 2007-03-29 2008-10-09 Nagase Chemtex Corporation Conductive multilayer body
WO2008149410A1 (en) * 2007-05-31 2008-12-11 Fujitsu Limited Coordinate input device and process for manufacturing the same
JP2009178897A (en) * 2008-01-30 2009-08-13 Teijin Dupont Films Japan Ltd Electroconductive film and method of manufacturing the same
WO2009119563A1 (en) * 2008-03-25 2009-10-01 東レ株式会社 Electrically conductive complex and process for production thereof
JP5652201B2 (en) * 2008-03-25 2015-01-14 東レ株式会社 Conductive composite and method for producing the same
TWI497532B (en) * 2008-03-25 2015-08-21 Toray Industries Conductive complex body and manufacturing method thereof
JP2009302432A (en) * 2008-06-17 2009-12-24 Bridgestone Corp Method of manufacturing conductive member
JP2011152667A (en) * 2010-01-26 2011-08-11 Teijin Dupont Films Japan Ltd Conductive film
WO2011093480A1 (en) * 2010-01-26 2011-08-04 帝人デュポンフィルム株式会社 Electrically conductive film
JP2012160290A (en) * 2011-01-31 2012-08-23 Toray Ind Inc Method for producing conductive complex
JP2012231059A (en) * 2011-04-27 2012-11-22 Nissei Eco Co Ltd Electromagnetic wave shield cover and method of manufacturing the same
JP2013010298A (en) * 2011-06-30 2013-01-17 Oji Holdings Corp Conductive laminated body and touch panel using the same
JP4977796B1 (en) * 2011-11-10 2012-07-18 尾池工業株式会社 Conductive film
JP2015057829A (en) * 2014-09-22 2015-03-26 株式会社ニッセイ エコ Electromagnetic wave shield cover, and method of manufacturing the same
JP2016195965A (en) * 2015-04-02 2016-11-24 新日鐵住金株式会社 Manufacturing method of coating base material
CN104931842A (en) * 2015-05-25 2015-09-23 朱华兵 Circuit board electroluminescent detection system and detection method

Also Published As

Publication number Publication date
JP4481713B2 (en) 2010-06-16

Similar Documents

Publication Publication Date Title
JP4481713B2 (en) Conductive film and method for producing the same
JP4896637B2 (en) Conductive film
TWI595508B (en) Transparent conductive film and image display device
JP5568669B2 (en) Composition, film manufacturing method, film, polarizing plate, and image display device
TWI550642B (en) Conductive film composition, conductive film fabricated using the same, and optical display apparatus including the same
JP5945881B2 (en) Antistatic release agent composition and release film
JP2006302562A (en) Conductive film
WO2012124323A1 (en) Anti-glare film, method for producing anti-glare film, anti-glare anti-reflection film, polarizing plate, and image display device
JP4922570B2 (en) Composition for transparent conductive coating, transparent conductive film formed by applying the composition, and method for producing the same
JP6762922B2 (en) A transparent conductive film for a flexible display containing a conductive coating liquid composition and a conductive layer produced from the composition.
JP4890782B2 (en) Conductive film and method for producing the same
JP4974071B2 (en) Transparent conductive film for touch panel
JP2008066064A (en) Conductive film and its forming method
JP5009686B2 (en) Conductive film and touch panel using the film
JP5367939B2 (en) Conductive film and touch panel using the film
JP4700391B2 (en) Conductive film
JP4836482B2 (en) Conductive film
JP2018527431A (en) Conductive transparent coating for rigid and flexible substrates
JP2012243460A (en) Conductive film
JP2006224517A (en) Method for producing antistatic film/sheet
JP4660255B2 (en) Conductive film
JP5554578B2 (en) Conductive film
CN108369297B (en) Antistatic film and laminate thereof
JP4616688B2 (en) Conductive film
JP2006294533A (en) Conductive film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4481713

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250