JP5552664B1 - Copper alloy casting manufacturing method and briquette used in the method - Google Patents

Copper alloy casting manufacturing method and briquette used in the method Download PDF

Info

Publication number
JP5552664B1
JP5552664B1 JP2013047120A JP2013047120A JP5552664B1 JP 5552664 B1 JP5552664 B1 JP 5552664B1 JP 2013047120 A JP2013047120 A JP 2013047120A JP 2013047120 A JP2013047120 A JP 2013047120A JP 5552664 B1 JP5552664 B1 JP 5552664B1
Authority
JP
Japan
Prior art keywords
molten metal
copper alloy
briquette
copper
cutting waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013047120A
Other languages
Japanese (ja)
Other versions
JP2014173142A (en
Inventor
孝一 櫻井
実 西川
千歳 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyama Prefecture
Original Assignee
Toyama Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyama Prefecture filed Critical Toyama Prefecture
Priority to JP2013047120A priority Critical patent/JP5552664B1/en
Application granted granted Critical
Publication of JP5552664B1 publication Critical patent/JP5552664B1/en
Publication of JP2014173142A publication Critical patent/JP2014173142A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

【課題】 切削屑を使用し、高品質の銅合金鋳物を作業性よく低コストで製造できる銅合金鋳物の製造方法の提供。
【解決手段】 熔湯5を熔製する過程において、銅合金の切削屑1に銅よりも融点が低い合金成分2を包含し圧縮固化させたブリケット3を、熔湯5中に沈めて熔解することを特徴とする。
【選択図】 図1
PROBLEM TO BE SOLVED: To provide a copper alloy casting production method capable of producing a high quality copper alloy casting with good workability and low cost by using cutting scraps.
In the process of melting a molten metal, a briquette 3 including an alloy component 2 having a melting point lower than that of copper is contained in the cutting scrap 1 of the copper alloy and is compressed and solidified is submerged in the molten metal 5 and melted. It is characterized by that.
[Selection] Figure 1

Description

本発明は、銅合金鋳物の製造方法と、その方法に用いられるブリケット、及び銅合金鋳物に関する。   The present invention relates to a method for producing a copper alloy casting, a briquette used in the method, and a copper alloy casting.

従来の黄銅等の鋳物においては、切削性や湯流れ性を向上するために鉛を添加しており、水につけたときに鉛が溶け出し、人体や環境に悪影響を及ぼす問題があった。そこで、鉛を添加する代わりに、亜鉛、アルミ、ビスマス等を添加することが行われている(例えば、特許文献1参照。)。   In conventional castings such as brass, lead is added in order to improve machinability and hot water flow, and there is a problem in that lead dissolves when it is put on water and adversely affects the human body and the environment. Therefore, zinc, aluminum, bismuth, or the like is added instead of adding lead (see, for example, Patent Document 1).

中小の鋳物工場においては、予め所定の配合に調整されたインゴットを購入し、熔解・鋳造を行うことは少なく、湯口・堰等のリターン材に、銅合金スクラップ(プレス残材、配管材料等)、鋳物の表面を旋盤で削ったときに生じた切削屑(ダライ粉、ザライ粉ともいう)、不足している成分(純金属等)を配合すること(鋳造前の熔解で組成を調整すること)によって熔製を行っている。例えば、黄銅(Cu−Zn系)鋳造品の場合、500kgを熔解するには、約100kgのリターン材、約200kgの切削屑(油を除く正味の黄銅分)、約200kgの黄銅系スクラップ、約20kg程度の純亜鉛、約1kgの純アルミスクラップを用いている。熔解は、基本的に融点の高いものから順に炉に投入し熔解させる。以下に、銅合金鋳物の鋳造手順を示す。
(1)炉を余熱
(2)リターン材+スクラップを熔解
(3)切削屑を熔解
(4)浮遊する酸化物除去
(5)亜鉛、アルミ、ビスマス等の合金成分を投入
(6)鋳造温度まで昇温
(7)脱ガス、除滓
(8)成分確認
(9)出湯し、鋳造
In small and medium-sized foundries, ingots that have been pre-adjusted to a predetermined mix are purchased and are rarely melted or cast. Copper alloy scrap (press residue, piping materials, etc.) is used as return material for gates and weirs. , Mixing cutting scraps (also called Dalai powder or Zaray powder) generated when the surface of the casting is cut with a lathe, and lacking components (pure metal, etc.) (adjusting the composition by melting before casting) ). For example, in the case of a brass (Cu—Zn) cast product, to melt 500 kg, about 100 kg of return material, about 200 kg of cutting waste (net brass excluding oil), about 200 kg of brass-based scrap, About 20 kg of pure zinc and about 1 kg of pure aluminum scrap are used. Melting is basically carried out in the order from the one with the highest melting point to the furnace. Below, the casting procedure of a copper alloy casting is shown.
(1) Remaining heat in the furnace (2) Melting return material + scrap (3) Melting cutting waste (4) Removing floating oxides (5) Inputting alloy components such as zinc, aluminum, bismuth (6) Up to casting temperature Temperature rise (7) Degassing, removal (8) Component confirmation (9) Hot water, casting

図7は上記の工程のうち(3)の切削屑を炉で熔解する工程を示しており、図中の1は切削屑、4は坩堝、5は熔湯、6は重油バーナ、7は集塵機をそれぞれ示している。切削屑1を熔解する際には、炉の加熱を停止し、集塵機7を止めた状態で行うが、切削屑1に付着している切削油が熱分解あるいは燃焼して煙や炎が発生し、著しく作業性が悪く危険であった。また、切削屑1は低比重のため熔湯5の表面に浮き、また切削屑1は常温に近いため熔湯表面5aが凝固して棚状になり、その棚状になって浮いている部分を、温度の高い坩堝4底部に鉄の棒で押し、熔湯5を撹拌しながら熔解しなければならず、この作業が危険でありかつ手間のかかるものであった。また切削屑1は、熱伝導性が悪く熔解するまでに時間を要するほか、表面積が大きいために完全に熔融するまでの間に酸化による金属分の消耗が多いなどの問題がある。また上述のように熔湯5を鉄の棒などで撹拌することに伴い、酸化物が熔湯5中に巻き込まれ、後の除滓工程でも除去できず、鋳造欠陥の原因となる。このため、黄銅系材料の鋳造を行う大半の業者は、黄銅系材料の切削屑を自社で再熔解することを行わず、低価格でリサイクル業者に売却していた。   FIG. 7 shows the step (3) of melting the cutting waste in the furnace among the above steps. In the figure, 1 is cutting waste, 4 is a crucible, 5 is molten metal, 6 is a heavy oil burner, and 7 is a dust collector. Respectively. When the cutting waste 1 is melted, the heating of the furnace is stopped and the dust collector 7 is stopped. However, the cutting oil adhering to the cutting waste 1 is pyrolyzed or burned to generate smoke and flame. The workability was extremely poor and dangerous. Moreover, since the cutting waste 1 floats on the surface of the molten metal 5 because of its low specific gravity, and the cutting waste 1 is close to normal temperature, the molten metal surface 5a is solidified into a shelf shape, and the portion floating in the shelf shape. To the bottom of the crucible 4 having a high temperature with an iron rod, and the molten metal 5 must be melted while stirring. This operation is dangerous and time-consuming. Further, the cutting waste 1 has problems such as poor heat conductivity and time to be melted, and a large surface area, so that the metal component is consumed due to oxidation before being completely melted. Further, as described above, as the molten metal 5 is stirred with an iron rod or the like, the oxide is caught in the molten metal 5 and cannot be removed even in a subsequent removal process, which causes casting defects. For this reason, most suppliers that cast brass-based materials did not remelt the scraps of brass-based materials themselves and sold them to recyclers at a low price.

また、(4)の亜鉛、アルミ、ビスマス等の合金成分を投入する工程においては、これらの成分は銅よりも融点が低く且つ酸化しやすいため、熔解した亜鉛等が熔湯中の酸素と反応し急激に昇華(気化)し、熔湯が周囲に飛散する危険がある上に、投入した亜鉛等は酸化等により1割程度ロスするので、その分を見越して多めに亜鉛等を投入する必要があること、酸化物を低減・除去するためにフラックスを使用することにより、コストが増大していた。   In addition, in the step (4) of adding alloy components such as zinc, aluminum, and bismuth, these components have a melting point lower than that of copper and are easily oxidized, so that the dissolved zinc reacts with oxygen in the molten metal. In addition, there is a risk of rapid sublimation (vaporization), and the molten metal may scatter around the environment, and the added zinc, etc. will be lost by about 10% due to oxidation, etc., so it is necessary to add more zinc etc. in anticipation of that amount And the use of flux to reduce and remove oxides has increased costs.

特許第3335002号公報Japanese Patent No. 3335002

本発明は以上に述べた実情に鑑み、切削屑を使用し、高品質の銅合金鋳物を作業性よく低コストで製造できる銅合金鋳物の製造方法と、この方法に用いられるブリケット、及び鉛の害が生じない低コストで高品質の銅合金鋳物の提供を目的とする。   In view of the above-described circumstances, the present invention uses a cutting scrap to produce a high-quality copper alloy casting with good workability and low cost, a briquette used in this method, and lead The object is to provide a low-cost and high-quality copper alloy casting that does not cause harm.

上記の課題を達成するために請求項1記載の発明による銅合金鋳物の製造方法は、熔湯を熔製する過程において、銅合金の切削屑に銅よりも融点が低い合金成分を包含し圧縮固化させたブリケットを、熔湯中に沈めて熔解することを特徴とする。銅よりも融点が低い合金成分としては、亜鉛、ビスマス、アルミ等が挙げられる。なお、熔製とは、目的の組成になるように材料を配合して熔解し適温で保持し、健全な鋳物を製造するため熔湯中のガス及び非金属介在物を除去するほか、必要に応じて結晶粒微細化材等を添加・均一分散化の処理を行うことをいう。   In order to achieve the above object, a method for producing a copper alloy casting according to the first aspect of the present invention includes, in the process of melting a molten metal, the cutting waste of the copper alloy includes an alloy component having a melting point lower than that of copper and is compressed. The solidified briquette is melted by being submerged in a molten metal. Examples of the alloy component having a lower melting point than copper include zinc, bismuth, and aluminum. In addition, melting means mixing and melting the materials so as to achieve the target composition, keeping them at an appropriate temperature, and removing necessary gases and non-metallic inclusions in the molten metal to produce a sound casting. Accordingly, it means adding a crystal grain refining material or the like and performing a uniform dispersion treatment.

請求項2記載の発明によるブリケットは、銅合金の切削屑に銅よりも融点が低い合金成分を包含し圧縮固化させたことを特徴とする。銅よりも融点が低い合金成分としては、亜鉛、ビスマス、アルミ等が挙げられる。これら合金成分は、ブリケットの中心部に包含させることが好ましい。   The briquette according to a second aspect of the present invention is characterized in that a copper alloy cutting waste includes an alloy component having a melting point lower than that of copper and is compressed and solidified. Examples of the alloy component having a lower melting point than copper include zinc, bismuth, and aluminum. These alloy components are preferably included in the center of the briquette.

発明による銅合金鋳物は、亜鉛とビスマスとアルミを含有する鉛フリーの銅合金鋳物であって、亜鉛とビスマスとアルミは、少なくともその一部を銅合金の切削屑よりなるブリケットの内部に包含させ、これを熔湯中に沈めて熔解することにより添加したことを特徴とする。ビスマスの含有量は、0.4〜0.8wt%が好ましいが、この範囲に限定されない。アルミの含有量は、0.3〜0.7wt%が好ましいが、この範囲に限定されない。鉛フリーとは、鉛を特に添加していないことを意味し、不純物のレベルで鉛を含むものであってもよい。 The copper alloy casting according to the present invention is a lead-free copper alloy casting containing zinc, bismuth and aluminum, and at least part of zinc, bismuth and aluminum is contained in a briquette made of copper alloy cutting waste. It is characterized by being added by submerging it in a molten metal and melting it. The content of bismuth is preferably 0.4 to 0.8 wt%, but is not limited to this range. The aluminum content is preferably 0.3 to 0.7 wt%, but is not limited to this range. Lead-free means that lead is not particularly added, and may contain lead at the level of impurities.

請求項1記載の発明による銅合金鋳物の製造方法は、熔湯を熔製する過程において、銅合金の切削屑に銅よりも融点が低い合金成分を包含し圧縮固化させたブリケットを、熔湯中に沈めて熔解することにより、切削屑に含まれる油分の大半が予め除去されるため、油分の熱分解によるガス発生が少ない上、切削屑のままの状態と比較して表面積が小さく密度が高いために熱伝導が良好となり、尚且つこれを湯面よりも温度の高い炉底部で空気に触れないで熔解するため、短時間で溶解させることができると共に、酸化を著しく低減できる。また、銅よりも融点が低い亜鉛等の合金成分は、切削屑のブリケット中に包含されているため、先に熔解する切削屑に残存する油分が熔湯中で熱分解することにより銅の脱酸に寄与すると共に、切削屑の熔解潜熱により温度が幾分低下した熔湯中で徐々に熔解することとなるので、従来更合わせ(純金属のみから組成を調整する方法)を行う場合に亜鉛等を直接銅のみからなる熔湯中に添加する場合に頻発した、熔湯中の酸素による亜鉛の酸化、及び生成した亜鉛酸化物の急激な昇華による熔湯の飛散を防止できる。以上に述べたように本発明の方法によれば、熔湯を熔製する際の作業性が大きく改善し、切削屑を使用できること、銅よりも融点が低い合金元素の酸化による損失が少ないこと、酸化を抑制できることでフラックスの使用量を著しく低減できることにより、コストを削減することができる。また、酸化物巻き込みによる鋳造欠陥の発生を低減できるため、鋳物の品質も向上できる。   According to the first aspect of the present invention, there is provided a method for producing a copper alloy casting, comprising: in a process of melting a molten metal, a briquette obtained by compressing and solidifying a copper alloy cutting scrap containing an alloy component having a melting point lower than that of copper. By submerging and melting, most of the oil contained in the cutting waste is removed in advance, so there is less gas generation due to thermal decomposition of the oil, and the surface area is smaller and the density is lower than the state of the cutting waste. Since it is high, heat conduction is good, and it is melted without touching air at the bottom of the furnace where the temperature is higher than that of the molten metal, so that it can be dissolved in a short time and oxidation can be significantly reduced. In addition, alloy components such as zinc, which has a melting point lower than that of copper, are included in the briquette of cutting waste. Therefore, the oil remaining in the cutting waste previously melted is thermally decomposed in the molten metal to remove copper. In addition to contributing to the acid, it gradually melts in the molten metal whose temperature is somewhat lowered by the latent heat of melting of the cutting waste. It is possible to prevent the oxidation of zinc due to oxygen in the molten metal and the scattering of the molten metal due to the rapid sublimation of the generated zinc oxide, which frequently occur when such as is directly added to the molten metal consisting only of copper. As described above, according to the method of the present invention, workability when melting molten metal is greatly improved, cutting scraps can be used, and loss due to oxidation of alloy elements having a melting point lower than that of copper is small. Since the amount of flux used can be remarkably reduced by suppressing the oxidation, the cost can be reduced. Moreover, since the generation of casting defects due to oxide entrainment can be reduced, the quality of the casting can be improved.

請求項2記載の発明によるブリケットは、銅合金の切削屑に銅よりも融点が低い合金成分を包含し圧縮固化させたので、切削屑に含まれる油分の大半が予め除去されるため、油分の熱分解によるガス発生が少ない上、切削屑のままの状態と比較して表面積が小さく密度が高いために熱伝導が良好となり、尚且つこれを湯面よりも温度の高い炉底部で空気に触れないで熔解させることで、短時間で溶解させることができると共に、酸化を著しく低減できる。また、銅よりも融点が低い亜鉛等の合金成分は、切削屑のブリケット中に包含されているため、先に熔解する切削屑に残存する油分が熔湯中で熱分解することにより銅の脱酸に寄与すると共に、切削屑の熔解潜熱により温度が幾分低下した熔湯中で徐々に熔解することとなるので、従来更合わせ(純金属のみから組成を調整する方法)を行う場合に亜鉛等を直接銅のみからなる熔湯中に添加する場合に頻発した、熔湯中の酸素による亜鉛の酸化、及び生成した亜鉛酸化物の急激な昇華による熔湯の飛散を防止できる。   The briquette according to the second aspect of the present invention includes an alloy component having a melting point lower than that of copper in the cutting scrap of the copper alloy, and is compressed and solidified. Therefore, most of the oil contained in the cutting scrap is removed in advance. Gas generation due to thermal decomposition is small, and the surface area is small and the density is high compared to the state of cutting chips, so heat conduction is good, and this is exposed to air at the furnace bottom where the temperature is higher than the molten metal surface. By melting without oxidization, it can be dissolved in a short time and oxidation can be remarkably reduced. In addition, alloy components such as zinc, which has a melting point lower than that of copper, are included in the briquette of cutting waste. Therefore, the oil remaining in the cutting waste previously melted is thermally decomposed in the molten metal to remove copper. In addition to contributing to the acid, it gradually melts in the molten metal whose temperature is somewhat lowered by the latent heat of melting of the cutting waste. It is possible to prevent the oxidation of zinc due to oxygen in the molten metal and the scattering of the molten metal due to the rapid sublimation of the generated zinc oxide, which frequently occur when such as is directly added to the molten metal consisting only of copper.

発明による銅合金鋳物は、鉛を含有しないので鉛による害を防ぐことができ、鉛の代わりにビスマスを含有することで、鉛を含有するものと同等の快削性が得られる。さらに、ビスマスと共にアルミを含有することで、湯流れ性がより一層向上すると共に、鋳肌を良好にする効果がある。また、亜鉛とビスマスとアルミを添加するにあたり、少なくともその一部を銅合金の切削屑よりなるブリケットの内部に包含させ、これを熔湯中に沈めて熔解することで、亜鉛とビスマスとアルミの酸化を防ぐことができ、高品質の銅合金鋳物を低コストで提供できる。 Since the copper alloy casting according to the present invention does not contain lead, damage caused by lead can be prevented. By containing bismuth instead of lead, free machinability equivalent to that containing lead can be obtained. Furthermore, containing aluminum together with bismuth has the effect of further improving the hot water flow and improving the casting surface. In addition, when adding zinc, bismuth, and aluminum, at least a part of the zinc is included in a briquette made of copper alloy cutting waste, and this is submerged and melted in the molten metal. Oxidation can be prevented, and high-quality copper alloy castings can be provided at low cost.

ブリケットの作り方を示す断面図である。It is sectional drawing which shows how to make a briquette. ブリケットの外観を示す写真である。It is a photograph which shows the external appearance of a briquette. ブリケットを熔湯中に沈めて熔解させる様子を示す断面図である。It is sectional drawing which shows a mode that a briquette is immersed in a molten metal and it is made to melt. 本発明の方法により作成した銅合金鋳物と従来の方法により作成した銅合金鋳物の引張試験片の写真である。It is a photograph of the tensile test piece of the copper alloy casting created by the method of this invention, and the copper alloy casting created by the conventional method. 本発明の方法により作成した銅合金鋳物と従来の方法により作成した銅合金鋳物の硬度測定試験片の写真である。It is a photograph of the hardness measurement test piece of the copper alloy casting produced by the method of this invention, and the copper alloy casting produced by the conventional method. (a)は本発明による銅合金鋳物を旋盤で切削したときの切削屑の写真であり、(b)は比較例であって従来方法による鉛・ビスマスを含まない銅合金鋳物を旋盤で切削したときの切削屑の写真である。(A) is a photograph of cutting waste when the copper alloy casting according to the present invention is cut with a lathe, and (b) is a comparative example, and a copper alloy casting containing no lead and bismuth according to a conventional method is cut with a lathe. It is a photograph of the cutting waste at the time. 従来の切削屑を熔解させるときの様子を示す断面図である。It is sectional drawing which shows a mode when melting the conventional cutting waste.

以下、本発明の実施の形態を図面に基づいて説明する。本発明の銅合金鋳物の製造方法は、熔湯を熔製する過程において、銅合金の切削屑に銅よりも融点が低い合金成分を包含し圧縮固化させたブリケットを、熔湯中に沈めて熔解することに特徴がある。
図1はブリケットの作り方を示しており、円筒形のシリンダーの中に銅合金鋳物の切削屑1を詰め、その切削屑1の中心部に位置するように、銅よりも融点の低い合金成分2、例えば亜鉛、ビスマス、アルミ等を入れる。その後、油圧ピストンにより圧力を加えることで、図2に示すような形のブリケット3に成形する。加える圧力は、銅合金の耐力(100〜200N/mm、材料により異なる)を超える圧力とする。このように、切削屑1を圧縮固化してブリケット3とすることで、切削屑1に含まれる油分や水溶性切削油由来の水分が搾り出され、また切削屑のままと比較して表面積が小さく密度が大きくなるため、熱伝導性が良好となり、熔解しやすくなる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the method for producing a copper alloy casting according to the present invention, in the process of melting a molten metal, a briquette including an alloy component having a melting point lower than that of copper is included in the cutting scrap of the copper alloy and submerged in the molten metal. It is characterized by melting.
FIG. 1 shows how to make briquettes, in which a cylindrical cylinder is filled with cutting scraps 1 of a copper alloy casting, and an alloy component 2 having a melting point lower than that of copper so as to be located at the center of the cutting scraps 1. For example, zinc, bismuth, aluminum or the like is added. Thereafter, pressure is applied by a hydraulic piston to form a briquette 3 having a shape as shown in FIG. The applied pressure is a pressure exceeding the proof stress of the copper alloy (100 to 200 N / mm 2 , depending on the material). Thus, by compressing and solidifying the cutting waste 1 into the briquette 3, the oil contained in the cutting waste 1 and water derived from the water-soluble cutting oil are squeezed out, and the surface area is larger than that of the cutting waste. Since the density is small and the density is high, the thermal conductivity is good, and it is easy to melt.

このようにして製作したブリケット3は、図3に示すように、坩堝4の中の熔湯5中にホスホライザー8を使用して沈め、空気に触れない状態で熔解させる。これによりブリケット3の周囲の切削屑1の部分は、酸化することなく速やかに熔解し、油分や水溶性切削油由来の水分がある程度搾り出されているため、投入時に煙や炎が発生することを防止できる。また、ブリケット3中心部に包含された亜鉛等の合金成分2は、先に熔解する切削屑1に残存する油分が熔湯中で熱分解することにより銅の脱酸に寄与すると共に、切削屑1の熔解潜熱により温度が幾分低下した熔湯5中で徐々に熔解することとなるので、従来亜鉛等を直接熔湯中に添加する場合に頻発した、熔湯中の酸素による亜鉛の酸化、及び生成した亜鉛酸化物の急激な昇華による熔湯5の飛散を防止できる。   As shown in FIG. 3, the briquette 3 manufactured in this way is submerged in the molten metal 5 in the crucible 4 using a phospholyzer 8 and melted without contact with air. As a result, the portion of the cutting waste 1 around the briquette 3 is melted quickly without being oxidized, and oil and water derived from the water-soluble cutting oil are squeezed out to some extent, so that smoke and flame are generated at the time of charging. Can be prevented. Further, the alloy component 2 such as zinc contained in the central portion of the briquette 3 contributes to deoxidation of copper by thermally decomposing the oil remaining in the cutting waste 1 previously melted in the molten metal, and the cutting waste. Since the melt is gradually melted in the molten metal 5 whose temperature is somewhat lowered by the latent heat of melting 1, oxidation of zinc by oxygen in the molten metal, which has frequently occurred when zinc or the like is added directly to the molten metal And the scattering of the molten metal 5 by the rapid sublimation of the produced | generated zinc oxide can be prevented.

本発明の方法により実際に黄銅製の鋳物を製作した例を以下に述べる。炉(坩堝)を加熱し、黄銅よりなる湯口、堰などのリターン材150kgと、黄銅のスクラップ150kgを炉に投入して熔解した。その熔湯に、予め製作しておいたブリケットをホスホライザーを用いて沈めて熔解した。ブリケットは、黄銅製鋳物の切削屑200kgに対して、亜鉛22kg、アルミ0.7〜0.8kg、ビスマス4〜5kgを包含させたもので、ブリケット1個が約5kgとなるように40等分し、圧縮固化させたものを用いた。
上記以外の工程は従来の製造方法と同じで、浮遊する酸化物の除去、脱ガス、除滓処理を適宜行い、成分確認を行った後、鋳型に出湯して鋳造した。鋳造した鋳物の成分を分析した結果を表1に示す。
An example of actually producing a brass casting by the method of the present invention will be described below. The furnace (crucible) was heated and 150 kg of return material such as a sprue and weir made of brass and 150 kg of brass scrap were put into the furnace and melted. A briquette prepared in advance was submerged in the molten metal using a phosphorizer and melted. Briquette is made of brass casting, 200kg of cutting waste, including zinc 22kg, aluminum 0.7-0.8kg, bismuth 4-5kg, 40 pieces so that one briquette is about 5kg. Then, the product that was compressed and solidified was used.
Processes other than the above were the same as in the conventional manufacturing method, and the floating oxide was removed, degassed and degassed as appropriate, and after confirming the components, the hot water was poured into a mold and cast. Table 1 shows the result of analyzing the components of the cast product.

また、本発明の方法による鋳物と従来の方法による鋳物とで引張試験片と硬度測定試験片をそれぞれ製作し、引張強さ、伸び、硬度を測定した。測定結果を表2に示す。図4は各引張試験片(JISに規定する4号試験片)の写真であり、図5は各硬度測定試験片の写真である。
In addition, a tensile test piece and a hardness measurement test piece were respectively produced from the casting by the method of the present invention and the casting by the conventional method, and the tensile strength, elongation and hardness were measured. The measurement results are shown in Table 2. FIG. 4 is a photograph of each tensile test piece (No. 4 test piece defined in JIS), and FIG. 5 is a photograph of each hardness measurement test piece.

表2より明らかなように、本発明によるものは従来の方法によるものと比較して、引張強さと伸びが大幅に向上していることが分かる。このことは、図4の写真で本発明による鋳物の試験片が伸びて絞られ細くなっているのに対して、従来の方法によるものはほとんど伸びずに破断していることからも明らかである。硬度は、本発明によるものと従来の方法によるものとで違いは無かったが、図5に示すように、従来の方法によるものは表面にまで達する酸化物巻き込みによる欠陥9があったのに対し、本発明によるものではそのような欠陥は見られなかった。   As is apparent from Table 2, it can be seen that the tensile strength and the elongation according to the present invention are greatly improved as compared with the conventional method. This is clear from the fact that the test piece of the casting according to the present invention is stretched and narrowed in the photograph of FIG. . There was no difference in hardness between the present invention and the conventional method. However, as shown in FIG. 5, the conventional method had defects 9 due to oxide entrainment reaching the surface. Such defects were not observed in the present invention.

図6(a)は本発明によるビスマスとアルミを含有する鉛フリーの銅合金鋳物を旋盤で切削したときの切削屑の写真であり、図6(b)は比較例として従来方法による鉛・ビスマスを含まない銅合金鋳物を旋盤で切削したときの切削屑の写真である。この写真より明らかなように、比較例の切削屑は螺旋状にカールして長くなっているのに対し、本発明のものは切削屑が短くなっており、切削性が良いことが分かる。   FIG. 6 (a) is a photograph of cutting waste when a lead-free copper alloy casting containing bismuth and aluminum according to the present invention is cut with a lathe, and FIG. 6 (b) is a lead / bismuth obtained by a conventional method as a comparative example. It is the photograph of the cutting waste when the copper alloy casting which does not contain is cut with a lathe. As is apparent from this photograph, the cutting waste of the comparative example curls in a spiral shape and is long, whereas the cutting waste of the present invention is short, and it is understood that the cutting performance is good.

次に、銅合金の熔湯中にアルミをそのまま投入して熔解させる場合と、切削屑のブリケット中にアルミを包含し、これを熔湯中に沈めて熔解させる場合とで、熔湯中に溶けているアルミの量がどのように変化するかを、以下のような実験で検証した。
まず、460kgの熔湯に0.85kgのアルミをそのままの状態で投入し熔解させた。次に、0.982kgのアルミを40kgの切削屑のブリケット中に包含させたものを熔湯中に沈めて熔解させた。アルミを投入する前と、アルミをそのまま投入した後と、アルミを切削屑のブリケットに包含させたものを投入した後とに、熔湯をそれぞれ少しずつ汲み取って鋳塊を作り、それぞれの鋳塊に含まれるアルミの量を分析した。分析結果を表3に示す。
Next, when aluminum is poured into the molten copper alloy as it is, and when the aluminum is included in the briquette of cutting scraps, this is submerged and melted in the molten metal. The following experiment verified how the amount of molten aluminum changes.
First, 0.85 kg of aluminum was put into a 460 kg molten metal as it was and melted. Next, 0.982 kg of aluminum contained in 40 kg of cutting scrap briquette was submerged in the melt and melted. Before injecting aluminum, after injecting aluminum as it is, and after injecting aluminum contained in a briquette of cutting scraps, each of the ingots is made by drawing in molten metal little by little. The amount of aluminum contained in was analyzed. The analysis results are shown in Table 3.

表3に示すように、アルミをそのまま投入したときには歩留が約60%であったのに対して、アルミを切削屑のブリケットに包含して投入したときには、歩留が約95%と大きく向上した。この結果より明らかなように、切削屑のブリケット中にアルミを包含して熔解することで、酸化しやすいアルミを歩留良く熔解させることができる。
ここではアルミについて述べたが、亜鉛やビスマス等の他の成分についても同じことが言える。
As shown in Table 3, the yield was about 60% when aluminum was introduced as it was, while the yield was greatly improved to about 95% when aluminum was included in the briquette of cutting waste. did. As is clear from this result, aluminum that is easily oxidized can be melted with good yield by including aluminum in the briquette of cutting waste and melting it.
Although aluminum is described here, the same can be said for other components such as zinc and bismuth.

以上に述べたように、切削屑を圧縮固化してブリケットとし、熔湯中に沈めて熔解させたことで、投入時のガスや炎の発生を防ぐことができると共に、酸化を防止しつつ速やかに熔解させることができた。また、亜鉛等の低融点の添加元素について、熔解時の酸化等による損失が少ないので、従来の熔解法では狙った含有量の10〜70%増を投入し熔解する必要があったのに対し、本発明の方法では約2.5〜5%増で十分であることを確認した。ガスや酸化物の発生を抑えられるため、フラックスの使用量が著しく低減した。さらに、従来の方法によれば、酸化物巻き込みによる割れ等の鋳造欠陥の発生率が25%程度あったのに対して、本発明の方法によれば酸化物巻き込みによる割れ等の鋳造欠陥の発生率をほぼ0%に低減することができた。また、鉛を添加する代わりにビスマスを添加することで、鉛が溶け出して人体に悪影響を及ぼすことを防ぎつつ、良好な湯流れ性、快削性を得ることができる。さらにアルミを添加することで、湯流れ性がより一層向上すると共に、鋳肌を良好にする効果がある。   As described above, the cutting waste is compressed and solidified into briquettes, submerged in the molten metal and melted, so that gas and flames at the time of charging can be prevented and oxidation can be prevented quickly. Was able to be dissolved. In addition, for low melting point additive elements such as zinc, there is little loss due to oxidation during melting, whereas in the conventional melting method, it was necessary to add 10 to 70% of the target content and melt In the method of the present invention, it was confirmed that an increase of about 2.5 to 5% is sufficient. Since the generation of gas and oxides can be suppressed, the amount of flux used is significantly reduced. Furthermore, according to the conventional method, the rate of occurrence of casting defects such as cracks due to oxide entrainment was about 25%, whereas according to the method of the present invention, the occurrence of casting defects such as cracks due to oxide entrainment occurred. The rate could be reduced to almost 0%. In addition, by adding bismuth instead of adding lead, it is possible to obtain good hot water flow and free-cutting properties while preventing lead from melting and adversely affecting the human body. Furthermore, the addition of aluminum has the effect of further improving the hot water flow and improving the casting surface.

本発明は以上に述べた実施形態に限定されない。切削屑のブリケット中に包含させる合金成分は、亜鉛、ビスマス、アルミのうちの一つだけでもよいし、複数であってもよい。また、亜鉛、ビスマス、アルミ以外の合金成分をブリケットに包含させてもよい。本発明は、あらゆる銅合金に適用することができ、黄銅に限らず、青銅、白銅等に用いることもできる。本発明の銅合金鋳物は、銅器、仏具をはじめとして、あらゆる鋳物に適用することができる。   The present invention is not limited to the embodiments described above. The alloy component to be included in the briquette of cutting waste may be only one of zinc, bismuth, and aluminum, or may be plural. Further, alloy components other than zinc, bismuth and aluminum may be included in the briquette. The present invention can be applied to any copper alloy, and can be used not only for brass but also for bronze, white copper, and the like. The copper alloy casting of the present invention can be applied to all castings including copperware and Buddhist tools.

1 切削屑
2 銅よりも融点の低い合金成分
3 ブリケット
4 坩堝
5 熔湯
DESCRIPTION OF SYMBOLS 1 Cutting waste 2 Alloy component whose melting point is lower than copper 3 Briquette 4 Crucible 5 Molten metal

Claims (2)

熔湯を熔製する過程において、銅合金の切削屑に銅よりも融点が低い合金成分を包含し圧縮固化させたブリケットを、熔湯中に沈めて熔解することを特徴とする銅合金鋳物の製造方法。   In the process of melting a molten metal, a briquette containing an alloy component whose melting point is lower than that of copper is included in the cutting scrap of the copper alloy and is melted by submerging in the molten metal. Production method. 銅合金の切削屑に銅よりも融点が低い合金成分を包含し圧縮固化させたことを特徴とするブリケット。   A briquette characterized in that an alloy component having a melting point lower than that of copper is included in the cutting scrap of the copper alloy and is solidified by compression.
JP2013047120A 2013-03-08 2013-03-08 Copper alloy casting manufacturing method and briquette used in the method Expired - Fee Related JP5552664B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013047120A JP5552664B1 (en) 2013-03-08 2013-03-08 Copper alloy casting manufacturing method and briquette used in the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013047120A JP5552664B1 (en) 2013-03-08 2013-03-08 Copper alloy casting manufacturing method and briquette used in the method

Publications (2)

Publication Number Publication Date
JP5552664B1 true JP5552664B1 (en) 2014-07-16
JP2014173142A JP2014173142A (en) 2014-09-22

Family

ID=51416829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013047120A Expired - Fee Related JP5552664B1 (en) 2013-03-08 2013-03-08 Copper alloy casting manufacturing method and briquette used in the method

Country Status (1)

Country Link
JP (1) JP5552664B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017029856A1 (en) 2015-08-18 2018-08-09 国立研究開発法人物質・材料研究機構 Recycling method for Ni-base superalloy parts

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005307248A (en) * 2004-04-20 2005-11-04 Kitz Corp COPPER INGOT FOR Bi-Se ADDITION, METHOD FOR MANUFACTURING COPPER-BASE ALLOY USING IT, COPPER-BASE ALLOY, AND INGOT AND PRODUCT USING THE ALLOY
JP2011179121A (en) * 2010-03-02 2011-09-15 Xiamen Lota Internatl Co Ltd Environment-friendly manganese brass alloy and manufacturing method thereof
JP2011214095A (en) * 2010-03-31 2011-10-27 Joetsu Bronz1 Corp Lead-free free-machining bronze casting alloy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005307248A (en) * 2004-04-20 2005-11-04 Kitz Corp COPPER INGOT FOR Bi-Se ADDITION, METHOD FOR MANUFACTURING COPPER-BASE ALLOY USING IT, COPPER-BASE ALLOY, AND INGOT AND PRODUCT USING THE ALLOY
JP2011179121A (en) * 2010-03-02 2011-09-15 Xiamen Lota Internatl Co Ltd Environment-friendly manganese brass alloy and manufacturing method thereof
JP2011214095A (en) * 2010-03-31 2011-10-27 Joetsu Bronz1 Corp Lead-free free-machining bronze casting alloy

Also Published As

Publication number Publication date
JP2014173142A (en) 2014-09-22

Similar Documents

Publication Publication Date Title
Puga et al. Recycling of aluminium swarf by direct incorporation in aluminium melts
CN100535144C (en) Tin and copper containing alloy and preparation method thereof
CN102626837B (en) Moderate temperature copper-based solder and preparation method thereof
CN101823190B (en) Aluminium-silicon alloy welding wire and preparation method thereof
CN105518163A (en) Lead-free high-sulphur easy-cutting alloy containing manganese and copper and preparation method therefor
CN105018765A (en) Titanium-zinc alloy and fabrication method of titanium-zinc alloy plate
CN101664864A (en) Moderate temperature copper based brazing filler metal and preparation method thereof
RU2398905C1 (en) Procedure for production of heat resistant nickel alloys by metal wastes processing
CN108950325B (en) High-strength aluminum alloy material and production process thereof
JP5552664B1 (en) Copper alloy casting manufacturing method and briquette used in the method
CN109609803B (en) High-strength wear-resistant copper alloy material, preparation method and sliding bearing
CN107243602B (en) Model casting aluminium alloy smelting pouring procedure
JP4376918B2 (en) Alloy casting method and die-casting member
US1906567A (en) Metal alloy
CN110484792B (en) Casting production process for improving compressive strength of aluminum profile
JP6561116B2 (en) Copper alloy for water supply components
CN110484765B (en) Aluminum bronze alloy and preparation method thereof
JPH11323456A (en) Production of aluminum alloy ingot
CN109536774B (en) Copper alloy material, preparation method and sliding bearing
CN103056552B (en) Novel lead-free copper alloy material for welding and preparation method thereof
CN104152743B (en) Copper alloy alligatoring ring matrix material and preparation method thereof
JP4966584B2 (en) Aluminum alloy for casting, aluminum alloy casting and die casting method using the alloy
JP6175345B2 (en) Method for producing graphite spheroidizing agent
CN110885935B (en) Casting method suitable for Mg-Al alloy grain refinement
KR101246598B1 (en) A copper alloy for die-casting

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140428

R150 Certificate of patent or registration of utility model

Ref document number: 5552664

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees