JP2005310462A - Lead-acid storage battery - Google Patents

Lead-acid storage battery Download PDF

Info

Publication number
JP2005310462A
JP2005310462A JP2004123967A JP2004123967A JP2005310462A JP 2005310462 A JP2005310462 A JP 2005310462A JP 2004123967 A JP2004123967 A JP 2004123967A JP 2004123967 A JP2004123967 A JP 2004123967A JP 2005310462 A JP2005310462 A JP 2005310462A
Authority
JP
Japan
Prior art keywords
negative electrode
corrosion
positive electrode
battery
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004123967A
Other languages
Japanese (ja)
Inventor
Toshihiro Inoue
利弘 井上
Shozo Murochi
省三 室地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004123967A priority Critical patent/JP2005310462A/en
Publication of JP2005310462A publication Critical patent/JP2005310462A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control-valve type lead-acid storage battery that is of superior reliability and with a long durability by suppressing corrosion at a cathode shelf part and a cathode pillar part of the control-valve type lead-acid storage battery. <P>SOLUTION: A Pb alloy that does not contain Sb substantially but contains Sn 0.2 to 3.0 wt%, and Se 0.005 to 0.10 wt% is used for the cathode shelf part and the cathode electrode pillar. The ratio of amount of cathode active material (A) which constitutes a unit cell with that of anode active materials (B) is preferably made as 0.65 to 1.0, and furthermore, a Pb-Sn alloy that contains Sn 1.6 to 2.5 wt% is preferably used as an anode lattice alloy. By this, the weight can be reduced with the long durability, and the corrosion of cathode members can be suppressed remarkably. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は鉛蓄電池に関するものである。   The present invention relates to a lead-acid battery.

制御弁式鉛蓄電池はバックアップ用電源といった様々な分野で用いられている。制御弁式鉛蓄電池では、正極で発生した酸素ガスを負極で還元し、負極での水素ガスを抑制するため、負極中に水素ガスの発生を促進するようなSb、Niといった元素の混入を極力避ける必要がある。   Control valve type lead-acid batteries are used in various fields such as backup power sources. In a control valve type lead-acid battery, oxygen gas generated at the positive electrode is reduced at the negative electrode, and hydrogen gas at the negative electrode is suppressed. Therefore, mixing of elements such as Sb and Ni that promote the generation of hydrogen gas into the negative electrode is minimized. It is necessary to avoid it.

鉛蓄電池に用いる鉛合金は正極格子、正極極柱及び正極棚といった正極部材用と負極格子、負極極柱および負極棚といった負極部材用で要求される特性が異なる。特に、正極では酸化腐食に対する耐腐食性が要求される。一方、負極では、電極電位の関係上、正極ほどの耐腐食性は要求されず、むしろ前記したような、Sbで代表される水素過電圧を低下させる元素含有量を制限すること、また、格子として必要な機械的強度を考慮した鉛合金組成が検討されてきた。   Lead alloys used for lead-acid batteries have different characteristics required for a positive electrode member such as a positive electrode lattice, a positive electrode pole column, and a positive electrode shelf and for a negative electrode member such as a negative electrode lattice, a negative electrode pole column, and a negative electrode shelf. In particular, the positive electrode is required to have corrosion resistance against oxidative corrosion. On the other hand, the negative electrode does not require corrosion resistance as high as the positive electrode due to the electrode potential, but rather restricts the element content that reduces the hydrogen overvoltage represented by Sb, as described above, Lead alloy compositions that take into account the required mechanical strength have been studied.

ところが、Sbは負極において水素過電圧を低下させると同時に、微量存在することによって、負極部材を腐食させることがわかってきた。特許文献1はこのような密閉式鉛蓄電池の負極部材で発生する腐食を抑制することを目的とし、負極に用いる鉛合金中のSb量を30ppm以下に抑制することが示されている。
特開平2−262252号公報
However, it has been found that Sb corrodes the negative electrode member by reducing the hydrogen overvoltage in the negative electrode and at the same time being present in a small amount. Patent Document 1 is intended to suppress corrosion that occurs in the negative electrode member of such a sealed lead-acid battery, and shows that the amount of Sb in the lead alloy used for the negative electrode is suppressed to 30 ppm or less.
JP-A-2-262252

特許文献1で記載された構成により、負極での腐蝕をある程度まで抑制することができた。この段階では蓄電池寿命は正極の耐久性に支配されているため、このような負極の腐蝕は、実用上、問題が生じない程度のものであった。ところが、鉛蓄電池正極の耐久性向上に対する様々な検討が為される中で、例えば、正極格子合金中のSn濃度を2.0wt%程度に増加させることにより、正極の耐久性は格段に向上し、それにつれて蓄電池の寿命も大幅に改善された。ところが、正極の耐久性が向上したため、相対的に負極の耐久性が低下する結果となった。特に負極の劣化モードには、前記したような負極棚部と負極極柱の腐蝕という現象がある。   With the configuration described in Patent Document 1, corrosion at the negative electrode could be suppressed to some extent. At this stage, since the life of the storage battery is governed by the durability of the positive electrode, such corrosion of the negative electrode was practically problematic. However, various studies are being made to improve the durability of the lead-acid battery positive electrode. For example, by increasing the Sn concentration in the positive electrode lattice alloy to about 2.0 wt%, the durability of the positive electrode is remarkably improved. As a result, the life of the storage battery has been greatly improved. However, since the durability of the positive electrode was improved, the durability of the negative electrode was relatively lowered. In particular, the deterioration mode of the negative electrode has a phenomenon of corrosion of the negative electrode shelf and the negative electrode pole as described above.

このような負極における腐蝕は正極で発生する腐蝕とは異なり、負極棚部や負極極柱といった電解液が殆ど存在しない部位に特に顕著である。一方、負極活物質を保持する負極格子体ではこのような腐蝕は殆ど発生しない。このような負極特有の腐蝕は電池内の酸素ガスと負極棚部や負極極柱表面でのpHの上昇に関連しているものと推測されており、負極格子体は電解液により湿潤状態にあるため酸素との接触は比較的少量であり、かつ電解液中の硫酸分によりpHは低い値にあるため腐蝕を受けないと推測できる。   Such corrosion in the negative electrode is different from the corrosion generated in the positive electrode, and is particularly remarkable in a portion where there is almost no electrolyte such as a negative electrode shelf or a negative electrode pole column. On the other hand, such a corrosion hardly occurs in the negative electrode lattice that holds the negative electrode active material. Such specific corrosion of the negative electrode is presumed to be related to oxygen gas in the battery and an increase in pH at the surface of the negative electrode shelf and the negative electrode pole column, and the negative electrode lattice is wet by the electrolyte. Therefore, it can be assumed that the contact with oxygen is relatively small, and that the pH is low due to the sulfuric acid content in the electrolytic solution, so that it is not corroded.

このように、負極格子体と負極活物質の腐蝕が殆ど進行していない一方で、負極棚部や負極柱といった接続用の部材が腐蝕することになる。このような状況下では負極棚部や負極柱の腐蝕が進行していても、負極板自体は依然として十分な放電容量を有しているがために、放電時にこれらの腐蝕部で異常に発熱したり、内部抵抗が増大して出力電圧が低下するといった課題が生じることとなる。特にバックアップ用途で数十Ahから数百Ahといった比較的大容量の電池で5CAといった大電流放電を行うような用途においては、負極棚部や負極柱の腐蝕減量が5%を超えると、この腐蝕部分で通電時に発熱量が増大する。このような発熱は蓋を変形させたり、極柱と蓋との封口部を破損させることにつながるものであった。また、腐蝕生成物が極板上に落下して正極と負極の内部短絡の要因にもなっていた。   Thus, while the corrosion of the negative electrode grid and the negative electrode active material has hardly progressed, connecting members such as the negative electrode shelf and the negative electrode column are corroded. Under such circumstances, even if the corrosion of the negative electrode shelf and the negative electrode column has progressed, the negative electrode plate itself still has a sufficient discharge capacity. Or the internal resistance increases and the output voltage decreases. In particular, in a backup application where a large current discharge of 5 CA is performed with a battery having a relatively large capacity of several tens Ah to several hundreds Ah, if the corrosion loss of the negative electrode shelf or the negative electrode column exceeds 5%, this corrosion The amount of heat generated during energization increases at the part. Such heat generation leads to deformation of the lid or damage to the sealing portion between the pole column and the lid. In addition, the corrosion product dropped on the electrode plate, causing internal short circuit between the positive electrode and the negative electrode.

このような課題は負極に特有のものである。正極における腐蝕は主に電解液と接触した格子体でのみ進行し、その結果、正極自体の容量低下が進行する。したがって、正極が劣化した時点で、正極板は殆ど容量を有しておらず、負極のような破断部の異常発熱といった問題を殆ど発生させない。   Such a problem is unique to the negative electrode. Corrosion in the positive electrode proceeds mainly only in the lattice body in contact with the electrolytic solution, and as a result, the capacity of the positive electrode itself decreases. Therefore, when the positive electrode is deteriorated, the positive electrode plate has almost no capacity, and hardly causes a problem such as abnormal heat generation at a fracture portion like the negative electrode.

また、近年、蓄電池の軽量化やコスト低減の要求により、負極活物質を削減する傾向にある。このような状況下では負極の酸素吸収能力が低下するため、電池内の酸素濃度が上昇する傾向にあり、前記したような負極部材の腐蝕がより促進されるといった課題があった。   Further, in recent years, there is a tendency to reduce the negative electrode active material due to demands for weight reduction and cost reduction of storage batteries. Under such circumstances, since the oxygen absorption capacity of the negative electrode is reduced, the oxygen concentration in the battery tends to increase, and there is a problem that the corrosion of the negative electrode member as described above is further promoted.

本発明は、前記したような制御弁式鉛蓄電池の負極棚および負極極柱で発生する腐食を抑制し、信頼性の高い制御弁式鉛蓄電池を提供するものである。   The present invention provides a highly reliable control valve type lead storage battery that suppresses corrosion occurring in the negative electrode shelf and the negative electrode pole column of the control valve type lead storage battery as described above.

前記した課題を解決するために、本発明の請求項1に係る制御弁式鉛蓄電池は、Sbを実質上含まず、Snを0.2〜3.0wt%、Seを0.005〜0.10wt%含むPb合金を負極棚部、負極極柱に用いることを特徴とするものである。なお、ここで、Sbを実質上含まないとは、Sb含有量が30ppm以下であることを意味するものである。   In order to solve the above-described problem, the control valve-type lead-acid battery according to claim 1 of the present invention does not substantially contain Sb, has a Sn content of 0.2 to 3.0 wt%, and a Se content of 0.005 to 0.00. A Pb alloy containing 10 wt% is used for the negative electrode shelf and the negative electrode pole column. Here, “substantially free of Sb” means that the Sb content is 30 ppm or less.

さらに、本発明の請求項2に係る発明は、請求項1の制御弁式鉛蓄電池において、単位セルを構成する負極活物質量(A)の正極活物質量(B)に対する比率を0.65〜1.0としたことを特徴とするものである。   Furthermore, the invention according to claim 2 of the present invention is the control valve type lead-acid battery according to claim 1, wherein the ratio of the amount of negative electrode active material (A) constituting the unit cell to the amount of positive electrode active material (B) is 0.65. It is characterized by being -1.0.

そして、本発明の請求項3に係る発明は、請求項1もしくは請求項2の制御弁式鉛蓄電池において、正極格子合金としてSnを1.6〜2.5wt%含むPb−Sn合金を用いたことを特徴とするものである。   The invention according to claim 3 of the present invention uses a Pb—Sn alloy containing 1.6 to 2.5 wt% of Sn as the positive electrode lattice alloy in the control valve type lead storage battery of claim 1 or claim 2. It is characterized by this.

前記の本発明の構成により、制御弁式鉛蓄電池の負極棚部および負極柱部における腐蝕を抑制することにより、この腐蝕の進行に伴って発生する、電池発熱による蓋の変形や、腐蝕生成物による電池内部短絡といった様々な課題を解決し、長寿命で信頼性に優れた制御弁式鉛蓄電池を提供することができることから、工業上、極めて有用である。   By controlling the corrosion in the negative electrode shelf and negative electrode column of the control valve type lead-acid battery by the above-described configuration of the present invention, the deformation of the lid caused by the battery heat generation and the corrosion product generated as the corrosion progresses. Therefore, it is possible to provide a control valve type lead-acid battery having a long life and excellent reliability, which is extremely useful industrially.

本発明の実施の形態による制御弁式鉛蓄電池(以下、「蓄電池」という。)を図1を用いて説明する。   A control valve type lead storage battery (hereinafter referred to as “storage battery”) according to an embodiment of the present invention will be described with reference to FIG.

図1に示したように、本発明の蓄電池は正極格子(図示せず)に正極活物質を充填した正極板1と負極格子(図示せず)に負極活物質を充填した負極板2の所定枚数がセパレータ3と組み合わされ、それぞれの極性の極板を集合溶接する正極棚4および負極棚5を有している。   As shown in FIG. 1, the storage battery of the present invention includes a positive electrode plate 1 in which a positive electrode lattice (not shown) is filled with a positive electrode active material and a negative electrode plate 2 in which a negative electrode lattice (not shown) is filled with a negative electrode active material. It has a positive electrode shelf 4 and a negative electrode shelf 5 in which the number of sheets is combined with the separator 3 and collectively welds electrode plates of respective polarities.

正極棚4および負極棚5にはそれぞれセルへの入出力電流をセル外部に導出するための正極柱6と負極柱7が接続されて極板群8が構成されている。なお、蓄電池の形状や隣接セル間接続の必要性に応じて正極柱および負極柱の形状が柱状でない場合があるが、本発明における極柱とは前記したようなセルへの入出力電流をセル外部に導出するために鉛合金で構成された機能部品のことをいう。   Each of the positive electrode shelf 4 and the negative electrode shelf 5 is connected to a positive electrode column 6 and a negative electrode column 7 for leading an input / output current to / from the cell to the outside of the cell to constitute an electrode plate group 8. Depending on the shape of the storage battery and the necessity of connection between adjacent cells, the shape of the positive pole and the negative pole may not be columnar. In the present invention, the pole pole refers to the input / output current to the cell as described above. A functional component composed of a lead alloy to lead out to the outside.

本発明の蓄電池では、負極棚5および負極柱7を、Sbを実質上含まず、Snを0.2〜3.0wt%、Seを0.005〜0.10wt%含むPb合金で構成するものである。なお、本発明において、このPb合金中におけるSb含有量は負極での水素ガス発生およびSbが関与する負極腐蝕に影響しない程度、具体的には30ppm以下に制限されることにより、実質上Sbを含まないものである。このような組成のPb合金を負極棚5および負極柱7に用いることによって負極の腐蝕を顕著に抑制することができ、長寿命の制御弁式鉛蓄電池を得ることができる。なお、本発明の腐蝕抑制のメカニズムの詳細は定かではないが、Seが結晶粒界に存在することによって、粒界腐蝕を抑制すると推測できる。   In the storage battery of the present invention, the negative electrode shelf 5 and the negative electrode column 7 are made of a Pb alloy substantially free of Sb, 0.2 to 3.0 wt% of Sn, and 0.005 to 0.10 wt% of Se. It is. In the present invention, the Sb content in the Pb alloy is limited to such an extent that it does not affect the generation of hydrogen gas at the negative electrode and the negative electrode corrosion involving Sb. It is not included. By using the Pb alloy having such a composition for the negative electrode shelf 5 and the negative electrode column 7, corrosion of the negative electrode can be remarkably suppressed, and a long-life control valve type lead-acid battery can be obtained. Although the details of the mechanism for inhibiting corrosion according to the present invention are not clear, it can be presumed that grain boundary corrosion is suppressed by the presence of Se at the grain boundaries.

この極板群8を用い、常法に従い、制御弁式鉛蓄電池を組み立てることにより本発明の制御弁式鉛蓄電池を得る。例えば、極板群8を電槽9に収納後、蓋10を装着する。その後、正極柱6と負極柱8と蓋10との封口を行い、電解液を注液すればよい。   The control valve type lead acid battery of the present invention is obtained by assembling a control valve type lead acid battery using this electrode group 8 according to a conventional method. For example, the lid 10 is mounted after the electrode plate group 8 is stored in the battery case 9. Then, what is necessary is just to seal the positive electrode pillar 6, the negative electrode pillar 8, and the lid | cover 10, and to inject electrolyte solution.

本発明の好ましい形態として、単位セルを構成する負極活物質量(A)の正極活物質量(B)に対する比率を0.65〜1.0とする。このような活物質量比は負極活物質量を制限することによって、蓄電池容量を殆ど低下させることなく軽量化できる一方で、蓄電池内の酸素濃度が上昇するため、負極棚と負極柱の腐蝕はより進行しやすくなる。本発明では、このような活物質量比の蓄電池においても負極棚と負極柱の腐蝕を抑制することにより、軽量化を実現しつつ、負極部材の耐久性を向上させた蓄電池を得ることができる。   As a preferred embodiment of the present invention, the ratio of the amount of negative electrode active material (A) constituting the unit cell to the amount of positive electrode active material (B) is set to 0.65 to 1.0. Such an active material amount ratio limits the amount of the negative electrode active material, so that it is possible to reduce the weight of the storage battery without substantially reducing the capacity of the storage battery, while the oxygen concentration in the storage battery increases. It becomes easier to progress. In the present invention, even in a storage battery with such an active material amount ratio, by suppressing the corrosion of the negative electrode shelf and the negative electrode column, a storage battery with improved durability of the negative electrode member can be obtained while realizing weight reduction. .

本発明のさらに好ましい形態の制御弁式鉛蓄電池では、正極格子にSnを1.6〜2.5wt%含むPb−Sn合金を用いる。このような組成の正極格子体は酸化腐蝕に対する耐久性も高く、正極の寿命を向上するものである。負極棚および負極極柱の合金組成を前記したような組成とすることとあいまって、負極の耐久性に見合った正極を用いることにより、長寿命の制御弁式鉛蓄電池を得ることができる。なお、正極格子体の機械的強度が要求される場合、0.05〜0.10wt%程度のCaを添加してもよい。   In a further preferred embodiment of the control valve type lead storage battery of the present invention, a Pb—Sn alloy containing 1.6 to 2.5 wt% of Sn in the positive electrode lattice is used. The positive electrode lattice body having such a composition has high durability against oxidative corrosion and improves the life of the positive electrode. Combined with the alloy composition of the negative electrode shelf and the negative electrode pole column as described above, a long-life control valve type lead-acid battery can be obtained by using a positive electrode suitable for the durability of the negative electrode. In addition, when the mechanical strength of a positive electrode grid body is requested | required, you may add about 0.05-0.10 wt% Ca.

なお、正極格子合金として従来から知られている0.8wt%程度のSnを含む合金を用いても、もちろん、負極の耐久性を向上できることには全く変わるところはない。しかし、負極の寿命よりも正極の寿命が著しく短いため、蓄電池として正極により寿命が支配される。したがって、本発明の効果を極めて顕著に得るためには、Snを1.6〜2.5wt%含む正極格子合金を採用することが好ましい。   It should be noted that even if a conventionally known alloy containing about 0.8 wt% Sn is used as the positive electrode lattice alloy, of course, there is no change in that the durability of the negative electrode can be improved. However, since the life of the positive electrode is remarkably shorter than that of the negative electrode, the life is governed by the positive electrode as a storage battery. Therefore, in order to obtain the effects of the present invention remarkably, it is preferable to employ a positive electrode lattice alloy containing 1.6 to 2.5 wt% of Sn.

以下、実施例により、本発明の効果を説明する。   Hereinafter, the effects of the present invention will be described with reference to examples.

負極棚および負極極柱合金、正極格子合金および負極活物質量(A)と正極活物質量(B)の比率(A/B)(以下、単に「活物質比」という。)を表1に示した構成とし、2V60Ahの制御弁式鉛蓄電池を作成した。なお、制御弁の開弁圧を13kPa、閉弁圧を10kPaとした。また、負極棚および負極極柱合金中に含まれるSbは8ppmであった。   Table 1 shows the ratio (A / B) of the negative electrode shelf, the negative electrode pole alloy, the positive electrode lattice alloy, and the negative electrode active material amount (A) and the positive electrode active material amount (B) (hereinafter simply referred to as “active material ratio”). The control valve type lead acid battery of 2V60Ah was created with the configuration shown. The valve opening pressure of the control valve was 13 kPa, and the valve closing pressure was 10 kPa. Moreover, Sb contained in the negative electrode shelf and the negative electrode pole column alloy was 8 ppm.

これらの電池を2.25V定電圧のトリクル充電を連続して行った。なお、1ヶ月毎に容量試験を行い、容量が初期の20%まで低下するまでのトリクル充電期間を寿命期間とした。容量試験は腐蝕部での異常発熱を再現するため、5CAといった高率放電で行うことが好ましいが、試験の安全確保上、1CAで容量確認を行った。またさらに、寿命期間終了時点での負極棚および負極極柱の腐蝕減量を調査した。試験前後の負極棚および負極極柱の重量減少を試験前の重量の百分率で算出した値を腐蝕減量とした。なお、事前の確認実験により、腐蝕減量が5.0%を超えると、この腐蝕部での発熱により温度が急激に上昇し、極柱封口部周辺の蓋(ポリプロピレン樹脂)の変形が認められた。   These batteries were continuously charged with a trickle at a constant voltage of 2.25V. A capacity test was conducted every month, and the trickle charge period until the capacity decreased to 20% of the initial period was defined as the lifetime. The capacity test is preferably performed at a high rate discharge of 5 CA in order to reproduce abnormal heat generation at the corroded portion, but the capacity was confirmed at 1 CA for ensuring the safety of the test. Further, the corrosion loss of the negative electrode shelf and the negative electrode pole at the end of the lifetime was investigated. The value obtained by calculating the weight loss of the negative electrode shelf and the negative electrode pole before and after the test as a percentage of the weight before the test was defined as the corrosion weight loss. In addition, according to a prior confirmation experiment, when the corrosion weight loss exceeded 5.0%, the temperature rapidly increased due to the heat generated in the corrosion portion, and deformation of the lid (polypropylene resin) around the pole column sealing portion was recognized. .

これらの各試験の結果を表1に示す。なお、試験温度60℃とすることにより、加速寿命試験とした。ちなみに、60℃中の13ヶ月寿命は試験温度40℃における約4.5年寿命に相当する。また、腐蝕生成物が落下して電池の内部短絡を引き起こした場合、その時点で電池の寿命終了となり、腐蝕減量の相対評価が不正確となるため、腐蝕生成物が極板群上に落下しても短絡しないよう、極板群上にガラスマットシートを載置した。   The results of each of these tests are shown in Table 1. In addition, it was set as the accelerated life test by setting test temperature to 60 degreeC. Incidentally, a 13-month life at 60 ° C. corresponds to a life of about 4.5 years at a test temperature of 40 ° C. In addition, if the corrosion product falls and causes an internal short circuit of the battery, the battery life ends at that point, and the relative evaluation of the corrosion weight loss becomes inaccurate, so the corrosion product falls on the electrode plate group. However, a glass mat sheet was placed on the electrode plate group so as not to be short-circuited.

Figure 2005310462
Figure 2005310462

表1に示した結果を説明する。正極格子合金をPb−2.2wt%Sn−0.08wt%Caとし、活物質比1.0とした電池A1〜電池A20の結果から、負極棚および負極極柱としてSnを0.2〜3.0wt%、Seを0.005〜0.10wt%含むPb合金を用いた本発明例の電池は比較例の電池と比較して腐蝕減量を顕著に低減することができる。また、正極格子合金中のSnを1.6wt%、2.5wt%の場合においても同様の効果を得ることができる。   The results shown in Table 1 will be described. From the results of the batteries A1 to A20 in which the positive electrode lattice alloy is Pb-2.2 wt% Sn-0.08 wt% Ca and the active material ratio is 1.0, Sn is 0.2 to 3 as the negative electrode shelf and the negative electrode pole column. The battery of the example of the present invention using the Pb alloy containing 0.0 wt% and Se of 0.005 to 0.10 wt% can remarkably reduce the corrosion weight loss as compared with the battery of the comparative example. The same effect can be obtained even when Sn in the positive electrode lattice alloy is 1.6 wt% and 2.5 wt%.

一方、正極格子合金中のSnを0.8wt%とした電池は正極の劣化により寿命が短くなっている。本発明例の電池D1は腐蝕減量も少なく、すぐれているが、一方で比較例の電池D2は蓄電池寿命が短縮されたため、負極棚および負極柱の腐蝕は正極格子合金中のSnを2.2wt%の比較例の電池ほど顕著ではない。したがって、本発明の効果は正極格子合金中のSnを1.6〜2.5wt%とすることによって、より正極の耐久性を高めた電池においてより効果的に得られることがわかる。また、腐蝕減量が6.70%を超えた電池では特に負極棚部からの腐蝕生成物の落下が認められた。もし極板群上にガラスマットシートを配置しない場合、これらの電池では正極−負極間に短絡が発生していたと考えられる。   On the other hand, the battery in which Sn in the positive electrode lattice alloy is 0.8 wt% has a short life due to the deterioration of the positive electrode. The battery D1 of the example of the present invention has a small amount of corrosion loss and is excellent. On the other hand, the battery D2 of the comparative example has a shortened storage battery life, so that the corrosion of the negative electrode shelf and the negative electrode column is 2.2 wt% of Sn in the positive electrode lattice alloy. % Of the comparative battery is not as prominent. Therefore, it can be seen that the effect of the present invention can be obtained more effectively in a battery in which the durability of the positive electrode is further improved by making Sn in the positive electrode lattice alloy 1.6 to 2.5 wt%. Further, in the battery in which the weight loss of corrosion exceeded 6.70%, the corrosion product dropped particularly from the negative electrode shelf. If the glass mat sheet is not arranged on the electrode plate group, it is considered that a short circuit occurred between the positive electrode and the negative electrode in these batteries.

また、活物質比率に関しては、本発明は0.6〜1.1の範囲で効果を得ることができる。しかしながら、比較例の電池において、この活物質比率を0.65〜1.0としたものは、活物質比率を1.1とした比較例の電池E1および比較例の電池E3よりも腐蝕量は多い。これは負極活物質量を削減することによって、活物質比率が低くなった電池においては、負極での酸素ガス吸収量が減少した結果、電池内の酸素濃度が上昇し、負極棚と負極柱の腐蝕が促進されていると考えられる。   Moreover, regarding an active material ratio, this invention can acquire an effect in the range of 0.6-1.1. However, in the battery of the comparative example, when the active material ratio is 0.65 to 1.0, the amount of corrosion is larger than that of the comparative battery E1 and the comparative battery E3 where the active material ratio is 1.1. Many. This is because, in a battery whose active material ratio is reduced by reducing the amount of the negative electrode active material, the oxygen gas absorption amount in the negative electrode decreases, resulting in an increase in the oxygen concentration in the battery, and the negative electrode shelf and the negative pole column. Corrosion is thought to be promoted.

本発明の電池では電池F2の試験結果からもわかるように、負極部材の腐蝕に関して不利な条件化でも腐蝕を効果的に抑制できることがわかる。また、活物質比率を0.65〜1.0の範囲とすることにより、蓄電池寿命に大きく影響を与えない範囲で負極活物質量を削減し、また同時に腐蝕をも抑制できることから、実用上、最も好ましい。なお、負極活物質量をさらに削減し、活物質比率を0.60としたものは腐蝕抑制の効果は十分得られるが、寿命の低下が見られた。   In the battery of the present invention, as can be seen from the test results of the battery F2, it can be seen that the corrosion can be effectively suppressed even under adverse conditions regarding the corrosion of the negative electrode member. In addition, by setting the active material ratio in the range of 0.65 to 1.0, the amount of the negative electrode active material can be reduced in a range that does not significantly affect the storage battery life, and at the same time, corrosion can be suppressed. Most preferred. In addition, when the amount of the negative electrode active material was further reduced and the active material ratio was 0.60, the effect of inhibiting corrosion was sufficiently obtained, but the lifetime was reduced.

本実施例においては、試験の安全確保上、異常発熱が発生しないような放電電流で試験を行ったが、実際の使用方法においては5CA以上の放電率で放電される場合も多い。本実施例から、本発明例の電池では、このような異常発熱の起こらない、腐蝕減量5.0wt%未満のレベルより、さらに腐蝕減量を低減でき、このような異常発熱を確実に抑制できるものである。また、腐蝕減量の低下に伴い、同時に腐蝕生成物の落下による電池内の短絡を抑制することができるものである。   In the present embodiment, the test was performed with a discharge current that does not cause abnormal heat generation in order to ensure the safety of the test, but in an actual usage method, the discharge is often performed at a discharge rate of 5 CA or more. From the present embodiment, in the battery of the present invention, the amount of corrosion loss can be further reduced from the level of less than 5.0 wt% of the corrosion weight loss that does not cause such abnormal heat generation, and such abnormal heat generation can be reliably suppressed. It is. Further, along with the decrease in the corrosion weight loss, a short circuit in the battery due to the drop of the corrosion product can be suppressed at the same time.

本発明の制御弁式鉛蓄電池は良好なトリクル寿命を有し、また、負極棚部および負極極柱の腐蝕量も極めて低いレベルに抑制できることから、数年〜十数年といった極めて長期間における信頼性が要求されるバックアップ用の電池に適用することができる。   The control valve-type lead-acid battery of the present invention has a good trickle life, and the amount of corrosion of the negative electrode shelf and the negative electrode pole column can be suppressed to an extremely low level. It can be applied to a backup battery that is required to have high performance.

本発明の実施形態による蓄電池を示す図The figure which shows the storage battery by embodiment of this invention

符号の説明Explanation of symbols

1 正極板
2 負極板
3 セパレータ
4 正極棚
5 負極棚
6 正極柱
7 負極柱
8 極板群
9 電槽
10 蓋
DESCRIPTION OF SYMBOLS 1 Positive electrode plate 2 Negative electrode plate 3 Separator 4 Positive electrode shelf 5 Negative electrode shelf 6 Positive electrode column 7 Negative electrode column 8 Electrode plate group 9 Battery case 10 Lid

Claims (3)

Sbを実質上含まず、Snを0.2〜3.0wt%、Seを0.005〜0.10wt%含むPb合金を負極棚部および負極極柱に用いることを特徴とする制御弁式鉛蓄電池。 A control valve type lead characterized by using a Pb alloy substantially free of Sb, 0.2 to 3.0 wt% of Sn and 0.005 to 0.10 wt% of Se for the negative electrode shelf and the negative electrode pole column Storage battery. 単位セルを構成する負極活物質量(A)の正極活物質量(B)に対する比率を0.65〜1.0としたことを特徴とする請求項1に記載の制御弁式鉛蓄電池。 The control valve type lead acid battery according to claim 1, wherein the ratio of the negative electrode active material amount (A) constituting the unit cell to the positive electrode active material amount (B) is set to 0.65 to 1.0. 正極格子合金としてSnを1.6〜2.5wt%含むPb−Sn合金を用いたことを特徴とする請求項1もしくは2に記載の制御弁式鉛蓄電池。 3. The control valve type lead-acid battery according to claim 1, wherein a Pb—Sn alloy containing 1.6 to 2.5 wt% of Sn is used as the positive electrode lattice alloy.
JP2004123967A 2004-04-20 2004-04-20 Lead-acid storage battery Pending JP2005310462A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004123967A JP2005310462A (en) 2004-04-20 2004-04-20 Lead-acid storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004123967A JP2005310462A (en) 2004-04-20 2004-04-20 Lead-acid storage battery

Publications (1)

Publication Number Publication Date
JP2005310462A true JP2005310462A (en) 2005-11-04

Family

ID=35439001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004123967A Pending JP2005310462A (en) 2004-04-20 2004-04-20 Lead-acid storage battery

Country Status (1)

Country Link
JP (1) JP2005310462A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019204790A (en) * 2019-07-10 2019-11-28 株式会社Gsユアサ Control valve type lead-acid battery

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63109135A (en) * 1986-10-27 1988-05-13 Furukawa Battery Co Ltd:The Lead-base alloy for storage battery
JPS63141263A (en) * 1986-12-04 1988-06-13 Furukawa Battery Co Ltd:The Lead-base alloy for storage battery
JPS63279563A (en) * 1987-05-09 1988-11-16 Yuasa Battery Co Ltd Lead storage battery
JPH02262258A (en) * 1989-03-31 1990-10-25 Matsushita Electric Ind Co Ltd Lead-acid battery
JPH08329975A (en) * 1995-06-06 1996-12-13 Matsushita Electric Ind Co Ltd Sealed lead-acid battery
JPH09167611A (en) * 1995-12-18 1997-06-24 Japan Storage Battery Co Ltd Lead-acid battery
JP2001185131A (en) * 1999-12-28 2001-07-06 Matsushita Electric Ind Co Ltd Sealed lead acid battery
JP2002093457A (en) * 2000-07-12 2002-03-29 Japan Storage Battery Co Ltd Lead-acid battery
JP2003151641A (en) * 2001-11-14 2003-05-23 Japan Storage Battery Co Ltd Charging and discharging control method for lead battery
JP2004014283A (en) * 2002-06-06 2004-01-15 Matsushita Electric Ind Co Ltd Valve regulated lead battery

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63109135A (en) * 1986-10-27 1988-05-13 Furukawa Battery Co Ltd:The Lead-base alloy for storage battery
JPS63141263A (en) * 1986-12-04 1988-06-13 Furukawa Battery Co Ltd:The Lead-base alloy for storage battery
JPS63279563A (en) * 1987-05-09 1988-11-16 Yuasa Battery Co Ltd Lead storage battery
JPH02262258A (en) * 1989-03-31 1990-10-25 Matsushita Electric Ind Co Ltd Lead-acid battery
JPH08329975A (en) * 1995-06-06 1996-12-13 Matsushita Electric Ind Co Ltd Sealed lead-acid battery
JPH09167611A (en) * 1995-12-18 1997-06-24 Japan Storage Battery Co Ltd Lead-acid battery
JP2001185131A (en) * 1999-12-28 2001-07-06 Matsushita Electric Ind Co Ltd Sealed lead acid battery
JP2002093457A (en) * 2000-07-12 2002-03-29 Japan Storage Battery Co Ltd Lead-acid battery
JP2003151641A (en) * 2001-11-14 2003-05-23 Japan Storage Battery Co Ltd Charging and discharging control method for lead battery
JP2004014283A (en) * 2002-06-06 2004-01-15 Matsushita Electric Ind Co Ltd Valve regulated lead battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019204790A (en) * 2019-07-10 2019-11-28 株式会社Gsユアサ Control valve type lead-acid battery

Similar Documents

Publication Publication Date Title
JP6168138B2 (en) Liquid lead-acid battery
JP4148175B2 (en) Lead alloy and lead storage battery using the same
JP5061451B2 (en) Anode current collector for lead acid battery
JP4798972B2 (en) Control valve type lead-acid battery for standby
JP6836315B2 (en) Control valve type lead acid battery
JP2009170234A (en) Control valve type lead-acid battery
JP6043734B2 (en) Lead acid battery
JP4647722B1 (en) Lead acid battery
CN101740780A (en) Rare earth alloy of anode plate grid for lead-acid storage battery
JP2006114417A (en) Lead-acid storage battery
JP5359193B2 (en) Lead acid battery
JP2005310462A (en) Lead-acid storage battery
JP6601654B2 (en) Control valve type lead acid battery
JP4892827B2 (en) Lead acid battery
JP4896392B2 (en) Lead acid battery
WO2003041195A1 (en) Lead battery
JP6830615B2 (en) Control valve type lead acid battery
JP4812386B2 (en) Method for producing lead-acid battery
JP2007265714A (en) Lead-acid storage battery
JP4678117B2 (en) Lead acid battery
JP2007273403A (en) Control valve type lead-acid battery and its charging method
JP2008152968A (en) Lead storage battery
JP4411860B2 (en) Storage battery
JP4923399B2 (en) Lead acid battery
JP2009266788A (en) Lead storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070323

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070412

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100916

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110829

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110907

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20111111