JP2005307248A - COPPER INGOT FOR Bi-Se ADDITION, METHOD FOR MANUFACTURING COPPER-BASE ALLOY USING IT, COPPER-BASE ALLOY, AND INGOT AND PRODUCT USING THE ALLOY - Google Patents

COPPER INGOT FOR Bi-Se ADDITION, METHOD FOR MANUFACTURING COPPER-BASE ALLOY USING IT, COPPER-BASE ALLOY, AND INGOT AND PRODUCT USING THE ALLOY Download PDF

Info

Publication number
JP2005307248A
JP2005307248A JP2004123791A JP2004123791A JP2005307248A JP 2005307248 A JP2005307248 A JP 2005307248A JP 2004123791 A JP2004123791 A JP 2004123791A JP 2004123791 A JP2004123791 A JP 2004123791A JP 2005307248 A JP2005307248 A JP 2005307248A
Authority
JP
Japan
Prior art keywords
copper
alloy
ingot
yield
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004123791A
Other languages
Japanese (ja)
Other versions
JP4588352B2 (en
Inventor
Masaru Yamazaki
勝 山崎
Hideki Kotsuji
秀樹 小辻
Koichi Hagiwara
光一 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitz Corp
Original Assignee
Kitz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitz Corp filed Critical Kitz Corp
Priority to JP2004123791A priority Critical patent/JP4588352B2/en
Publication of JP2005307248A publication Critical patent/JP2005307248A/en
Application granted granted Critical
Publication of JP4588352B2 publication Critical patent/JP4588352B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide the following, with respect to a copper-base alloy suitably used as a material for liquid contact parts, such as valve and faucet, building materials, electrical and machine parts, marine parts, apparatus related to hot water, etc.: a copper ingot for Bi-Se addition by which the yield of Bi and Se can be improved and casting defects can be suppressed; a method for manufacturing a copper-base alloy using the copper ingot; the copper-base alloy; and an ingot and a product using the alloy. <P>SOLUTION: In this method for manufacturing the copper-base alloy, the copper ingot for Bi-Se addition prepared by finely dispersing a Bi-Se master alloy in a copper alloy having ≤21.9 mass% Zn content is melted, and this ingot is melted together with a copper-alloy material. By this procedure, Bi and Se can be finely dispersed in the copper-alloy material and their yield can be improved and also casting defects can be suppressed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、バルブや水栓等の接液部品、建築資材、電気・機械部品、船舶用部品、温水関連機器等の素材として用いられるBi、Seを含有した銅基合金に関し、特に、Bi、Seの歩留を改善して鋳造欠陥を抑制することを可能にしたBi−Se添加用銅インゴットとこれを用いた銅基合金の製造方法並びに銅基合金とこの合金を用いた鋳塊・製品に関する。   The present invention relates to a copper-based alloy containing Bi, Se used as a material for liquid contact parts such as valves and faucets, building materials, electrical / mechanical parts, marine parts, hot water related equipment, etc., in particular, Bi, Bi-Se-added copper ingot capable of improving Se yield and suppressing casting defects, copper-based alloy manufacturing method using the same, and ingots and products using the copper-based alloy and the alloy About.

合金のうち、特に青銅鋳物(CAC406)は、鋳造性、切削性、耐食性に優れ、溶融時の湯流れが良好であり、複雑な形状の鋳物部品に適しているため、従来より、バルブ、コック、継手等の一般配管器材などにも多く用いられている。このCAC406は、健全な鋳物が得られやすく、重量比で5%程度のPbを含有しているので、被削性が特に良好であり、この種の配管器材用の給水栓金具に多く使用されている。しかし、この青銅合金をバルブ等の給水栓金具の材料に使用する場合、鋳物にほとんど固溶されることなく含有されている鉛が水中に溶出して水質を悪化させ、人体や環境に悪影響を与える結果となる。そこで、近年、鉛溶出基準の改正が行われ、従来から切削性を向上させるために添加されてきたPbの代替元素として、Bi等を含有した銅合金が開発されており、例えば、PbをSeとBiで置換し、鉛の含有量を少なくした青銅鋳物の製造方法が提案されている(例えば、特許文献1参照。)。   Among the alloys, in particular, the bronze casting (CAC406) is excellent in castability, machinability, and corrosion resistance, has a good flow of molten metal at the time of melting, and is suitable for casting parts having complicated shapes. It is also widely used for general piping equipment such as joints. This CAC406 is easy to obtain a sound casting and contains about 5% Pb in weight ratio, so that machinability is particularly good, and it is often used for a water faucet for this kind of piping equipment. ing. However, when this bronze alloy is used as a material for water faucet fittings such as valves, the lead contained in the casting hardly dissolves into the water, deteriorating the water quality and adversely affecting the human body and the environment. Result. Therefore, in recent years, lead elution standards have been revised, and copper alloys containing Bi or the like have been developed as an alternative element of Pb that has been added to improve machinability. For example, Pb is changed to Se. A method for producing a bronze casting in which the content of lead is reduced by substituting Bi and Bi (see, for example, Patent Document 1) has been proposed.

米国特許第5614038号公報(特許文献1)は、約60〜90重量%のBiと残部であるSeとから主として構成され、Bi/Seの重量比が1.8〜5であるBi−Se焼結製品を作成する工程と、このBi−Se焼結製品を溶融してBi−Se添加剤製品を作成する工程と、このBi−Se添加剤製品を溶融した合金に添加する工程から構成され、これにより、BiとSeを含有した無鉛快削性銅合金を製造する方法である。
米国特許第5614038号公報
US Pat. No. 5,614,038 (Patent Document 1) is mainly composed of approximately 60 to 90% by weight of Bi and the balance of Se, and Bi—Se firing having a Bi / Se weight ratio of 1.8 to 5. A step of creating a sintered product, a step of melting the Bi-Se sintered product to create a Bi-Se additive product, and a step of adding the Bi-Se additive product to the molten alloy, This is a method for producing a lead-free free-cutting copper alloy containing Bi and Se.
US Pat. No. 5,614,038

本発明者によって、米国特許第5614038号公報(特許文献1)に示されたBi−Seの添加方法について検証を行ったところ、米国特許第5614038号公報に示す方法は、銅若しくは青銅など、Zn含有量の低い合金に対しては有効な方法であるが、米国特許第5614038号公報に示す方法で、Bi−SeをZn含有量が30〜40%である黄銅に添加すると、Znの蒸気圧が高いために、SeやSe−Zn化合物が溶湯上方に持ち上げられ、これらの物質が溶湯中及び大気中等の酸素と結合して垢を生じ、Se、Biの歩留を低下させることが判明した。この検証結果について、以下に説明する。   The inventors have verified the method of adding Bi-Se shown in US Pat. No. 5,614,038 (Patent Document 1). As a result, the method shown in US Pat. Although it is an effective method for an alloy having a low content, when Bi-Se is added to brass having a Zn content of 30 to 40% by the method shown in US Pat. No. 5,614,038, the vapor pressure of Zn Since Se is high, Se and Se-Zn compounds are lifted above the molten metal, and these substances combine with oxygen in the molten metal and the atmosphere to cause dirt and reduce the yield of Se and Bi. . This verification result will be described below.

実験は2kg高周波炉によって行い、Bi−Se添加用合金は焼結合金を不活性雰囲気中で溶製したものを用いた。Seの歩留は0.24mass%を100%とし、Biの歩留は0.48mass%以上のものを100%とした。各サンプルのZn含有量と、Se、Biの含有量及び歩留を表1に示し、各サンプルの出湯温度(溶解炉からのサンプル抽出時における炉内の溶融金属(溶湯)温度)及びZn蒸気圧を表2に示す。また、表1及び表2で示すZn含有量に対するSeの歩留とZn蒸気圧の関係をグラフ化したものを図1に示す。なお、図中の値は各サンプルを抽出した際の溶湯温度を示している。同図からも明らかなように、Zn含有量が増加し、21.9mass%を超えたところから、Seの歩留が急激に減少していることがわかる。   The experiment was performed in a 2 kg high-frequency furnace, and an alloy for adding Bi-Se was prepared by melting a sintered alloy in an inert atmosphere. The yield of Se was 0.24 mass% as 100%, and the yield of Bi was 100% as 0.48 mass% or more. Table 1 shows the Zn content, Se and Bi contents and yield of each sample, and the tapping temperature (molten metal (molten metal temperature in the furnace during sample extraction) from the melting furnace) and Zn vapor The pressure is shown in Table 2. FIG. 1 is a graph showing the relationship between the Se yield and the Zn vapor pressure with respect to the Zn content shown in Tables 1 and 2. In addition, the value in a figure has shown the molten metal temperature at the time of extracting each sample. As is clear from the figure, the Zn content increases and exceeds 21.9 mass%, indicating that the yield of Se is rapidly decreasing.

Figure 2005307248
Figure 2005307248

Figure 2005307248
Figure 2005307248

上記したように、Se−Zn化合物や単独のSeが溶湯中及び大気中等の酸素と結合して生じた垢は、鋳造時に異物として鋳塊中に残って鋳物欠陥となる。図2は、米国特許第5614038号公報(特許文献1)に示されたBi−Seの添加方法により溶製した連続鋳造品の鋳肌面を示す外観写真であり、図3は、この鋳肌面を切削加工した後の外観写真である。図2及び図3に示すように、鋳肌には異物が発生していることがわかる。この異物を電子線マイクロアナライザーにより分析した結果を表3に示す。分析元素中のZn、Se、Oは、Se若しくはZnSeが酸化したことを示している。また、Cl、Na、Kは、鋳塊を鋳造するときに使用するフラックス成分であり、上記酸化物を中心にフラックスを同時に巻き込んだものである。   As described above, the Se-Zn compound or single Se combined with oxygen in the molten metal, the atmosphere, or the like remains in the ingot as a foreign object during casting and becomes a casting defect. FIG. 2 is a photograph of the appearance of a cast surface of a continuous cast product melted by the Bi-Se addition method disclosed in US Pat. No. 5,614,038 (Patent Document 1). FIG. It is an external appearance photograph after cutting a surface. As shown in FIGS. 2 and 3, it can be seen that foreign matters are generated on the casting surface. Table 3 shows the results of analyzing this foreign matter with an electron beam microanalyzer. Zn, Se, and O in the analysis element indicate that Se or ZnSe is oxidized. Cl, Na, and K are flux components used when casting an ingot, and are obtained by simultaneously entraining flux centering on the oxide.

Figure 2005307248
Figure 2005307248

米国特許第5614038号公報(特許文献1)に示されたBi−Seの添加工程を、比較例No.1、2として図4に示すと共に、図中の比較例No.3〜10は、米国特許第5614038号公報(特許文献1)に示されたBi−Seの添加工程に、さらにNi添加用合金を添加して、NiによるSeの歩留向上効果を図ったものである。比較例No.1〜10について、Bi、Seの歩留及び鋳物評価を表4に示す。表4において、上記した異物が発生したものを×とした。Bi−Se母合金の添加時期、Niの添加方法、並びに出湯温度を図4に示す組み合わせで溶解したが、比較例No.1、2についてのSeの歩留は20%以下であり、Ni添加用合金を溶解した比較例No.3〜10についても、Seの歩留は20%以下であった。また、比較例No.1〜10のすべての鋳塊には、図2及び図3に示す異物が発生し、健全なものは得られなかった。しかも、Biの歩留も40%以下と低い。   The addition process of Bi-Se shown in US Pat. No. 5,614,038 (Patent Document 1) is shown in FIG. 4 as Comparative Examples Nos. 1 and 2, and Comparative Examples Nos. 3 to 10 in the figure are An alloy for addition of Ni is further added to the Bi-Se addition process disclosed in Japanese Patent No. 5614038 (Patent Document 1) to improve the yield of Se by Ni. Table 4 shows the yield of Bi and Se and the evaluation of castings for Comparative Examples Nos. 1 to 10. In Table 4, the case where the above-described foreign matter was generated was marked as x. Although the addition time of Bi-Se master alloy, the addition method of Ni, and the tapping temperature were melted in the combination shown in FIG. 4, the yield of Se for Comparative Examples No. 1 and 2 was 20% or less, and Ni addition Also in Comparative Examples Nos. 3 to 10 in which the alloys for melting were dissolved, the Se yield was 20% or less. Moreover, the foreign material shown in FIG.2 and FIG.3 generate | occur | produced in all the ingots of comparative example No. 1-10, and the healthy thing was not obtained. Moreover, the yield of Bi is as low as 40% or less.

Figure 2005307248
Figure 2005307248

以上のことから、米国特許第5614038号公報(特許文献1)に示されたBi−Seの添加方法により、Bi−Se母合金を黄銅に添加すると、加熱時若しくは溶湯投入時に、Bi−Se母合金の表面Seが酸化されてしまい、Se及びBiの溶湯への拡散が妨げられて歩留が低下する。また、酸化されたBi−Se母合金は、垢として湯面に浮上したり、鋳塊に巻き込まれて鋳造欠陥を生じる。しかも、このような鋳塊中に含有されたBiは、分散が悪いために結晶粒界の一部に凝集し、鋳造品や加工後の製品を著しく脆化させたり、熱処理時に火割れと称される割れが生じる。   From the above, when the Bi—Se master alloy is added to brass by the method of adding Bi—Se shown in US Pat. No. 5,614,038 (Patent Document 1), the Bi—Se mother is added at the time of heating or when the molten metal is charged. The surface Se of the alloy is oxidized, and the diffusion of Se and Bi into the molten metal is impeded to reduce the yield. Further, the oxidized Bi-Se mother alloy floats on the molten metal surface as a paste or is caught in an ingot to cause a casting defect. Moreover, Bi contained in such an ingot is agglomerated in a part of the crystal grain boundary due to poor dispersion, so that the cast product and the product after processing are markedly embrittled or referred to as cracking during heat treatment. Cracking occurs.

本発明は、上記の課題点に鑑み、鋭意研究の結果開発に至ったものであり、その目的とするところは、バルブや水栓等の接液部品、建築資材、電気・機械部品、船舶用部品、温水関連機器等の素材として好適に用いられる銅基合金であって、Bi、Seの歩留を改善して鋳造欠陥を抑制することを実現したBi−Se添加用銅インゴットとこれを用いた銅基合金の製造方法並びに銅基合金とこの合金を用いた鋳塊・製品を提供することにある。   In view of the above-mentioned problems, the present invention has been developed as a result of earnest research, and its purpose is to provide wetted parts such as valves and faucets, building materials, electrical / mechanical parts, and ships. This is a copper-based alloy that is suitably used as a material for parts, hot water-related equipment, etc., and it uses a Bi-Se-added copper ingot that improves the yield of Bi and Se and suppresses casting defects. An object of the present invention is to provide a copper-base alloy manufacturing method, a copper-base alloy, and an ingot / product using the alloy.

上記の目的を達成するため、請求項1に係る発明は、Bi−Se母合金をZn含有量が21.9mass%以下の銅合金中に微細分散させて溶製したBi−Se添加用銅インゴットである。   In order to achieve the above object, the invention according to claim 1 is a Bi-Se-added copper ingot obtained by finely dispersing a Bi-Se master alloy in a copper alloy having a Zn content of 21.9 mass% or less. It is.

請求項2に係る発明は、Bi−Se母合金をZn含有量が21.9mass%以下の銅合金中に微細分散させたBi−Se添加用銅インゴットを溶製し、この銅インゴットを銅合金材料と共に溶解することで、Bi、Seを銅合金材料中に微細分散させて歩留を改善し、鋳造欠陥を抑制した銅基合金の製造方法である。   The invention according to claim 2 melts a Bi-Se-added copper ingot in which a Bi-Se master alloy is finely dispersed in a copper alloy having a Zn content of 21.9 mass% or less, and the copper ingot is made into a copper alloy. It is a method for producing a copper-based alloy in which Bi and Se are finely dispersed in a copper alloy material to improve the yield by melting together with the material and to suppress casting defects.

請求項3に係る発明は、Bi−Se母合金をZn含有量が21.9mass%以下の銅合金中に微細分散させてBi−Se添加用銅インゴットを溶製し、この銅インゴットを銅合金材料及びNi添加用合金と共に溶解することで、Bi、Seを銅合金材料中に微細分散させて歩留を改善し、鋳造欠陥を抑制した銅基合金の製造方法である。   According to a third aspect of the present invention, a Bi-Se master alloy is finely dispersed in a copper alloy having a Zn content of 21.9 mass% or less to melt a Bi-Se-added copper ingot, and the copper ingot is made into a copper alloy. By melting together with the material and the alloy for adding Ni, Bi and Se are finely dispersed in the copper alloy material to improve the yield and suppress the casting defects.

請求項4に係る発明は、前記Bi−Se添加用銅インゴットを銅合金材料の溶解前、または溶解中に添加して溶解した銅基合金の製造方法である。   The invention which concerns on Claim 4 is a manufacturing method of the copper base alloy which added and melt | dissolved the said copper ingot for Bi-Se addition before melt | dissolution of a copper alloy material.

請求項5に係る発明は、前記銅合金材料は黄銅或いは青銅とした銅基合金の製造方法である。   The invention according to claim 5 is a method for producing a copper-based alloy in which the copper alloy material is brass or bronze.

請求項6に係る発明は、前記Bi−Se添加用銅インゴットの融点を銅合金材料の融点と同等若しくはそれ以下とした銅基合金の製造方法である。   The invention according to claim 6 is a method for producing a copper base alloy in which the melting point of the Bi-Se-added copper ingot is equal to or lower than the melting point of the copper alloy material.

請求項7に係る発明は、前記Ni添加用合金の融点を銅合金材料の融点と同等若しくはそれ以下とした銅基合金の製造方法である。   The invention according to claim 7 is a method for producing a copper base alloy in which the melting point of the Ni-adding alloy is equal to or lower than the melting point of the copper alloy material.

請求項8に係る発明は、上記銅基合金の製造方法により製造された銅基合金である。   The invention which concerns on Claim 8 is the copper base alloy manufactured by the manufacturing method of the said copper base alloy.

請求項9に係る発明は、上記銅基合金を用いて製造した鋳塊と加工成形された接液部品、建築資材、電気・機械部品、船舶用部品、温水関連機器等の製品である。   The invention according to claim 9 is a product such as an ingot manufactured using the copper-based alloy and a wetted part processed and formed, a building material, an electrical / mechanical part, a marine part, a hot water-related device and the like.

請求項1に係る発明によると、Bi−Se添加用銅インゴットを用いることで、特に、黄銅材料中にSeを微細分散させることは勿論、Biも微細分散させることが可能となり、これにより、Bi、Seの歩留を改善して鋳造欠陥を抑制した銅基合金並びにその製造方法を実現することが可能となる。   According to the first aspect of the present invention, by using the Bi-Se-added copper ingot, it is possible to finely disperse Bi as well as to finely disperse Se in the brass material. It is possible to realize a copper base alloy that improves the yield of Se and suppresses casting defects, and a manufacturing method thereof.

請求項2乃至5に係る発明によると、特に、黄銅においては、Bi−Se添加用銅インゴットを介してSeを添加することにより、SeやSe−Zn化合物がZnの蒸気圧によって、溶湯上方に持ち上げられるのを防ぎ、これらの物質が溶湯中及び大気中等の酸素と結合する割合を減らすことができ、黄銅材料中にSe、Biを微細分散させることが可能となり、これにより、Bi、Seの歩留を改善して鋳造欠陥を抑制することができる銅基合金の製造方法を提供することが可能となる。さらに、Bi含有合金に特有である焼き割れや、凝集したBiによる脆化を防止することが可能となる。   According to the inventions according to claims 2 to 5, particularly, in brass, by adding Se through a Bi-Se-added copper ingot, Se or Se-Zn compounds are caused to rise above the melt by the vapor pressure of Zn. It is possible to prevent the material from being lifted and to reduce the proportion of these substances bonded to oxygen such as in the molten metal and the atmosphere, and it is possible to finely disperse Se and Bi in the brass material. It is possible to provide a method for producing a copper-based alloy capable of improving yield and suppressing casting defects. Furthermore, it becomes possible to prevent the burning crack peculiar to a Bi containing alloy and the embrittlement by aggregated Bi.

請求項6に係る発明によると、銅合金材料中のSeの溶解を遅らせて、長時間溶融状態であることによるSeの酸化を防ぎ、さらに、銅合金材料と共に溶解するNi添加用合金の融点に近づけることで、NiによるSeの歩留向上効果をより促進させることが可能となる。   According to the invention of claim 6, the dissolution of Se in the copper alloy material is delayed to prevent the oxidation of Se due to being in a molten state for a long time. Further, the melting point of the Ni-adding alloy that dissolves together with the copper alloy material is reduced. By making it approach, it becomes possible to further promote the yield improvement effect of Se by Ni.

請求項7に係る発明によると、溶湯温度の上昇を防ぐと共に、早期にNiを溶融状態にして、NiによるSeの歩留向上効果をより促進させることが可能となる。   According to the seventh aspect of the invention, it is possible to prevent the molten metal temperature from rising and to make Ni rapidly in a molten state, thereby further promoting the Se yield improvement effect by Ni.

請求項8又は9に係る発明によると、Bi−Se添加用銅インゴットを介してSeを添加することにより、SeやSe−Zn化合物がZnの蒸気圧によって、溶湯上方に持ち上げられるのを防ぎ、これらの物質が溶湯中及び大気中等の酸素と結合する割合を減らすことができ、黄銅材料中にSe、Biを微細分散させることが可能となり、これにより、Bi、Seの歩留を改善して鋳造欠陥を抑制することができ、切削性、耐食性等の性能に優れた銅基合金と、この合金を用いて製造した鋳塊と加工成形された接液部品、建築資材、電気・機械部品、船舶用部品、温水関連機器等の製品を提供することが可能となる。   According to the invention according to claim 8 or 9, by adding Se through a copper ingot for Bi-Se addition, Se and Se-Zn compounds are prevented from being lifted upward by the vapor pressure of Zn, The rate at which these substances bind to oxygen in the molten metal and the atmosphere can be reduced, and Se and Bi can be finely dispersed in the brass material, thereby improving the yield of Bi and Se. A copper base alloy that can control casting defects and has excellent performance such as machinability and corrosion resistance, an ingot manufactured using this alloy, and wetted parts processed by molding, building materials, electrical / mechanical parts, Products such as marine parts and hot water related equipment can be provided.

本発明における銅基合金並びにその製造方法の一実施形態を説明する。
本発明である銅基合金の製造方法は、Bi−Se母合金をZn含有量が21.9mass%以下の銅合金(例えば、青銅合金)中に微細分散させて溶製したBi−Se添加用銅インゴットを、銅合金材料(例えば、黄銅材料)に添加して溶解することにより、合金(黄銅)中にBi、Seの微細分散を図ることができ、Bi、Seの歩留を改善して鋳造欠陥を抑制することを特徴としている。Zn含有量の上限値を21.9mass%としたのは、上述した表1、表2及び図1より、Zn含有量が21.9mass%を超えると、Seの歩留が急激に減少する点に基づく。
An embodiment of a copper base alloy and a method for producing the same according to the present invention will be described.
The method for producing a copper-based alloy according to the present invention is for adding Bi-Se prepared by finely dispersing a Bi-Se master alloy in a copper alloy (for example, bronze alloy) having a Zn content of 21.9 mass% or less. By adding a copper ingot to a copper alloy material (for example, a brass material) and dissolving it, Bi and Se can be finely dispersed in the alloy (brass), and the yield of Bi and Se can be improved. It is characterized by suppressing casting defects. The upper limit of the Zn content is set to 21.9 mass%, as shown in Tables 1 and 2 and FIG. 1 described above, when the Zn content exceeds 21.9 mass%, the Se yield decreases rapidly. based on.

本実施形態では、Zn含有量が21.9mass%以下の銅合金の一例として、青銅合金を用いて説明する。青銅合金はZnの蒸気圧が低いことから、Seの損耗を抑制したBi−Se添加用銅インゴット(以下、Bi−Se添加用青銅インゴットという)を得ることができ、また、このBi−Se添加用青銅インゴットの融点は、銅合金材料の融点と同等若しくはそれ以下に設定され、これにより、Seの溶解を遅らせて、長時間溶融状態であることによるSeの酸化を防ぐことができる。さらに、銅合金材料と共に溶解するNi添加用合金の融点を前記銅合金の融点と同等若しくはそれ以下としたことで、NiによるSeの歩留向上効果をより促進させることができる。本例では、銅合金材料として黄銅材料を対象としているが、この場合、融点が950℃〜1050℃であるBi−Se添加用青銅インゴットを用いることが望ましい。これはBi−Se添加用インゴットが添加される銅合金の沸湯温度以下で溶解する温度であると共に、溶解後は直ちに出湯できる温度である。これにより、溶解後のSeが酸化されて、その歩留が低下してしまうのを防ぐことができる。このことからも、Bi−Se添加用インゴットに青銅合金を用いることは理想的といえる。また、万が一、Seが溶湯中で酸化されたとしても、酸化されたSeの垢は細かく、致命的な鋳造欠陥を生じることはない。   In the present embodiment, a bronze alloy will be described as an example of a copper alloy having a Zn content of 21.9 mass% or less. Since the bronze alloy has a low vapor pressure of Zn, it is possible to obtain a Bi-Se-added copper ingot (hereinafter referred to as Bi-Se-added bronze ingot) in which Se wear is suppressed, and this Bi-Se addition is also possible. The melting point of the bronze ingot for use is set to be equal to or lower than the melting point of the copper alloy material, thereby delaying the dissolution of Se and preventing the oxidation of Se due to the molten state for a long time. Furthermore, the yield improvement effect of Se by Ni can be further accelerated | stimulated by making melting | fusing point of the alloy for Ni addition melt | dissolved with copper alloy material into the melting | fusing point of the said copper alloy or less. In this example, a brass material is targeted as the copper alloy material, but in this case, it is desirable to use a Bi-Se-added bronze ingot having a melting point of 950 ° C to 1050 ° C. This is a temperature at which the Bi-Se addition ingot is melted at a temperature equal to or lower than the boiling temperature of the copper alloy to which the Bi-Se addition ingot is added, and a temperature at which the hot water can be discharged immediately after melting. Thereby, it can prevent that the Se after melt | dissolving is oxidized and the yield falls. From this, it can be said that it is ideal to use a bronze alloy for the Bi-Se-added ingot. Even if Se is oxidized in the molten metal, the oxidized Se is fine and does not cause a fatal casting defect.

Bi−Se添加用青銅インゴットとしては、例えば、Sn:2.8〜6.0mass%、Zn:1.0〜12.0mass%、Bi:0.1〜4.4mass%、Se:0.05〜2.2mass%、残余Cuである成分に代表されるが、これ以外の成分を最大1.0mass%含むものであってもよい。また、青銅に替えて、Bi−Se母合金を、丹銅(Zn:20mass%以下)、白銅(Zn:0.5mass%以下)、洋白(Zn:13.5mass%以下)にそれぞれ添加して溶製してもよい。   As a bronze ingot for Bi-Se addition, for example, Sn: 2.8-6.0 mass%, Zn: 1.0-12.0 mass%, Bi: 0.1-4.4 mass%, Se: 0.05 Although it is represented by the component which is -2.2 mass% and remaining Cu, it may contain 1.0 mass% of components other than this at the maximum. Moreover, it replaces with bronze and adds Bi-Se master alloy to a red copper (Zn: 20 mass% or less), a white copper (Zn: 0.5 mass% or less), and a white (Zn: 13.5 mass% or less), respectively. May be melted.

Ni添加用合金を銅合金材料と共に溶解することで、NiによるSeの歩留向上効果等をより促進させる。Ni添加用合金は、Cu−Niインゴットなど融点が高い材料でも、NiによるSeの歩留向上効果は発揮されるが、望ましくは、銅合金材料の融点と同等若しくはそれ以下であるものを用いるとよい。本例では、銅合金材料として黄銅材料を対象としているが、この場合、融点が1050℃以下であるNi添加用合金が好適である。これは、上述したように溶湯温度の上昇を防ぐためと、早期にNiを溶融状態にするためである。理想的にはBi−Se添加用青銅インゴットの融点を下回るものがよい。また、Ni添加用合金の融点が低ければ、それにあわせて融点の低いBi−Se添加用青銅インゴットを用いることは可能であるが、黄銅の溶解材料には、純銅など黄銅に比べて高融点材料があるので、Bi−Se添加用青銅インゴットの融点をあまり低く設定すると、Seの溶融状態である時間が長くなり、Seが酸化されてその歩留が低下するので、むやみに融点の低いBi−Se添加用青銅インゴットを用いることは避けるべきである。   By dissolving the Ni-adding alloy together with the copper alloy material, the effect of improving the yield of Se by Ni is further promoted. Even if a Ni-adding alloy is a material having a high melting point, such as a Cu-Ni ingot, the effect of improving the yield of Se by Ni is exhibited. However, desirably, an alloy having a melting point equal to or lower than that of the copper alloy material is used. Good. In this example, a brass material is targeted as the copper alloy material, but in this case, an Ni-adding alloy having a melting point of 1050 ° C. or less is suitable. This is to prevent the molten metal temperature from rising as described above and to bring Ni into a molten state at an early stage. Ideally, it should be lower than the melting point of the Bi-Se-added bronze ingot. Further, if the melting point of the Ni-adding alloy is low, it is possible to use a Bi-Se-added bronze ingot having a low melting point accordingly, but the melting material of brass is a high melting point material such as pure copper compared to brass. Therefore, if the melting point of the Bi-Se-added bronze ingot is set too low, the time for which Se is in a molten state is lengthened, and Se is oxidized to reduce its yield. The use of Se-added bronze ingots should be avoided.

Ni添加用合金としては、Cu−Ni合金、例えば、Ni含有黄銅、洋白(バネ用洋白を含む。Niの含有量が多く、融点は950〜1050℃である。)など、実施に応じて任意であるが、上述したように、実施に用いるBi−Se添加用青銅インゴットの融点、銅合金材料の融点を考慮して選択することが好ましい。特に、使用するBi−Se添加用青銅インゴットよりも低い融点を有するNi添加用合金を用いることで、Bi−Se添加用青銅インゴットの融点に至る前に、溶湯中にNiを拡散させることができ、これにより、NiによるSeの歩留向上効果等を好適に発揮させることができる。   Examples of the Ni-added alloy include Cu—Ni alloys, such as Ni-containing brass and white (including white for springs, high Ni content, and a melting point of 950 to 1050 ° C.). As described above, the selection is preferably made in consideration of the melting point of the Bi-Se-added bronze ingot used in the practice and the melting point of the copper alloy material. In particular, by using a Ni-adding alloy having a lower melting point than the Bi-Se-added bronze ingot to be used, Ni can be diffused into the molten metal before reaching the melting point of the Bi-Se-added bronze ingot. As a result, the effect of improving the yield of Se by Ni can be suitably exhibited.

このようにして製造される銅基合金としては、黄銅材料として、例えば、Cu:58.0〜64.0mass%、Sn:0.3〜2.0mass%、Bi:0.3〜2.5mass%、Se:0.01〜0.25mass%、残余がZnである成分に代表されるが、これ以外の成分、例えば、Ni:0.1〜0.5mass%、P:0.05〜0.15mass%等を含むものであってもよい。   As a copper base alloy manufactured in this way, as a brass material, for example, Cu: 58.0-64.0 mass%, Sn: 0.3-2.0 mass%, Bi: 0.3-2.5 mass %, Se: 0.01 to 0.25 mass%, and the remaining component is represented by Zn, but other components such as Ni: 0.1 to 0.5 mass%, P: 0.05 to 0 .15 mass% etc. may be included.

ここで、Bi−Se母合金を青銅合金中に微細分散させた、Bi−Se添加用青銅インゴットの金属組織について説明する。
図5は、Bi−Se添加用青銅インゴットの金属組織写真であり、この金属組織写真は、10kgの角丁インゴットの中央部分を観察したもので、インゴットの平均的な金属組織である。このBi−Se添加用青銅インゴットの金属組織は、平均結晶粒径30μmのZnSe化合物と同10μmのBiが、Zn:7.82mass%、Ni:0.12mass%、Sn:4.32mass%、残部Cuからなるマトリックス中の結晶粒界に微細分散している。化学成分を表5に示す。
Here, the metal structure of the bronze ingot for Bi-Se addition in which the Bi-Se master alloy is finely dispersed in the bronze alloy will be described.
FIG. 5 is a metal structure photograph of a bronze ingot for Bi-Se addition, and this metal structure photograph is an observation of the central portion of a 10 kg square ingot, and is an average metal structure of the ingot. The metal structure of this Bi-Se-added bronze ingot is Zn: 7.82 mass%, Ni: 0.12 mass%, Sn: 4.32 mass%, the balance being 10 μm Bi as the ZnSe compound having an average crystal grain size of 30 μm. It is finely dispersed at the grain boundaries in the matrix made of Cu. The chemical components are shown in Table 5.

Figure 2005307248
Figure 2005307248

次に、本発明の銅基合金について、Se、Biの歩留、並びに鋳物評価を行った。
図6は、本発明における銅基合金の製造工程の一例を示した概略説明図であり、同図に示す各工程を経た実施例No.1〜14について、Se、Biの歩留、並びに鋳物評価を表6に示す。なお、鋳物評価は切削面の視認、及び切削面の浸透探傷試験(PT)により行い、欠陥のない極めて良好なものを◎、欠陥のない良好なものを○、異物が生じたものを×とした。
Next, Se and Bi yields and castings were evaluated for the copper base alloy of the present invention.
FIG. 6 is a schematic explanatory view showing an example of the manufacturing process of the copper-based alloy in the present invention. With respect to Examples No. 1 to 14 that have undergone each process shown in FIG. The evaluation is shown in Table 6. The casting was evaluated by visual recognition of the cutting surface and penetration inspection test (PT) of the cutting surface. Very good without defects, ◯ with good without defects, and x with foreign matters. did.

Figure 2005307248
Figure 2005307248

Bi−Se添加用青銅インゴット(融点980℃)の単独添加
実施例No.1
Bi−Se添加用青銅インゴットを、粉状銅合金材料中に投入して加熱・溶融する。溶湯は沸騰前の溶湯温度である1000℃で出湯する。実施例No.1ではNi添加用合金は添加していない。表6に示すように、Seの歩留は30%以下、Biの歩留は90%以上であった。また、鋳肌には異物が発生した。
実施例No.2
Bi−Se添加用青銅インゴットを、粉状銅合金材料中に投入して加熱・溶融する。溶湯は沸騰後の溶湯温度である1050℃で出湯する。実施例No.1と同様、Ni添加用合金は添加していない。表6に示すように、Seの歩留は30%以下、Biの歩留は90%以上であった。また、鋳肌には異物が発生した。
Single addition of Bi-Se-added bronze ingot (melting point 980 ° C.) Example No. 1
A Bi-Se-added bronze ingot is charged into a powdered copper alloy material and heated and melted. The molten metal is discharged at 1000 ° C., which is the molten metal temperature before boiling. In Example No. 1, an alloy for adding Ni was not added. As shown in Table 6, the yield of Se was 30% or less, and the yield of Bi was 90% or more. In addition, foreign matters were generated on the casting surface.
Example No. 2
A Bi-Se-added bronze ingot is charged into a powdered copper alloy material and heated and melted. The molten metal is discharged at 1050 ° C., which is the molten metal temperature after boiling. Similar to Example No. 1, no Ni-adding alloy was added. As shown in Table 6, the yield of Se was 30% or less, and the yield of Bi was 90% or more. In addition, foreign matters were generated on the casting surface.

Ni添加用合金(融点1250℃)とBi−Se添加用青銅インゴットの併用
実施例No.3〜6は、Seの溶湯中での酸化を防止するために、Niを含有させている。Niの添加にはCu−30%NiインゴットであるNi添加用合金を使用した。Ni添加用合金の添加は最初の材料投入時に行う。
実施例No.3
Bi−Se添加用青銅インゴットを、溶解前の粉状銅合金材料及びNi添加用合金中に投入して加熱・溶融する。溶湯は沸騰前の溶湯温度である1000℃で出湯する。表6に示すように、Seの歩留は60〜70%、Biの歩留は90%以上であった。また、図7の鋳肌面の外観写真、及び図8の鋳肌面を切削加工した後の外観写真に示すように、鋳塊は欠陥のない良好なものが得られた。
実施例No.4
Bi−Se添加用青銅インゴットを、溶解前の粉状銅合金材料及びNi添加用合金中に投入して加熱・溶融する。溶湯は沸騰後の溶湯温度である1050℃で出湯する。表6に示すように、Seの歩留は50〜60%、Biの歩留は90%以上であった。また、図7の鋳肌面の外観写真、及び図8の鋳肌面を切削加工した後の外観写真に示すように、鋳塊は欠陥のない良好なものが得られた。
実施例No.5
Bi−Se添加用青銅インゴットを、溶融した銅合金材料及びNi添加用合金の溶湯中に投入して溶解する。溶湯は沸騰前の溶湯温度である1000℃で出湯する。表6に示すように、Seの歩留は50〜60%、Biの歩留は90%以上であった。また、図7の鋳肌面の外観写真、及び図8の鋳肌面を切削加工した後の外観写真に示すように、鋳塊は欠陥のない良好なものが得られた。
実施例No.6
Bi−Se添加用青銅インゴットを、溶融した銅合金材料及びNi添加用合金の溶湯中に投入して溶解する。溶湯は沸騰後の溶湯温度である1050℃で出湯する。表6に示すように、Seの歩留は40〜50%、Biの歩留は90%以上であった。また、図7の鋳肌面の外観写真、及び図8の鋳肌面を切削加工した後の外観写真に示すように、鋳塊は欠陥のない良好なものが得られた。
Combined use of Ni-added alloy (melting point 1250 ° C.) and Bi-Se-added bronze ingot Examples Nos. 3 to 6 contain Ni in order to prevent oxidation of the Se in the molten metal. For addition of Ni, an alloy for adding Ni, which is a Cu-30% Ni ingot, was used. The addition of the Ni-adding alloy is performed at the time of first material charging.
Example No. 3
The bronze ingot for Bi-Se addition is put into the powdered copper alloy material and the alloy for Ni addition before melting and heated and melted. The molten metal is discharged at 1000 ° C., which is the molten metal temperature before boiling. As shown in Table 6, the yield of Se was 60 to 70%, and the yield of Bi was 90% or more. Moreover, as shown in the external appearance photograph of the cast skin surface of FIG. 7 and the external appearance photograph after cutting the cast skin surface of FIG. 8, a good ingot having no defect was obtained.
Example No. 4
The bronze ingot for Bi-Se addition is put into the powdered copper alloy material and the alloy for Ni addition before melting and heated and melted. The molten metal is discharged at 1050 ° C., which is the molten metal temperature after boiling. As shown in Table 6, the yield of Se was 50 to 60%, and the yield of Bi was 90% or more. Moreover, as shown in the external appearance photograph of the cast skin surface of FIG. 7 and the external appearance photograph after cutting the cast skin surface of FIG.
Example No. 5
A Bi-Se-added bronze ingot is poured into a molten copper alloy material and a Ni-added alloy melt to be melted. The molten metal is discharged at 1000 ° C., which is the molten metal temperature before boiling. As shown in Table 6, the yield of Se was 50 to 60%, and the yield of Bi was 90% or more. Moreover, as shown in the external appearance photograph of the cast skin surface of FIG. 7 and the external appearance photograph after cutting the cast skin surface of FIG. 8, a good ingot having no defect was obtained.
Example No. 6
A Bi-Se-added bronze ingot is poured into a molten copper alloy material and a Ni-added alloy melt to be melted. The molten metal is discharged at 1050 ° C., which is the molten metal temperature after boiling. As shown in Table 6, the yield of Se was 40 to 50%, and the yield of Bi was 90% or more. Moreover, as shown in the external appearance photograph of the cast skin surface of FIG. 7 and the external appearance photograph after cutting the cast skin surface of FIG.

Ni添加用合金(融点1050℃)とBi−Se添加用青銅インゴットの併用
実施例No.7〜10は、Seの溶湯中での酸化を防止するために、Niを含有させている。Niの添加には、Bi−Se添加用青銅インゴットの融点に近い洋白合金(17.2%Ni)であるNi添加用合金を使用した。Ni添加用合金の添加は最初の材料投入時に行う。
実施例No.7
Bi−Se添加用青銅インゴットを、溶解前の粉状銅合金材料及びNi添加用合金中に投入して加熱・溶融する。溶湯は沸騰前の溶湯温度である1000℃で出湯する。表6に示すように、Seの歩留は90%以上、Biの歩留は90%以上であった。また、図7の鋳肌面の外観写真、及び図8の鋳肌面を切削加工した後の外観写真に示すように、鋳塊は欠陥のない極めて良好なものが得られた。
実施例No.8
Bi−Se添加用青銅インゴットを、溶解前の粉状銅合金材料及びNi添加用合金中に投入して加熱・溶融する。溶湯は沸騰後の溶湯温度である1050℃で出湯する。表6に示すように、Seの歩留は80%以上、Biの歩留は90%以上であった。また、図7の鋳肌面の外観写真、及び図8の鋳肌面を切削加工した後の外観写真に示すように、鋳塊は欠陥のない極めて良好なものが得られた。
実施例No.9
Bi−Se添加用青銅インゴットを、溶融した銅合金材料及びNi添加用合金の溶湯中に投入して溶解する。溶湯は沸騰前の溶湯温度である1000℃で出湯する。表6に示すように、Seの歩留は50〜60%、Biの歩留は90%以上であった。図7の鋳肌面の外観写真、及び図8の鋳肌面を切削加工した後の外観写真に示すように、鋳塊は欠陥のない良好なものが得られた。
実施例No.10
Bi−Se添加用青銅インゴットを、溶融した銅合金材料及びNi添加用合金の溶湯中に投入して溶解する。溶湯は沸騰後の溶湯温度である1050℃で出湯する。表6に示すように、Seの歩留は40〜50%、Biの歩留は90%以上であった。図7の鋳肌面の外観写真、及び図8の鋳肌面を切削加工した後の外観写真に示すように、鋳塊は欠陥のない良好なものが得られた。
Combined use of Ni-adding alloy (melting point: 1050 ° C.) and Bi-Se-added bronze ingot Examples Nos. 7 to 10 contain Ni in order to prevent oxidation of the Se in the molten metal. For the addition of Ni, an alloy for Ni addition which is a white alloy (17.2% Ni) close to the melting point of the bronze ingot for Bi-Se addition was used. The addition of the Ni-adding alloy is performed at the time of first material charging.
Example No. 7
The bronze ingot for Bi-Se addition is put into the powdered copper alloy material and the alloy for Ni addition before melting and heated and melted. The molten metal is discharged at 1000 ° C., which is the molten metal temperature before boiling. As shown in Table 6, the yield of Se was 90% or more, and the yield of Bi was 90% or more. In addition, as shown in the appearance photograph of the cast skin surface in FIG. 7 and the appearance photograph after cutting the cast skin surface in FIG. 8, extremely good ingots having no defects were obtained.
Example No. 8
The bronze ingot for Bi-Se addition is put into the powdered copper alloy material and the alloy for Ni addition before melting and heated and melted. The molten metal is discharged at 1050 ° C., which is the molten metal temperature after boiling. As shown in Table 6, the yield of Se was 80% or more, and the yield of Bi was 90% or more. In addition, as shown in the appearance photograph of the cast skin surface in FIG. 7 and the appearance photograph after cutting the cast skin surface in FIG. 8, extremely good ingots having no defects were obtained.
Example No. 9
The bronze ingot for Bi-Se addition is put into a molten copper alloy material and a molten alloy for Ni addition and melted. The molten metal is discharged at 1000 ° C., which is the molten metal temperature before boiling. As shown in Table 6, the yield of Se was 50 to 60%, and the yield of Bi was 90% or more. As shown in the appearance photograph of the casting surface in FIG. 7 and the appearance photograph after cutting the casting surface in FIG. 8, a good ingot having no defect was obtained.
Example No. 10
The bronze ingot for Bi-Se addition is put into a molten copper alloy material and a molten alloy for Ni addition and melted. The molten metal is discharged at 1050 ° C., which is the molten metal temperature after boiling. As shown in Table 6, the yield of Se was 40 to 50%, and the yield of Bi was 90% or more. As shown in the appearance photograph of the casting surface in FIG. 7 and the appearance photograph after cutting the casting surface in FIG. 8, a good ingot having no defect was obtained.

Ni添加用合金(融点900℃)とBi−Se添加用青銅インゴットの併用
実施例No.11〜14は、Seの溶湯中での酸化を防止するために、Niを含有させている。Niの添加には、Bi−Se添加用青銅インゴットの融点980℃より低いNi含有黄銅(7.15%Ni)であるNi添加用合金を使用した。Ni添加用合金の添加は最初の材料投入時に行う。
実施例No.11
Bi−Se添加用青銅インゴットを、溶解前の粉状銅合金材料及びNi添加用合金中に投入して加熱・溶融する。溶湯は沸騰前の溶湯温度である1000℃で出湯する。表6に示すように、Seの歩留は90%以上、Biの歩留は90%以上であった。また、図7の鋳肌面の外観写真、及び図8の鋳肌面を切削加工した後の外観写真に示すように、鋳塊は欠陥のない極めて良好なものが得られた。
実施例No.12
Bi−Se添加用青銅インゴットを、溶解前の粉状銅合金材料及びNi添加用合金中に投入して加熱・溶融する。溶湯は沸騰後の溶湯温度である1050℃で出湯する。表6に示すように、Seの歩留は80%以上、Biの歩留は90%以上であった。また、図7の鋳肌面の外観写真、及び図8の鋳肌面を切削加工した後の外観写真に示すように、鋳塊は欠陥のない極めて良好なものが得られた。
実施例No.13
Bi−Se添加用青銅インゴットを、溶融した銅合金材料及びNi添加用合金の溶湯中に投入して溶解する。溶湯は沸騰前の溶湯温度である1000℃で出湯する。表6に示すように、Seの歩留は50〜60%、Biの歩留は90%以上であった。また、図7の鋳肌面の外観写真、及び図8の鋳肌面を切削加工した後の外観写真に示すように、鋳塊は欠陥のない良好なものが得られた。
実施例No.14
Bi−Se添加用青銅インゴットを、溶融した銅合金材料及びNi添加用合金の溶湯中に投入して溶解する。溶湯は沸騰後の溶湯温度である1050℃で出湯する。表6に示すように、Seの歩留は40〜50%、Biの歩留は90%以上であった。また、図7の鋳肌面の外観写真、及び図8の鋳肌面を切削加工した後の外観写真に示すように、鋳塊は欠陥のない良好なものが得られた。
Combined use of Ni-added alloy (melting point 900 ° C.) and Bi-Se-added bronze ingot Example Nos. 11 to 14 contain Ni in order to prevent oxidation of the Se in the molten metal. For the addition of Ni, an alloy for adding Ni, which is Ni-containing brass (7.15% Ni) lower than the melting point 980 ° C. of the bronze ingot for adding Bi—Se, was used. The addition of the Ni-adding alloy is performed at the time of first material charging.
Example No. 11
The bronze ingot for Bi-Se addition is put into the powdered copper alloy material and the alloy for Ni addition before melting and heated and melted. The molten metal is discharged at 1000 ° C., which is the molten metal temperature before boiling. As shown in Table 6, the yield of Se was 90% or more, and the yield of Bi was 90% or more. In addition, as shown in the appearance photograph of the cast skin surface in FIG. 7 and the appearance photograph after cutting the cast skin surface in FIG. 8, extremely good ingots having no defects were obtained.
Example No. 12
The bronze ingot for Bi-Se addition is put into the powdered copper alloy material and the alloy for Ni addition before melting and heated and melted. The molten metal is discharged at 1050 ° C., which is the molten metal temperature after boiling. As shown in Table 6, the yield of Se was 80% or more, and the yield of Bi was 90% or more. In addition, as shown in the appearance photograph of the cast skin surface in FIG. 7 and the appearance photograph after cutting the cast skin surface in FIG. 8, extremely good ingots having no defects were obtained.
Example No. 13
The bronze ingot for Bi-Se addition is put into a molten copper alloy material and a molten alloy for Ni addition and melted. The molten metal is discharged at 1000 ° C., which is the molten metal temperature before boiling. As shown in Table 6, the yield of Se was 50 to 60%, and the yield of Bi was 90% or more. Moreover, as shown in the external appearance photograph of the cast skin surface of FIG. 7 and the external appearance photograph after cutting the cast skin surface of FIG.
Example No. 14
A Bi-Se-added bronze ingot is poured into a molten copper alloy material and a Ni-added alloy melt to be melted. The molten metal is discharged at 1050 ° C., which is the molten metal temperature after boiling. As shown in Table 6, the yield of Se was 40 to 50%, and the yield of Bi was 90% or more. Moreover, as shown in the external appearance photograph of the cast skin surface of FIG. 7 and the external appearance photograph after cutting the cast skin surface of FIG.

このように、SeをBi−Se添加用青銅インゴットとして、銅合金材料(黄銅合金)中に添加することにより、黄銅合金中におけるSeの歩留を向上することができ、また、Ni添加用合金と共に溶解することで、Seの歩留向上を確実なものとすることができる。特に、Bi−Se添加用青銅インゴットを黄銅合金の溶解前に炉中に投入することで、Seの歩留を大幅に向上することができる。また、Bi−Se添加用青銅インゴット、銅合金材料、Ni添加用合金を共に溶解した溶湯を、沸騰して1050℃に昇温することにより、溶湯中の脱ガスを行いつつ、銅合金中へのSeの歩留を向上することができるので、より欠陥のない銅基合金を得ることができる。   Thus, by adding Se to a copper alloy material (brass alloy) as a Bi-Se-added bronze ingot, the yield of Se in the brass alloy can be improved, and an alloy for adding Ni By dissolving together, Se yield can be improved. In particular, the yield of Se can be significantly improved by putting a Bi-Se-added bronze ingot into the furnace before the brass alloy is melted. Moreover, the molten metal in which the Bi-Se-added bronze ingot, the copper alloy material, and the Ni-added alloy are melted together is boiled and heated to 1050 ° C., thereby degassing the molten metal into the copper alloy. Since the yield of Se can be improved, a copper-based alloy without defects can be obtained.

次に、Ni添加用合金の融点及びNi含有量とSeの歩留の関係について検証し、その検証結果を表7に示し、Ni添加用合金の融点及びNi含有量とSe歩留の関係をグラフ化したものを図9に示す。   Next, the melting point and Ni content of the Ni-adding alloy and the relationship between the Se yield and the verification result are shown in Table 7, and the relationship between the melting point and Ni content of the Ni-adding alloy and the Se yield is shown in Table 7. The graph is shown in FIG.

Figure 2005307248
Figure 2005307248

Ni添加用合金の融点により、Seの歩留が変化することがわかる。Bi−Se添加用青銅インゴットの融点は980℃であるが、それより融点の低いNi添加用合金(融点900℃)を用いると、Ni含有量が0.1mass%からSeの歩留改善効果が見られ、90%以上の歩留を示しており、0.15mass%以上ではSeの歩留に変化はない。
Bi−Se添加用青銅インゴットと融点が近いNi添加用合金(融点1050℃)を用いると、Ni含有量が0.1mass%からSeの歩留改善効果が見られ、70%以上の歩留を示す。しかし、Niを多量に添加するためにNi添加用合金の溶解量を増加すると、溶解時間が長くなり、Ni含有量の増加に従って徐々にSeの歩留が低下する。
Bi−Se添加用青銅インゴットより融点が高いNi添加用合金(融点1250℃)を用いると、溶湯温度は最大1050℃であるにもかかわらず、Ni含有量が0.1mass%からSeの歩留改善効果が見られるが、Seの歩留が70%以下になる。さらに、Niを多量に添加するためにNi添加用合金の溶解量を増加すると、溶解時間が長くなり、Ni含有量の増加に従い顕著にSeの歩留が低下する。従って、上記Ni添加用合金は、その融点がBi−Se添加用青銅インゴットの融点と同等かやや下回るものとすることが、Seの歩留向上には好ましい。
It can be seen that the yield of Se varies depending on the melting point of the Ni-adding alloy. The melting point of the Bi-Se-added bronze ingot is 980 ° C. However, when a Ni-adding alloy having a lower melting point (melting point 900 ° C) is used, the Ni content can be improved from 0.1 mass% to the Se yield improvement effect. As seen, it shows a yield of 90% or more, and at 0.15 mass% or more, there is no change in the yield of Se.
When using a Ni-adding alloy (melting point 1050 ° C.) having a melting point close to that of a Bi-Se-adding bronze ingot, the Ni content is 0.1 mass%, and the Se yield improvement effect can be seen. Show. However, if the dissolution amount of the Ni-adding alloy is increased in order to add a large amount of Ni, the melting time becomes longer, and the yield of Se gradually decreases as the Ni content increases.
Using a Ni-adding alloy (melting point 1250 ° C.) having a melting point higher than that of a Bi-Se-added bronze ingot, even though the molten metal temperature is 1050 ° C. at the maximum, the Ni content is 0.1 mass% to the yield of Se. Although an improvement effect is seen, the yield of Se is 70% or less. Furthermore, when the amount of dissolution of the Ni-adding alloy is increased in order to add a large amount of Ni, the melting time becomes longer, and the yield of Se is significantly reduced as the Ni content increases. Therefore, it is preferable for improving the yield of Se that the Ni-adding alloy has a melting point equal to or slightly lower than that of the Bi-Se-added bronze ingot.

本発明の銅基合金の製造方法は、黄銅、青銅は勿論、洋白、丹銅など、Seを添加するあらゆる銅合金に適用することができ、また、SeをTeに置き換えて、Teの添加方法とすることも可能である。Bi−Se添加用銅インゴットは、Bi−Se母合金を青銅合金中に微細分散させて溶製することは勿論、青銅合金の替わりにZn含有量の少ない白銅等でも可能であり、Seの歩留が良いベース合金を用いることもできる。   The copper-based alloy manufacturing method of the present invention can be applied to all copper alloys to which Se is added, such as brass and bronze, as well as white and red copper, and Se is replaced with Te, and Te is added. It is also possible to use a method. The Bi-Se-added copper ingot can be made by finely dispersing a Bi-Se master alloy in a bronze alloy, and can be made of white copper with a low Zn content instead of a bronze alloy. It is also possible to use a base alloy with good yield.

本発明の銅基合金は、鋳造性、切削性、耐食性等が要求されるあらゆる分野に広く適用することが可能であり、本発明の銅基合金を用いて製造した鋳塊(インゴット)を中間品として提供したり、本発明の合金を加工成形した接液部品、建築資材、電気・機械部品、船舶用部品、温水関連機器等の製品として提供することができる。   The copper base alloy of the present invention can be widely applied to all fields where castability, machinability, corrosion resistance, etc. are required, and an ingot manufactured using the copper base alloy of the present invention is an intermediate. It can be provided as a product, or as a product such as a wetted part, a building material, an electrical / mechanical part, a marine part, or a hot water-related device obtained by processing and molding the alloy of the present invention.

本発明の銅基合金を材料として好適な部材・部品は、特に、バルブや水栓等の水接触部品、即ち、ボールバルブ、ボールバルブ中の空用ボール、バタフライバルブ、ゲートバルブ、グローブバルブ、チェックバルブ、給水栓、給湯器や温水洗浄便座等の取付金具、給水管、接続管及び管継手、冷媒管、電気温水器部品(ケーシング、ガスノズル、ポンプ部品、バーナなど)、ストレーナ、水道メータ用部品、水中下水道用部品、排水プラグ、エルボ管、ベローズ、便器用接続フランジ、スピンドル、ジョイント、ヘッダー、分岐栓、ホースニップル、水栓付属金具、止水栓、給排水配水栓用品、衛生陶器金具、シャワー用ホースの接続金具、ガス器具、ドアやノブ等の建材、家電製品、サヤ管ヘッダー用アダプタ、自動車クーラー部品、釣り具部品、顕微鏡部品、水道メーター部品、計量器部品、鉄道パンタグラフ部品、その他の部材・部品に広く応用することができる。更には、トイレ用品、台所用品、浴室品、洗面所用品、家具部品、居間用品、スプリンクラー用部品、ドア部品、門部品、自動販売機部品、洗濯機部品、空調機部品、ガス溶接機用部品、熱交換器用部品、太陽熱温水器部品、金型及びその部品、ベアリング、歯車、建設機械用部品、鉄道車両用部品、輸送機器用部品、素材、中間品、最終製品及び組立体等にも広く適用できる。   The members / parts suitable for the copper base alloy of the present invention are water contact parts such as valves and faucets, that is, ball valves, empty balls in ball valves, butterfly valves, gate valves, globe valves, For fittings such as check valves, water taps, hot water heaters and hot water flush toilet seats, water supply pipes, connection pipes and fittings, refrigerant pipes, electric water heater parts (casing, gas nozzle, pump parts, burners, etc.), strainers, water meters Parts, parts for submersible sewerage, drainage plugs, elbow pipes, bellows, toilet flanges, spindles, joints, headers, branch plugs, hose nipples, faucet fittings, stopcocks, water supply and drainage water supply equipment, sanitary ware fittings, Shower hose fittings, gas appliances, building materials such as doors and knobs, home appliances, Saya tube header adapters, automotive cooler parts, fishing Parts, microscope parts, water meter parts, meter parts, can be widely applied to railway pantograph components, other components and parts. Furthermore, toilet articles, kitchen articles, bathroom articles, toilet articles, furniture parts, living room articles, sprinkler parts, door parts, gate parts, vending machine parts, washing machine parts, air conditioner parts, gas welder parts Widely used in parts for heat exchangers, solar water heater parts, molds and parts, bearings, gears, parts for construction machinery, parts for railway vehicles, parts for transportation equipment, materials, intermediate products, final products and assemblies Applicable.

従来例のZn含有量に対するSeの歩留とZn蒸気圧の関係を示したグラフである。It is the graph which showed the relationship of the yield of Se and Zn vapor pressure with respect to Zn content of a prior art example. 従来例により製造した連続鋳造品の鋳肌面を示した外観写真である。It is the external appearance photograph which showed the casting surface of the continuous casting manufactured by the prior art example. 図2に示した鋳肌面を切削加工した後の外観写真である。It is an external appearance photograph after cutting the casting surface shown in FIG. 従来例の銅基合金の製造工程を示した概略説明図である。It is the schematic explanatory drawing which showed the manufacturing process of the copper base alloy of a prior art example. Bi−Se添加用青銅インゴットの金属組織写真である。It is a metal structure photograph of the bronze ingot for Bi-Se addition. 本発明である銅基合金の製造工程の一例を示した概略説明図である。It is the schematic explanatory drawing which showed an example of the manufacturing process of the copper base alloy which is this invention. 本発明の製造方法により製造した連続鋳造品の鋳肌面を示した外観写真である。It is the external appearance photograph which showed the casting surface of the continuous casting manufactured with the manufacturing method of this invention. 図7に示した鋳肌面を切削加工した後の外観写真である。It is an external appearance photograph after cutting the casting surface shown in FIG. Ni添加用合金の融点及びNi含有量とSe歩留の関係を示したグラフである。It is the graph which showed the melting | fusing point of Ni addition alloy, Ni content, and the relationship of Se yield.

Claims (9)

Bi−Se母合金をZn含有量が21.9mass%以下の銅合金中に微細分散させて溶製したことを特徴とするBi−Se添加用銅インゴット。   A Bi-Se-added copper ingot, wherein the Bi-Se master alloy is finely dispersed in a copper alloy having a Zn content of 21.9 mass% or less and melted. Bi−Se母合金をZn含有量が21.9mass%以下の銅合金中に微細分散させたBi−Se添加用銅インゴットを溶製し、この銅インゴットを銅合金材料と共に溶解することで、Bi、Seを銅合金材料中に微細分散させて歩留を改善し、鋳造欠陥を抑制したことを特徴とする銅基合金の製造方法。   A Bi-Se-added copper ingot in which a Bi-Se master alloy is finely dispersed in a copper alloy having a Zn content of 21.9 mass% or less is melted, and this copper ingot is dissolved together with the copper alloy material. , Se is finely dispersed in a copper alloy material, yield is improved, and casting defects are suppressed. Bi−Se母合金をZn含有量が21.9mass%以下の銅合金中に微細分散させてBi−Se添加用銅インゴットを溶製し、この銅インゴットを銅合金材料及びNi添加用合金と共に溶解することで、Bi、Seを銅合金材料中に微細分散させて歩留を改善し、鋳造欠陥を抑制したことを特徴とする銅基合金の製造方法。   A Bi-Se master alloy is finely dispersed in a copper alloy with a Zn content of 21.9 mass% or less to melt a Bi-Se-added copper ingot, and the copper ingot is melted together with the copper alloy material and the Ni-added alloy. By doing this, Bi and Se are finely dispersed in the copper alloy material to improve the yield and to suppress casting defects. 前記Bi−Se添加用銅インゴットを銅合金材料の溶解前、または溶解中に添加して溶解した請求項2又は3に記載の銅基合金の製造方法。   The manufacturing method of the copper base alloy of Claim 2 or 3 which added and melt | dissolved the said Bi-Se addition copper ingot before melt | dissolution of copper alloy material. 前記銅合金材料は黄銅或いは青銅である請求項2乃至4の何れか1項に記載の銅基合金の製造方法。   The method for producing a copper-based alloy according to claim 2, wherein the copper alloy material is brass or bronze. 前記Bi−Se添加用銅インゴットの融点を銅合金材料の融点と同等若しくはそれ以下とした請求項2乃至5の何れか1項に記載の銅基合金の製造方法。   The method for producing a copper base alloy according to any one of claims 2 to 5, wherein a melting point of the Bi-Se-added copper ingot is equal to or lower than a melting point of the copper alloy material. 前記Ni添加用合金の融点を銅合金材料の融点と同等若しくはそれ以下とした請求項2乃至6の何れか1項に記載の銅基合金の製造方法。   The method for producing a copper base alloy according to any one of claims 2 to 6, wherein the melting point of the Ni-adding alloy is equal to or lower than the melting point of the copper alloy material. 請求項2乃至7の何れか1項に記載の銅基合金の製造方法により製造された銅基合金。   The copper base alloy manufactured by the manufacturing method of the copper base alloy of any one of Claim 2 thru | or 7. 請求項8に記載の銅基合金を用いて製造した鋳塊と加工成形された接液部品、建築資材、電気・機械部品、船舶用部品、温水関連機器等の製品。
Products such as ingots produced by using the copper-based alloy according to claim 8 and processed and wetted parts, building materials, electrical / mechanical parts, marine parts, hot water-related equipment, and the like.
JP2004123791A 2004-04-20 2004-04-20 Bi-Se-added copper ingot, method for producing copper-based alloy using the same, and copper-base alloy and ingot / product using the alloy Expired - Lifetime JP4588352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004123791A JP4588352B2 (en) 2004-04-20 2004-04-20 Bi-Se-added copper ingot, method for producing copper-based alloy using the same, and copper-base alloy and ingot / product using the alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004123791A JP4588352B2 (en) 2004-04-20 2004-04-20 Bi-Se-added copper ingot, method for producing copper-based alloy using the same, and copper-base alloy and ingot / product using the alloy

Publications (2)

Publication Number Publication Date
JP2005307248A true JP2005307248A (en) 2005-11-04
JP4588352B2 JP4588352B2 (en) 2010-12-01

Family

ID=35436346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004123791A Expired - Lifetime JP4588352B2 (en) 2004-04-20 2004-04-20 Bi-Se-added copper ingot, method for producing copper-based alloy using the same, and copper-base alloy and ingot / product using the alloy

Country Status (1)

Country Link
JP (1) JP4588352B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5552664B1 (en) * 2013-03-08 2014-07-16 株式会社桜井鋳造 Copper alloy casting manufacturing method and briquette used in the method
CN106435255A (en) * 2016-09-20 2017-02-22 深圳市天洲计时科技有限公司 Copper-zinc alloy

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003193157A (en) * 2001-12-28 2003-07-09 Kitz Corp Alloy such as copper alloy, production method therefor and ingot and liquid contacting parts by using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003193157A (en) * 2001-12-28 2003-07-09 Kitz Corp Alloy such as copper alloy, production method therefor and ingot and liquid contacting parts by using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5552664B1 (en) * 2013-03-08 2014-07-16 株式会社桜井鋳造 Copper alloy casting manufacturing method and briquette used in the method
CN106435255A (en) * 2016-09-20 2017-02-22 深圳市天洲计时科技有限公司 Copper-zinc alloy

Also Published As

Publication number Publication date
JP4588352B2 (en) 2010-12-01

Similar Documents

Publication Publication Date Title
US7628872B2 (en) Lead-free free-cutting copper-antimony alloys
JP6266737B2 (en) Brass alloy with excellent resistance to stress corrosion cracking, processed parts and wetted parts
JP4951342B2 (en) Copper alloy casting and casting method thereof
JP2000319736A (en) Copper based alloy, production of this alloy and product using this alloy
TWI657155B (en) Free cutting copper alloy and method for manufacturing free cutting copper alloy
JP6605453B2 (en) Manufacturing method of hot forged products using brass, hot forged products, and wetted products such as valves and faucets formed using the same
JPH01136943A (en) Alloy
WO2015100872A1 (en) Low-lead bismuth-free silicone-free brass
JP2019504209A (en) Low-cost lead-free dezincing resistant brass alloy for casting
JP4489701B2 (en) Copper base alloy
JP4522736B2 (en) Copper-base alloy for die casting and ingots and products using this alloy
CN102345025A (en) Preparation method of DR (dezincification resistant) copper ingot
JP5037742B2 (en) Method for preventing Bi elution of copper alloy
JP4588352B2 (en) Bi-Se-added copper ingot, method for producing copper-based alloy using the same, and copper-base alloy and ingot / product using the alloy
CN103946402B (en) Unleaded without bismuth without silizin
EP1921173A1 (en) Bronze low-lead alloy
TW201533253A (en) Environmental brass alloy formulations and manufacturing method thereof
JP5566622B2 (en) Cast alloy and wetted parts using the alloy
US20110142715A1 (en) Brass alloy
CA2687452C (en) Brass alloy
JP2006111925A (en) Copper-base alloy
KR20130029378A (en) Brass alloy
TW201533252A (en) Environmental zinc oxidation resistant brass alloy formulations and manufacturing method thereof
JP2005248303A (en) Leadless free-cutting brass casting and method for producing leadless free-cutting brass article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100908

R150 Certificate of patent or registration of utility model

Ref document number: 4588352

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350