JP2005304485A - Method for preparing culture solution for hydroponics - Google Patents

Method for preparing culture solution for hydroponics Download PDF

Info

Publication number
JP2005304485A
JP2005304485A JP2005004709A JP2005004709A JP2005304485A JP 2005304485 A JP2005304485 A JP 2005304485A JP 2005004709 A JP2005004709 A JP 2005004709A JP 2005004709 A JP2005004709 A JP 2005004709A JP 2005304485 A JP2005304485 A JP 2005304485A
Authority
JP
Japan
Prior art keywords
culture solution
solution
culture
electrolysis
hydroponics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005004709A
Other languages
Japanese (ja)
Other versions
JP4457404B2 (en
Inventor
Yukie Matsumoto
幸英 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005004709A priority Critical patent/JP4457404B2/en
Publication of JP2005304485A publication Critical patent/JP2005304485A/en
Application granted granted Critical
Publication of JP4457404B2 publication Critical patent/JP4457404B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Hydroponics (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To circulate and reuse a culture solution for hydroponics, such as tank farming, by solving such problems that conventional culture solutions are often disposed of without being circulated, or disposed of after being circulated in a short time, because troubles of difficulty in pH control of the culture solution, accumulation of unnecessary nutrients, contamination of pathogenic bacteria into raw water and the circulated culture solution, etc., are caused when the cultured solution is circulated and reused, and therefore circulation and reuse of the culture solution is desired from viewpoints of stabilization of quality, recycling of resources, cost reduction, and prevention of environmental pollution caused by disposal of the solution, etc. <P>SOLUTION: This culture solution for the hydroponics, such as the tank farming, is prepared by applying a direct current to the culture solution used as an electrolyte with the aid of insoluble electrodes and directly electrolyzing the culture solution, so that effects of controlling a pH of the culture solution for the hydroponics, supplying the culture solution with oxygen, removing the accumulated nutrients, sterilizing the solution, etc., are produced. Therefore, the solution is recycled and utilized again as the culture solution for the hydroponics. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、水耕栽培等の養液栽培用培養液を電解液として、不溶性電極を用い直流電流を通電することにより直接電解し、養液栽培用培養液のpH調整と殺菌処理後、再度、養液栽培用培養液として循環利用する方法に関する。 The present invention uses a culture medium for hydroponics such as hydroponics as an electrolyte, and directly electrolyzes it by energizing a direct current using an insoluble electrode. The present invention relates to a method of circulating use as a culture solution for hydroponics.

近年、土地の生産性、生産物の品質均一性の要求、生産物の安全性の要求から、野菜、菓物等の水耕栽培が増加している。特に、環境保全、肥料の節減、廃水による環境汚染防止の観点から、培養液を循環し使用する方式が増加しつつある。しかしながら、培養液を循環利用する際、培養液中の肥料等の濃度調整を繰り返し行っていると、蓄積した残留肥料や有機物によりpHが目的とする値より外れ、該pHを適正な値に調整するためには、さらに酸やアルカリを添加せざるを得なくなる。植物の生育段階でpHを適した値に調整することは肝要であるが、酸やアルカリが蓄積し、調整が出来なくなった培養液は、最終的には廃棄せざるを得ない。さらに、原水や循環している培養液中に病原菌が混入すると短時間の内に増殖し、栽培している生産物全体を焼却等の廃棄処分にせざるを得なくなる等の問題を有している。 In recent years, hydroponic cultivation of vegetables, confectionery, etc. has increased due to demands for land productivity, product quality uniformity, and product safety. In particular, from the viewpoints of environmental conservation, fertilizer saving, and prevention of environmental pollution due to waste water, the number of methods for circulating and using the culture solution is increasing. However, if the concentration of fertilizer, etc. in the culture solution is repeatedly adjusted when the culture solution is circulated, the pH will deviate from the target value due to accumulated residual fertilizer and organic matter, and the pH will be adjusted to an appropriate value. In order to do this, it is necessary to add an acid or an alkali. Although it is important to adjust the pH to an appropriate value in the growth stage of the plant, the culture solution that cannot be adjusted due to accumulation of acid and alkali must be discarded finally. Furthermore, when pathogenic bacteria are mixed in raw water or circulating culture solution, it grows within a short time, and the entire cultivated product has to be disposed of by disposal such as incineration. .

培養液のpH調整方法としては、酸やアルカリ添加による方法以外に見当らない。培養液調製に使用される原水は、井戸水や水道水が使用されているが、井戸水では極端なpH値や硬度を示すこともあり、主として水道水が使用されている。水道水は、配管のサビや腐敗を防止する目的でやや高く設定されている場合が多く、pH7.5程度から時にはpH8以上を示すこともある。 As a method for adjusting the pH of the culture solution, there is no method other than the method using acid or alkali. Well water and tap water are used as the raw water used for the preparation of the culture solution, but the well water sometimes shows an extreme pH value and hardness, and tap water is mainly used. The tap water is often set to be slightly higher for the purpose of preventing rusting and decay of the piping, and may show a pH of about 7.5 to sometimes 8 or higher.

また、肥料養液を調製した場合、肥料濃度にもよるが、若干のpH低下はみられるものの肥料の消費により再びpHは上昇する。さらに、培地材質の種類によっては、培養液のpHが上昇する。したがって、実際にはリン酸、硫酸等の酸を添加し、培養液のpHを低下させている。植物を生育させるには、培養液の電気伝導度測定による肥料濃度の管理と同時にpH測定による培養液管理が不可欠であることは言うまでもないが、リン酸、硫酸等の強酸の添加によるpH調整は、薬品の保管等を含め危険であるばかりでなく大量の培養液のpH調整自体困難な作業である。 In addition, when a fertilizer nutrient solution is prepared, although depending on the fertilizer concentration, the pH rises again due to the consumption of the fertilizer although a slight pH decrease is observed. Furthermore, depending on the type of medium material, the pH of the culture solution increases. Therefore, in practice, acids such as phosphoric acid and sulfuric acid are added to lower the pH of the culture solution. In order to grow plants, it goes without saying that the management of fertilizer concentration by measuring the electrical conductivity of the culture solution and the management of the culture solution by pH measurement are indispensable, but pH adjustment by adding strong acids such as phosphoric acid and sulfuric acid is not possible. It is not only dangerous, including the storage of chemicals, but also difficult to adjust the pH of a large amount of culture solution.

一方、培養液の殺菌方法としては、薬剤による方法や熱殺菌による方法が検討されている。薬剤による方法では、病原菌の種類に応じ数種の薬剤を使用する必要があり、農薬の蓄積による人体への影響とコストアップを招く等の問題を有している。 On the other hand, as a method for sterilizing a culture solution, a method using a drug or a method using heat sterilization has been studied. In the method using a medicine, it is necessary to use several kinds of medicines according to the type of pathogenic bacteria, and there are problems such as an effect on the human body due to accumulation of agricultural chemicals and an increase in cost.

また、特許文献1に養液の殺菌方法として、栽培槽を通過した排液を電解により殺菌処理後、再度養液と混合、循環し再利用する技術が開示されている。該技術は、電解処理の際、「電極間の電界」と「陽極にて生成する次亜塩素酸」の両方の殺菌作用により達成されることを開示している。特許文献1によれば、該次亜塩素酸の生成に関しては、特許文献2に開示の弱アルカリ性次亜塩素酸製造方法に拠っている。しかしながら、汎用性のある次亜塩素酸ナトリウム処理は、栽培開始前の装置、資材、種子等に適用可能だが、栽培中は、次亜塩素酸の蓄積等による根腐れの原因ともなるため継続使用することはできない。 Patent Document 1 discloses a technique for sterilizing a nutrient solution, a method in which waste liquid that has passed through a cultivation tank is sterilized by electrolysis and then mixed, circulated and reused again. The technique discloses that it is achieved by the bactericidal action of both “electric field between electrodes” and “hypochlorous acid generated at the anode” during the electrolytic treatment. According to Patent Document 1, the production of the hypochlorous acid is based on the weak alkaline hypochlorous acid production method disclosed in Patent Document 2. However, the versatile sodium hypochlorite treatment can be applied to equipment, materials, seeds, etc. before the start of cultivation, but it can continue to be used during cultivation because it can cause root rot due to accumulation of hypochlorous acid, etc. I can't do it.

さらに、特許文献2においても開示されているように、食塩や塩化カリウム等の塩素イオンを含有する水溶液を電解方法によって次亜塩素酸を製造すると、電解液の液性は、アルカリ性となる。次亜塩素酸の蓄積や培養液のアルカリ化等の現象は、培養液が循環再利用されるにつれ、水分が蒸発し、井戸水や水道水等の塩素イオンを含有する原水が供給される操作が繰り返され、塩素イオンが濃縮されることにより、急速に進行する。この結果、電解により高濃度の次亜塩素酸が生成し、同時に培養液のpHが上昇し、強アルカリとなることにより、培養液のpH調整が不能となること、栽培植物の根腐れを発生させること等の問題が発生する。したがって、特許文献1に開示の技術では、培養液を長期間に亘って循環再利用することが出来ない。 Furthermore, as disclosed in Patent Document 2, when hypochlorous acid is produced by an electrolysis method using an aqueous solution containing chlorine ions such as sodium chloride and potassium chloride, the liquidity of the electrolytic solution becomes alkaline. Phenomenon such as hypochlorous acid accumulation and alkalinization of culture solution is an operation in which raw water containing chlorine ions such as well water and tap water is supplied as the culture solution is circulated and reused. Repeatedly, it proceeds rapidly by the concentration of chloride ions. As a result, high concentration of hypochlorous acid is generated by electrolysis, and at the same time, the pH of the culture broth rises and becomes strong alkali, making it impossible to adjust the pH of the broth and causing root rot of cultivated plants. Problems occur. Therefore, the technique disclosed in Patent Document 1 cannot circulate and reuse the culture solution over a long period of time.

また、特許文献1には、電極材質等に関しては何等記載されていない。電解に使用する電極の触媒によっては、発生する電極反応が異なることは言うまでもない。例えば、ニッケル電極やSUS電極を陽極として使用した場合には、次亜塩素酸は生成せず、ニッケルやSUSの構成成分である鉄等が溶解し、さらに、溶解したイオンが加水分解反応し、液性が酸性の水溶液となることもある。 Patent Document 1 does not describe anything about the electrode material or the like. It goes without saying that the electrode reaction that occurs depends on the electrode catalyst used for electrolysis. For example, when a nickel electrode or a SUS electrode is used as an anode, hypochlorous acid is not produced, iron or the like, which is a component of nickel or SUS, dissolves, and further, the dissolved ions undergo a hydrolysis reaction, The liquid may be an acidic aqueous solution.

また、UVやオゾンガスを用いた殺菌装置も市販されているが、UVでは、光路が短いことや光が照射できないところでは充分な殺菌が出来ないこと、オゾンガスでは、オゾンの培養液への溶解量が少ないことやオゾンが有機物と反応してしまい培養液中で殺菌に充分な量が得られないため培養液の殺菌方法としては不十分であった。 In addition, UV and ozone gas sterilizers are also available on the market, but UV cannot sterilize sufficiently when the optical path is short or light cannot be irradiated, and ozone gas dissolves in the culture medium. Since the amount of ozone is small and ozone reacts with organic substances and a sufficient amount for sterilization cannot be obtained in the culture solution, it is insufficient as a method for sterilization of the culture solution.

最近、非特許文献1に示されるような炭酸ガスヒートポンプを用いた加熱方式による「水耕栽培用養液殺菌装置」が開発された。該技術は、培養液の加熱による培養液の殺菌方法であり、培養液の殺菌方法としては、極めて有効な手段ではあるものの、装置が大型化し、高価である。又、培養液を循環し、再利用すると不要成分の蓄積が問題となり、長期間に亘り培養液を利用することは不可能である。 Recently, a “hydroponic cultivation nutrient sterilizer” using a heating method using a carbon dioxide heat pump as shown in Non-Patent Document 1 has been developed. This technique is a method for sterilizing a culture solution by heating the culture solution, and although it is an extremely effective means for sterilizing a culture solution, the apparatus is large and expensive. Further, if the culture solution is circulated and reused, accumulation of unnecessary components becomes a problem, and it is impossible to use the culture solution for a long period of time.

このように、従来方法は、減農薬の観点及び装置の大型化によるコストアップに繋がるため普及していないのが現状である。 As described above, the conventional method is not widely used because it leads to cost increase due to the viewpoint of reducing agricultural chemicals and the size of the apparatus.

特開2002-51651号広報JP 2002-51651 PR 特開平11-239791号広報JP 11-239791 PR SANYO TECHNICAL REVIEW VOL.35 NO.2 DEC. 2003SANYO TECHNICAL REVIEW VOL.35 NO.2 DEC. 2003

本発明は、養液栽培用培養液の調整方法において、養液栽培用培養液中で、不溶性電極により直流電流を通電し、電解することにより、培養液のpHを調整すると共に、培養液に酸素を供給し、酸欠状態による「嫌気性脱窒素菌」の発生を防止することにより「窒素肥料」の消費分解を抑え、さらに培養液を殺菌することにより、根の腐敗、発酵により変動するpHを安定させる等の培養液の調整を容易に、安全に且つ安価に行う養液栽培用培養液の調整方法を提供することにある。 The present invention relates to a method for preparing a culture solution for hydroponics, in which the pH of the culture solution is adjusted by passing a direct current through an insoluble electrode and electrolyzing the culture solution for hydroponics. By supplying oxygen and preventing the generation of “anaerobic denitrifying bacteria” due to lack of oxygen, the consumption decomposition of “nitrogen fertilizer” is suppressed, and further, by sterilizing the culture solution, it fluctuates due to root decay and fermentation. It is an object of the present invention to provide a method for adjusting a culture solution for hydroponics, which can easily, safely and inexpensively adjust the culture solution for stabilizing the pH.

さらに詳細には、養液栽培用培養液を電解液として直流電流を通電し、電解を行うにあたり、電極基体がチタン、タンタル、ニオブ、ジルコニウムの金属若しくはこれらの合金に電極触媒として白金、イリジウム、ルテニウム、パラジウムから選択される一種以上の金属若しくは金属酸化物からなる電極触媒とチタン、錫、タンタル、アンチモン、ニオブ、ジルコニウムの金属酸化物から選択される電極触媒の分散材を含有してなる複合酸化物被覆層を有する不溶性陽極と鉄、ニッケル、銅、銀の金属若しくはこれらの合金、又はチタン、タンタル、ニオブ、ジルコニウムの金属若しくはこれらの合金、又は該金属や合金を電極基体とし、該電極基体に電極触媒として白金、イリジウム、ルテニウム、パラジウムから選択される一種以上からなる金属又は合金若しくは金属酸化物を電極触媒として被覆した不溶性陰極若しくは該電極触媒にチタン、錫、タンタル、アンチモン、ニオブ、ジルコニウムの金属酸化物から選択される電極触媒の分散材を含有してなる複合酸化物被覆層を有する不溶性陰極を使用することにより、培養液のpHを調整すると共に、培養液に不溶性陽極より発生する酸素を供給することにより、酸欠状態による嫌気性脱窒素菌の発生を防止し、該嫌気性脱窒素菌による窒素肥料の消費分解を抑え、さらに、培養液を殺菌することにより、根の腐敗、発酵により変動するpHを安定させる等の培養液の調整を容易に、安全に且つ安価に行う養液栽培用培養液の調整方法を提供することにある。 More specifically, when direct current is applied as a culture solution for hydroponics and the electrolysis is performed, the electrode substrate is made of titanium, tantalum, niobium, zirconium metal or an alloy thereof with platinum, iridium, A composite comprising an electrode catalyst made of one or more metals or metal oxides selected from ruthenium and palladium and a dispersion of an electrode catalyst selected from metal oxides of titanium, tin, tantalum, antimony, niobium and zirconium An insoluble anode having an oxide coating layer and an iron, nickel, copper, silver metal or an alloy thereof, a titanium, tantalum, niobium, zirconium metal or an alloy thereof, or the metal or alloy as an electrode substrate, and the electrode From one or more selected from platinum, iridium, ruthenium and palladium as an electrode catalyst for the substrate An insoluble cathode coated with a metal, alloy, or metal oxide as an electrode catalyst, or an electrode catalyst dispersion selected from metal oxides of titanium, tin, tantalum, antimony, niobium, and zirconium. By using an insoluble cathode with a composite oxide coating layer, the pH of the culture solution is adjusted, and oxygen generated from the insoluble anode is supplied to the culture solution, thereby generating anaerobic denitrifying bacteria due to lack of oxygen. By controlling the consumption and decomposition of nitrogen fertilizer by the anaerobic denitrifying bacteria, and further sterilizing the culture solution, it is easy to adjust the culture solution such as root decay and stabilizing the pH that fluctuates due to fermentation. An object of the present invention is to provide a method for preparing a culture solution for hydroponics that is performed safely and inexpensively.

本発明に使用される陽極は、既に市販されている電極が使用可能であるが、不溶性陽極であることが不可欠である。不溶性であることは、培養液を電極成分で汚染することを防止出来るばかりでなく、目的とする電極反応を制御するうえで不可欠な要素である。鉄、ニッケル、ステンレス、銅、銀等の金属は、アノード溶解するため、本発明の不溶性陽極としては使用できない。 As the anode used in the present invention, an electrode already on the market can be used, but it is essential that the anode be an insoluble anode. Insolubility not only prevents the culture solution from being contaminated with electrode components, but is an indispensable element for controlling the target electrode reaction. Metals such as iron, nickel, stainless steel, copper, and silver cannot be used as the insoluble anode of the present invention because the anode dissolves.

不溶性陽極としては、例えば、日本カーリット株式会社製焼成電極及び電気めっき電極が使用できる。また、該不溶性陽極基材に白金族金属をクラッドしたクラッド電極も使用可能である。さらに、特開2003-293196や特開2004-204328で開示されているような耐食性が向上された電極も使用可能であり、本発明に使用する不溶性陽極として好適である。 As the insoluble anode, for example, a fired electrode and an electroplated electrode manufactured by Nippon Carlit Co., Ltd. can be used. A clad electrode in which a platinum group metal is clad on the insoluble anode base material can also be used. Furthermore, an electrode having improved corrosion resistance as disclosed in JP-A-2003-293196 and JP-A-2004-204328 can also be used, and is suitable as an insoluble anode used in the present invention.

本発明に使用される陰極は、陽極と同様に培養液に対して不溶性であることが必須条件となる。陰極材料としては、鉄、ニッケル、銅、銀等の耐蝕性金属若しくはステンレス等の合金が使用できる。又、チタン、タンタル、ニオブ、ジルコニウム等の高耐蝕性金属やこれらの合金が好適である。さらに、これらの金属を電極基体とし、該電極基体に電極触媒として白金、イリジウム、ルテニウム、パラジウムから選択される一種以上からなる金属、合金又は金属酸化物を被覆した不溶性陰極を使用し、陰極反応である水素発生の過電圧を抑えることにより、電解電圧を減少させ消費電力を軽減することが可能であり、本発明の不溶性陰極として好適である。 The cathode used in the present invention is indispensable to be insoluble in the culture solution like the anode. As the cathode material, a corrosion-resistant metal such as iron, nickel, copper, silver, or an alloy such as stainless steel can be used. Further, highly corrosion-resistant metals such as titanium, tantalum, niobium, and zirconium, and alloys thereof are preferable. Furthermore, using these metals as electrode substrates, and using an insoluble cathode coated with one or more metals, alloys or metal oxides selected from platinum, iridium, ruthenium and palladium as electrode catalysts on the electrode substrates, cathodic reaction By suppressing the overvoltage of hydrogen generation, it is possible to reduce the electrolysis voltage and reduce the power consumption, which is suitable as the insoluble cathode of the present invention.

本発明の陽極及び陰極の形状は、該基材が金属であるため、用途に応じて任意の形状が可能である。又、不溶性電極であるため溶解等による形状の変化が無いので、使用される養液栽培の形態、菌の混入源、管理の容易さ等の設置場所にあわせて電極形状を決定すればよい。例えば、培養液の通路内に無隔膜の状態で設置するのであれば、培養液の流れを妨げないエキスパンドメタルを基板とする網状電極や棒状電極を溶接等の手段により電気的に接合した櫛状電極が好ましい。 The shape of the anode and cathode of the present invention can be any shape depending on the application because the substrate is a metal. In addition, since it is an insoluble electrode, there is no change in shape due to dissolution or the like. Therefore, the electrode shape may be determined in accordance with the installation location, such as the form of nutrient solution culture, the source of bacterial contamination, and the ease of management. For example, if it is installed in the culture medium passage in a state of a non-diaphragm, it is a comb-like shape in which mesh electrodes and rod-shaped electrodes having an expanded metal substrate that does not obstruct the flow of the culture medium are electrically joined by means such as welding. Electrodes are preferred.

又、培養液を集中管理している養液栽培を実施している農場であれば、集中管理タンク内に板状、棒状若しくは網状の電極のいずれの形状の電極も使用可能である。さらに、棒状電極に網状電極を溶接等の手段で電気的に接合した電極、同様に、網状電極を複数枚接合した電極が好適である。該形状の電極であれば、本発明の目的以外にストレナーとしても使用可能である。 In addition, in the case of farms that carry out hydroponics where the culture solution is intensively managed, any of plate-like, rod-like, or net-like electrodes can be used in the intensive management tank. Furthermore, an electrode in which a mesh electrode is electrically joined to a rod-like electrode by means such as welding, and similarly, an electrode in which a plurality of mesh electrodes are joined is suitable. If it is the electrode of this shape, it can be used also as a strainer other than the objective of this invention.

電極の設置場所は、任意の場所に設置可能である。肥料調整後にpH調整用として設置しても良い。特に、大気と接し、細菌等が混入しやすい培養液通路内が好適である。又、これらを併設し、複数の電極を分散設置しても良く、各電極設置場所にて電気伝導度とpHを測定管理し、通電電流量を調整することが望ましい。 The electrode can be installed at any place. It may be installed for pH adjustment after fertilizer adjustment. In particular, the inside of the culture solution passage which is in contact with the atmosphere and easily contaminated with bacteria is preferable. Moreover, these may be provided side by side, and a plurality of electrodes may be installed in a distributed manner, and it is desirable to measure and manage the electrical conductivity and pH at each electrode installation location and adjust the amount of energization current.

本発明の電解方法で調整する養液栽培用培養液は、養液栽培用培養液が、元素として窒素、リン、カリウム、カルシウム、マグネシウム、硫黄、炭素、酸素、水素、鉄、マンガン、ホウ素、銅、亜鉛、モリブデン、塩素、ナトリウム、珪素、アルミニウムからなり、化合物としての形態は、硝酸塩、リン酸塩、硫酸塩、アンモニウム塩、キレート塩、有機肥料成分の水溶液で構成され、植物の養育に基本的な構成である。したがって、該基本構成の培養液に植物の種類により他の成分を添加しても良い。 The culture solution for nutrient solution cultivation adjusted by the electrolysis method of the present invention is a nutrient solution culture solution having nitrogen, phosphorus, potassium, calcium, magnesium, sulfur, carbon, oxygen, hydrogen, iron, manganese, boron as elements. It consists of copper, zinc, molybdenum, chlorine, sodium, silicon, and aluminum, and the form as a compound is composed of nitrate, phosphate, sulfate, ammonium salt, chelate salt, organic fertilizer component aqueous solution, for plant cultivation This is a basic configuration. Therefore, other components may be added to the culture medium having the basic structure depending on the type of plant.

養液栽培用培養液は、井戸水や水道水を原水とし硝酸カリウム、硝酸カルシウム、リン酸二水素カリウム、リン酸二水素アンモニウム、硫酸カリウム、硫酸マグネシウムを基本とし、EDTA、アミノ酸、有機酸等の配位子と鉄、マンガン、銅、亜鉛、モリブデン酸、キレート塩とこれに酸やアルカリ添加によりpHを調整した電解質の希薄溶液である。又、硫酸塩やリン酸塩として、第一硫酸塩や第二リン酸塩、第三リン酸塩も好適である。 The culture medium for hydroponics is based on well water and tap water, and is basically composed of potassium nitrate, calcium nitrate, potassium dihydrogen phosphate, ammonium dihydrogen phosphate, potassium sulfate, magnesium sulfate, and contains EDTA, amino acids, organic acids, etc. A dilute solution of electrolyte with pH adjusted by adding acid and alkali to ligand, iron, manganese, copper, zinc, molybdic acid, chelate salt. Further, as the sulfate or phosphate, a first sulfate, a second phosphate, or a tertiary phosphate is also suitable.

本発明の電解方法による養液栽培用培養液の調整は、該培養液を不溶性電極により直接電解し、肥料となる成分を沈殿生成等の発生による培養液の変質や損失を発生すること無く、培養液のpHを適正な値に維持管理すると共に培養液の殺菌を行うことを目的とする。 The adjustment of the culture solution for hydroponics by the electrolysis method of the present invention directly electrolyzes the culture solution with an insoluble electrode, without causing deterioration or loss of the culture solution due to the occurrence of precipitation of the components that become fertilizers, The purpose is to maintain and control the pH of the culture solution to an appropriate value and to sterilize the culture solution.

培養液のpHは、培養液中の養分である溶存イオンの溶存状態や溶解度に影響し、植物の吸収バランスや直接的に植物の吸水量にも影響して生育に多大な影響を及ぼすことになる。培養液のpHは、植物の種類、肥料濃度等の影響を受けるが、植物の養水分吸収に好適なpH5.5〜pH6.5の範囲で管理することが、植物の生育の上からも推奨されている。しかし、ミツバやネギの栽培では、P及びCaの肥料効果を得るために、培養液のpHをpH4.5〜pH5.0の範囲で管理されている場合もある。 The pH of the culture solution affects the dissolved state and solubility of dissolved ions, which are nutrients in the culture solution, and has a significant effect on growth by directly affecting the absorption balance of plants and the amount of water absorbed by plants. Become. Although the pH of the culture solution is affected by the type of plant, fertilizer concentration, etc., it is recommended from the standpoint of plant growth that it should be controlled within the pH 5.5 to pH 6.5 range, which is suitable for absorbing nutrient water. Has been. However, in the cultivation of bees and leeks, the pH of the culture solution may be controlled in the range of pH 4.5 to pH 5.0 in order to obtain the fertilizer effect of P and Ca.

さらに、トマト、ピーマン等のナス科植物やミツバ、ネギの培養液のpHは、生育と共に上昇させている。例えば、トマト生育では培養液のpHは、pH5.5〜pH6.5の範囲が適正であるが、生育と共に高pHに管理されている。培養液のpHが、pH7.5程度であればトマトの生育には問題は生じないが、pH8を超えると鉄、マンガン、リンなどが沈殿しやすくなる。該培養液で生育されると欠乏症をおこす場合がある。特に、培養液のバランスの乱れは、果実の収穫が始まる頃から大きくなり、このような場合には、培養液のpHを低下させることが必要となる。従って、以上のことより、養液栽培用培養液のpH管理範囲は、pH4.5〜pH8の範囲、好ましくは、pH5.5〜pH6.5である。 Further, the pH of the culture solution of solanaceous plants such as tomatoes and peppers, bee, and leeks increases with growth. For example, in tomato growth, the pH of the culture solution is appropriate in the range of pH 5.5 to pH 6.5, but is controlled to a high pH with growth. If the pH of the culture solution is about pH 7.5, there will be no problem in the growth of tomatoes, but if it exceeds pH 8, iron, manganese, phosphorus, etc. will easily precipitate. When grown in the culture solution, deficiency may occur. In particular, the balance of the culture solution becomes large from the beginning of fruit harvesting. In such a case, it is necessary to lower the pH of the culture solution. Therefore, from the above, the pH control range of the culture solution for hydroponics is pH 4.5 to pH 8, preferably pH 5.5 to pH 6.5.

一般に、不溶性電極を用いて、直流電流を通じ、無隔膜にて水電解を行うと、陽極では電解酸化反応として、水を電解し酸素を発生し、陰極では電解還元反応として水素を発生する。この結果、水は、酸素と水素に分解され減少するが、電解液のpHは変動しない。一方、塩素イオンを含有する水溶液を電解すると、アルカリ性次亜塩素酸水溶液が得られる。 In general, when water electrolysis is performed on a non-transparent membrane through a direct current using an insoluble electrode, water is electrolyzed and oxygen is generated at the anode as an electrolytic oxidation reaction, and hydrogen is generated as an electrolytic reduction reaction at the cathode. As a result, water is decomposed and reduced to oxygen and hydrogen, but the pH of the electrolyte does not change. On the other hand, when an aqueous solution containing chlorine ions is electrolyzed, an alkaline hypochlorous acid aqueous solution is obtained.

しかしながら、養液栽培用培養液を電解液として、不溶性電極を用いて無隔膜にて電解することにより、pHが酸性側に変動すると共に微生物反応に由来するATP、AMPの発光量が減少すること、すなわち、電解により、pH調整が可能であること、殺菌効果が得られること、さらに、培養液中の酸素濃度が上昇し、植物の栽培に電解が有効であることを見出し、不溶性電極を用い養液栽培用培養液を直流電解することにより、養液栽培用培養液の調整が可能である本発明に至った。 However, electrolysis using a culture medium for hydroponics with an insoluble membrane using an insoluble electrode causes the pH to fluctuate to the acidic side and reduce the amount of luminescence from ATP and AMP derived from microbial reactions. That is, it was found that pH adjustment is possible by electrolysis, that a bactericidal effect can be obtained, and that oxygen concentration in the culture solution is increased, and electrolysis is effective for plant cultivation, and an insoluble electrode is used. By direct current electrolysis of the culture solution for hydroponics, the present invention has been achieved in which the culture solution for nutrient culture can be adjusted.

すなわち、実施例1に示すように、硝酸カリウム、硫酸マグネシウム、リン酸一アンモニウム、EDTA-鉄、硝酸カルシウム、モリブデン酸アンモニウム、微量要素の硫酸塩、リン酸等からなる培養液の濃度が、電気伝導度(EC)で0.1S/m、pH6.42のトマト水耕栽培用培養液の電気伝導度とpHの変化について、金属チタンを電極基体として、該電極基体に電極触媒として、電気めっき法により白金を被覆した電極を不溶性陽極及び不溶性陰極として使用し、電解した場合と比較検討を行った。 That is, as shown in Example 1, the concentration of the culture solution composed of potassium nitrate, magnesium sulfate, monoammonium phosphate, EDTA-iron, calcium nitrate, ammonium molybdate, trace element sulfate, phosphoric acid, etc. (EC) 0.1S / m, pH6.42 about the electrical conductivity and pH change of the culture solution for tomato hydroponics, using metal titanium as an electrode substrate, the electrode substrate as an electrode catalyst, by electroplating The electrode coated with platinum was used as an insoluble anode and an insoluble cathode and compared with the case of electrolysis.

培養液は、栽培植物により養分が吸収され、電気伝導度が減少するにつれ、pHが上昇するが、電解法を導入しない培養液のpHは、pH7近くまで上昇した。しかしながら、電解法を導入した場合、pHは、pH6.5程度に制御され、硫酸やリン酸を添加すること無く、培養液のpHを制御することが可能であることが明らかとなった。 The culture solution increased in pH as the nutrients were absorbed by the cultivated plants and the electrical conductivity decreased, but the pH of the culture solution without introducing the electrolysis method increased to near pH 7. However, when the electrolysis method was introduced, the pH was controlled to about pH 6.5, and it became clear that the pH of the culture solution can be controlled without adding sulfuric acid or phosphoric acid.

不溶性電極より直流電流を通電し、培養液を直接電解することにより、pHが制御可能となる理由については、詳細不明であるが、培養液中に含有されるリン酸イオン、硫酸イオン、有機酸イオンやEDTAイオン等の多価塩基や酸が、電解により不溶性陽極及び不溶性陰極で生成する水素イオン、水酸イオンによって酸塩基解離の平衡状態が移動した結果により発現したものと推察される。 The reason why the pH can be controlled by supplying direct current from the insoluble electrode and directly electrolyzing the culture solution is unknown, but phosphate ions, sulfate ions, organic acids contained in the culture solution are unknown. It is inferred that polyvalent bases and acids such as ions and EDTA ions were expressed as a result of the shift of the equilibrium state of acid-base dissociation by hydrogen ions and hydroxide ions generated at the insoluble anode and insoluble cathode by electrolysis.

電極反応としては、培養液中に肥料として添加されるリン酸イオン、硫酸イオン、有機酸イオン、EDTA或いは生物反応して生成するATP、有機物等の多価陰イオンが、陽極表面に選択的に吸着し、培養液中で濃度の高い水及び吸着した有機物、ATPを選択的に電気分解するために、陽極反応として、酸素発生、全有機体炭素、細菌等の微生物に由来するATP、AMP量の減少による発光量の減少及び細菌数減少となる電解反応が発生しているものと推察される。 As the electrode reaction, phosphate ions, sulfate ions, organic acid ions, EDTA added as fertilizer in the culture solution, ATP produced by biological reaction, organic substances and other polyanions are selectively applied to the anode surface. ATP and AMP amounts derived from microorganisms such as oxygen generation, total organic carbon, and bacteria as an anodic reaction to selectively electrolyze adsorbed and highly concentrated water and adsorbed organic matter and ATP in the culture medium It is presumed that an electrolytic reaction that causes a decrease in the amount of luminescence and a decrease in the number of bacteria due to the decrease in the amount of luminescence occurs.

従って、濃度の低い塩素イオンが陽極酸化され、次亜塩素酸を生成する反応は、電極電位、塩素イオン濃度等を考慮しても電極反応として事実上発生していないものと考えられる。特許文献2に開示の無隔膜電解により、次亜塩素酸を生成することにより、アルカリ性次亜塩素酸水溶液が得られることを考慮しても、培養液を不溶性電極により直接電解することによりpHが低下する、すなわち、酸性液が得られる本発明の結果とは明らかに異なる。 Therefore, it is considered that the reaction in which chlorine ions having a low concentration are anodized and hypochlorous acid is generated does not actually occur as an electrode reaction even in consideration of the electrode potential, the chlorine ion concentration, and the like. Even if it is considered that an alkaline hypochlorous acid aqueous solution is obtained by generating hypochlorous acid by the diaphragm electrolysis disclosed in Patent Document 2, the pH can be reduced by directly electrolyzing the culture solution with an insoluble electrode. This is clearly different from the results of the present invention, in which an acid liquid is obtained.

すなわち、何等詳細記載の無い、「次亜塩素酸」と「電界」によって殺菌するという特許文献1に記載の「養液栽培方法及び装置」技術は、本発明の技術とは明らかに異なる技術であることが明白である。 That is, there is no detailed description, “Nutrient Cultivation Method and Apparatus” technology described in Patent Document 1 to sterilize by “hypochlorous acid” and “electric field” is a technology that is clearly different from the technology of the present invention. It is clear that there is.

本発明の不溶性電極による、培養液電解により発現下と推察される緩衝作用により変動する培養液のpHの制御は、電解における通電電流量に対する各々の培養液量及び電気伝導度に対するpH変動をモニターすることにより、制御目的とするにpHに電流値を制御することにより制御可能となる。 The control of the pH of the culture fluid that fluctuates due to the buffer action presumed to be manifested by the culture fluid electrolysis by the insoluble electrode of the present invention monitors the amount of each culture fluid and the pH variation with respect to the electrical conductivity during electrolysis. By doing so, it becomes controllable by controlling the current value to pH for the purpose of control.

一方、殺菌効果は、培養液中の陽極反応で生成する活性な発生期酸素、酸素や陰極反応で生成する発生期水素、水素、ヒドロキシラジカル、ヒドロキシルイオン又は、電極表面で細菌等の直接酸化、還元等による化学的、電気化学的反応により発現されたものと推察される。 On the other hand, the bactericidal effect is the active nascent oxygen produced by the anodic reaction in the culture solution, the nascent hydrogen produced by oxygen or the cathodic reaction, hydrogen, hydroxy radicals, hydroxyl ions, or direct oxidation of bacteria etc. on the electrode surface, It is assumed that it was expressed by a chemical or electrochemical reaction due to reduction or the like.

実施例2及び実施例8に示す通り、通電電流による細菌等の微生物に由来するATP、AMP量の変化は、通電電流量に依存して減少することが判明した。該細菌等の混入源は、培養液を調製する原水や大気であると考えられる。これらの定常的に混入する細菌等を完全に無菌とすることは困難を伴うが、実施例4に示す通り、培養する植物が発病しない程度まで培養液を殺菌することにより栽培植物の発病を防止することは可能となる。 As shown in Example 2 and Example 8, it was found that changes in the amount of ATP and AMP derived from microorganisms such as bacteria due to the energization current decreased depending on the energization current amount. The contamination source of the bacteria and the like is considered to be raw water and air for preparing a culture solution. Although it is difficult to completely sterilize these regularly mixed bacteria, etc., as shown in Example 4, the pathogenesis of cultivated plants is prevented by sterilizing the culture solution to such an extent that the plant to be cultured does not become ill. It is possible to do.

又、該殺菌効果により、根の腐敗、発酵が防止されるため、根の腐敗、発酵に起因する培養液のpH変動がおさえられ、安定化するためpHの管理も容易となる。 Further, the sterilization effect prevents root decay and fermentation, so that the pH change of the culture solution caused by root decay and fermentation is suppressed, and the pH is easily controlled because of stabilization.

さらに、培養液の酸素濃度は、通常、培養液中に空気を吹き込むエアーレーション等により行われているが、実施例3に示す通り、本発明の電解法を導入することにより、エアーレーション等の手段を用いることなく溶存酸素量がほぼ飽和状態に維持されることが判明した。これは、培養液を直接電解することにより、陽極で水が電気分解され、発生期の酸素が水に効率よく溶解するため高濃度の酸素が培養液中に溶解するためと考えられる。 Furthermore, the oxygen concentration of the culture solution is usually performed by aeration or the like in which air is blown into the culture solution, but as shown in Example 3, by introducing the electrolytic method of the present invention, It has been found that the amount of dissolved oxygen is maintained almost saturated without using any means. This is presumably because water is electrolyzed at the anode by directly electrolyzing the culture solution, and oxygen in the nascent stage is efficiently dissolved in water, so that a high concentration of oxygen is dissolved in the culture solution.

この結果、培養液を不溶性電極により電解し、陽極にて酸素を発生することにより、エアーレーション等の手段を導入することなく、培養液に酸素を供給することが可能となるため、酸欠による嫌気性脱窒素菌の発生を防止し、窒素肥料の分解による消費を防止可能となる。 As a result, it is possible to supply oxygen to the culture without introducing means such as aeration by electrolyzing the culture with an insoluble electrode and generating oxygen at the anode. Generation of anaerobic denitrifying bacteria can be prevented and consumption due to decomposition of nitrogen fertilizer can be prevented.

培養液に対する通電電流量は、養液栽培する植物の種類、培養液濃度、使用する原水の硬度、殺菌の混入による培養液の汚染度、管理pH範囲、季節変動等により異なり調整する必要があるが、概ね、培養液1L当たり30A・h以下である。培養液1L当たりに含有される成分組成の当量数は、約0.05当量程度である。該通電電流量は、培養液1L当たり約1当量の通電電流量を負荷するものである。循環培養液は、細菌等に汚染されやすいばかりでなく、肥料成分等が蓄積し、このため培養液の緩衝作用が増大する。このため培養液のpHを適正なpH管理範囲、pH4.5〜pH8、好ましくは、pH5.5〜pH7である範囲に管理し、殺菌を行うために必要な通電電流量は増大する。該理由により、培養液を電解により調整するにあたり、培養液1L当たりに通電する通電量が30A・h以下であることは、合理的な値であると考えられる。 The amount of current applied to the culture solution must be adjusted depending on the type of plant to be cultivated, the concentration of the culture solution, the hardness of the raw water used, the degree of contamination of the culture solution due to sterilization, the control pH range, seasonal variations, etc. However, it is generally 30 A · h or less per liter of culture solution. The number of equivalents of the component composition contained per liter of the culture solution is about 0.05 equivalents. The energization current amount is one that loads about 1 equivalent of the energization current amount per liter of culture medium. The circulating culture solution is not only easily contaminated by bacteria and the like, but also fertilizer components and the like are accumulated, thereby increasing the buffering action of the culture solution. For this reason, the pH of the culture solution is controlled to an appropriate pH control range, pH 4.5 to pH 8, preferably pH 5.5 to pH 7, and the amount of energization current necessary for sterilization increases. For this reason, when the culture solution is adjusted by electrolysis, it is considered that it is a reasonable value that the amount of current applied per 1 L of the culture solution is 30 A · h or less.

通電電流量に上限は無いが、培養液1L当たり30A・h以上であると、培養液に蓄積する肥料成分量や有機物量が多くなり、細菌の繁殖が容易になるため、二室法隔膜電解、三室法隔膜電解のような電解質の透析技術やイオン交換樹脂技術を併用し、蓄積肥料成分や有機物の脱塩を行い、これら蓄積肥料成分等のレベルを低減し、その後でpH調整や殺菌を行う方が循環型培養液の調整が容易に且つ効率的に行える。 There is no upper limit on the amount of current that can be passed, but if it is 30 A · h or more per liter of culture solution, the amount of fertilizer components and organic matter that accumulate in the culture solution will increase, and bacterial growth will be easier. In combination with electrolyte dialysis technology such as three-chamber method diaphragm electrolysis and ion exchange resin technology, the accumulated fertilizer components and organic substances are desalted to reduce the level of these accumulated fertilizer components, and then pH adjustment and sterilization are performed. This makes it easier and more efficient to adjust the circulating culture medium.

さらに詳細には、循環型培養液から脱塩を行うには、二室法電解技術により脱塩を行う方法として、例えば、陽イオンを除去するには、陽イオン交換膜を挟み培養液を陽極室に流通させて不溶性陽極と不溶性陰極より通電し、電解することにより、陽極液である培養液中の陽イオンが陰極室へ移行し、培養液中の陽イオンが減少する。同時に陽極から水素イオンが供給される。従って、培養液中の陽イオンを除去すると共にpHを低下することが可能となる。一方、陰イオンを除去するには、培養液を陰極室に流通させ、陰イオン交換膜を挟み不溶性陽極と不溶性陰極より通電し、電解をすることにより培養液中の陰イオンが陽極室に移行し、培養液中の陰イオンが減少する。同時に陰極より水酸イオンが供給され、培養液中の陰イオンを除去すると共にpHを上昇させることが可能となる。 More specifically, in order to perform desalting from a circulating culture solution, as a method of desalting by a two-chamber electrolysis technique, for example, to remove a cation, the culture solution is anoded with a cation exchange membrane interposed therebetween. By flowing through the chamber and energizing from the insoluble anode and the insoluble cathode and performing electrolysis, the cation in the culture solution as the anolyte moves to the cathode chamber, and the cation in the culture solution decreases. At the same time, hydrogen ions are supplied from the anode. Therefore, it is possible to remove cations in the culture solution and lower the pH. On the other hand, in order to remove the anions, the anion in the culture solution is transferred to the anode chamber by flowing the culture solution into the cathode chamber, energizing from the insoluble anode and the insoluble cathode with the anion exchange membrane sandwiched, and electrolysis. As a result, the anion in the culture solution decreases. At the same time, hydroxide ions are supplied from the cathode, so that anions in the culture solution can be removed and the pH can be raised.

又、三室法電解技術では、陽極室側に陽イオン交換膜と中間室を介して陰極室側に陰イオン交換膜を配置し、陽極室と陰極室の双方に培養液を流通させ、不溶性陽極及び不溶性陰極より直流電流を通電し、電解することにより陽極室の培養液中の陽イオンと陰極室の培養液中の陰イオンが中間室に移行し、培養液中から蓄積された塩が除去される。電解処理された陽極液と陰極液は混合後、再利用する。 In the three-chamber electrolysis technique, an anion exchange membrane is disposed on the cathode chamber side through a cation exchange membrane and an intermediate chamber on the anode chamber side, and a culture solution is circulated in both the anode chamber and the cathode chamber to thereby form an insoluble anode. When a direct current is applied from the insoluble cathode and electrolysis is performed, the cations in the culture fluid in the anode chamber and the anions in the culture fluid in the cathode chamber are transferred to the intermediate chamber, and accumulated salts are removed from the culture fluid. Is done. The electrolytically treated anolyte and catholyte are mixed and reused.

同様に、循環型培養液を陽イオン交換樹脂又は陰イオン交換樹脂若しくは陽イオン交換樹脂と陰イオン交換樹脂を混合した混合イオン交換樹脂に浸漬又は通過することによってイオン交換することにより同様の効果が得られる。陽イオン交換樹脂と陰イオン交換樹脂の混合比を調整することによりpHを上昇することも、低下させることも可能となる。すなわち、培養液中の蓄積イオンを除去し、同時にpHを制御することが可能となる。 Similarly, a similar effect can be obtained by ion exchange by immersing or passing the circulating culture solution in a cation exchange resin or an anion exchange resin or a mixed ion exchange resin in which a cation exchange resin and an anion exchange resin are mixed. can get. The pH can be raised or lowered by adjusting the mixing ratio of the cation exchange resin and the anion exchange resin. That is, accumulated ions in the culture medium can be removed and pH can be controlled at the same time.

二室法電解技術、三室法電解技術及びイオン交換樹脂技術によって処理された培養液は、肥料調製とpH調整され再循環される。 The culture solution processed by the two-chamber electrolysis technique, the three-chamber electrolysis technique, and the ion exchange resin technique is fertilized and pH-adjusted and recycled.

二室法電解及び三室法電解で使用されるイオン交換膜は、市販の炭化水素樹脂系又はフッ素樹脂系の陽イオン交換膜、陰イオン交換膜或いは陽イオン交換膜と陰イオン交換膜を張り合わせたバイポーラー膜が使用でき、二室法電解に使用される隔膜としては、イオン交換機能を有しない炭化水素樹脂系又はフッ素樹脂系多孔質膜や素焼製隔膜も使用可能である。 The ion exchange membrane used in the two-chamber electrolysis and the three-chamber electrolysis is a commercially available hydrocarbon resin-based or fluororesin-based cation exchange membrane, an anion exchange membrane, or a cation exchange membrane and an anion exchange membrane bonded together. Bipolar membranes can be used, and as a diaphragm used for two-chamber electrolysis, a hydrocarbon resin-based or fluororesin-based porous film having no ion exchange function or an unglazed diaphragm can be used.

本発明は、養液栽培用培養液の調整方法において、培養液にpH調整用の酸やアルカリや農薬を添加することなく養液栽培用培養液中で、不溶性電極に直流電流を通電し、電解することにより、培養液のpHを植物の生育の各段階で適切なpHに調整にすると共に、培養液に酸素を供給し、酸欠状態による「嫌気性脱窒素菌」の発生を防止することにより「窒素肥料」の消費分解を抑え、さらに、培養液を殺菌することにより、根の腐敗、発酵により変動するpHを安定化させることが可能になる等の養液栽培植物を健全に、品質が均一に育成することが可能となり、培養液の調整を容易に、安全に且つ安価に行うことが出来、さらに、培養液の寿命が延長され循環再利用が可能となるため、環境保全、肥料の節減、廃水の減少による環境汚染防止の観点からも極めて有効であることが判明した。 The present invention is a method for preparing a culture solution for hydroponics, in the culture solution for hydroponics without adding acid or alkali for pH adjustment or pesticides to the culture solution, a direct current is passed through the insoluble electrode, By electrolysis, the pH of the culture solution is adjusted to an appropriate pH at each stage of plant growth, and oxygen is supplied to the culture solution to prevent the occurrence of "anaerobic denitrifying bacteria" due to lack of oxygen. By suppressing consumption decomposition of `` nitrogen fertilizer '' by this, furthermore, by sterilizing the culture solution, it is possible to stabilize the pH of fluctuating roots, fluctuating by fermentation, etc. The quality can be cultivated uniformly, the culture medium can be adjusted easily, safely and inexpensively, and the life of the culture medium can be extended and reused in the circulation. View of preventing environmental pollution by reducing fertilizer and wastewater It from is also very effective has been found.

以下、本発明の実施の形態を説明する。本発明は、以下の例に限定されるものではない。 Embodiments of the present invention will be described below. The present invention is not limited to the following examples.

トマトの水耕栽培用培養液の養育時におけるpHの管理をするために、本発明の不溶性電極による培養液の直接電解によって可能か否かを検討するため、トマト培養液10トンに対し肥料の追加を行わず、直流電流20Aを通電する無隔膜電解を導入しなかった場合と導入した場合の培養液の肥料濃度を示す電気電導度とpHの変化を調査した結果を図1、図2に示した。 In order to control the pH during the cultivation of the culture medium for tomato hydroponics, in order to examine whether or not it is possible by direct electrolysis of the culture medium with the insoluble electrode of the present invention, Fig. 1 and Fig. 2 show the results of investigating changes in electrical conductivity and pH indicating the fertilizer concentration of the culture solution when the non-diaphragm electrolysis that conducts DC current 20A was not introduced and when it was introduced. Indicated.

無隔膜電解には、陽極として、幅300mm、長さ650mm、厚さ1mmのチタン製エキスパンドメタルに白金めっきを施した石福金属興業株式会社製白金めっき電極PLATINODE-101Bを、陰極としては、同じ大きさのチタン製エキスパンドメタルを用いた。電解液として、電気電導度が0.1S/m、pH6.4のトマト培養液10トンを循環し、pH管理範囲をpH5.5~pH6.5とし、電解を行った。 For electroless membrane electrolysis, platinum-plated electrode PLATINODE-101B made by Ishifuku Metal Industry Co., Ltd., which is platinum-plated on a titanium expanded metal with a width of 300 mm, a length of 650 mm, and a thickness of 1 mm as the anode, is the same as the cathode. A titanium expanded metal of a size was used. As an electrolytic solution, 10 tons of tomato culture solution having an electric conductivity of 0.1 S / m and a pH of 6.4 was circulated to adjust the pH control range to pH 5.5 to pH 6.5, and electrolysis was performed.

図1、図2の結果より、電解を実施しなかった培養液のpHは、管理範囲外のpH6.8となったが、本発明の不溶性電極により培養液を直接電解した場合の培養液のpHは、pH6.5以下となり、トマトの生育に適したpH5.5〜pH6.5の範囲とすることが可能であった。 From the results of FIG. 1 and FIG. 2, the pH of the culture solution that was not electrolyzed became pH 6.8, which was outside the control range, but when the culture solution was directly electrolyzed by the insoluble electrode of the present invention, The pH became pH 6.5 or less, and could be in the range of pH 5.5 to pH 6.5 suitable for tomato growth.

実施例1と同様の無隔膜電解条件で、トマト培養液500Lを直接電解すると共に、生物由来のアデノシン三リン酸(ATP)とルシフェラーゼの反応による発光量(RLU)を測定し、本発明の方法が、培養液の殺菌に有効か否かを検討した。その結果を図3に示した。 Under the same diaphragmless electrolysis conditions as in Example 1, the tomato broth 500L was directly electrolyzed, and the amount of luminescence (RLU) by the reaction of biologically derived adenosine triphosphate (ATP) and luciferase was measured, and the method of the present invention However, it was examined whether it was effective for sterilization of a culture solution. The results are shown in FIG.

図3の結果より、発光量は、電解初期に上昇するものの、電解時間と共に減少し、120時間後には、約70%が減少した。該結果より、不溶性電極による培養液を直接電解する本発明の培養液調整方法により、生物由来のATPを分解し、培養液を殺菌することが可能であることが判明した。 From the results shown in FIG. 3, although the amount of luminescence increased at the beginning of electrolysis, it decreased with the electrolysis time, and decreased by about 70% after 120 hours. From the results, it was found that the ATP derived from the organism can be decomposed and the culture solution can be sterilized by the culture solution preparation method of the present invention in which the culture solution is directly electrolyzed by the insoluble electrode.

直径20mm、長さ500mmのチタン製の電解面積を有する丸棒に、酸化イリジウム60%、酸化タンタル40%からなる電極触媒となるように調製した塩化イリジウムと塩化タンタルの塩酸溶液を酸洗後のチタン製丸棒に塗布し、550℃で熱分解する操作を繰り返し行い不溶性陽極を製作した。同じ形状のSUS電極を陰極として、栽培槽が50mのイチゴのNFT水耕栽培用培養液の戻りタンクに陽極及び陰極を浸漬し、30Aの直流電流を通電し、連続無隔膜電解を行った。該電解処理を行った処理水を原水として、肥料調製・供給後、チャンネル出口の培養液中の溶存酸素濃度を測定し、本発明の電解による培養液調整方法で培養に必要とされる培養液中の溶存酸素濃度が確保されるか否かについて、電解をしなかった場合の培養液中の溶存酸素量と比較検討を行った。結果を図4に示した。 To a round bar made of titanium with a diameter of 20 mm and a length of 500 mm, an iridium chloride and tantalum chloride hydrochloric acid solution prepared to be an electrode catalyst composed of 60% iridium oxide and 40% tantalum oxide The insoluble anode was manufactured by repeatedly applying to a titanium round bar and thermally decomposing at 550 ° C. Using the SUS electrode of the same shape as the cathode, the anode and the cathode were immersed in the return tank of the NFT hydroponics culture medium for strawberries with a cultivation tank of 50 m, and a 30 A direct current was applied to perform continuous diaphragm electrolysis. Using the treated water subjected to the electrolytic treatment as raw water, after preparing and supplying the fertilizer, the dissolved oxygen concentration in the culture solution at the outlet of the channel is measured, and the culture solution required for culturing by the method for preparing a culture solution by electrolysis of the present invention Whether or not the dissolved oxygen concentration in the medium was ensured was compared with the amount of dissolved oxygen in the culture medium when electrolysis was not performed. The results are shown in FIG.

図4の結果より、電解を行わなかった場合、培養液中の溶存酸素量が培養液流量に大きく依存することが判る。特に、培養液流量が毎分2L以下では、溶存酸素濃度が4ppm以下となり、溶存酸素量が不足するのに対し、本発明の電解方法を導入することにより、高濃度で安定した溶存酸素濃度が得られ、安定した高品質の製品と高い生産量が期待できる。 From the results of FIG. 4, it can be seen that the amount of dissolved oxygen in the culture solution greatly depends on the flow rate of the culture solution when electrolysis is not performed. In particular, when the culture fluid flow rate is 2 L or less per minute, the dissolved oxygen concentration is 4 ppm or less, and the dissolved oxygen amount is insufficient. On the other hand, by introducing the electrolytic method of the present invention, a stable dissolved oxygen concentration at a high concentration is obtained. Obtained, stable high-quality products and high production can be expected.

縦100mm、横100mm、厚さ1mmの電解面積を有するチタン製エキスパンドメタルに酸化ルテニウムを電極触媒とする複合酸化物の被覆を熱分解により施した焼成電極である日本カーリット株式会社製エクセロードCを陽極、同様に白金を電極触媒とするエクセロードR-1000を陰極として用い、トマト水耕栽培用培養液1Lを電解液として、3Aの直流電流を通電し、無隔膜直接電解を行った。該電解液を採取し、スリーエムヘルスケアー株式会社製生菌数測定用ペトリフィルム培地を用い、35℃で48時間培養後、コロニー数を計測し、通電電流量に対するコロニー数依存性を検討した。その結果を図5に示した。 Exelod C manufactured by Nippon Carlit Co., Ltd. is a calcined electrode in which a complex oxide using ruthenium oxide as an electrode catalyst is applied to a titanium expanded metal having an electrolytic area of 100 mm in length, 100 mm in width and 1 mm in thickness by electrolysis. Exode R-1000 with platinum as the electrode catalyst was used as the anode, and 1 A of direct current of 3 A was applied to the tomato hydroponics culture solution 1 L as the electrolyte to perform direct electrolysis of the diaphragm. The electrolyte solution was collected, and after culturing at 35 ° C. for 48 hours using a Petri film medium for measuring viable cell count manufactured by 3M Healthcare Co., Ltd., the number of colonies was measured, and the colony number dependency on the amount of current applied was examined. The results are shown in FIG.

図5の結果より、発光量の測定結果同様、コロニー数は、電解初期時に増加するが、電解が進行するにつれて減少し、通電電流量が培養液1L当たり約4.5A・hで初期量の4%まで減少した。すなわち、約96%の殺菌が可能であった。 From the results of FIG. 5, the number of colonies increases at the initial stage of electrolysis, but decreases as the electrolysis progresses, and the amount of energizing current is about 4.5 A / h per 1 L of the culture solution. Reduced to%. That is, about 96% of sterilization was possible.

実施例4と同様の条件で電解試験を行い、トマト水耕栽培用培養液に関し、本発明の電解方法が、培養液の循環再利用に不可欠である培養液の浄化に有効であるか否か、全有機体炭素(TOC)濃度の通電電流量依存性を測定することにより検討した。結果を図6に示した。 Whether or not the electrolysis test of the present invention is effective for the purification of the culture solution essential for the circulation and reuse of the culture solution, with respect to the culture solution for tomato hydroponics, under the same conditions as in Example 4. This was investigated by measuring the dependence of total organic carbon (TOC) concentration on the amount of current applied. The results are shown in FIG.

図6の結果より、TOC値が、約460ppmを示した電解前の培養液が、電解が進行するにつれ減少し、培養液1L当たり1A・hの通電量でTOC値100ppmとなり、2 A・hの通電量で50ppm、4.5 A・hの通電量で3ppmとなった。該結果より、本発明の電解方法により、培養液の浄化が可能であり、従って、培養液の寿命が延命化し、培養液の廃棄量が減少することによる環境保全やコスト削減等が可能となることが判明した。 From the results shown in Fig. 6, the culture solution before electrolysis with a TOC value of approximately 460 ppm decreased as the electrolysis progressed, and the TOC value was 100 ppm at a current of 1 Ah per liter of the culture solution, resulting in 2 Ah The amount of electricity supplied was 50 ppm, and the amount of electricity supplied was 4.5 A · h, which was 3 ppm. From the results, it is possible to purify the culture solution by the electrolysis method of the present invention. Therefore, it is possible to prolong the life of the culture solution and to reduce the amount of the culture solution to be preserved for the environment and reduce costs. It has been found.

熱蓚酸に浸漬し酸洗後、水洗した電解面積として縦100mm、横100mm、厚さ1mmを有する、チタン製エキスパンドメタルを電極基板とし、該電極基板上に熱分解法、すなわち、酸化ルテニウム及び酸化イリジウムをモル比で2:1となる混合比の電極触媒と酸化チタン及び酸化錫をモル比で2:1となる電極触媒分散体を塩化物として含有する塩酸水溶液を塗布後、550℃で焼成する操作を繰り返し、複合酸化物被覆を施したチタン製不溶性金属電極を製作し、該不溶性金属電極を陽極として、同様に製作した白金及び酸化ルテニウムからなる電極触媒被覆を施した不溶性電極を陰極として、該陽陰極の間に陰イオン交換膜である旭硝子株式会社製セレミオンAMVを用い、循環型培養液として使用した電気電導度が0.5S/mに上昇した培養液の1Lを陽極液として、20Lを陰極液として循環し、直流電源により5Aの電流を通電し、二室法イオン交換膜電解を2時間行った。その後、二室法イオン交換膜電解でpHが上昇した陰極液を電解液として、5Aの直流電流を通電し、4時間の無隔膜電解を行い、培養液のpHを管理範囲であるpH5.5〜pH6.5とするようにした。その結果を表1に示す。 It is immersed in hot oxalic acid, pickled, washed with water and has an electrolytic area of 100 mm in length, 100 mm in width, and 1 mm in thickness.Titanium expanded metal is used as an electrode substrate, and pyrolysis method, that is, ruthenium oxide and oxidation on the electrode substrate. After applying an electrode catalyst with a mixture ratio of iridium at a molar ratio of 2: 1 and an aqueous hydrochloric acid solution containing an electrode catalyst dispersion with a molar ratio of titanium oxide and tin oxide at a ratio of 2: 1 as a chloride, firing at 550 ° C. The titanium oxide insoluble metal electrode coated with the composite oxide was manufactured, and the insoluble metal electrode was used as an anode, and the insoluble electrode coated with an electrocatalyst made of platinum and ruthenium oxide was used as the cathode. , Asahi Glass Co., Ltd. Selemion AMV is used as an anion exchange membrane between the positive and negative electrodes, 20L of 1L of the culture broth whose electrical conductivity increased to 0.5S / m was used as the circulatory culture broth Was circulated as a catholyte, and a current of 5 A was supplied from a DC power source, and two-chamber ion exchange membrane electrolysis was performed for 2 hours. Thereafter, the catholyte whose pH was increased by two-chamber ion exchange membrane electrolysis was used as the electrolyte, 5 A direct current was applied, 4 hours of non-membrane electrolysis was performed, and the pH of the culture solution was controlled within the pH 5.5 range. The pH was adjusted to 6.5. The results are shown in Table 1.

Figure 2005304485
表1の結果より、二室法イオン交換膜電解及び無隔膜電解の併用方法により、従来廃棄していた電気電導度が上昇した培養液を再生し、再循環に供することが、可能であることが判明した。
Figure 2005304485
From the results shown in Table 1, it is possible to regenerate a culture medium with increased electrical conductivity, which has been conventionally discarded, and use it for recirculation by the combined method of two-chamber ion exchange membrane electrolysis and non-membrane membrane electrolysis. There was found.

実施例6と同様に、電解面積として縦100mm、横100mm、厚さ1mmを有する、チタン製エキスパンドメタルを電極基板に酸化イリジウムを電極触媒として熱分解により被覆した日本カーリット株式会社製エクセロードBを不溶性陽極、同様に電極触媒として白金及び酸化イリジウムをチタン製エキスパンドメタル電極基板に被覆したエクセロードRN-2000を不溶性陰極として使用し、該陽陰極の間に陽イオン交換膜として旭硝子株式会社製セレミオンCMV、陰イオン交換膜としてセレミオンAMVを用い、実施例6と同様に、電気電導度が0.6S/mに上昇した循環型培養液を陽極液、中間液及び陰極液として循環し、陽極と陰極に直流電源により5Aの電流を通電し、6時間三室法イオン交換膜電解を行った。その後、陽極液と陰極液を混合し、該混合液のpH、電気電導度を測定し、再度培養液の原水として使用可能か否かを検討した。その結果を表2に示す。 As in Example 6, Exelod B manufactured by Nippon Carlit Co., Ltd., having an electrolytic area of 100 mm in length, 100 mm in width, and 1 mm in thickness, coated with titanium expanded metal on the electrode substrate by thermal decomposition using iridium oxide as an electrode catalyst. An insoluble anode, as well as Exelod RN-2000 with platinum and iridium oxide coated on a titanium expanded metal electrode substrate as an electrocatalyst, was used as an insoluble cathode, and as a cation exchange membrane between the positive and negative electrodes, Selemion manufactured by Asahi Glass Co., Ltd. As in Example 6, using CMV and Selemion AMV as the anion exchange membrane, circulating culture fluid whose electrical conductivity was increased to 0.6 S / m was circulated as an anolyte, an intermediate solution and a catholyte. A current of 5A was applied to the battery by a DC power source, and a three-chamber ion exchange membrane electrolysis was performed for 6 hours. Thereafter, the anolyte and the catholyte were mixed, the pH and electrical conductivity of the mixture were measured, and it was examined again whether or not it could be used as the raw water of the culture solution. The results are shown in Table 2.

Figure 2005304485
表2の結果より、三室法イオン交換膜電解により、従来廃棄していた電気電導度が上昇した培養液を再生し、循環して培養液調製用の原水に供することが可能となることが判明した。
Figure 2005304485
From the results in Table 2, it was found that the three-chamber ion exchange membrane electrolysis can regenerate and circulate the conventionally discarded culture solution with increased electrical conductivity and supply it to the raw water for preparing the culture solution. did.

果実糖度を高水準とするため、肥料濃度を高濃度で循環使用したトマト培養液を再利用することが可能か否かを検討するため、電気電導度が0.7S/mに上昇した培養液20Lをイオン交換樹脂処理及びpH調整を目的とした無隔膜電解処理を併用処理し、再使用の可能性を判断するため、電気電導度、pH及び発光量を測定した。イオン交換樹脂処理には、三菱化学株式会社製陽イオン交換樹脂ダイアイオンSK110及び陰イオン交換樹脂ダイアイオンSA10Aをそれぞれ酸型と塩基型に処理後、容量比1:1で混合したものに培養液を通液処理した。次いで、イオン交換樹脂処理を行った培養液を縦100mm、横100mm、厚み3mmの電解面積を有する板状の石福金属興業株式会社製MODE-200焼成電極を不溶性陽極、同じ形状の銅板を不溶性陰極として使用し、10Aの直流電流を通電し、10時間の無隔膜電解を行った。それぞれの結果を表3に示した。 To investigate whether it is possible to reuse tomato broth that has been circulated and reused at a high fertilizer concentration in order to increase the sugar content of the fruit, 20L of the broth whose electrical conductivity has increased to 0.7 S / m In order to determine the possibility of reuse, the electrical conductivity, pH, and light emission amount were measured. For the ion exchange resin treatment, the cation exchange resin Diaion SK110 and the anion exchange resin Diaion SA10A manufactured by Mitsubishi Chemical Corporation were each treated in an acid form and a base form, and then mixed in a volume ratio of 1: 1. The solution was passed through. Next, the plate-shaped Ishifuku Metal Industry Co., Ltd. MODE-200 fired electrode with an electrolytic area of 100 mm in length, 100 mm in width and 3 mm in thickness is used as the insoluble anode, and the copper plate of the same shape is insoluble. Using as a cathode, a 10 A direct current was applied to conduct electroless membrane electrolysis for 10 hours. The results are shown in Table 3.

Figure 2005304485
表3の結果より、イオン交換樹脂処理では、培養液に蓄積した不要成分が除去され、電気電導度は低下したが、pH及び発光量は減少せず、pH調整と殺菌効果は得られなかった。さらに、該イオン交換樹脂処理を行った培養液を無隔膜電解した培養液では、pHがトマト栽培の育成に適するpH5.8とすることが可能となり、発光量も減少した。該イオン交換樹脂処理と無隔膜電解処理を併用した処理により、肥料濃度を高濃度で循環使用した高電気電導度の培養液を再使用するための原水として利用可能であることが判明した。
Figure 2005304485
From the results in Table 3, the ion exchange resin treatment removed unnecessary components accumulated in the culture solution and decreased the electrical conductivity, but the pH and the amount of luminescence did not decrease, and the pH adjustment and bactericidal effect could not be obtained. . Furthermore, in the culture solution obtained by subjecting the culture solution treated with the ion exchange resin to electroless membrane electrolysis, the pH can be adjusted to pH 5.8 suitable for growing tomato cultivation, and the amount of luminescence is also reduced. It has been found that the treatment using both the ion exchange resin treatment and the non-diaphragm electrolysis treatment can be used as raw water for reusing a culture solution having a high electrical conductivity and circulating at a high fertilizer concentration.

トマト培養液の電気電導度とpHの経時変化を示す図面Drawing showing changes in electrical conductivity and pH of tomato broth over time 無隔膜電解を行ったトマト培養液の電気電導度とpHの経時変化を示す図面Drawing showing electrical conductivity and pH change over time of tomato broth subjected to membraneless electrolysis トマト培養液発光量の電解時間依存性を示す図面Drawing showing electrolysis time dependence of tomato broth luminescence イチゴ培養液中の溶存酸素濃度の電解有無による培養液流量依存性を示す図面Drawing showing the culture flow rate dependence depending on the presence or absence of electrolysis of dissolved oxygen concentration in strawberry culture トマト培養液の一般細菌数の通電電流量依存性を示す図面Drawing showing the dependence of the number of general bacteria in the tomato broth on the amount of applied current トマト培養液の全有機体炭素(TOC)濃度の通電電流量依存性を示す図面Drawing showing the dependence of total organic carbon (TOC) concentration in tomato broth on the amount of applied current

Claims (7)

養液栽培用培養液を電解液として直流電流により直接電解し、養液栽培用培養液のpH調整、殺菌、酸素付加、脱塩、濃度調整を行うにあたり、電極基体がチタン、タンタル、ニオブ、ジルコニウムの金属若しくはこれらの合金であり、該電極基体に電極触媒として白金、イリジウム、ルテニウム、パラジウムから選択される一種以上の金属若しくは金属酸化物からなる電極触媒とチタン、錫、タンタル、アンチモン、ニオブ、ジルコニウムの金属酸化物から選択される電極触媒の分散材を含有してなる複合酸化物被覆層を有する不溶性陽極と鉄、ニッケル、銅、銀の金属若しくはこれらの合金、又はチタン、タンタル、ニオブ、ジルコニウムの金属若しくはこれらの合金、又は該金属や合金を電極基体とし、該電極基体に電極触媒として白金、イリジウム、ルテニウム、パラジウムから選択される一種以上からなる金属、合金又は金属酸化物を電極触媒として被覆した不溶性陰極若しくは該電極触媒にチタン、錫、タンタル、アンチモン、ニオブ、ジルコニウムの金属酸化物から選択される電極触媒の分散材を含有してなる複合酸化物被覆層を有する不溶性陰極を使用することを特徴とする養液栽培用培養液の調整方法。 When the culture medium for nutrient solution culture is directly electrolyzed with a direct current as an electrolyte solution, the electrode substrate is made of titanium, tantalum, niobium, pH adjustment, sterilization, oxygenation, desalting, concentration adjustment of the nutrient solution culture medium. A metal of zirconium or an alloy thereof, and an electrode catalyst made of one or more metals or metal oxides selected from platinum, iridium, ruthenium, and palladium as an electrode catalyst on the electrode substrate, and titanium, tin, tantalum, antimony, niobium An insoluble anode having a composite oxide coating layer containing a dispersion of an electrocatalyst selected from metal oxides of zirconium, iron, nickel, copper, silver metals or alloys thereof, or titanium, tantalum, niobium , Zirconium metal or alloys thereof, or the metal or alloy as an electrode substrate, and platinum as an electrode catalyst on the electrode substrate. Insoluble cathode coated with one or more metals, alloys or metal oxides selected from iridium, ruthenium and palladium as electrode catalyst or selected from metal oxides of titanium, tin, tantalum, antimony, niobium and zirconium A method for preparing a culture solution for hydroponics, which comprises using an insoluble cathode having a composite oxide coating layer containing a dispersed material of an electrode catalyst. 養液栽培用培養液が、元素として窒素、リン、カリウム、カルシウム、マグネシウム、硫黄、炭素、酸素、水素、鉄、マンガン、ホウ素、銅、亜鉛、モリブデン、塩素、ナトリウム、珪素、アルミニウムからなり硝酸塩、リン酸塩、硫酸塩、アンモニウム塩、キレート塩、有機肥料成分の水溶液で構成され、pHがpH4.5とpH8の範囲に調整することを特徴とする請求項1に記載の養液栽培用培養液の調整方法。 The culture medium for hydroponics is composed of nitrogen, phosphorus, potassium, calcium, magnesium, sulfur, carbon, oxygen, hydrogen, iron, manganese, boron, copper, zinc, molybdenum, chlorine, sodium, silicon, aluminum nitrate 2. The hydroponic culture according to claim 1, comprising a phosphate, sulfate, ammonium salt, chelate salt, an aqueous solution of an organic fertilizer component, and the pH is adjusted to a range of pH 4.5 and pH 8. How to adjust the culture solution. 養液栽培用培養液を電解液として直流電源により電解するにあたり、直流電源が、太陽電池であることを特徴とする請求項1、2に記載の養液栽培用培養液の調整方法。 3. The method for adjusting a culture solution for hydroponics according to claim 1 or 2, wherein the direct current power source is a solar battery when electrolyzing the culture solution for hydroponics with the direct current power source as an electrolytic solution. 養液栽培用培養液を電解液として直流電解し、養液栽培用培養液を調整するにあたり、電解方法が、無隔膜電解又は二室法隔膜電解若しくは三室法隔膜電解の隔膜電解より選択して養液栽培用培養液を調整することを特徴とする請求項1、2、3に記載の養液栽培用培養液の調整方法。 When the culture solution for nutrient solution culture is DC electrolyzed as an electrolyte solution and the culture solution for nutrient solution culture is prepared, the electrolysis method is selected from diaphragm electrolysis, diaphragm electrolysis of two-chamber method diaphragm electrolysis or three-chamber method diaphragm electrolysis 4. The method for adjusting a culture solution for hydroponics according to claim 1, 2, or 3, wherein the culture solution for hydroponics is adjusted. 養液栽培用培養液を電解液として直流電解し、養液栽培用培養液を調整するにあたり、隔膜電解の隔膜が、陽イオン交換膜、陰イオン交換膜、中性膜より選択してなる隔膜電解であることを特徴とする請求項1、2、3、4に記載の養液栽培用培養液の調整方法。 A diaphragm in which the diaphragm for electrolysis is selected from a cation exchange membrane, an anion exchange membrane, and a neutral membrane for direct current electrolysis using a culture solution for nutrient solution cultivation as an electrolyte solution and adjusting the culture solution for nutrient solution cultivation. 5. The method for preparing a culture solution for hydroponics according to claim 1, 2, 3, or 4, wherein the method is electrolysis. 養液栽培用培養液を電解液として直流電解し、養液栽培用培養液を調整するにあたり、陽イオン交換樹脂、陰イオン交換樹脂又はこれらの混合樹脂より選択し、電解方法と併用処理し、養液栽培用培養液を調整することを特徴とする請求項1、2、3、4、5に記載の養液栽培用培養液の調整方法。 Direct current electrolysis as a culture solution for hydroponics, and in adjusting the culture solution for hydroponic culture, select from cation exchange resin, anion exchange resin or a mixed resin thereof, and combined treatment with the electrolysis method, 6. The method for adjusting a culture solution for hydroponics according to claim 1, 2, 3, 4, or 5, wherein the culture solution for hydroponics is adjusted. 養液栽培用培養液を電解液として直流電解し、養液栽培用培養液を調整するにあたり、通電電流量が、養液1L当たり30A・h以下であることを特徴とする請求項1、2、3、4、5、6に記載の養液栽培用培養液の調整方法。
The direct current electrolysis using the culture medium for nutrient solution cultivation as an electrolytic solution, and adjusting the culture solution for nutrient solution culture, the amount of energizing current is 30 Ah or less per 1 L of the nutrient solution, , 3, 4, 5, and 6. The method for preparing a culture solution for hydroponics according to claim 1.
JP2005004709A 2005-01-12 2005-01-12 Method for adjusting culture solution for hydroponics Expired - Fee Related JP4457404B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005004709A JP4457404B2 (en) 2005-01-12 2005-01-12 Method for adjusting culture solution for hydroponics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005004709A JP4457404B2 (en) 2005-01-12 2005-01-12 Method for adjusting culture solution for hydroponics

Publications (2)

Publication Number Publication Date
JP2005304485A true JP2005304485A (en) 2005-11-04
JP4457404B2 JP4457404B2 (en) 2010-04-28

Family

ID=35433951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005004709A Expired - Fee Related JP4457404B2 (en) 2005-01-12 2005-01-12 Method for adjusting culture solution for hydroponics

Country Status (1)

Country Link
JP (1) JP4457404B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010148413A (en) * 2008-12-25 2010-07-08 Q P Corp Hydroponics method of leaf vegetable
US7804922B2 (en) 2007-03-02 2010-09-28 Skyworks Solutions, Inc. System and method for adjacent channel power detection and dynamic bandwidth filter control
JP2012016297A (en) * 2010-07-06 2012-01-26 Kochi Univ Method of growing plant
JP4945765B2 (en) * 2005-11-11 2012-06-06 国立大学法人佐賀大学 Fresh water production method
CN102674525A (en) * 2011-03-15 2012-09-19 吉林师范大学 Method for preparing cathode for cathode electro-fenton process
JP2013138649A (en) * 2011-12-29 2013-07-18 Daikin Industries Ltd Purification apparatus
CN103626265A (en) * 2013-11-07 2014-03-12 太原师范学院 Method for performing electrocatalytic oxidation on pyrocatechol
JP2015043729A (en) * 2013-08-28 2015-03-12 株式会社クボタ Plant cultivation water, plant cultivation water production method, plant cultivation water production facility, and plant cultivation system
KR20150071956A (en) * 2013-12-19 2015-06-29 상명대학교 천안산학협력단 Including sterile hydroponic culture recirculation device
KR101538390B1 (en) * 2014-09-11 2015-07-22 계룡건설산업 주식회사 Landscaping trees hydroponic planting method
CN113603521A (en) * 2021-08-13 2021-11-05 福建省中科生物股份有限公司 Soilless culture nutrient solution suitable for tea tree cuttage and artificial light indoor planting

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016158623A (en) * 2015-06-10 2016-09-05 株式会社タムロン Plant cultivation device, and plant factory

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4945765B2 (en) * 2005-11-11 2012-06-06 国立大学法人佐賀大学 Fresh water production method
US8559574B2 (en) 2007-03-02 2013-10-15 Intel Corporation System and method for adjacent channel power detection and dynamic bandwidth filter control
US7804922B2 (en) 2007-03-02 2010-09-28 Skyworks Solutions, Inc. System and method for adjacent channel power detection and dynamic bandwidth filter control
US8111793B2 (en) 2007-03-02 2012-02-07 Ying Shi System and method for adjacent channel power detection and dynamic bandwidth filter control
JP2010148413A (en) * 2008-12-25 2010-07-08 Q P Corp Hydroponics method of leaf vegetable
JP2012016297A (en) * 2010-07-06 2012-01-26 Kochi Univ Method of growing plant
CN102674525A (en) * 2011-03-15 2012-09-19 吉林师范大学 Method for preparing cathode for cathode electro-fenton process
JP2013138649A (en) * 2011-12-29 2013-07-18 Daikin Industries Ltd Purification apparatus
JP2015043729A (en) * 2013-08-28 2015-03-12 株式会社クボタ Plant cultivation water, plant cultivation water production method, plant cultivation water production facility, and plant cultivation system
CN103626265A (en) * 2013-11-07 2014-03-12 太原师范学院 Method for performing electrocatalytic oxidation on pyrocatechol
KR20150071956A (en) * 2013-12-19 2015-06-29 상명대학교 천안산학협력단 Including sterile hydroponic culture recirculation device
KR101603067B1 (en) 2013-12-19 2016-03-14 상명대학교 천안산학협력단 Including sterile hydroponic culture recirculation device
KR101538390B1 (en) * 2014-09-11 2015-07-22 계룡건설산업 주식회사 Landscaping trees hydroponic planting method
CN113603521A (en) * 2021-08-13 2021-11-05 福建省中科生物股份有限公司 Soilless culture nutrient solution suitable for tea tree cuttage and artificial light indoor planting
CN113603521B (en) * 2021-08-13 2022-05-27 福建省中科生物股份有限公司 Soilless culture nutrient solution suitable for tea tree cuttage and artificial light indoor planting

Also Published As

Publication number Publication date
JP4457404B2 (en) 2010-04-28

Similar Documents

Publication Publication Date Title
JP4457404B2 (en) Method for adjusting culture solution for hydroponics
DE602004009136T2 (en) Electrochemical sterilization and bacteriostatic process
JP3716042B2 (en) Acid water production method and electrolytic cell
US20190380313A1 (en) Physico-chemical process for removal of nitrogen species from recirculated aquaculture systems
JP4552219B2 (en) Method for adjusting culture medium for hydroponics and method for supplying trace elements
US20030070940A1 (en) Method and apparatus for purification treatment of water
Saleem et al. Electrochemical removal of nitrite in simulated aquaculture wastewater
KR20100064768A (en) Prevention system of adhesion of marine organism
DE102008004663A1 (en) Method for sanitization and germ reduction from biologically cleaned sewage, comprises conducting the sewage or sewage partial flow to a clarification plant through electrolysis cell and subsequently supplying to industrial water container
JP5308247B2 (en) Hydroponic cultivation equipment and hydroponic cultivation method
JP2004132592A (en) Electrochemical water treatment method and water treatment system
DE19853182A1 (en) Removal of ammonium and/or ammonia from saline aqueous solution, e.g. sewage or other waste liquor, involves electrolysis at constant pH in a divided cell in the presence of chloride
JP5093437B2 (en) Bacteria control method for fuel cell system
JP3685384B2 (en) Slime prevention method
JP2016054668A (en) Method of preparing culture solution
JP4233545B2 (en) Phosphorus removal equipment
JP4846298B2 (en) Seawater disinfection method
KR101436111B1 (en) Method and device for generating sterilizing agent
KR102008396B1 (en) Operation manual for an electrolysis water system
CN102234149A (en) Method for sterilizing raw water
RU2329335C2 (en) Method of disinfectant preparation and disinfectant
KR20240049690A (en) Smart Electrochemical Oxidation System for Recalcitrance Wastewater Treatment
CN104030407B (en) A kind of method of electrochemical pre-treatment metalaxyl agricultural chemicals waste water
JP2015216854A (en) Cleaning method and cleaning facility of culture medium
CN112142169A (en) Method for disinfecting and sterilizing wastewater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100131

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160219

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees