JP2005307339A - High tensile hot rolled steel sheet having excellent strength-ductility balance and method for manufacturing the same - Google Patents

High tensile hot rolled steel sheet having excellent strength-ductility balance and method for manufacturing the same Download PDF

Info

Publication number
JP2005307339A
JP2005307339A JP2005048936A JP2005048936A JP2005307339A JP 2005307339 A JP2005307339 A JP 2005307339A JP 2005048936 A JP2005048936 A JP 2005048936A JP 2005048936 A JP2005048936 A JP 2005048936A JP 2005307339 A JP2005307339 A JP 2005307339A
Authority
JP
Japan
Prior art keywords
mass
strength
steel sheet
rolled steel
ductility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005048936A
Other languages
Japanese (ja)
Other versions
JP4692018B2 (en
Inventor
Shinjiro Kaneko
真次郎 金子
Kazuhiro Hanazawa
和浩 花澤
Toshiaki Urabe
俊明 占部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005048936A priority Critical patent/JP4692018B2/en
Publication of JP2005307339A publication Critical patent/JP2005307339A/en
Application granted granted Critical
Publication of JP4692018B2 publication Critical patent/JP4692018B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high tensile hot rolled steel sheet of a compound structure type which does not cause the degradation in paintability and corrosion resistance, is excellent in strength-ductility balance of providing tensile strength of ≥590 MPa and strength-ductility balance of ≥19,000 MPa×% in spite of relatively low Si content. <P>SOLUTION: The composite structure having a component composition containing 0.05 to 0.15 mass% C, 0.005 to 0.8 mass% Si, 1.0 to 3.0 mass% Mn, 0.005 to 0.08 mass% P, 0.0002 to 0.005 mass% S, 0.001 to 0.05 mass% Al, and 0.0090 to 0.025 mass% N, and ≥0.0050 mass% N in a solid solution state, and the balance Fe and inevitable impurities and further containing 60 to 94 vol% ferrite phase, 3 to 30 vol% bainite phase and ≥3 vol% retained austenite phase is provided. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は,主として自動車の車体部品等の使途に好適な、引張強さが590MPa以上の高張力熱延鋼板およびその製造方法に係り、特に強度−延性バランスに優れた複合組織を有する高張力熱延鋼板およびその製造方法に関する。本発明の高張力熱延鋼板は、軽度の曲げ加工やロールフォーミングなど比較的軽加工に供されるものから比較的厳しい絞り成形に供されるものまで、広範囲の用途に適するものである。   The present invention relates to a high-tensile hot-rolled steel sheet having a tensile strength of 590 MPa or more, which is mainly suitable for use in automobile body parts and the like, and a method for producing the same. The present invention relates to a rolled steel sheet and a manufacturing method thereof. The high-tensile hot-rolled steel sheet of the present invention is suitable for a wide range of applications from those subjected to relatively light processing such as mild bending and roll forming to those subjected to relatively severe drawing.

近年、地球環境の保全を目的とした、自動車の燃費改善並びに車両衝突時の乗員保護の観点から、自動車車体の安全性向上が要求されている。このため、自動車車体の軽量化と強化の両立のための検討が積極的に進められている。これを満足させるには、部品の素材を高強度化することが効果的であると言われており、最近では高張力鋼板が自動車部品に積極的に使用されている。すなわち、自動車部品に高張力鋼板を適用して、使用する鋼板の薄肉化を図るのが有効である。   In recent years, there has been a demand for improving the safety of automobile bodies from the viewpoint of improving the fuel efficiency of automobiles and protecting passengers in the event of a vehicle collision for the purpose of protecting the global environment. For this reason, studies for achieving both weight reduction and strengthening of the automobile body are being actively promoted. In order to satisfy this, it is said that it is effective to increase the strength of the material of the parts, and recently, high-tensile steel plates have been actively used for automobile parts. In other words, it is effective to apply a high-tensile steel plate to automobile parts to reduce the thickness of the steel plate to be used.

ところが、鋼板を素材とする自動車の車体用部品の多くがプレス加工により成形されるため、使用される高張力鋼板は、優れたプレス成形性を有することが要求される。そのため、鋼板の機械的特性として、特に高い延性が求められている。しかし、一般に、鋼板を高強度化すると延性(伸び)が低下してプレス成形性が劣化するため、これらを両立するのは依然として難しいものであった。   However, since many automotive body parts made of steel plates are formed by press working, the high-tensile steel plates used are required to have excellent press formability. Therefore, especially high ductility is calculated | required as a mechanical characteristic of a steel plate. However, generally, when the strength of a steel plate is increased, the ductility (elongation) is lowered and the press formability is deteriorated, so that it is still difficult to achieve both of them.

プレス成形性の良好な高張力鋼板の代表例としては、軟質のフェライトと硬質のマルテンサイトとの複合組織からなる複合組織鋼板が有り、降伏応力が低く高い強度−延性バランスを有する鋼板である。しかし、この種の複合組織鋼板は、降伏比が70%以下と低く、形状凍結性には優れるものの、安定して得られる強度−延性バランス(TS×El)は19000MPa・%程度が限界であった。したがって、通常の条件での加工性については概ね良好であるが、厳しい条件下での成形には問題を残していた。   A typical example of a high-tensile steel sheet having good press formability is a steel sheet having a composite structure composed of a composite structure of soft ferrite and hard martensite, which is a steel sheet having a low yield stress and a high strength-ductility balance. However, this type of composite structure steel sheet has a yield ratio as low as 70% or less and is excellent in shape freezing property, but the limit of the stable strength-ductility balance (TS x El) is about 19000 MPa ·%. It was. Therefore, the processability under normal conditions is generally good, but there remains a problem with molding under severe conditions.

また、組織を、フェライトおよびベイナイトと残留オーステナイトとからなる複合組織として強度−延性バランスを顕著に向上させた、いわゆる変態誘起塑性型鋼板が提案されている。例えば、特許文献1、特許文献2、特許文献3および特許文献4には、残留オーステナイトによる変態誘起塑性を活用した、延性に優れた高強度熱延鋼板が提案されている。   Further, a so-called transformation-induced plastic type steel sheet has been proposed in which the structure is a composite structure composed of ferrite and bainite and retained austenite, and the strength-ductility balance is remarkably improved. For example, Patent Document 1, Patent Document 2, Patent Document 3 and Patent Document 4 propose high-strength hot-rolled steel sheets having excellent ductility, utilizing transformation-induced plasticity due to retained austenite.

これらの変態誘起塑性型鋼板は、強度−延性バランス(TS×El)が20000MPa・%を超えるものもある反面、同一強度のフェライトおよびマルテンサイト複合組織鋼と比較すると、CおよびSiの含有量が大幅に高くなるため、Cが高いときには溶接部が脆化して充分な溶接強度、特にスポット溶接による溶接面における垂直方向の強度、が得られず、実用上の問題がある。一方、Siが高いときには、塗装性および耐食性を低下させるために表面の美麗性が損なわれ、これを回復するには、酸洗処理等を長時間にわたり行う必要があり、製造コストが大幅に上昇することは避けられない。   These transformation-induced plastic type steel sheets may have a strength-ductility balance (TS x El) exceeding 20000 MPa ·%, but compared with ferrite and martensitic composite steels of the same strength, the content of C and Si Therefore, when C is high, the welded portion becomes brittle and sufficient welding strength, particularly strength in the vertical direction on the welded surface by spot welding, cannot be obtained, resulting in a practical problem. On the other hand, when Si is high, the surface aesthetics are impaired to reduce the paintability and corrosion resistance, and to recover this, it is necessary to perform pickling treatment for a long time, which greatly increases the manufacturing cost. It is inevitable to do.

近年、良好なプレス成形性と、成形後の高強度とを同時に満足できる鋼板として、プレス成形前は軟質でプレス成形し易く、プレス成形後は塗装焼付処理により硬化し部品強度を高めることができる鋼板が開発されている。このような鋼板の例として、特許文献5には、N添加型の変態誘起塑性型鋼板が提案されている。この技術では、固溶Nを特定範囲内に制限し、さらに熱延条件を制御することにより、延性および歪時効硬化特性を向上させた熱延鋼板が得られている。ところが、Si含有量が1.0%以上と多く、この場合も塗装性や美麗性を確保するためのコストアップが避けられないという問題があった。
特公平6−41617号公報 特公平5−65566号公報 特公平5−67682号公報 特開平11−43725号公報 特開2002−30385号公報
In recent years, as a steel sheet that can satisfy both good press formability and high strength after forming, it is soft and easy to press form before press forming, and can be hardened by paint baking after press forming to increase the strength of parts. Steel plates have been developed. As an example of such a steel sheet, Patent Document 5 proposes an N-added transformation-induced plastic steel sheet. In this technique, a hot-rolled steel sheet with improved ductility and strain age hardening characteristics is obtained by limiting the solid solution N within a specific range and further controlling the hot-rolling conditions. However, the Si content is as high as 1.0% or more, and also in this case, there is a problem that the cost increase for securing the paintability and beauty is inevitable.
Japanese Patent Publication No. 6-41617 Japanese Patent Publication No. 5-65566 Japanese Patent Publication No. 5-67682 Japanese Patent Laid-Open No. 11-43725 JP 2002-30385 A

本発明は、上記した従来技術の問題点を有利に解決し、溶接強度の低下を招くことのない、比較的低いC含有量であり、かつ、塗装性および耐食性の低下をまねくことのない、比較的低いSi含有量でありながら、引張強さ590MPa以上でかつ強度−延性バランスが19000MPa・%以上となる強度−延性バランスに優れた、複合組織型の高張力熱延鋼板を、その製造方法に併せて提案することを目的とする。   The present invention advantageously solves the above-mentioned problems of the prior art, has a relatively low C content that does not cause a decrease in weld strength, and does not cause a decrease in paintability and corrosion resistance. Manufacturing method of a high strength hot-rolled steel sheet with a composite structure type that has a relatively low Si content and a tensile strength of 590 MPa or more and an excellent strength-ductility balance with a strength-ductility balance of 19000 MPa ·% or more The purpose is to propose together.

従来、フェライト、ベイナイトおよび残留オーステナイトからなる複合組織を形成して強度−延性バランスを顕著に向上させるには、多量のCやSiが必要であり、C含有量を溶接性に問題のない適度な範囲としたうえで微量のSiの添加により、上記のような複合組織を生成し、延性を顕著に向上させた高張力熱延鋼板を得ることは困難とされてきた。これは、多量のSiの添加により、焼鈍時に残留オーステナイトの生成に必要な量のCをオーステナイト中に濃化させることが可能となるためである。すなわち、SiはFeCの生成を抑制し、より効果的にCをオーステナイト中に濃化させる働きがある。 Conventionally, in order to form a composite structure composed of ferrite, bainite and retained austenite and to remarkably improve the strength-ductility balance, a large amount of C and Si is required, and the C content is moderate without causing problems in weldability. It has been considered difficult to obtain a high-strength hot-rolled steel sheet that has a composite structure as described above by adding a small amount of Si after the range is reached and has a markedly improved ductility. This is because the addition of a large amount of Si makes it possible to concentrate an amount of C necessary for the formation of retained austenite in the austenite during annealing. That is, Si functions to suppress the formation of Fe 3 C and to more effectively concentrate C in austenite.

発明者らは、かような働きを有するSiを低減しても強度−延性バランスを向上し得る手法を開発するべく、成分組成および製造条件を種々に変更して鋼板を製造し、多くの材質評価実験を行った。その結果、高延性が要求される分野では従来積極的に利用されることがなかった、Nを利用することにより、Siを微量としても、強度−延性バランスの向上が図れることを知見した。   In order to develop a technique that can improve the balance between strength and ductility even when Si having such a function is reduced, the inventors manufactured various steels by changing the composition of components and manufacturing conditions in various ways. An evaluation experiment was conducted. As a result, it has been found that the strength-ductility balance can be improved by using N, which has not been actively used in fields where high ductility is required, even if Si is used in a very small amount.

以下、本発明を導くに至った実験結果について説明する。
C:0.075mass%、Si:0.5 mass%、Mn:1.55 mass%、P:0.019 mass%、S:0.002 mass%およびAl:0.012 mass%を基本組成とし、これにNを0.0018〜0.0188 mass%の範囲で種々に変化させた組成の鋼塊を、1250℃に加熱し、1h均熱した後、粗圧延後のシートバー厚、仕上圧延終了後の冷却開始時間、冷却を一旦停止し再度冷却を開始するまでの空冷処理の有無および時間、巻取温度、巻取後の冷却速度を種々に変化させて、板厚1.6mmの熱延鋼板とした。
Hereinafter, experimental results that led to the present invention will be described.
C: 0.075 mass%, Si: 0.5 mass%, Mn: 1.55 mass%, P: 0.019 mass%, S: 0.002 mass%, and Al: 0.012 mass%, and N is 0.0018-0.0188 mass%. The steel ingots with variously changed compositions were heated to 1250 ° C and soaked for 1 h, then the sheet bar thickness after rough rolling, the cooling start time after finishing rolling, cooling was temporarily stopped, and then cooled again. The presence or absence of air cooling treatment until the start, the winding temperature, and the cooling rate after winding were variously changed to obtain a hot-rolled steel sheet having a thickness of 1.6 mm.

かくして得られた熱延鋼板について、引張試験を実施した。引張試験は、長軸を圧延方向と直交する方向としたJIS5号引張試験片を用いて、JIS Z2241の規定に準拠して行い、引張特性(降伏強さYS、引張強さTS、伸びEl)を求めた。
また、各鋼板の固溶N量および残留オーステナイト量(以下、残留γ量と示す)についても調査した。
なお、固溶Nの分析法は、鋼中の全N量から、析出N(電解抽出による溶解法で求める)を差し引いた値とした。その詳細は、後述する。
さらに、残留γ量は鋼板の板厚1/4付近の面でX線回折法により、オーステナイト相の(211)および(220)面とフェライト相の(200)および(220)面のピーク強度から残留オーステナイト相の体積率を算出した。
これらの調査結果を、図1〜6に示す。
A tensile test was performed on the hot-rolled steel sheet thus obtained. Tensile tests are conducted in accordance with the provisions of JIS Z2241, using JIS No. 5 tensile test pieces with the major axis perpendicular to the rolling direction, and tensile properties (yield strength YS, tensile strength TS, elongation El) Asked.
Further, the amount of solute N and the amount of retained austenite (hereinafter referred to as the amount of residual γ) of each steel sheet were also investigated.
In addition, the analysis method of solid solution N was taken as the value which deducted precipitation N (it calculates | requires with the melt | dissolution method by electrolytic extraction) from the total N amount in steel. Details thereof will be described later.
Furthermore, the amount of residual γ is calculated from the peak intensities of the (211) and (220) planes of the austenite phase and the (200) and (220) planes of the ferrite phase by X-ray diffraction on the plane near the thickness of the steel sheet. The volume fraction of the residual austenite phase was calculated.
The results of these investigations are shown in FIGS.

まず、図1は、残留γ量とTS×Elとの関係を、仕上圧延終了後の冷却中における空冷処理の有無で比較して示したものである。同図に示すように、残留γ量とTS×Elとは強い相関を示し、その関係は空冷処理の有無やその他の製造条件に関わらず一義的に整理される。すなわち、残留γ量を3vol%以上とすることにより、19000MPa・%以上のTS×Elが得られることが示されている。   First, FIG. 1 shows the relationship between the amount of residual γ and TS × El in comparison with the presence or absence of air cooling during cooling after finishing rolling. As shown in the figure, the residual γ amount and TS × El show a strong correlation, and the relationship is uniquely arranged regardless of the presence or absence of the air cooling process and other manufacturing conditions. That is, it is shown that TS × El of 19000 MPa ·% or more can be obtained by setting the residual γ amount to 3 vol% or more.

また、図2は、固溶N量と残留γ量との関係を、上記空冷処理の有無で比較して示したものである。同図に示すように、空冷処理が有る場合には、固溶N量の増加に伴い残留γ量が増加し、固溶N量を50ppm以上とすることによって残留γ量を3vol%以上にできるが、空冷処理が無い場合には固溶N量が増加しても残留γ量は3vol%未満である。   FIG. 2 shows the relationship between the amount of solute N and the amount of residual γ in comparison with the presence or absence of the air cooling treatment. As shown in the figure, when there is an air cooling process, the amount of residual γ increases as the amount of dissolved N increases, and the amount of residual γ can be increased to 3 vol% or more by setting the amount of dissolved N to 50 ppm or more. However, when there is no air cooling treatment, the amount of residual γ is less than 3 vol% even if the amount of dissolved N increases.

次に、C:0.075mass%、Si:0.5 mass%、Mn:1.55 mass%、P:0.019 mass%、S:0.002 mass%およびAl:0.012 mass%を基本組成とし、これにNを0.0116mass%で含む組成の鋼魂を、粗圧延により厚み30〜10mmのシートバーとし、引き続いて仕上圧延終了温度が850℃となるように7パスの仕上圧延を行い板厚1.6mmとした。仕上圧延終了後1.5秒経過後に平均冷却速度50℃/sで720℃まで冷却し、10s空冷したのち、再び平均冷却速度50℃/sで600〜300℃の巻取相当温度まで冷却し、巻取り後の冷却処理として冷却速度が1.5〜10℃/minの一定の冷却速度で100℃以下まで冷却した。このときの固溶N量はいずれも80〜115ppmの範囲であった。   Next, C: 0.075 mass%, Si: 0.5 mass%, Mn: 1.55 mass%, P: 0.019 mass%, S: 0.002 mass% and Al: 0.012 mass% are the basic compositions, and N is 0.0116 mass%. The steel soul having the composition contained in the above was made into a sheet bar having a thickness of 30 to 10 mm by rough rolling, and subsequently subjected to 7-pass finish rolling so that the finish rolling finish temperature was 850 ° C. to a plate thickness of 1.6 mm. After 1.5 seconds after finishing rolling, after cooling to 720 ° C at an average cooling rate of 50 ° C / s, air-cooled for 10s, and then cooled again to an equivalent winding temperature of 600 to 300 ° C at an average cooling rate of 50 ° C / s. As a cooling treatment after the removal, the cooling rate was lowered to 100 ° C. or lower at a constant cooling rate of 1.5 to 10 ° C./min. The amount of solute N at this time was in the range of 80 to 115 ppm.

図3は、仕上圧延の合計の圧下率:95%、巻取温度:450℃および巻取後の冷却速度:2℃/minとして得た鋼板における、残留γ量と空冷時間との関係を示したものである。同図から、空冷時間を3〜30秒に制御することにより3vol%以上の残留γ量が確保され、高延性を獲得できることがわかる。
なお、ここで、仕上圧延の合計の圧下率(以下仕上全圧下率ともいう)とは、
{(シートバー厚 − 仕上圧延後板厚(ここでは1.6mm))/シートバー厚}×100%
で算出される仕上圧延中の合計の圧下率である。
FIG. 3 shows the relationship between the amount of residual γ and the air cooling time in a steel sheet obtained with a total rolling reduction of finish rolling: 95%, coiling temperature: 450 ° C. and cooling rate after winding: 2 ° C./min. It is a thing. From the figure, it can be seen that by controlling the air cooling time to 3 to 30 seconds, a residual γ amount of 3 vol% or more is secured and high ductility can be obtained.
Here, the total rolling reduction of finish rolling (hereinafter also referred to as finishing total rolling reduction)
{(Sheet bar thickness-plate thickness after finish rolling (here 1.6mm)) / sheet bar thickness} x 100%
Is the total rolling reduction during finish rolling calculated by

図4は、残留γ量と仕上圧延の合計の圧下率との関係を示したものである。このときの空冷時間は10秒、巻取温度は450℃および巻取後の冷却速度は2℃/minであった。同図から、仕上圧延の合計の圧下率を90%以上に制御することにより3vol%以上の残留γ量が確保され、高延性を獲得できることがわかる。   FIG. 4 shows the relationship between the amount of residual γ and the total rolling reduction of finish rolling. At this time, the air cooling time was 10 seconds, the winding temperature was 450 ° C., and the cooling rate after winding was 2 ° C./min. From the figure, it can be seen that by controlling the total rolling reduction of finish rolling to 90% or more, a residual γ amount of 3 vol% or more is secured, and high ductility can be obtained.

図5は、残留γ量と巻取温度との関係を示したものである。このときの仕上全圧下率は95%、空冷時間は10秒および巻取後の冷却速度は2℃/minであった。同図から、巻取温度を350〜500℃に制御することにより3vol%以上の残留γ量が確保され、高延性を獲得できることがわかる。   FIG. 5 shows the relationship between the amount of residual γ and the coiling temperature. At this time, the final reduction ratio was 95%, the air cooling time was 10 seconds, and the cooling rate after winding was 2 ° C./min. From the figure, it can be seen that by controlling the coiling temperature to 350 to 500 ° C., a residual γ amount of 3 vol% or more is secured and high ductility can be obtained.

図6は、残留γ量と巻取後冷却速度との関係を示したものである。このときの仕上全圧下率は95%、空冷時間は10秒および巻取温度は450℃であった。同図から、巻取後の冷却速度を3℃/min以下に制御することにより3vol%以上の残留γ量が確保され、高延性を獲得できることがわかる。   FIG. 6 shows the relationship between the amount of residual γ and the cooling rate after winding. At this time, the final reduction ratio was 95%, the air cooling time was 10 seconds, and the coiling temperature was 450 ° C. From the figure, it can be seen that by controlling the cooling rate after winding to 3 ° C./min or less, a residual γ amount of 3 vol% or more is secured, and high ductility can be obtained.

以上のように、固溶N量を50ppm以上とし、仕上全圧下率を90%以上、巻取温度を350〜500℃、巻取後冷却速度を3℃/min以下とした場合に、3vol%以上の残留γ量すなわち19000MPa・%以上の強度−延性バランス(TS×El)を得ることが可能であり、高い延性が実現される。
この原因については以下のように考えられる。
As described above, when the solid solution N amount is 50 ppm or more, the finishing total rolling reduction is 90% or more, the winding temperature is 350 to 500 ° C., and the cooling rate after winding is 3 ° C./min or less, 3 vol% The above residual γ amount, that is, a strength-ductility balance (TS × El) of 19000 MPa ·% or more can be obtained, and high ductility is realized.
The cause is considered as follows.

すなわち、オーステナイトの安定化のためには、熱間圧延後の制御冷却の空冷処理段階において、オーステナイト相へのC、Nの濃化を図る必要がある。そして、安定化したオーステナイト相では、巻取後の冷却中にベイナイト変態が進行するとともに、さらなるオーステナイト相へのC、Nの濃化、すなわちオーステナイトのさらなる安定化が生じ、室温においてもオーステナイトが残存することになる。従って、巻取中に炭化物や窒化物といった析出物を生成した場合には、残留オーステナイト相へのC、Nの濃化、すなわち残留オーステナイト相の十分な安定化が困難になる。   That is, in order to stabilize austenite, it is necessary to concentrate C and N in the austenite phase in the air cooling treatment stage of controlled cooling after hot rolling. In the stabilized austenite phase, the bainite transformation proceeds during cooling after winding, and further enrichment of C and N in the austenite phase, that is, further stabilization of the austenite occurs, and austenite remains even at room temperature. Will do. Therefore, when precipitates such as carbides and nitrides are generated during winding, it becomes difficult to concentrate C and N in the retained austenite phase, that is, to sufficiently stabilize the retained austenite phase.

ここで、NはCに比べて、析出物(窒化物)の形成傾向が低く固溶状態で存在しやすい。例えば、Cを利用する場合は、Siを多量添加し、そのC排出作用によりオーステナイト相へのC濃化を図る必要がある。これに対して、Nを利用する場合は、巻取温度を適正に制御しながら巻取後の緩冷却を施すことにより、巻取後の緩冷却中に残留オーステナイト相へのNの濃化が効果的に行われるため、Siを低減しても、Cの濃化が不足する分を補って尚余るため、オーステナイトの安定化を図ることができる。一方、フェライト形成元素としてのSiの低下を補うためには、仕上圧下率を高めることでフェライト変態を促進させる必要がある。   Here, N has a lower tendency to form precipitates (nitrides) than C and tends to exist in a solid solution state. For example, when C is used, it is necessary to add a large amount of Si and to concentrate C to the austenite phase by the C discharging action. On the other hand, when N is used, the concentration of N in the retained austenite phase is reduced during the slow cooling after winding by performing the slow cooling after winding while appropriately controlling the winding temperature. Since it is carried out effectively, even if Si is reduced, the amount of C enrichment is insufficient to make up for it, so that austenite can be stabilized. On the other hand, in order to compensate for the decrease in Si as a ferrite-forming element, it is necessary to promote ferrite transformation by increasing the finish reduction ratio.

以上の実験結果から導かれた、上記した各条件を満足することにより、組織をフェライトおよびベイナイトと残留オーステナイトとからなる複合組織とすることができ、鋼板のプレス成形性を顕著に向上できることを、ここに知見したのである。本発明は、これら知見に基づき、さらに検討して完成されたものであり、その要旨は次のとおりである。   By satisfying the above-described conditions derived from the above experimental results, the structure can be a composite structure composed of ferrite and bainite and retained austenite, and the press formability of the steel sheet can be significantly improved. This is what we found. The present invention has been completed by further study based on these findings, and the gist thereof is as follows.

(1)C:0.05〜0.15 mass%、
Si:0.005〜0.8 mass%、
Mn:1.0〜3.0 mass%、
P:0.005〜0.08 mass%、
S:0.0002〜0.005 mass%、
Al:0.001〜0.05 mass%および
N:0.0090〜0.025 mass%
を含有し、かつ固溶状態のN:0.0050mass%以上を含み、残部がFeおよび不可避的不純物の成分組成に成り、60〜94vol%のフェライト相、3〜30 vol%のベイナイト相および3vol%以上の残留オーステナイト相を含む複合組織を有することを特徴とする強度−延性バランスに優れた高張力熱延鋼板。
(1) C: 0.05 to 0.15 mass%,
Si: 0.005-0.8 mass%,
Mn: 1.0-3.0 mass%
P: 0.005-0.08 mass%,
S: 0.0002 to 0.005 mass%,
Al: 0.001 to 0.05 mass% and N: 0.0090 to 0.025 mass%
N: 0.0050 mass% or more in a solid solution state, with the balance being a component composition of Fe and inevitable impurities, 60 to 94 vol% ferrite phase, 3 to 30 vol% bainite phase and 3 vol% A high-tensile hot-rolled steel sheet excellent in strength-ductility balance, characterized by having a composite structure containing the above-mentioned residual austenite phase.

(2)前記成分としてさらに、Cr:0.05〜1.0 mass%、Mo:0.05〜1.0 mass%およびNi:0.05〜1.0 mass%のうちから選ばれる1種または2種以上を含有することを特徴とする上記(1)に記載の強度−延性バランスに優れた高張力熱延鋼板。 (2) The composition further comprises one or more selected from Cr: 0.05 to 1.0 mass%, Mo: 0.05 to 1.0 mass%, and Ni: 0.05 to 1.0 mass%. A high-tensile hot-rolled steel sheet excellent in the strength-ductility balance described in (1) above.

(3)前記成分としてさらに、Nb、Ti、VおよびBのうちから選ばれる1種または2種以上を、下記式を満足する範囲で含有することを特徴とする上記(1)または(2)に記載の強度−延性バランスに優れた高張力熱延鋼板。

N/(Al+Nb+Ti+V+B)≧0.3
ここで、N、Al、Nb、Ti、V、B:各元素の含有量(mass%)
(3) The above component (1) or (2), wherein the component further contains one or more selected from Nb, Ti, V and B within a range satisfying the following formula: A high-tensile hot-rolled steel sheet excellent in the strength-ductility balance described in 1.
N / (Al + Nb + Ti + V + B) ≧ 0.3
Here, N, Al, Nb, Ti, V, B: Content of each element (mass%)

(4)C:0.05〜0.15 mass%、
Si:0.005〜0.8 mass%、
Mn:1.0〜3.0 mass%、
P:0.005〜0.08 mass%、
S:0.0002〜0.005 mass%、
Al:0.001〜0.05 mass%および
N:0.0090〜0.025 mass%
を含有し、残部はFeおよび不可避的不純物より成る鋼スラブを、1100〜1300℃に加熱し、粗圧延後に、仕上圧延出側温度がAr〜(Ar+50)℃でかつ合計の圧下率が90%以上の仕上圧延を施し、その後3秒以内に冷却速度が20℃/s以上の冷却を開始し、該冷却を680〜760℃の温度範囲内で一旦停止し、3〜30秒の空冷を施した後、再度冷却速度が20℃/s以上の冷却を施し、次いで350〜500℃で巻取ったのち、巻取温度〜300℃までを3℃/min以下の冷却速度で冷却することを特徴とする強度−延性バランスに優れた高張力熱延鋼板の製造方法。
(4) C: 0.05 to 0.15 mass%,
Si: 0.005-0.8 mass%,
Mn: 1.0-3.0 mass%
P: 0.005-0.08 mass%,
S: 0.0002 to 0.005 mass%,
Al: 0.001 to 0.05 mass% and N: 0.0090 to 0.025 mass%
The remainder of the steel slab containing Fe and inevitable impurities is heated to 1100-1300 ° C, and after rough rolling, the finish rolling exit temperature is Ar 3 to (Ar 3 +50) ° C and the total reduction rate Is subjected to finish rolling of 90% or more, and then cooling is started at a cooling rate of 20 ° C./s or more within 3 seconds, and the cooling is temporarily stopped within a temperature range of 680 to 760 ° C. for 3 to 30 seconds. After air cooling, cooling at a cooling rate of 20 ° C / s or more is performed again, and after winding at 350 to 500 ° C, the winding temperature is cooled to 300 ° C at a cooling rate of 3 ° C / min or less. A method for producing a high-tensile hot-rolled steel sheet having an excellent strength-ductility balance.

(5)前記鋼スラブが、さらに、Cr:0.05〜1.0 mass%、Mo:0.05〜1.0 mass%およびNi:0.05〜1.0 mass%のうちから選ばれる1種または2種以上を含有することを特徴とする上記(4)に記載の強度−延性バランスに優れた高張力熱延鋼板。 (5) The steel slab further contains one or more selected from Cr: 0.05 to 1.0 mass%, Mo: 0.05 to 1.0 mass%, and Ni: 0.05 to 1.0 mass%. A high-tensile hot-rolled steel sheet excellent in the strength-ductility balance described in (4) above.

(6)前記鋼スラブが、さらに、Nb、Ti、VおよびBのうちから選ばれる1種または2種以上を、下記式を満足する範囲で含有することを特徴とする上記(4)または(5)に記載の強度−延性バランスに優れた高張力熱延鋼板。

N/(Al+Nb+Ti+V+B)≧0.3
ここで、N、Al、Nb、Ti、V、B:各元素の含有量(mass%)
(6) The steel slab further contains one or more selected from Nb, Ti, V and B within a range satisfying the following formula (4) or ( A high-tensile hot-rolled steel sheet excellent in the strength-ductility balance described in 5).
N / (Al + Nb + Ti + V + B) ≧ 0.3
Here, N, Al, Nb, Ti, V, B: Content of each element (mass%)

本発明によれば、微量のSi含有量においても延性の向上に必要な残留オーステナイト相が確保されるため、引張強さ590MPa以上でかつ強度−延性バランスが19000MPa・%以上となる強度−延性バランスに優れた、複合組織型の高張力熱延鋼板を提供できる。   According to the present invention, since a retained austenite phase necessary for improving ductility is ensured even with a small amount of Si, a strength-ductility balance in which the tensile strength is 590 MPa or more and the strength-ductility balance is 19000 MPa ·% or more. It is possible to provide a composite structure type high-tensile hot-rolled steel sheet.

まず、本発明の熱延鋼板の組成を限定した理由について説明する。
C:0.05〜0.15 mass%
Cは、鋼板の強度増加やオーステナイト相への濃化によるオーステナイト相の安定化の観点から重要な元素であり、本発明では強度と所望の残留γ量を確保するために0.05mass%以上の含有を必要とする。一方、0.15mass%を超える含有は、溶接性を著しく劣化させる。このため、C量は0.05〜0.15mass%の範囲に限定する。なお、極めて高い強度−延性バランスと溶接性の両立という観点からは、0.07〜0.12mass%とするのが好ましい。
First, the reason for limiting the composition of the hot-rolled steel sheet of the present invention will be described.
C: 0.05-0.15 mass%
C is an important element from the viewpoint of stabilizing the austenite phase by increasing the strength of the steel sheet or concentrating it into the austenite phase. In the present invention, C is contained in an amount of 0.05 mass% or more to ensure the strength and the desired residual γ amount. Need. On the other hand, the content exceeding 0.15 mass% significantly deteriorates the weldability. For this reason, C amount is limited to the range of 0.05-0.15 mass%. In addition, it is preferable to set it as 0.07-0.12 mass% from a viewpoint of coexistence of extremely high strength-ductility balance and weldability.

Si:0.005〜0.8mass%
Siは、鋼の延性を顕著に低下させることなく、鋼板を高強度化させることができる有用な強化元素であり、さらには巻取後の冷却中にオーステナイトがベイナイト変態する際に炭化物の生成を抑制して、未変態オーステナイトの安定性を向上させる効果を有する元素である。このような効果は0.005mass%以上の範囲で認められるが、0.8mass%を超えるSiの含有は、表面性状や化成処理性等に悪影響を与える上、これらの悪影響を抑制するためには鋼板表面の酸洗処理等を長時間化する必要があり、大きなコストアップは避けられない。なお、本発明では、0.8mass%以下の含有量であっても未変態オーステナイトの安定性は保たれ、上記のようなSiの悪影響を容易に避けることができる。したがって、Siは0.8mass%以下の範囲とした。より厳格な表面性状並びに化成処理性等が求められる用途では、0.4mass%以下が好ましい。
Si: 0.005-0.8mass%
Si is a useful strengthening element that can increase the strength of a steel sheet without significantly reducing the ductility of the steel.In addition, it generates carbides when austenite undergoes bainite transformation during cooling after winding. It is an element that has the effect of suppressing and improving the stability of untransformed austenite. Such effects are recognized in the range of 0.005 mass% or more, but the inclusion of Si exceeding 0.8 mass% adversely affects the surface properties and chemical conversion treatment properties, and in order to suppress these adverse effects, the steel sheet surface It is necessary to lengthen the pickling treatment and the like, and a large cost increase is inevitable. In the present invention, even if the content is 0.8 mass% or less, the stability of untransformed austenite is maintained, and the above-described adverse effects of Si can be easily avoided. Therefore, Si is set to a range of 0.8 mass% or less. In applications where more stringent surface properties and chemical conversion properties are required, 0.4 mass% or less is preferable.

Mn:1.0〜3.0mass%
Mnは、焼入れ性を向上させる元素であり、鋼板強度の増加に大きく寄与する。また、MnはSによる熱間割れを防止する有効な元素であり、含有するS量により添加するのが好ましい。さらに、Mnは、オーステナイト相に濃化し焼入れ性を向上させる上、オーステナイト相に濃縮し残留オーステナイトを安定化する効果も併せ持つ。このような効果は、1.0mass%以上の範囲で認められるが、3.0mass%を超える場合は上記した効果が飽和する上、スポット溶接性が顕著に劣化する。このため、Mnは1.0〜3.0mass%に限定した。なお、より良好な耐蝕性と成形性が要求される用途では、2.5mass%以下が望ましい。
Mn: 1.0-3.0mass%
Mn is an element that improves hardenability and greatly contributes to an increase in steel sheet strength. Mn is an effective element for preventing hot cracking due to S, and is preferably added depending on the amount of S contained. Further, Mn concentrates in the austenite phase to improve the hardenability, and also has the effect of stabilizing the retained austenite by concentrating in the austenite phase. Although such an effect is recognized in the range of 1.0 mass% or more, when it exceeds 3.0 mass%, the above-described effect is saturated and the spot weldability is remarkably deteriorated. For this reason, Mn was limited to 1.0 to 3.0 mass%. In applications where better corrosion resistance and formability are required, 2.5 mass% or less is desirable.

P:0.005〜0.08mass%
Pは、鋼を強化する作用があり、所望の強度に応じて必要量含有させることができる。このような効果は、0.005mass%以上の範囲で認められるが、P含有量が0.08mass%を超えると、プレス成形性および溶接性が劣化する。このため、P含有量は0.08mass%以下に限定した。なお、より優れたプレス成形性および溶接性が要求される場合は、P含有量を0.05mass%以下とすることが好ましい。
P: 0.005-0.08 mass%
P has the effect | action which strengthens steel and can be contained in a required quantity according to desired intensity | strength. Such an effect is recognized in the range of 0.005 mass% or more, but when the P content exceeds 0.08 mass%, press formability and weldability deteriorate. For this reason, P content was limited to 0.08 mass% or less. In addition, when more excellent press formability and weldability are required, the P content is preferably set to 0.05 mass% or less.

S:0.0002〜0.005mass%
Sは、鋼板中では介在物として存在し、鋼板の延性の劣化をもたらす元素であるため、できるだけ低減することが好ましい。0.005mass%以下に低減すると延性への悪影響が無視できることから、本発明におけるS含有量は、0.005mass%を上限とした。なお、より優れた延性を要求される場合には、S含有量は0.003mass%以下とすることが好ましい。一方、0.0002mass%未満とすることは工業的に困難であるため、これを下限とする。
S: 0.0002 to 0.005 mass%
Since S is an element that exists as an inclusion in the steel sheet and causes deterioration of the ductility of the steel sheet, it is preferably reduced as much as possible. If the content is reduced to 0.005 mass% or less, the adverse effect on ductility can be ignored. Therefore, the upper limit of the S content in the present invention is 0.005 mass%. In addition, when more excellent ductility is required, the S content is preferably 0.003 mass% or less. On the other hand, since it is industrially difficult to make it less than 0.0002 mass%, this is the lower limit.

Al:0.001〜0.05mass%
Alは、鋼の脱酸元素として添加され、鋼の清浄度を向上させるのに有用な元素であり、鋼の組織微細化のためにも添加することが望ましい元素である。本発明においては、固溶状態のNを残留オーステナイトの安定化元素や強化元素としても利用するが、適性範囲のアルミを添加したアルミキルド鋼のほうが、アルミを添加しない従来のリムド鋼に比して、機械的性質が優れている。アルミ含有量が多くなると表面性状の悪化、固溶Nの顕著な低下につながり、本発明の目的である微量のSi含有量における優れた強度−延性バランスを確保することが困難となる。このため上限は、従来鋼より低い0.05mass%とした。さらに、材質の安定性という観点では、上限を0.03mass%とするのが望ましく、0.015mass%とするのがさらに望ましい。なお、0.001mass%未満とすることは工業的に困難であるため、これを下限とする。
Al: 0.001 ~ 0.05mass%
Al is added as a deoxidizing element for steel, is an element useful for improving the cleanliness of steel, and is also an element desirably added for refining the structure of steel. In the present invention, solid solution N is also used as a stabilizing element or strengthening element of retained austenite, but aluminum killed steel to which aluminum in the appropriate range is added is more suitable than conventional rimmed steel to which aluminum is not added. , Mechanical properties are excellent. When the aluminum content is increased, the surface properties are deteriorated and the solid solution N is remarkably lowered, and it is difficult to ensure an excellent strength-ductility balance at a small amount of Si content, which is an object of the present invention. For this reason, the upper limit was made 0.05 mass% lower than that of the conventional steel. Furthermore, from the viewpoint of material stability, the upper limit is preferably 0.03 mass%, and more preferably 0.015 mass%. In addition, since it is industrially difficult to set it as less than 0.001 mass%, let this be a minimum.

N:0.0090〜0.025mass%
Nは、優れた強度−延性バランスを発現させる上で重要な添加元素である。すなわち、適正範囲のN添加や製造条件により、熱延製品の状態で必要かつ十分なオーステナイト中へのNの濃化量を確保することで残留オーステナイト相の生成と安定化を図ることができ、目標とする590MPa以上の引張り強度と19000MPa・%以上の強度−延性バランス(TS×El:引張強さ×全伸び)が安定して得られる。また、Nは鋼の変態点を降下させる効果もあり、薄物で変態点を大きく割り込んだ圧延をしたくないという状況では、その添加は有効である。おおむね0.0090mass%以上の添加によって、このような効果が安定して得られる。しかし、0.025mass%を超えて添加した場合は、鋼板の内部欠陥の発生率が高くなるとともに、連続鋳造時のスラブ割れなどの発生も顕著となるため、その上限を0.025mass%とした。製造工程全体を考慮した材質の安定性および歩留まり向上という観点では、0.0120〜0.0170mass%の範囲がさらに好適である。なお、窒素を添加しても、本発明の範囲であれば溶接性等にはまったく悪影響はない。
N: 0.0090-0.025mass%
N is an important additive element in expressing an excellent strength-ductility balance. That is, with the appropriate range of N addition and manufacturing conditions, it is possible to achieve the generation and stabilization of the retained austenite phase by securing the necessary and sufficient amount of N concentration in the austenite in the hot rolled product state, The target tensile strength of 590 MPa or more and the strength-ductility balance (TS x El: tensile strength x total elongation) of 19000 MPa ·% or more can be stably obtained. N also has the effect of lowering the transformation point of steel, and its addition is effective in the situation where it is not desired to perform rolling with a thin material that greatly cuts the transformation point. Such an effect can be stably obtained by adding approximately 0.0090 mass% or more. However, if added over 0.025 mass%, the rate of occurrence of internal defects in the steel sheet increases and the occurrence of slab cracking during continuous casting becomes significant, so the upper limit was made 0.025 mass%. The range of 0.0120 to 0.0170 mass% is more preferable from the viewpoint of improving the stability of the material and the yield in consideration of the entire manufacturing process. Even if nitrogen is added, there is no adverse effect on weldability and the like within the scope of the present invention.

固溶状態のN:0.0050mass%以上
オーステナイトの安定化が図られて強度−延性バランスの向上に十分な量の残留オーステナイトが確保されるには、固溶状態のNは概ね0.0050mass%以上である必要がある。
ここで、固溶Nは、鋼中の全N量から析出Nを差し引いた値とするが、この析出Nは、電解抽出による溶解法で求めることが好ましい。なぜなら、析出Nの分析法について種々の方法を検討したが、本発明で採用した定電位電解法を用いた電解抽出による溶解法を適用する方法が最も良く材質の変化と対応したためである。なお、電解液としては、アセチルアセトン系を用いることが好ましい。定電位電解法を用いた電解抽出による溶解法にて抽出した残渣を化学分析し、この残渣中のN量を求め、これを析出N量とした。また、さらに大きな強度および延性バランスが必要な場合は、固溶Nを0.0090mass%以上とすることが有効である。
N in solid solution: 0.0050 mass% or more In order to stabilize austenite and to secure a sufficient amount of retained austenite to improve the strength-ductility balance, N in the solid solution state is approximately 0.0050 mass% or more. There must be.
Here, the solid solution N is a value obtained by subtracting the precipitation N from the total N amount in the steel, but this precipitation N is preferably obtained by a dissolution method by electrolytic extraction. This is because, although various methods have been examined for the analysis method of the precipitated N, the method of applying the dissolution method by electrolytic extraction using the constant potential electrolysis method employed in the present invention best corresponds to the change in material. In addition, it is preferable to use an acetylacetone system as the electrolytic solution. The residue extracted by the dissolution method by electrolytic extraction using the constant potential electrolysis method was chemically analyzed to determine the amount of N in the residue, and this was defined as the amount of precipitated N. Further, when a greater strength and ductility balance is required, it is effective that the solid solution N is 0.0090 mass% or more.

本発明では、上記した成分に加えてさらに下記成分を適宜含有することができる。
Cr:0.05〜1.0 mass%、Mo:0.05〜1.0 mass%およびNi:0.05〜1.0 mass%のうちから選ばれる1種または2種以上
Cr、MoおよびNiは、焼入れ性を向上させ鋼板の強度を増加させるとともに、残留オーステナイトの分布状態を微細分散とする作用を有し、強度−延性バランスをさらに向上させる効果を有する元素である。このような効果は、それぞれ0.05mass%以上の含有で認められる。一方、1.0mass%を超える範囲では、成形性を阻害する。このため、Cr、MoおよびNiは、それぞれ0.05〜1.0mass%の範囲で添加することが好ましい。
In the present invention, in addition to the above-described components, the following components can be appropriately contained.
One or more selected from Cr: 0.05-1.0 mass%, Mo: 0.05-1.0 mass% and Ni: 0.05-1.0 mass%
Cr, Mo, and Ni are elements that have the effect of improving hardenability and increasing the strength of the steel sheet as well as making the distribution of retained austenite finely dispersed, and further improving the strength-ductility balance. Such an effect is recognized by each containing 0.05 mass% or more. On the other hand, in the range exceeding 1.0 mass%, moldability is inhibited. For this reason, it is preferable to add Cr, Mo, and Ni in the range of 0.05 to 1.0 mass%, respectively.

Nb、Ti、VおよびBのうちから選ばれる1種または2種以上を、
N/(Al+Nb+Ti+V+B)≧0.3(N、Al、Nb、Ti、V、B:各元素の含有量:mass%)
を満足する範囲で含有する
Nb、TiおよびVは、いずれも鋼を析出強化する作用があり、所望の強度に応じて必要量含有することができる。この効果を得るには、Nb:0.002mass%以上、Ti:0.002mass%以上およびV:0.002mass%以上とすることが好ましく、必要に応じて選択して単独または複合して含有できる。しかし、含有量が多すぎると、熱間変形抵抗が増加したり、硬質化して延性を損なうため、Nb、TiおよびVの合計で0.1mass%以下とすることが好ましい。
Bは、鋼の焼入れ性を向上し低温変態相の分率を増加させて鋼を強化する作用があり、所望の強度に応じて必要量含有することができる。この効果を得るにはB:0.0002mass%以上とすることが好ましい。しかし、含有量が多すぎると、熱間変形能が低下するとともに、硬質化して延性を損なうため、Bは0.0030mass%以下とすることが好ましい。
ただし、これらNb、Ti、VおよびBはAlと同様に窒化物を形成するため過剰に添加すると、固溶N量の低下を招き強度−延性バランスの向上が達成されない危険がある。このため、Nb、Ti、VおよびBを単独添加または複合添加する場合は、
N/(Al+Nb+Ti+V+B)≧0.3
を満足する範囲で添加する。
なお、Nb、Ti、V、Bを添加しない場合も、N/Al≧0.3を満足させることが、固溶N量を確保する上で好ましい。
One or more selected from Nb, Ti, V and B,
N / (Al + Nb + Ti + V + B) ≧ 0.3 (N, Al, Nb, Ti, V, B: content of each element: mass%)
In a range that satisfies
Nb, Ti and V all have the effect of precipitation strengthening steel, and can be contained in a necessary amount depending on the desired strength. In order to acquire this effect, it is preferable to set it as Nb: 0.002 mass% or more, Ti: 0.002 mass% or more, and V: 0.002 mass% or more, It can select as needed and can contain individually or in combination. However, if the content is too large, the hot deformation resistance increases or hardens to impair ductility. Therefore, the total content of Nb, Ti and V is preferably 0.1 mass% or less.
B has the effect | action which improves the hardenability of steel and increases the fraction of a low-temperature transformation phase, and strengthens steel, and can be contained in a required quantity according to desired intensity | strength. In order to acquire this effect, it is preferable to set it as B: 0.0002 mass% or more. However, if the content is too large, the hot deformability is lowered and the material is hardened to impair ductility. Therefore, B is preferably 0.0030 mass% or less.
However, these Nb, Ti, V, and B form nitrides in the same manner as Al, and if added excessively, there is a risk that the amount of solid solution N is reduced and the improvement of the strength-ductility balance is not achieved. For this reason, when Nb, Ti, V and B are added alone or in combination,
N / (Al + Nb + Ti + V + B) ≧ 0.3
Is added in a range that satisfies the above.
Even when Nb, Ti, V, and B are not added, it is preferable to satisfy N / Al ≧ 0.3 from the viewpoint of securing the amount of dissolved N.

なお、本発明では、上記した成分以外については、特に限定していないが、Ca、ZrおよびREM等を通常の鋼組成の範囲内であれば含有させてもなんら問題はない。
また、上記した成分以外の残部はFeおよび不可避的不純物である。不可避的不純物としては、例えばSb、Sn、Zn、Co等が挙げられ、これらの含有量の許容範囲としては、Sb:0.01mass%以下、Sn:0.1mass%以下、Zn:0.01mass%以下およびCo:0.1mass%以下の範囲である。
In the present invention, the components other than those described above are not particularly limited, but there is no problem even if Ca, Zr, REM and the like are contained within the range of the normal steel composition.
Further, the balance other than the above components is Fe and inevitable impurities. Inevitable impurities include, for example, Sb, Sn, Zn, Co, etc. The allowable ranges of these contents are Sb: 0.01 mass% or less, Sn: 0.1 mass% or less, Zn: 0.01 mass% or less and Co: The range is 0.1 mass% or less.

次に、本発明鋼板のミクロ組織について説明する。
本発明の熱延鋼板は、組織全体に対して60〜94vol%の主相であるフェライト相と、第二相として、組織全体に対して3〜30 vol%のベイナイト相および3vol%以上の残留オーステナイト相とを含む複合組織を有するものとする。
すなわち、主相であるフェライト相が、組織全体に対する体積率で60 vol%未満では、高度な加工性が要求される自動車用鋼板として必要な高い延性を確保することが困難となり、プレス成形性が低下する傾向となる。また、さらなる良好な延性が必要とされる用途では、フェライト相は組織全体に対する面積率で70 vol%以上とするのが好ましい。なお、複合組織の利点を利用するため、フェライト相は94 vol%以下とする必要がある。このため、フェライト相は組織全体に対して60〜94 vol%とする。
Next, the microstructure of the steel sheet of the present invention will be described.
The hot-rolled steel sheet of the present invention has a ferrite phase that is 60 to 94 vol% of the main phase with respect to the entire structure, and 3 to 30 vol% of the bainite phase and 3 vol% or more of the residual phase as the second phase. It shall have a composite structure containing an austenite phase.
In other words, if the ferrite phase, which is the main phase, is less than 60 vol% in terms of the volume ratio relative to the entire structure, it becomes difficult to ensure the high ductility required for automobile steel sheets that require high workability, and press formability is reduced. It tends to decrease. In applications where further good ductility is required, the ferrite phase is preferably 70 vol% or more in terms of the area ratio relative to the entire structure. In order to take advantage of the composite structure, the ferrite phase needs to be 94 vol% or less. For this reason, a ferrite phase shall be 60-94 vol% with respect to the whole structure | tissue.

また、ベイナイト相が、組織全体に対して3vol%未満では、高い強度−延性バランスを確保することができない。なお、さらに良好な強度−延性バランスが要求される場合は、ベイナイト相は5vol%以上とするのが好ましい。ベイナイト相が30 vol%を超えると、延性の劣化が著しくなる。このためベイナイト相は3〜30 vol%とした。   Moreover, if a bainite phase is less than 3 vol% with respect to the whole structure | tissue, a high intensity-ductility balance cannot be ensured. When a better strength-ductility balance is required, the bainite phase is preferably 5 vol% or more. When the bainite phase exceeds 30 vol%, the ductility deteriorates remarkably. For this reason, the bainite phase was 3-30 vol%.

さらに、本発明の熱延鋼板では、高い強度−延性バランスを確保するために、3vol%以上、好適には5vol%以上の残留オーステナイト相を含有する。これにより、強度−延性バランス(TS×El)として、微量のSi含有鋼としては非常に高い、19000MPa・%以上を確保できる。残留オーステナイト相の含有率の上限は特に限定しないが、実質的には15 vol%程度と考えられる。   Furthermore, in order to ensure a high strength-ductility balance, the hot-rolled steel sheet of the present invention contains a residual austenite phase of 3 vol% or more, preferably 5 vol% or more. As a result, the strength-ductility balance (TS × El) can be secured to 19000 MPa ·% or more, which is very high as a trace amount of Si-containing steel. The upper limit of the residual austenite phase content is not particularly limited, but is considered to be substantially about 15 vol%.

なお、上記した主相および第二相以外に、若干量(30 vol%以下)のマルテンサイト相またはパーライト相が許容できる。   In addition to the main phase and the second phase described above, a slight amount (30 vol% or less) of martensite phase or pearlite phase is acceptable.

最後に、製造条件の限定理由について説明する。
まず、スラブは、成分のマクロな偏析を防止すべく連続鋳造法で製造することが望ましいが、造塊法や薄スラブ鋳造法によっても製造可能である。また、スラブを製造したのち、一旦室温まで冷却し、その後再度加熱する従来法に加え、冷却しないで、温片のままで加熱炉に挿入する、あるいはわずかの保熱を行った後に直ちに圧延する、直送圧延・直接圧延などの省エネルギープロセスも問題なく適用できる。特に、固溶状態のNを有効に確保するには、直送圧延が有用な技術の一つである。
Finally, the reason for limiting the manufacturing conditions will be described.
First, the slab is desirably produced by a continuous casting method in order to prevent macro segregation of components, but can also be produced by an ingot-making method or a thin slab casting method. In addition to the conventional method in which the slab is manufactured and then cooled to room temperature and then heated again, without being cooled, it is inserted into a heating furnace as it is, or rolled immediately after being kept warm. Energy-saving processes such as direct rolling and direct rolling can also be applied without problems. In particular, direct feed rolling is one of the useful techniques for effectively securing N in a solid solution state.

熱延条件については以下のように規定される。
スラブ加熱温度:1100〜1300℃
スラブ加熱温度は、初期状態として固溶状態のNを確保するという観点から、1100℃以上とする必要がある。一方、1300℃を超えると、酸化重量の増加にともなう鋼のロスの増大などが顕著になるとともに、オーステナイト粒の粗大化によりフェライト変態が遅延するため、所望の強度−延性バランス(TS×El)を得るのが困難になる。
The hot rolling conditions are specified as follows.
Slab heating temperature: 1100-1300 ° C
The slab heating temperature needs to be 1100 ° C. or higher from the viewpoint of securing N in a solid solution state as an initial state. On the other hand, when the temperature exceeds 1300 ° C, the increase in steel loss with increasing oxidation weight becomes remarkable, and the ferrite transformation is delayed due to the coarsening of austenite grains, so the desired strength-ductility balance (TS x El) It becomes difficult to get.

熱間圧延時の仕上圧延温度:Ar〜(Ar+50℃)
仕上圧延温度がAr点を下まわると、鋼板の組織が不均一になり、ともに表層に粗大粒が発生するため加工性が低下する。従って、仕上圧延温度はAr点以上とした。一方、(Ar+50℃)よりも高い温度で圧延した場合は、仕上圧延後のフェライト変態前のオーステナイトの粒径が粗大化するとともに、歪みの蓄積が不充分となりフェライト変態が遅延するため、所望の強度−延性バランス(TS×El)を得るのが困難になる。
Finishing rolling temperature during hot rolling: Ar 3 to (Ar 3 + 50 ° C)
When the finish rolling temperature is below the Ar 3 point, the structure of the steel sheet becomes non-uniform, and coarse grains are generated in the surface layer, resulting in a decrease in workability. Therefore, the finish rolling temperature is set to Ar 3 points or more. On the other hand, when rolling at a temperature higher than (Ar 3 + 50 ° C.), the grain size of austenite before the ferrite transformation after finish rolling becomes coarse, and the accumulation of strain becomes insufficient and the ferrite transformation is delayed. It becomes difficult to obtain a desired strength-ductility balance (TS × El).

ここで、Ar3点(Ar3変態点ともいう)は以下に記す方法で測定すればよい。すなわち、直径6mmおよび高さ12mmの円筒形に加工した鋼の試料を900℃に加熱し、5分間均熱した後に円筒軸方向に50%の圧縮加工を施す。加工後は直ちに10℃/sの一定の冷却速度で冷却をする。冷却過程では熱膨張、収縮に起因する円筒軸方向の長さ変化を測定し、収縮から膨張に変化する点を読み取り、このときの温度をAr3変態点として測定する。 Here, the Ar 3 point (also referred to as Ar 3 transformation point) may be measured by the method described below. That is, a steel sample processed into a cylindrical shape having a diameter of 6 mm and a height of 12 mm is heated to 900 ° C., soaked for 5 minutes, and then subjected to a compression process of 50% in the cylindrical axis direction. Immediately after processing, it is cooled at a constant cooling rate of 10 ° C / s. In the cooling process, the length change in the cylindrical axis direction due to thermal expansion and contraction is measured, the point where the contraction changes to expansion is read, and the temperature at this time is measured as the Ar 3 transformation point.

仕上圧延の合計の圧下率:90%以上
微量のSi添加において、充分なフェライト変態をさせるためには、仕上圧延後のフェライト変態前のオーステナイトに歪みを蓄積させて、フェライト変態の核生成サイトを増大させる必要がある。この効果を有効に発揮させるためには、仕上圧延中に合計で90%以上の圧下率の圧延を施す必要がある。
ここで、仕上圧延における合計の圧下率とは、仕上圧延前の板厚(シートバー厚)をt0、仕上圧延後の板厚をt1とすると、
{(to−t1)/to}×100(%)で算出される。
Total rolling reduction of finish rolling: 90% or more To achieve sufficient ferrite transformation with a small amount of Si addition, strain is accumulated in austenite after finish rolling and before ferrite transformation. Need to increase. In order to exhibit this effect effectively, it is necessary to perform rolling with a reduction ratio of 90% or more in total during finish rolling.
Here, the total rolling reduction in finish rolling is the thickness (sheet bar thickness) before finish rolling is t 0 , and the thickness after finish rolling is t 1 .
It is calculated by {(t o −t 1 ) / t o } × 100 (%).

この仕上圧延後は、3秒以内に冷却速度が20℃/s以上の冷却を開始する。
冷却の開始が3秒を超える場合には、蓄積した変態前のオーステナイトの歪みが解放されるためフェライト変態が遅延する。また、冷却速度は速い方がフェライト変態の駆動量増大の観点から好ましい。この効果を有効に発揮させるためには、20℃/s以上の冷却速度が必要である。
After this finish rolling, cooling at a cooling rate of 20 ° C./s or more is started within 3 seconds.
When the start of cooling exceeds 3 seconds, the ferrite transformation is delayed because the accumulated strain of austenite before transformation is released. A faster cooling rate is preferable from the viewpoint of increasing the driving amount of the ferrite transformation. In order to exhibit this effect effectively, a cooling rate of 20 ° C./s or more is required.

680〜760℃の範囲内で冷却を停止し、その後3〜30秒の空冷を施す。
上記冷却をフェライト変態速度の速い温度域にて一時停止し、空冷を施すことにより、空冷中にオーステナイト相へのC,Nの濃化が進行し、これを安定化させることができる。
冷却停止温度が680℃よりも低い場合および760℃よりも高い場合には、フェライト変態速度が小さいために、上記効果が小さい。また、空冷時間が3秒未満の場合には、C,Nの濃化のための時間的余裕が少なくなり、オーステナイトの安定化が不十分となる。一方、30秒を超える場合にはパーライトの生成が顕著になるとともに、C,Nが炭化物や窒化物として析出してしまい、所望の鋼組織および固溶Nを確保することが困難になる。
Cooling is stopped within the range of 680 to 760 ° C, and then air cooling is performed for 3 to 30 seconds.
By temporarily stopping the cooling in a temperature range where the ferrite transformation speed is fast and performing air cooling, the concentration of C and N into the austenite phase proceeds during air cooling, and this can be stabilized.
When the cooling stop temperature is lower than 680 ° C. or higher than 760 ° C., the above effect is small because the ferrite transformation rate is low. Moreover, when the air cooling time is less than 3 seconds, the time margin for concentration of C and N is reduced, and the stabilization of austenite becomes insufficient. On the other hand, when it exceeds 30 seconds, the formation of pearlite becomes remarkable, and C and N are precipitated as carbides and nitrides, and it becomes difficult to secure a desired steel structure and solid solution N.

再度、冷却速度が20℃/s以上の冷却を施す。
上記空冷後の冷却速度が20℃/s未満の場合には、パーライトの生成が顕著になるとともに、C,Nが炭化物や窒化物として析出してしまい、所望の鋼組織および固溶Nを確保することが困難になる。
Again, cool at a cooling rate of 20 ° C / s or higher.
When the cooling rate after the air cooling is less than 20 ° C./s, the formation of pearlite becomes remarkable, and C and N are precipitated as carbides and nitrides, and a desired steel structure and solid solution N are secured. It becomes difficult to do.

熱延巻き取り温度:350〜500℃
巻取後の冷却過程においては、安定化させたオーステナイト中からベイナイト変態が進行し、C,Nの濃化がさらに進行して一層のオーステナイトの安定化が成されるため、室温においても残留オーステナイト相を得ることができる。
すなわち、巻取温度が350℃よりも低い場合および500℃よりも高い場合には、ベイナイト変態が効果的に生じないため、所望の残留γ量を得る事が困難になる。
Hot rolling temperature: 350-500 ° C
In the cooling process after winding, the bainite transformation proceeds from the stabilized austenite, and the concentration of C and N further proceeds to further stabilize the austenite. A phase can be obtained.
That is, when the coiling temperature is lower than 350 ° C. and higher than 500 ° C., the bainite transformation does not effectively occur, and it becomes difficult to obtain a desired residual γ amount.

巻取後、巻取温度〜300℃までの冷却速度を3℃/min以下で冷却
巻取温度〜300℃までの冷却速度が3℃/minを超えると、上記したベイナイト変態が効果的に生じないため、所望の残留γ量を得る事が困難になる。
なお、該冷却速度を3℃/mim以下とするには、例えば巻き取る際の鋼帯コイルの大きさ(コイル単重)を調整したり、保温のための容器に封入し、放熱を抑制するなどすればよい。
また、熱間圧延後は酸洗、そして調質圧延を施し製品とされるが、これらは通常公知の方法によって行えばよい。
After winding, the cooling rate from the coiling temperature to 300 ° C is 3 ° C / min or less. When the cooling rate from the coiling temperature to 300 ° C exceeds 3 ° C / min, the above-described bainite transformation occurs effectively. Therefore, it becomes difficult to obtain a desired amount of residual γ.
In order to reduce the cooling rate to 3 ° C./mim or less, for example, the size of the steel strip coil (coil weight) when winding is adjusted or sealed in a container for heat insulation to suppress heat dissipation. And so on.
Further, after hot rolling, pickling and temper rolling are performed to obtain a product, which may be performed by a generally known method.

表1に示す成分組成の溶鋼を転炉で溶製し、連続鋳造法でスラブとした。ついで、これら鋼スラブを表2に示す熱延条件により、板厚2.0mmの熱延鋼板とした。ここで、巻取り後の冷却速度(巻取後冷速)は、コイル単重にて調整した。引き続き、これら熱延鋼板(熱延鋼帯ともいう)を酸洗後、伸び率1.5%の調質圧延を施した。得られた鋼板から試験片を採取し、下記に示す方法で組織観察、引張試験、そして表面性状の評価を実施した。
なお、表1中のAr3は、表1の各々の成分組成の鋼を試料として前記の方法で求めたAr3変態点である。
Molten steel having the composition shown in Table 1 was melted in a converter and made into a slab by a continuous casting method. Subsequently, these steel slabs were made into hot-rolled steel sheets having a thickness of 2.0 mm under the hot-rolling conditions shown in Table 2. Here, the cooling rate after winding (cooling speed after winding) was adjusted by the single coil weight. Subsequently, these hot-rolled steel sheets (also called hot-rolled steel strips) were pickled and temper-rolled with an elongation of 1.5%. Test specimens were collected from the obtained steel plates, and the structure observation, the tensile test, and the evaluation of the surface properties were performed by the following methods.
In addition, Ar 3 in Table 1 is an Ar 3 transformation point obtained by the above method using steels having respective component compositions in Table 1 as samples.

Figure 2005307339
Figure 2005307339

Figure 2005307339
Figure 2005307339

(1)組織観察
得られた熱延鋼帯から試験片を採取し、圧延方向に直交する断面(C断面)について、光学顕微鏡あるいは走査型電子顕微鏡を用いて微視組織を撮像し、画像解析装置を用いて、主相としてのフェライト相、第二相としてのベイナイトおよびパーライトなどの鋼組織の種類の同定を行い、それらの組織分率(面積率)を求め、これを体積率(vol%)とした。
なお、固溶N量は、化学分析により得た全N量から定電位電解法により測定した析出N量を差し引いた値とした。
また、残留γ量は、鋼板の板厚1/4付近の面でX線回折法により、オーステナイト相の(211)および(220)とフェライト相の(200)、(220)面のピーク強度から残留オーステナイト相の体積率を算出した。
(1) Microstructure observation Specimens were taken from the obtained hot-rolled steel strip, and the microscopic structure was imaged using an optical microscope or a scanning electron microscope, and image analysis was performed on the cross section (C cross section) perpendicular to the rolling direction. Using the apparatus, the types of steel structures such as the ferrite phase as the main phase and the bainite and pearlite as the second phase were identified, and their structure fraction (area ratio) was determined. ).
The amount of solid solution N was a value obtained by subtracting the amount of precipitated N measured by the constant potential electrolysis method from the total amount of N obtained by chemical analysis.
The amount of residual γ is calculated from the peak intensities of the (211) and (220) of the austenite phase and the (200) and (220) surfaces of the ferrite phase by X-ray diffractometry on the surface near the plate thickness of 1/4. The volume fraction of the residual austenite phase was calculated.

(2)引張試験
得られた熱延鋼帯から長軸を圧延方向に直交する方向としたJIS 5号引張試験片を採取し、JIS Z 2241の規定に準拠して引張試験を行い、引張特性(降伏応力(YS)、引張強さ(TS)、伸び(El))を求めた。
(2) Tensile test A JIS No. 5 tensile test piece with the long axis perpendicular to the rolling direction was collected from the obtained hot-rolled steel strip, and subjected to a tensile test in accordance with the provisions of JIS Z 2241. (Yield stress (YS), tensile strength (TS), elongation (El)) were determined.

(3)表面性状
表面性状は、鋼板表面を目視で観察し、表面模様の程度を以下のように5段階で評価した。評価値が4以上であれば、実用上問題無いレベルのものである。
5:模様なし
4:模様微少
3:模様少
2:模様中
1:模様多
(3) Surface texture The surface texture was evaluated by visually observing the surface of the steel sheet and evaluating the degree of the surface pattern in five stages as follows. If the evaluation value is 4 or more, it is a level with no practical problem.
5: No pattern 4: Small pattern 3: Small pattern 2: Medium pattern 1: Large pattern

(4)溶接特性
溶接特性は、JIS Z 3136、同Z 3137に準拠して、スポット溶接点の剪断引張強度および十字引張強度を測定した。スポット溶接は、2枚重ねで実施し、電極は先端径8mmΦのDR型、加圧力は5.0kN、溶接電流値は10kA、溶接時間は19サイクル(50Hz)、通電後の加圧保持時間は5サイクル(50Hz)とした。これより延性比(十字引張強度/剪断引張強度)を算出し、溶接特性を評価した。この値は、溶接面に対して垂直方向の強度が低くなると小さくなるため、高い値ほど良好な溶接特性である。
(4) Welding characteristics As for the welding characteristics, the shear tensile strength and the cross tensile strength at the spot weld point were measured in accordance with JIS Z3136 and Z3137. Spot welding is performed in two layers, the electrode is a DR type with a tip diameter of 8 mmΦ, the applied pressure is 5.0 kN, the welding current value is 10 kA, the welding time is 19 cycles (50 Hz), and the pressure holding time after energization is 5 The cycle (50 Hz) was used. From this, the ductility ratio (cross tensile strength / shear tensile strength) was calculated, and the welding characteristics were evaluated. Since this value decreases as the strength in the direction perpendicular to the weld surface decreases, the higher the value, the better the welding characteristics.

以上の測定結果を表3に示す。本発明例は、いずれも引張強さ(TS)が590MPa以上の高張力を有しているとともに、3vol%以上の残留γ量を有するため19000MPa・%以上の高い強度−延性バランス(TS×El)を示している。また、表面性状の評点はいずれも4以上と良好であり、溶接特性は延性比が0.5以上と良好である。   The above measurement results are shown in Table 3. Each of the examples of the present invention has a high tensile strength (TS) of 590 MPa or more and a residual γ amount of 3 vol% or more, so a high strength-ductility balance of 19000 MPa ·% or more (TS × El ). Further, the scores of the surface properties are all good at 4 or more, and the welding characteristics are good at a ductility ratio of 0.5 or more.

Figure 2005307339
Figure 2005307339

残留γ量とTS×Elとの関係を示す図である。It is a figure which shows the relationship between residual gamma amount and TSxEl. 固溶N量と残留γ量との関係を示す図である。It is a figure which shows the relationship between the amount of solid solution N, and the amount of residual (gamma). 空冷時間と残留γ量との関係を示す図である。It is a figure which shows the relationship between air cooling time and residual gamma amount. 仕上圧延の合計の圧下率と残留γ量との関係を示す図である。It is a figure which shows the relationship between the total rolling reduction of finish rolling, and residual γ amount. 巻取温度と残留γ量との関係を示す図である。It is a figure which shows the relationship between coiling temperature and residual gamma amount. 巻取後冷却速度と残留γ量との関係を示す図である。It is a figure which shows the relationship between the cooling rate after winding, and residual γ amount.

Claims (6)

C:0.05〜0.15 mass%、
Si:0.005〜0.8 mass%、
Mn:1.0〜3.0 mass%、
P:0.005〜0.08 mass%、
S:0.0002〜0.005 mass%、
Al:0.001〜0.05 mass%および
N:0.0090〜0.025 mass%
を含有し、かつ固溶状態のN:0.0050mass%以上を含み、残部がFeおよび不可避的不純物の成分組成に成り、60〜94vol%のフェライト相、3〜30 vol%のベイナイト相および3vol%以上の残留オーステナイト相を含む複合組織を有することを特徴とする強度−延性バランスに優れた高張力熱延鋼板。
C: 0.05-0.15 mass%,
Si: 0.005-0.8 mass%,
Mn: 1.0-3.0 mass%
P: 0.005-0.08 mass%,
S: 0.0002 to 0.005 mass%,
Al: 0.001 to 0.05 mass% and N: 0.0090 to 0.025 mass%
N: 0.0050 mass% or more in a solid solution state, with the balance being a component composition of Fe and inevitable impurities, 60 to 94 vol% ferrite phase, 3 to 30 vol% bainite phase and 3 vol% A high-tensile hot-rolled steel sheet excellent in strength-ductility balance, characterized by having a composite structure containing the above-mentioned residual austenite phase.
前記成分としてさらに、Cr:0.05〜1.0 mass%、Mo:0.05〜1.0 mass%およびNi:0.05〜1.0 mass%のうちから選ばれる1種または2種以上を含有することを特徴とする請求項1に記載の強度−延性バランスに優れた高張力熱延鋼板。   The composition further comprises one or more selected from Cr: 0.05 to 1.0 mass%, Mo: 0.05 to 1.0 mass%, and Ni: 0.05 to 1.0 mass%. A high-tensile hot-rolled steel sheet excellent in the strength-ductility balance described in 1. 前記成分としてさらに、Nb、Ti、VおよびBのうちから選ばれる1種または2種以上を、下記式を満足する範囲で含有することを特徴とする請求項1または2に記載の強度−延性バランスに優れた高張力熱延鋼板。

N/(Al+Nb+Ti+V+B)≧0.3
ここで、N、Al、Nb、Ti、V、B:各元素の含有量(mass%)
The strength-ductility according to claim 1 or 2, wherein the component further contains one or more selected from Nb, Ti, V and B within a range satisfying the following formula. High-tensile hot-rolled steel sheet with excellent balance.
N / (Al + Nb + Ti + V + B) ≧ 0.3
Here, N, Al, Nb, Ti, V, B: Content of each element (mass%)
C:0.05〜0.15 mass%、
Si:0.005〜0.8 mass%、
Mn:1.0〜3.0 mass%、
P:0.005〜0.08 mass%、
S:0.0002〜0.005 mass%、
Al:0.001〜0.05 mass%および
N:0.0090〜0.025 mass%
を含有し、残部はFeおよび不可避的不純物より成る鋼スラブを、1100〜1300℃に加熱し、粗圧延後に、仕上圧延出側温度がAr〜(Ar+50)℃でかつ合計の圧下率が90%以上の仕上圧延を施し、その後3秒以内に冷却速度が20℃/s以上の冷却を開始し、該冷却を680〜760℃の温度範囲内で一旦停止し、3〜30秒の空冷を施した後、再度冷却速度が20℃/s以上の冷却を施し、次いで350〜500℃で巻取ったのち、巻取温度〜300℃までを3℃/min以下の冷却速度で冷却することを特徴とする強度−延性バランスに優れた高張力熱延鋼板の製造方法。
C: 0.05-0.15 mass%,
Si: 0.005-0.8 mass%,
Mn: 1.0-3.0 mass%
P: 0.005-0.08 mass%,
S: 0.0002 to 0.005 mass%,
Al: 0.001 to 0.05 mass% and N: 0.0090 to 0.025 mass%
The remainder of the steel slab containing Fe and inevitable impurities is heated to 1100-1300 ° C, and after rough rolling, the finish rolling exit temperature is Ar 3 to (Ar 3 +50) ° C and the total reduction rate Is subjected to finish rolling of 90% or more, and then cooling is started at a cooling rate of 20 ° C./s or more within 3 seconds, and the cooling is temporarily stopped within a temperature range of 680 to 760 ° C. for 3 to 30 seconds. After air cooling, cooling at a cooling rate of 20 ° C / s or more is performed again, and after winding at 350 to 500 ° C, the winding temperature is cooled to 300 ° C at a cooling rate of 3 ° C / min or less. A method for producing a high-tensile hot-rolled steel sheet having an excellent strength-ductility balance.
前記鋼スラブが、さらに、Cr:0.05〜1.0 mass%、Mo:0.05〜1.0 mass%およびNi:0.05〜1.0 mass%のうちから選ばれる1種または2種以上を含有することを特徴とする請求項4に記載の強度−延性バランスに優れた高張力熱延鋼板。   The steel slab further contains one or more selected from Cr: 0.05 to 1.0 mass%, Mo: 0.05 to 1.0 mass%, and Ni: 0.05 to 1.0 mass%. Item 5. A high-tensile hot-rolled steel sheet excellent in the strength-ductility balance according to Item 4. 前記鋼スラブが、さらに、Nb、Ti、VおよびBのうちから選ばれる1種または2種以上を、下記式を満足する範囲で含有することを特徴とする請求項4または5に記載の強度−延性バランスに優れた高張力熱延鋼板。

N/(Al+Nb+Ti+V+B)≧0.3
ここで、N、Al、Nb、Ti、V、B:各元素の含有量(mass%)
The strength according to claim 4 or 5, wherein the steel slab further contains one or more selected from Nb, Ti, V and B in a range satisfying the following formula. -A high-tensile hot-rolled steel sheet with excellent ductility balance.
N / (Al + Nb + Ti + V + B) ≧ 0.3
Here, N, Al, Nb, Ti, V, B: Content of each element (mass%)
JP2005048936A 2004-03-22 2005-02-24 High-tensile hot-rolled steel sheet with excellent strength-ductility balance and method for producing the same Expired - Fee Related JP4692018B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005048936A JP4692018B2 (en) 2004-03-22 2005-02-24 High-tensile hot-rolled steel sheet with excellent strength-ductility balance and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004083118 2004-03-22
JP2004083118 2004-03-22
JP2005048936A JP4692018B2 (en) 2004-03-22 2005-02-24 High-tensile hot-rolled steel sheet with excellent strength-ductility balance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005307339A true JP2005307339A (en) 2005-11-04
JP4692018B2 JP4692018B2 (en) 2011-06-01

Family

ID=35436431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005048936A Expired - Fee Related JP4692018B2 (en) 2004-03-22 2005-02-24 High-tensile hot-rolled steel sheet with excellent strength-ductility balance and method for producing the same

Country Status (1)

Country Link
JP (1) JP4692018B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009132949A (en) * 2007-11-28 2009-06-18 Kobe Steel Ltd Steel material with excellent cold workability, and cold worked parts
JP2011509341A (en) * 2007-12-20 2011-03-24 ポスコ High-strength cold-rolled steel sheet excellent in workability, galvanized steel sheet, and manufacturing method thereof
JP2011144425A (en) * 2010-01-15 2011-07-28 Jfe Steel Corp High-tension hot-rolled steel sheet having high baking hardenability and excellent formability for extension flange and method for manufacturing the same
JP2011202192A (en) * 2010-03-24 2011-10-13 Nisshin Steel Co Ltd Method for producing steel sheet for heat treatment and steel member
TWI425099B (en) * 2010-03-31 2014-02-01 Jfe Steel Corp High-tensile, hot-rolled steel sheet with improved workability, and method of manufacturing the same
KR101630982B1 (en) * 2014-12-16 2016-06-16 주식회사 포스코 High strength hot rolled steel sheet having excellent bendability andbake hardenability and method for manufacturing thereof
JP2016166388A (en) * 2015-03-09 2016-09-15 新日鐵住金株式会社 Steel material, steel structure for burying underground and manufacturing method of steel material
CN109563601A (en) * 2016-08-09 2019-04-02 株式会社Posco High tensile hot rolled steel sheet and its manufacturing method with low inhomogeneities and excellent surface quality
US10301698B2 (en) 2012-01-31 2019-05-28 Jfe Steel Corporation Hot-rolled steel sheet for generator rim and method for manufacturing the same
JP2021031701A (en) * 2019-08-20 2021-03-01 日本製鉄株式会社 Hot-rolled steel sheet and method for manufacturing the same
WO2022108220A1 (en) * 2020-11-17 2022-05-27 주식회사 포스코 High-strength hot-rolled steel sheet, hot-rolled plated steel sheet, and manufacturing methods therefor

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0565566B2 (en) * 1988-02-29 1993-09-20
JPH0567682B2 (en) * 1987-06-03 1993-09-27 Nippon Steel Corp
JPH0641617B2 (en) * 1986-06-24 1994-06-01 新日本製鐵株式会社 Method for manufacturing hot rolled high strength steel sheet with excellent workability
JPH1143725A (en) * 1997-05-29 1999-02-16 Kawasaki Steel Corp Production of high strength and high workability hot rolled steel sheet excellent in impact resistance
JP2000297350A (en) * 1999-02-09 2000-10-24 Kawasaki Steel Corp High tensile strength hot rolled steel plate excellent in baking hardenability, fatigue resistance, impact resistance and ordinary temperature aging resistance and its production
JP2001131704A (en) * 1999-11-05 2001-05-15 Kawasaki Steel Corp Steel tube for hydroforming, hot rolled stock for steel tube and producing method therefor
JP2001131703A (en) * 1999-11-05 2001-05-15 Kawasaki Steel Corp High strength steel tube and producing method therefor
JP2001226744A (en) * 2000-02-15 2001-08-21 Kawasaki Steel Corp High tensile strength for rolled steel sheet excellent in backing hardenability and impact resistance and producing method therefor
JP2001234282A (en) * 2000-02-21 2001-08-28 Kawasaki Steel Corp High tensile strength hot rolled steel sheet excellent in warm press formability and producing method therefor
JP2002030385A (en) * 2000-07-18 2002-01-31 Kawasaki Steel Corp High tensile strength and high workability hot rolled steel sheet excellent in strain age hardening characteristic and its production method
JP2002047536A (en) * 2000-02-23 2002-02-15 Kawasaki Steel Corp High tensile strength hot rolled steel plate having excellent strain age hardenability and its manufacturing method
JP2003268491A (en) * 2002-03-13 2003-09-25 Jfe Steel Kk High-strength steel sheet for working member, production method thereof, and production method for working member having working plane excellent in abrasion resistance

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0641617B2 (en) * 1986-06-24 1994-06-01 新日本製鐵株式会社 Method for manufacturing hot rolled high strength steel sheet with excellent workability
JPH0567682B2 (en) * 1987-06-03 1993-09-27 Nippon Steel Corp
JPH0565566B2 (en) * 1988-02-29 1993-09-20
JPH1143725A (en) * 1997-05-29 1999-02-16 Kawasaki Steel Corp Production of high strength and high workability hot rolled steel sheet excellent in impact resistance
JP2000297350A (en) * 1999-02-09 2000-10-24 Kawasaki Steel Corp High tensile strength hot rolled steel plate excellent in baking hardenability, fatigue resistance, impact resistance and ordinary temperature aging resistance and its production
JP2001131704A (en) * 1999-11-05 2001-05-15 Kawasaki Steel Corp Steel tube for hydroforming, hot rolled stock for steel tube and producing method therefor
JP2001131703A (en) * 1999-11-05 2001-05-15 Kawasaki Steel Corp High strength steel tube and producing method therefor
JP2001226744A (en) * 2000-02-15 2001-08-21 Kawasaki Steel Corp High tensile strength for rolled steel sheet excellent in backing hardenability and impact resistance and producing method therefor
JP2001234282A (en) * 2000-02-21 2001-08-28 Kawasaki Steel Corp High tensile strength hot rolled steel sheet excellent in warm press formability and producing method therefor
JP2002047536A (en) * 2000-02-23 2002-02-15 Kawasaki Steel Corp High tensile strength hot rolled steel plate having excellent strain age hardenability and its manufacturing method
JP2002030385A (en) * 2000-07-18 2002-01-31 Kawasaki Steel Corp High tensile strength and high workability hot rolled steel sheet excellent in strain age hardening characteristic and its production method
JP2003268491A (en) * 2002-03-13 2003-09-25 Jfe Steel Kk High-strength steel sheet for working member, production method thereof, and production method for working member having working plane excellent in abrasion resistance

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009132949A (en) * 2007-11-28 2009-06-18 Kobe Steel Ltd Steel material with excellent cold workability, and cold worked parts
JP2011509341A (en) * 2007-12-20 2011-03-24 ポスコ High-strength cold-rolled steel sheet excellent in workability, galvanized steel sheet, and manufacturing method thereof
JP2011144425A (en) * 2010-01-15 2011-07-28 Jfe Steel Corp High-tension hot-rolled steel sheet having high baking hardenability and excellent formability for extension flange and method for manufacturing the same
JP2011202192A (en) * 2010-03-24 2011-10-13 Nisshin Steel Co Ltd Method for producing steel sheet for heat treatment and steel member
TWI425099B (en) * 2010-03-31 2014-02-01 Jfe Steel Corp High-tensile, hot-rolled steel sheet with improved workability, and method of manufacturing the same
US9068238B2 (en) 2010-03-31 2015-06-30 Jfe Steel Corporation High tensile strength hot rolled steel sheet having excellent formability and method for manufacturing the same
US10301698B2 (en) 2012-01-31 2019-05-28 Jfe Steel Corporation Hot-rolled steel sheet for generator rim and method for manufacturing the same
KR101630982B1 (en) * 2014-12-16 2016-06-16 주식회사 포스코 High strength hot rolled steel sheet having excellent bendability andbake hardenability and method for manufacturing thereof
JP2016166388A (en) * 2015-03-09 2016-09-15 新日鐵住金株式会社 Steel material, steel structure for burying underground and manufacturing method of steel material
CN109563601A (en) * 2016-08-09 2019-04-02 株式会社Posco High tensile hot rolled steel sheet and its manufacturing method with low inhomogeneities and excellent surface quality
JP2021031701A (en) * 2019-08-20 2021-03-01 日本製鉄株式会社 Hot-rolled steel sheet and method for manufacturing the same
JP7303435B2 (en) 2019-08-20 2023-07-05 日本製鉄株式会社 Hot-rolled steel sheet and manufacturing method thereof
WO2022108220A1 (en) * 2020-11-17 2022-05-27 주식회사 포스코 High-strength hot-rolled steel sheet, hot-rolled plated steel sheet, and manufacturing methods therefor

Also Published As

Publication number Publication date
JP4692018B2 (en) 2011-06-01

Similar Documents

Publication Publication Date Title
JP4692018B2 (en) High-tensile hot-rolled steel sheet with excellent strength-ductility balance and method for producing the same
US10526676B2 (en) High-strength steel sheet and method for producing the same
KR101528080B1 (en) High-strength hot-dip-galvanized steel sheet having excellent moldability, and method for production thereof
JP4730056B2 (en) Manufacturing method of high-strength cold-rolled steel sheet with excellent stretch flange formability
KR20180121891A (en) Low density, high strength austenitic steel strip or sheet with high ductility, method of making steel and uses thereof
KR101607041B1 (en) Method for producing high-strength cold-rolled steel sheet having excellent anti-aging property and bake hardening property
CN115404406A (en) High-strength galvanized steel sheet, high-strength member, and method for producing same
WO2001092593A1 (en) Cold-rolled steel sheet having excellent strain aging hardening properties and method for producing the same
KR20090016500A (en) High-strength composite steel sheet having excellent moldability and delayed fracture resistance
JP3846206B2 (en) High tensile cold-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same
JP2014019928A (en) High strength cold rolled steel sheet and method for producing high strength cold rolled steel sheet
JP2007023339A (en) High tension hot-rolled steel sheet and its manufacturing method
JP7095818B2 (en) Covered steel members, coated steel sheets and their manufacturing methods
JP6687167B2 (en) Hot rolled steel sheet and method of manufacturing the same
JP2006265607A (en) High strength cold rolled steel sheet, high strength hot dip galvanized steel sheet, high strength alloyed hot dip galvannealed steel sheet, production method of high strength cold rolled steel sheet, production method of high hot dip galvannealed steel sheet, and production method of high strength alloyed galvannealed steel sheet
JP5272412B2 (en) High strength steel plate and manufacturing method thereof
CN111094612A (en) Hot-rolled steel sheet and method for producing same
JP6769576B1 (en) High-strength galvanized steel sheet and its manufacturing method
JP4839527B2 (en) Cold-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same
JP4436275B2 (en) High yield ratio high strength cold rolled steel sheet, high yield ratio high strength hot dip galvanized steel sheet, high yield ratio high strength alloyed hot dip galvanized steel sheet, and methods for producing them
JP4513552B2 (en) High-tensile hot-rolled steel sheet excellent in bake hardenability and room temperature aging resistance and method for producing the same
JP5035268B2 (en) High tensile cold-rolled steel sheet
JP3870868B2 (en) Composite structure type high-tensile cold-rolled steel sheet excellent in stretch flangeability, strength-ductility balance and strain age hardening characteristics, and method for producing the same
JP2001342541A (en) Hot dip galvanized steel sheet with high tensile strength and its production
JP4396347B2 (en) Method for producing high-tensile steel sheet with excellent ductility and stretch flangeability

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060609

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110107

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4692018

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees