JP2005310575A - Method of forming thin film of organic material - Google Patents

Method of forming thin film of organic material Download PDF

Info

Publication number
JP2005310575A
JP2005310575A JP2004126565A JP2004126565A JP2005310575A JP 2005310575 A JP2005310575 A JP 2005310575A JP 2004126565 A JP2004126565 A JP 2004126565A JP 2004126565 A JP2004126565 A JP 2004126565A JP 2005310575 A JP2005310575 A JP 2005310575A
Authority
JP
Japan
Prior art keywords
evaporation source
boat
type evaporation
thin film
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004126565A
Other languages
Japanese (ja)
Inventor
Munetoshi Yoshikawa
宗利 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004126565A priority Critical patent/JP2005310575A/en
Publication of JP2005310575A publication Critical patent/JP2005310575A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To inhibit an inclination of a boat-type evaporation source caused by the heating expansion and distortion thereof. <P>SOLUTION: In a method of forming a thin film of an organic material using a thin film forming apparatus having a substrate for forming a thin film and a boat-type evaporation source for vaporizing a material in a vacuum chamber, both ends of the boat-type evaporation source into which the organic material is filled are fixed to electrodes, and the source is heated by resistance-heating. One electrode of a power supply for heating is not fixed to a body of a vapor deposition machine. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は有機EL素子用の有機材料薄膜の形成方法に関する。   The present invention relates to a method for forming an organic material thin film for an organic EL element.

電界発光を利用したエレクトロルミネッセンス素子(以下EL素子という)は、自己発光のため視認性が高く、また完全固体であるため耐衝撃性に優れている等の特徴を有することから、各種表示装置として注目されている。このEL素子には、無機化合物を用いた無機EL素子と有機化合物を用いた有機EL素子とがあり、このうち有機EL素子は印加電圧を大幅に低くすることができるので、次世代の自発光素子としてその実用化研究が積極的になされている。   Electroluminescent elements using electroluminescence (hereinafter referred to as EL elements) are highly visible due to self-emission and have excellent characteristics such as impact resistance because they are completely solid. Attention has been paid. There are inorganic EL elements using inorganic compounds and organic EL elements using organic compounds. Among these EL elements, organic EL elements can significantly reduce the applied voltage, so next-generation self-luminous As a device, research into practical use has been actively conducted.

有機EL素子は発光層を含む有機化合物層と、この有機化合物層を挟持する一対の電極から構成され、具体的には陽極/発光層/陰極の構成を基本とし、これに正孔輸送層や電子輸送層を適宜設けたもの、例えば陽極/正孔輸送層/発光層/陰極や、陽極/正孔輸送層/発光層/電子輸送層/陰極などの構成のものが知られている。これらの有機EL素子は両電極間に3〜20Vの直流電圧を印加すると、陽極から正孔が、陰極から電子が有機物層に注入され、正孔と電子の再結合により有機物が発光する。   An organic EL element is composed of an organic compound layer including a light emitting layer and a pair of electrodes sandwiching the organic compound layer. Specifically, the organic EL element is basically composed of an anode / light emitting layer / cathode, and includes a hole transport layer, Known are those provided with an electron transport layer as appropriate, such as anode / hole transport layer / light-emitting layer / cathode, and anode / hole transport layer / light-emitting layer / electron transport layer / cathode. In these organic EL devices, when a DC voltage of 3 to 20 V is applied between both electrodes, holes from the anode and electrons from the cathode are injected into the organic material layer, and organic matter emits light by recombination of the holes and electrons.

このように、有機EL素子の基本的な構成は、陽極と陰極との間に発光材料を含む有機薄膜を形成したものである。有機EL素子を形成する有機材料はモノマーを重合してなる高分子材料と低分子材料に大別される。高分子材料は一般に溶液からの塗布やインクジェット方式により素子作製が行われている。低分子材料の場合は主に真空蒸着法により有機物の薄膜形成がなされている。   As described above, the basic structure of the organic EL element is such that an organic thin film containing a light emitting material is formed between an anode and a cathode. The organic material forming the organic EL element is roughly classified into a polymer material obtained by polymerizing monomers and a low molecular material. In general, a polymer material is manufactured by application from a solution or an inkjet method. In the case of a low molecular material, an organic thin film is formed mainly by a vacuum deposition method.

真空蒸着法は、材料を充填した蒸発源を真空中で加熱することにより蒸発させ、これを蒸発源に対向する基板の表面に付着させて薄膜を形成する方法である。蒸着装置の基本構成は真空層、真空排気系、蒸発源、シャッター、基板ホルダから構成されている。材料を加熱させるための加熱方法としては、抵抗加熱法、電子ビーム加熱法、高周波加熱法等が知られている。有機EL素子で使用される有機材料を蒸発させる方法としては、成膜装置の構成が簡便であり、低価格で良質の薄膜形成を実現できることから抵抗加熱法が広く普及している。抵抗加熱法で使われている蒸発源としては石英製のるつぼ、クヌーセン型のセル、薄板状の高融点金属(タングステン,タンタル,モリブデン等)からボート状に加工したボート型蒸発源等がある、この内、ボート型蒸発源は、操作性に優れ、多くの対象物質に容易に適用できることから広く用いられている。   The vacuum evaporation method is a method of forming a thin film by evaporating an evaporation source filled with a material by heating it in vacuum and attaching it to the surface of a substrate facing the evaporation source. The basic configuration of the vapor deposition apparatus includes a vacuum layer, a vacuum exhaust system, an evaporation source, a shutter, and a substrate holder. As a heating method for heating the material, a resistance heating method, an electron beam heating method, a high-frequency heating method, and the like are known. As a method for evaporating an organic material used in an organic EL element, a resistance heating method is widely used because the configuration of a film forming apparatus is simple and a high-quality thin film can be formed at a low price. The evaporation source used in the resistance heating method includes a quartz crucible, a Knudsen cell, a boat type evaporation source processed into a boat shape from a thin plate-like refractory metal (tungsten, tantalum, molybdenum, etc.) Among these, the boat-type evaporation source is widely used because it has excellent operability and can be easily applied to many target substances.

そしてこのような技術として特許文献1を挙げることができる。
特開2002−246175号公報
Patent Document 1 can be cited as such a technique.
JP 2002-246175 A

ボート型蒸発源は、その中央に材料収容部とその左右方向に電極取り出し部を有し、電極取り出し部両端を真空蒸着機本体に設置された電極に固定し通電することにより加熱する。その際、ボート型蒸発源は、通電により発生した熱により温度が上昇し、ボート金属材料の線膨張係数および加熱した温度に応じて伸長する。   The boat-type evaporation source has a material accommodating portion at the center and an electrode extraction portion in the left-right direction, and is heated by fixing both ends of the electrode extraction portion to electrodes installed in the vacuum vapor deposition apparatus body and energizing them. At that time, the temperature of the boat-type evaporation source rises due to heat generated by energization, and extends according to the linear expansion coefficient of the boat metal material and the heated temperature.

しかしながら、ボート型蒸発源の両端を固定している電極部材は、図3に示すように蒸着機本体に位置が固定されているため、加熱により伸長したボート型蒸発源は加熱前の形状を維持せずに、伸長した分、歪みを生じ、ボート型蒸発源中央部の材料収容部に傾きが生じてしまう。その結果、材料の蒸発方向に変化が生じ、蒸着後の成膜基板面内における膜厚のばらつきが大きくなってしまう。有機EL素子は電流駆動型の素子であるため、膜厚の変動は素子の発光特性に大きな影響を与え、不均一な膜は面内の発光ムラや素子寿命にばらつきを生じる要因となっている。ボート型蒸発源を用いた有機材料薄膜形成方法における改良に関しては、例えば特開2002-246175号公報の実施例に記載されており、成膜基板面内での膜厚のばらつきの少ない薄膜の形成方法として好適なものであると言える。しかしながら、ボート型蒸発源通電加熱時における膨張による蒸発源の傾きに着目して膜厚ばらつき低減の改良を行った例は未だ報告されていない。   However, since the position of the electrode member that fixes both ends of the boat-type evaporation source is fixed to the main body of the vapor deposition machine as shown in FIG. 3, the boat-type evaporation source extended by heating maintains the shape before heating. Instead, the amount of elongation causes distortion, and the material container at the center of the boat-type evaporation source is inclined. As a result, a change occurs in the evaporation direction of the material, and the variation in the film thickness in the film formation substrate surface after vapor deposition becomes large. Since the organic EL element is a current-driven element, variations in film thickness have a large effect on the light emission characteristics of the element, and a non-uniform film causes variations in in-plane light emission and device life. . The improvement in the method for forming an organic material thin film using a boat-type evaporation source is described in, for example, Japanese Patent Application Laid-Open No. 2002-246175. It can be said that the method is suitable. However, there has not yet been reported an example in which film thickness variation reduction has been improved by paying attention to the inclination of the evaporation source due to expansion during the boat-type evaporation source energization heating.

上記課題を解決する為に、本発明が提供する手段は下記の発明により達成される。   In order to solve the above problems, the means provided by the present invention can be achieved by the following invention.

請求項1では、真空層内に薄膜を形成するための基板と、材料を蒸発させるボート型蒸発源を有する薄膜形成装置を用いた有機材料薄膜の形成方法において、有機材料を充填したボート型蒸発源の両端を電極に固定し、抵抗加熱により加熱する有機材料薄膜の形成方法であって、前記電極の一方は、蒸着機本体に固定され、他方の電極は、蒸着機本体に固定されていないことを特徴とする抵抗加熱用電極を使用して真空蒸着する有機材料薄膜の形成方法であることを特徴としている。   According to claim 1, in a method for forming an organic material thin film using a substrate for forming a thin film in a vacuum layer and a thin film forming apparatus having a boat type evaporation source for evaporating the material, boat type evaporation filled with an organic material is used. A method for forming an organic material thin film in which both ends of a source are fixed to an electrode and heated by resistance heating, wherein one of the electrodes is fixed to a vapor deposition machine main body, and the other electrode is not fixed to the vapor deposition machine main body It is characterized in that it is a method for forming an organic material thin film that is vacuum-deposited using a resistance heating electrode.

本発明によれば、ボート型蒸発源を用いた抵抗加熱法による有機材料の蒸着において、ボート型蒸発源の加熱膨張・歪みによるボート型蒸発源の傾きを抑えることが可能となり、所望の膜厚分布を有する有機薄膜を形成することが可能となる。   According to the present invention, in the vapor deposition of an organic material by a resistance heating method using a boat-type evaporation source, it is possible to suppress the inclination of the boat-type evaporation source due to thermal expansion / distortion of the boat-type evaporation source, and a desired film thickness. An organic thin film having a distribution can be formed.

本発明の実施の形態について、図面を参照しながら説明する。図1は本発明の有機材料薄膜の形成を実施するための真空成膜装置の構成を示した概略構成断面図である。図1において、真空層1内上部には基板2が配置され、成膜領域となっている。また、真空層底部には、蒸発源7が設置され、電源6により通電加熱することにより材料を蒸発できるようになっている。   Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic sectional view showing the structure of a vacuum film forming apparatus for forming an organic material thin film of the present invention. In FIG. 1, a substrate 2 is disposed in the upper part of the vacuum layer 1 to form a film formation region. In addition, an evaporation source 7 is installed at the bottom of the vacuum layer, and the material can be evaporated by being energized and heated by the power source 6.

次に、蒸発源周辺の詳細な構成について説明する。図2は本発明の蒸発源周辺部材の具体的な構成例を示した概略構成断面図である。図2において、蒸発源周辺部材として電力供給配線10、蒸着機本体に設置固定された電極11、蒸着機本体に設置固定されていない可動の電極12 、ボート型蒸発源13、ボート型蒸発源支持治具14、およびローラー15とを備える。   Next, a detailed configuration around the evaporation source will be described. FIG. 2 is a schematic cross-sectional view showing a specific configuration example of the evaporation source peripheral member of the present invention. In FIG. 2, an electric power supply wiring 10 as an evaporation source peripheral member, an electrode 11 installed and fixed on the vapor deposition machine body, a movable electrode 12 not installed and fixed on the vapor deposition machine main body, a boat type evaporation source 13 and a boat type evaporation source support A jig 14 and a roller 15 are provided.

蒸着機本体に設置固定された電極11と、蒸着機本体に設置固定されていない可動の電極12との間にボート型蒸発源13を配置し、前記ボート型蒸発源13の両端を前記両電極と接続固定する。ボート型蒸発源の材料収容部16と、蒸着機本体に設置固定されていない可動の電極12の間にあるボート型蒸発源の電極取り出し部17には、前記ボート型蒸発源13の電極取り出し部17の水平移動を可能にするボート型蒸発源支持治具14および、ローラー15によって支持可能にしている。両電極に所望の電流を通電しボート型蒸発源13を加熱すると、ボート型蒸発源13の加熱膨張による長手方向の伸長量に応じて、ボート型蒸発源13および蒸着機本体に設置固定されていない可動の電極12が水平移動するようになっている。このため、ボート型蒸発源13は、長手方向への伸長による平行方向へのスライドのみとなり、歪みや傾きを生じない。その結果、材料の蒸発角度は一定となり、安定した有機薄膜形成が可能となる。   A boat-type evaporation source 13 is arranged between an electrode 11 installed and fixed on the main body of the vapor deposition machine and a movable electrode 12 which is not installed and fixed on the main body of the vapor deposition machine, and both ends of the boat-type evaporation source 13 are connected to the both electrodes. And fix the connection. An electrode take-out part of the boat-type evaporation source 13 is provided in the electrode take-out part 17 of the boat-type evaporation source between the material storage part 16 of the boat-type evaporation source and the movable electrode 12 that is not installed and fixed to the vapor deposition machine body. The boat-type evaporation source support jig 14 that enables the horizontal movement of 17 and the roller 15 enable support. When the boat-type evaporation source 13 is heated by supplying a desired current to both electrodes, the boat-type evaporation source 13 is installed and fixed to the boat-type evaporation source 13 and the main body of the vapor deposition device according to the amount of elongation in the longitudinal direction due to the thermal expansion of the boat-type evaporation source 13. There is no movable electrode 12 to move horizontally. For this reason, the boat-type evaporation source 13 is only slid in the parallel direction due to the extension in the longitudinal direction, and is not distorted or tilted. As a result, the evaporation angle of the material is constant, and a stable organic thin film can be formed.

ボート型蒸発源支持治具14は蒸着機本体に位置固定されており、鉛直方向への歪みを抑え、ボート型蒸発源の高さを一定に保持できるようになっている。前記ボート型蒸発源支持治具14はボート型蒸発源13に流れる電流に影響を及ぼさないように絶縁体で構成されている。また、ボート型蒸発源13との設置面は平滑になっており、ボート型蒸発源の膨張による平行方向へのスライドを促進する働きをもっている。さらに、前記ボート型蒸発源支持治具14の上部にローラー15が配置されており、ボート型蒸発源13の高さを一定に保ち、水平方向のスライドを円滑にする働きをもっている。   The boat-type evaporation source support jig 14 is fixed to the vapor deposition machine body so that the vertical distortion can be suppressed and the height of the boat-type evaporation source can be kept constant. The boat-type evaporation source support jig 14 is made of an insulator so as not to affect the current flowing through the boat-type evaporation source 13. In addition, the installation surface with the boat-type evaporation source 13 is smooth, and has a function of promoting sliding in the parallel direction due to expansion of the boat-type evaporation source. Further, a roller 15 is disposed above the boat-type evaporation source support jig 14, and has a function of keeping the height of the boat-type evaporation source 13 constant and smoothing the slide in the horizontal direction.

ボート型蒸発源13は、電気伝導性であることが必要であり、融点の高いタングステン、タンタル、モリブデン等の金属でできていることが好ましい。本実施形態における概略図では、ボート型蒸発源のタイプとして、昇華性有機材料蒸着用のボートとして材料収容部16の上に仕切り版を有し仕切り版には連通孔を設け、さらに小孔を設けた蓋を用いているが、仕切り板や蓋の有無および形状に特に制限は無く、公知の金属製ボート型蒸発源を用いることが出来る。ただし、蒸発材料と化学反応するものは避けて選択する必要がある。   The boat-type evaporation source 13 needs to be electrically conductive, and is preferably made of a metal such as tungsten, tantalum, or molybdenum having a high melting point. In the schematic view of the present embodiment, as a type of boat-type evaporation source, as a boat for vapor deposition of a sublimable organic material, a partition plate is provided on the material container 16 and a communication hole is provided in the partition plate, and further a small hole is provided. Although the provided lid is used, there is no particular limitation on the presence and shape of the partition plate and lid, and a known metal boat evaporation source can be used. However, it is necessary to select those that chemically react with the evaporation material.

真空蒸着装置全体の構成としては、図1のように、真空層1内の上部には基板ホルダ3が配備され、この基板ホルダ3の所望の位置に成膜したい面を下向きにして基板2を配置するようになっている。その下には蒸着マスク4をセットできる機構(図示省略)を適宜設けることが可能である。そして、基板2および蒸着マスク4の下方には、支軸8に支持されたシャッター9が配置されている。上記の装置において、蒸着マスク4は画素用であり、シャッター9は蒸着材料用である。そして、シャッター9は支軸8を中心に回動し、蒸発材料の加熱による蒸気流を遮断するためのものである。   As shown in FIG. 1, a substrate holder 3 is provided in the upper part of the vacuum layer 1, and the substrate 2 is placed in a desired position on the substrate holder 3 with the surface to be deposited facing downward. It comes to arrange. A mechanism (not shown) that can set the vapor deposition mask 4 can be appropriately provided thereunder. A shutter 9 supported by the support shaft 8 is disposed below the substrate 2 and the vapor deposition mask 4. In the above apparatus, the vapor deposition mask 4 is for pixels, and the shutter 9 is for vapor deposition material. The shutter 9 rotates about the support shaft 8 to block the vapor flow caused by heating of the evaporation material.

しかし、本実施形態の蒸発源周辺部材の構成が使用できる真空蒸着装置に特に制限はない。有機EL素子作製に必要な有機材料薄膜を形成するための真空度としては、10-3Pa台以上が通常使用されている。電源はボート型蒸発源13に対して、30〜100A程度通電できるものを使用すればよい。ボート型蒸発源13と基板2との距離は、被蒸着基板の面積により適宜に決めてやればよい。ボート型蒸発源13と基板2との間には、所定の蒸発速度を得るのに必要な温度に達する前に蒸発する不純物等が被蒸着基板に付着しないように、シャッター機構を設けることが好ましく、また、蒸発速度を監視するための水晶振動子式等の膜厚モニタを配置することが好ましい。   However, there is no particular limitation on the vacuum deposition apparatus in which the configuration of the evaporation source peripheral member of this embodiment can be used. As a degree of vacuum for forming an organic material thin film necessary for manufacturing an organic EL element, a level of 10 −3 Pa or higher is usually used. What is necessary is just to use what can energize about 30-100A with respect to the boat-type evaporation source 13 as a power supply. The distance between the boat-type evaporation source 13 and the substrate 2 may be determined as appropriate according to the area of the deposition target substrate. It is preferable to provide a shutter mechanism between the boat-type evaporation source 13 and the substrate 2 so that impurities that evaporate before reaching the temperature necessary to obtain a predetermined evaporation rate do not adhere to the deposition target substrate. Further, it is preferable to dispose a film thickness monitor such as a crystal oscillator type for monitoring the evaporation rate.

蒸着に際しては、まず、蒸発させる有機材料をボート型蒸発源13に充填し、基板2を所定の位置に装着した後に、真空層1内の排気を開始し、真空蒸着装置の真空層内の真空度を電離真空計で監視して10-3Pa台に入った後に蒸発源の加熱電源を動作させる。膜厚モニタにて蒸発速度を監視しながら、電源6の電流値を徐々に上げていく。その後、所望の蒸発速度(通常0.5〜5Å/s)になった時点でシャッター9を開き蒸着する。本実施形態の場合には膜厚モニタでの蒸発速度が一定して蒸着を行うことが好ましい。所定の膜厚に到達した時点で、シャッター9を閉じ、電源6を切り蒸着を終了する。   When depositing, first, the boat-type evaporation source 13 is filled with an organic material to be evaporated, and after the substrate 2 is mounted at a predetermined position, exhaustion in the vacuum layer 1 is started, and the vacuum in the vacuum layer of the vacuum deposition apparatus is started. The temperature is monitored with an ionization vacuum gauge, and after entering the 10-3 Pa range, the heating power source of the evaporation source is operated. The current value of the power source 6 is gradually increased while monitoring the evaporation rate with the film thickness monitor. Thereafter, when the desired evaporation rate (usually 0.5 to 5 liters / s) is reached, the shutter 9 is opened and vapor deposition is performed. In the case of this embodiment, it is preferable to perform vapor deposition with a constant evaporation rate on the film thickness monitor. When the predetermined film thickness is reached, the shutter 9 is closed, the power source 6 is turned off, and the deposition is finished.

上記したように、本実施形態によれば、有機薄膜の形成において、ボート型蒸発源13の電極取り出し部両端を蒸着機本体に設置固定された電極11と、蒸着機本体に設置固定されていない可動の電極12にそれぞれ接続固定し、ボート型蒸発源13の材料収容部16と、蒸着機本体に設置固定されていない可動の電極12の間にある電極取り出し部17をボート型蒸発源支持治具14および、ローラー15によって支持するという構成を用いた方法で行われるものであり、図3に示すような従来のその両方が蒸着機本体に位置が固定されている蒸着機本体に設置固定された電極11にボート型蒸発源13を接続する構成を用いた方法とは異なるものである。従って、ボート型蒸発源13は、通電加熱の際、長手方向への伸長による平行方向への移動のみとなり、歪みや傾きを生じることが大幅に低減されるので、従来の方法よりも、材料の蒸発角度が安定し、面内の膜厚ばらつきの少ない有機薄膜形成が可能となる。   As described above, according to the present embodiment, in the formation of the organic thin film, both ends of the electrode take-out part of the boat-type evaporation source 13 are installed and fixed on the vapor deposition machine main body, and are not installed and fixed on the vapor deposition machine main body. Each of the movable electrodes 12 is connected and fixed, and the boat-type evaporation source supporting treatment is provided between the material storage portion 16 of the boat-type evaporation source 13 and the electrode extraction portion 17 between the movable electrode 12 that is not installed and fixed to the vapor deposition machine body. It is performed by a method using a configuration in which it is supported by the tool 14 and the roller 15, and both of the conventional ones as shown in FIG. 3 are installed and fixed on the vapor deposition machine main body whose position is fixed on the vapor deposition machine main body. This is different from the method using the configuration in which the boat-type evaporation source 13 is connected to the electrode 11. Therefore, the boat-type evaporation source 13 is only moved in the parallel direction due to extension in the longitudinal direction during energization heating, and distortion and inclination are greatly reduced. The evaporation angle is stable, and an organic thin film can be formed with little in-plane film thickness variation.

真空層1内のボート型蒸発源13上部に配置される基板ホルダ3に76mm×76mm×1.1mmのガラス基板2をセッティングした。蒸着マスク4として、複数の3.0mm×3.0mmの単位開口を有する金属マスクを基板に近接して配置した。ボート型蒸発源7を基板2の真下に配置し、ボート型蒸発源13と基板2との距離は270mmとした。蒸着する有機材料18としてトリス(8-ヒドロキシキノリン)アルミニウム錯体(Alq3)を使用した。   A glass substrate 2 having a size of 76 mm × 76 mm × 1.1 mm was set on the substrate holder 3 disposed on the boat-type evaporation source 13 in the vacuum layer 1. As the vapor deposition mask 4, a plurality of metal masks having a unit opening of 3.0 mm × 3.0 mm were arranged close to the substrate. The boat-type evaporation source 7 was disposed directly under the substrate 2, and the distance between the boat-type evaporation source 13 and the substrate 2 was 270 mm. Tris (8-hydroxyquinoline) aluminum complex (Alq3) was used as the organic material 18 to be deposited.

Alq3を蒸着する際にボート型蒸発源13としてモリブデン製のものを使用した。ボート全体の寸法は100mm×12mmである。このボート型蒸発源13はAlq3粉を充填する材料収容部16が凹部となっており、その上に連通孔を設けられた仕切り版を有し、さらに小孔を設けた蓋を配置してなるものである。材料収容部長手方向の凹部の長さは30mm、凹部の深さは2mm、その両側の電極取り出し部17の長さは35mmである。部材の厚さはすべて0.1mmとなっている。   When depositing Alq3, a boat-type evaporation source 13 made of molybdenum was used. The overall size of the boat is 100mm x 12mm. This boat-type evaporation source 13 has a material container 16 filled with Alq3 powder as a recess, has a partition plate provided with a communication hole on it, and further has a lid provided with a small hole. Is. The length of the concave portion in the longitudinal direction of the material accommodating portion is 30 mm, the depth of the concave portion is 2 mm, and the length of the electrode extraction portions 17 on both sides thereof is 35 mm. The thickness of all members is 0.1mm.

上記のボート型蒸発源13にAlq3粉を80mg充填し、その両端の一方を蒸着機本体に設置固定された電極11、他方を蒸着機本体に設置固定されていない可動の電極12に固定した。なお、前期ボート型蒸発源13の材料収容部16と前期蒸着機本体に設置固定されていない可動の電極12の間にある前期ボート型蒸発源の電極取り出し部17には、その下部に20mm×20mmの表面積を有するフッ素樹脂製のボート型蒸発源支持治具14が配置し、また、前期電極接続部の上部にはフッ素樹脂製のローラー15が配置することにより、高さを一定に保持し、水平方向への移動が可能となるようにした。ボート型蒸発源13の設置完了後、3.0×10-4Paまで真空排気を行った。   The boat-type evaporation source 13 was filled with 80 mg of Alq3 powder, and one end of each of the boat-type evaporation sources 13 was fixed to the electrode 11 that was installed and fixed to the vapor deposition machine body, and the other was fixed to the movable electrode 12 that was not installed and fixed to the vapor deposition machine body. It should be noted that the electrode extraction part 17 of the previous boat type evaporation source between the material container 16 of the previous boat type evaporation source 13 and the movable electrode 12 that is not installed and fixed to the main body of the previous vapor deposition machine has a 20 mm × A fluororesin boat-type evaporation source support jig 14 with a surface area of 20 mm is arranged, and a fluororesin roller 15 is arranged on the upper part of the previous electrode connection part to keep the height constant. The horizontal movement is now possible. After completing the installation of the boat-type evaporation source 13, evacuation was performed to 3.0 × 10 −4 Pa.

材料の加熱を行うためにボート型蒸発源13に徐々に通電し、電流値を55Aまで上昇させた。その後蒸着速度が5Å/sになるように通電電流値を調節した。蒸着速度が5Å/sになった時点でシャッター9を開け、Alq3を600Åの厚さに成膜した。   In order to heat the material, the boat-type evaporation source 13 was gradually energized to increase the current value to 55A. Thereafter, the energization current value was adjusted so that the deposition rate was 5 Å / s. When the deposition rate reached 5 mm / s, the shutter 9 was opened, and Alq3 was deposited to a thickness of 600 mm.

作製したAlq3薄膜の基板面内膜厚分布を調べる為に、触針式膜厚計を用いて成膜後の基板の膜厚分布を測定したところ、膜厚の最も厚い部分の膜厚が603Åとなり、膜厚の最も薄い部分の膜厚が574Åとなった。以上の結果より、膜厚の最も厚い部分と最も薄い部分との膜厚ばらつきは4.8%であった。また、蒸着終了後のボート型蒸発源13を観察したところ、その形状の歪みおよび材料収容部16の傾きは見られなかった。   In order to examine the in-plane film thickness distribution of the Alq3 thin film produced, the film thickness distribution of the substrate after film formation was measured using a stylus-type film thickness meter. The film thickness of the thickest part was 603 mm. Thus, the thickness of the thinnest part was 574 mm. From the above results, the film thickness variation between the thickest part and the thinnest part was 4.8%. Further, when the boat-type evaporation source 13 after the vapor deposition was observed, the shape distortion and the inclination of the material container 16 were not observed.

(比較例)
比較のために、図3に示すような前期ボート型蒸発源13を接続する蒸着機本体に設置固定された電極11を2つ有する蒸着機を使用し、上記実施例と同様にしてAlq3を基板2上に600Å成膜した。本比較例では、ボート型蒸発源13を接続する蒸着機本体の電極の状態が異なっている他は、実施例と同じ方法である。
(Comparative example)
For comparison, a vapor deposition machine having two electrodes 11 installed and fixed on the vapor deposition machine main body to which the boat type evaporation source 13 is connected as shown in FIG. 600 mm of film was formed on 2. In this comparative example, the method is the same as that of the example except that the state of the electrode of the vapor deposition machine main body to which the boat-type evaporation source 13 is connected is different.

作製したAlq3薄膜の基板面内膜厚分布を測定したところ、膜厚の最も厚い部分の膜厚が592Åとなり、膜厚の最も薄い部分の膜厚が538Åとなった。以上の結果より、膜厚の最も厚い部分と最も薄い部分との膜厚ばらつきは9.1%であった。また、蒸着終了後のボート型蒸発源13を観察したところ、その長手方向が若干凸型に湾曲しており、材料収容部16に僅かな傾きが見られた。   When the thickness distribution in the substrate surface of the prepared Alq3 thin film was measured, the film thickness of the thickest part was 592 mm, and the film thickness of the thinnest part was 538 mm. From the above results, the film thickness variation between the thickest part and the thinnest part was 9.1%. Further, when the boat-type evaporation source 13 after the vapor deposition was observed, the longitudinal direction thereof was slightly curved in a convex shape, and a slight inclination was observed in the material accommodating portion 16.

本発明の有機材料薄膜の形成を実施するための真空成膜装置の構成を示した概略構成断面図Schematic configuration sectional view showing a configuration of a vacuum film forming apparatus for forming an organic material thin film of the present invention 本発明の蒸発源周辺部材の具体的な構成例を示した概略構成断面図Schematic configuration sectional view showing a specific configuration example of the evaporation source peripheral member of the present invention 従来例の蒸発源周辺部材の具体的な構成例を示した概略構成断面図Schematic configuration sectional view showing a specific configuration example of a conventional evaporation source peripheral member ボート型蒸発源の具体的な構成例を示した概略構成断面図Schematic configuration sectional view showing a specific configuration example of a boat-type evaporation source

符号の説明Explanation of symbols

1 真空層
2 基板
3 基板ホルダ
4 蒸着マスク
5 真空ポンプ
6 電源
7 蒸発源
8 支軸
9 シャッター
10 電力供給配線
11 蒸着機本体に設置固定された電極
12 蒸発機本体に設置固定されていない可動の電極
13 ボート型蒸発源
14 ボート型蒸発源支持治具
15 ローラー
16 材料収容部
17 電極取り出し部
18 有機材料
1 Vacuum layer
2 Board
3 Substrate holder
4 Deposition mask
5 Vacuum pump
6 Power supply
7 Evaporation source
8 Spindle
9 Shutter
10 Power supply wiring
11 Electrodes installed and fixed on the main body of the vapor deposition machine
12 Movable electrodes that are not fixed to the evaporator body
13 Boat-type evaporation source
14 Boat type evaporation source support jig
15 rollers
16 Material compartment
17 Electrode outlet
18 Organic materials

Claims (1)

真空層内に薄膜を形成するための基板と、材料を蒸発させるボート型蒸発源を有する薄膜形成装置を用いた有機材料薄膜の形成方法において、有機材料を充填したボート型蒸発源の両端を電極に固定し、抵抗加熱により加熱する有機材料薄膜の形成方法であって、前記電極の一方は、蒸着機本体に固定され、他方の電極は、蒸着機本体に固定されていないことを特徴とする抵抗加熱用電極を使用して真空蒸着する有機材料薄膜の形成方法。   In a method for forming an organic material thin film using a substrate for forming a thin film in a vacuum layer and a thin film forming apparatus having a boat type evaporation source for evaporating the material, both ends of the boat type evaporation source filled with the organic material are electrodes A method of forming an organic material thin film that is fixed to the substrate and heated by resistance heating, wherein one of the electrodes is fixed to the vapor deposition machine main body, and the other electrode is not fixed to the vapor deposition machine main body. A method of forming an organic material thin film by vacuum deposition using a resistance heating electrode.
JP2004126565A 2004-04-22 2004-04-22 Method of forming thin film of organic material Withdrawn JP2005310575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004126565A JP2005310575A (en) 2004-04-22 2004-04-22 Method of forming thin film of organic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004126565A JP2005310575A (en) 2004-04-22 2004-04-22 Method of forming thin film of organic material

Publications (1)

Publication Number Publication Date
JP2005310575A true JP2005310575A (en) 2005-11-04

Family

ID=35439099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004126565A Withdrawn JP2005310575A (en) 2004-04-22 2004-04-22 Method of forming thin film of organic material

Country Status (1)

Country Link
JP (1) JP2005310575A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106947945A (en) * 2017-05-11 2017-07-14 成都西沃克真空科技有限公司 One kind resistance steaming device steams platform with many steric hindrances of Shockproof type

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106947945A (en) * 2017-05-11 2017-07-14 成都西沃克真空科技有限公司 One kind resistance steaming device steams platform with many steric hindrances of Shockproof type

Similar Documents

Publication Publication Date Title
KR101191569B1 (en) Film forming device
JP2007227086A (en) Deposition apparatus and method of manufacturing light emitting element
JP2007063664A (en) Organic vapor deposition source and method for controlling heat source thereof
JPH10245547A (en) Method for building up organic layer in organic luminescent element
KR20070080635A (en) Organic boat
US20110311717A1 (en) Vapor deposition method and vapor deposition system
JP4153713B2 (en) Evaporation source and thin film forming apparatus using the same
KR100592304B1 (en) Heating vessel and deposition apparatus having the same
CN100420058C (en) Method of production of organic light-emitting devices
KR20130031446A (en) Apparatus for depositing thin film
JP3863988B2 (en) Vapor deposition equipment
JPH10195639A (en) Evaporation source for organic material and organic thin film forming apparatus using the same
JP4494126B2 (en) Film forming apparatus and manufacturing apparatus
JP2013104117A (en) Evaporation source and deposition apparatus
JP2004211110A (en) Crucible for vapor deposition, vapor deposition system, and vapor deposition method
JP2005310575A (en) Method of forming thin film of organic material
JP4233469B2 (en) Vapor deposition equipment
JP3698506B2 (en) EL element and method of forming cathode electrode film on organic thin film surface
KR20060080679A (en) Method for controlling effusion cell of deposition system
KR100589937B1 (en) Evaporation source for forming a metal layer
JP2008293675A (en) Deposition device and organic el element
JP2009197259A (en) Vapor deposition source and film deposition method
JP2019183180A (en) Vapor deposition apparatus
KR100685403B1 (en) Fabricating Method Of Organic Electroluminescence Device
KR100804700B1 (en) Evaporating apparatus

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070703