JP2005303263A - Method of manufacturing photoelectric conversion film lamination type solid-state image pickup device - Google Patents

Method of manufacturing photoelectric conversion film lamination type solid-state image pickup device Download PDF

Info

Publication number
JP2005303263A
JP2005303263A JP2005037909A JP2005037909A JP2005303263A JP 2005303263 A JP2005303263 A JP 2005303263A JP 2005037909 A JP2005037909 A JP 2005037909A JP 2005037909 A JP2005037909 A JP 2005037909A JP 2005303263 A JP2005303263 A JP 2005303263A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
film
conversion film
electrode film
imaging device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005037909A
Other languages
Japanese (ja)
Inventor
Tomoki Inoue
知己 井上
Mikio Watanabe
幹緒 渡邉
Masashi Kantani
正史 乾谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2005037909A priority Critical patent/JP2005303263A/en
Publication of JP2005303263A publication Critical patent/JP2005303263A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To facilitate the manufacturing of vertical wirings for a photoelectric conversion film lamination type solid-state image pickup device. <P>SOLUTION: The method relates to manufacturing the photoelectric conversion film lamination type solid-state image pickup device in which a plurality of photoelectric conversion films, which are sandwiched between common electrode films and pixel electrode film supporting pixels, are laminated on a semiconductor substrate 1 via a dielectric. In the method, vertical wirings 37, 40 are manufactured previously and coated by an insulating material 65. The vertical wirings 37, 40 are connected to a signal reading circuit formed on the surface of the semiconductor substrate 1; pass through lower layer photoelectric conversion films, common electrode films that sandwich the photoelectric conversion films, and the dielectric; and are connected to the pixel electrode film that sandwiches the upper layer photoelectric conversion film. Then, the lower layer photoelectric conversion films, common electrode films sandwiching the photoelectric conversion films, and dielectric are laminated. This enables manufacturing vertical wirings without being broken and facilitates the lamination of the photoelectric conversion films or the like. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、信号読出回路が表面に形成された半導体基板の上に光電変換膜を積層して構成される光電変換膜積層型固体撮像素子の製造方法に関する。   The present invention relates to a method for manufacturing a photoelectric conversion film stacked solid-state imaging device configured by stacking a photoelectric conversion film on a semiconductor substrate on which a signal readout circuit is formed.

光電変換膜積層型固体撮像素子の原型的な素子として、例えば下記特許文献1記載のものがある。この固体撮像素子は、半導体基板の上に感光層を3層積層し、各感光層で検出された赤色(R),緑色(G),青色(B)の夫々の電気信号を、半導体基板表面に形成されているMOS回路で読み出すという構成になっている。   As a prototype element of the photoelectric conversion film laminated solid-state imaging device, for example, there is one described in Patent Document 1 below. In this solid-state imaging device, three photosensitive layers are stacked on a semiconductor substrate, and red (R), green (G), and blue (B) electrical signals detected in each photosensitive layer are transmitted to the surface of the semiconductor substrate. Reading is performed by the MOS circuit formed in the circuit.

斯かる構成の固体撮像素子が過去に提案されたが、その後、半導体基板表面部に多数の受光部(フォトダイオード)を集積すると共に各受光部上に赤色(R),緑色(G),青色(B)の各色カラーフィルタを積層したCCD型イメージセンサやCMOS型イメージセンサが著しく進歩し、現在では、数百万もの受光部(画素)を1チップ上に集積したイメージセンサがデジタルスチルカメラに搭載される様になっている。   A solid-state imaging device having such a configuration has been proposed in the past. Thereafter, a large number of light receiving portions (photodiodes) are integrated on the surface portion of the semiconductor substrate, and red (R), green (G), and blue are integrated on each light receiving portion. The CCD type image sensor and CMOS type image sensor in which the color filters of each color (B) are laminated have advanced remarkably, and now, an image sensor in which millions of light receiving parts (pixels) are integrated on one chip is used as a digital still camera. It comes to be installed.

しかしながら、CCD型イメージセンサやCMOS型イメージセンサは、その技術進歩が限界近くまで進み、1つの受光部の開口の大きさが2μm程度と、入射光の波長オーダに近づいており、製造歩留まりが悪いという問題に直面している。   However, the CCD type image sensor and the CMOS type image sensor have progressed to their limits, and the aperture size of one light receiving part is about 2 μm, which is close to the wavelength order of incident light, and the manufacturing yield is poor. Faced with the problem.

また、微細化された1つの受光部に蓄積される光電荷量の上限は、電子3000個程度と少なく、これで256階調を奇麗に表現するのが困難にもなってきている。このため、画質や感度の点で今以上のイメージセンサをCCD型やCMOS型で期待するのは困難になっている。   In addition, the upper limit of the amount of photocharge accumulated in one miniaturized light receiving portion is as small as about 3000 electrons, which makes it difficult to express 256 gradations neatly. For this reason, it is difficult to expect an image sensor more than the current type in the CCD type or the CMOS type in terms of image quality and sensitivity.

そこで、これらの問題を解決する固体撮像素子として、特許文献1で提案された固体撮像素子が注目を集めるようになり、特許文献2や特許文献3、特許文献4に記載されているイメージセンサが新たに提案される様になってきている。   Therefore, as a solid-state imaging device that solves these problems, the solid-state imaging device proposed in Patent Literature 1 has attracted attention, and the image sensors described in Patent Literature 2, Patent Literature 3, and Patent Literature 4 are known. It has come to be newly proposed.

特許文献2に記載されたイメージセンサは、シリコンの超微粒子を媒質内に分散して光電変換層とし、超微粒子の粒径を変えた複数の光電変換層を半導体基板の上に3層積層し、夫々の光電変換層で、赤色,緑色,青色の夫々の受光量に応じた電気信号を発生させる様になっている。   In the image sensor described in Patent Document 2, ultrafine particles of silicon are dispersed in a medium to form a photoelectric conversion layer, and a plurality of photoelectric conversion layers having different ultrafine particle sizes are stacked on a semiconductor substrate. In each photoelectric conversion layer, electrical signals corresponding to the received light amounts of red, green and blue are generated.

特許文献3に記載されたイメージセンサも同様であり、粒径の異なるナノシリコン層を半導体基板の上に3層積層し、夫々のナノシリコン層で検出された赤色,緑色,青色の各電気信号を、半導体基板の表面部に形成されている蓄積ダイオードに読み出すようになっている。   The same applies to the image sensor described in Patent Document 3, in which three nanosilicon layers having different particle diameters are stacked on a semiconductor substrate, and red, green, and blue electrical signals detected by each nanosilicon layer are detected. Is read out to the storage diode formed on the surface portion of the semiconductor substrate.

特許文献4に記載されたイメージセンサは、半導体基板の表面部に赤色検出用のフォトダイオードと青色検出用のフォトダイオードとを従来のCCDやCMOSイメージセンサと同様に設け、緑色検出用のフォトダイオードの代わりに緑色検出用の光電変換層を半導体基板の上部に一層だけ設けている。   In the image sensor described in Patent Document 4, a red detection photodiode and a blue detection photodiode are provided on a surface portion of a semiconductor substrate in the same manner as a conventional CCD or CMOS image sensor, and a green detection photodiode is provided. Instead, only a single layer of a green color photoelectric conversion layer is provided on the semiconductor substrate.

特開昭58―103165号公報JP 58-103165 A 特許第3405099号公報Japanese Patent No. 3405099 特開2002―83946号公報Japanese Patent Laid-Open No. 2002-83946 特開2003―332551号公報の図5,図6(b)FIG. 5 and FIG. 6B of Japanese Patent Laid-Open No. 2003-332551.

光電変換膜積層型固体撮像素子を製造する場合、半導体基板側の製造は、従来のCCD型やCMOS型のイメージセンサと同じであり、半導体装置の製造技術をそのまま利用することができる。また、半導体基板の上に積層する光電変換膜や光電変換膜を挟む電極膜及び絶縁膜も、印刷技術を用いた成膜方法やスプレー法、真空蒸着法,スパッタ法,CVD法等を利用することで製造することができる。   When manufacturing a photoelectric conversion film laminated solid-state imaging device, the manufacturing on the semiconductor substrate side is the same as a conventional CCD type or CMOS type image sensor, and the manufacturing technology of the semiconductor device can be used as it is. In addition, the photoelectric conversion film laminated on the semiconductor substrate, and the electrode film and the insulating film sandwiching the photoelectric conversion film also use a film forming method using a printing technique, a spray method, a vacuum evaporation method, a sputtering method, a CVD method, or the like. Can be manufactured.

しかし、半導体基板に製造された信号読出回路と、その上に積層した光電変換膜の電極とを接続する配線を製造するのは容易でない。電極膜の膜平面に対して垂直方向の縦配線にする必要があるからである。   However, it is not easy to manufacture a wiring that connects the signal readout circuit manufactured on the semiconductor substrate and the electrode of the photoelectric conversion film laminated thereon. This is because it is necessary to make vertical wiring in a direction perpendicular to the film plane of the electrode film.

例えば、R用,G用,B用の3層の光電変換膜を積層した固体撮像素子では、1画素で赤色(R),緑色(G),青色(G)の3色の色信号を読み出す構成のため、1画素当たり3本の縦配線を設ける必要があり、しかも、3本の縦配線は高さが異なる。   For example, in a solid-state imaging device in which three layers of R, G, and B photoelectric conversion films are stacked, red (R), green (G), and blue (G) color signals are read out by one pixel. Because of the configuration, it is necessary to provide three vertical wires per pixel, and the three vertical wires have different heights.

半導体基板の上に例えば絶縁膜を成膜した後、縦配線を施す部分をエッチングで削って導体を埋め込み、光電変換膜を成膜した後、縦配線を施す部分をエッチングで削って導体を埋め込むという作業を何回も繰り返し行うことで、縦配線を製造することはできる。   For example, after an insulating film is formed on a semiconductor substrate, a portion to be provided with vertical wiring is etched and embedded with a conductor, and after a photoelectric conversion film is formed, a portion with vertical wiring is etched and embedded with a conductor. The vertical wiring can be manufactured by repeatedly performing the above operation.

しかし、この作業は、位置合わせが困難であり、位置ずれが生じると縦配線が断線状態となって光電変換信号の読み出しが不可能になってしまうという問題がある。しかも、1個の固体撮像素子に数百万もの画素を製造するには、その3倍の縦配線が必要となり、更に、上層の光電変換膜で発生された光電変換信号を半導体基板上の信号読出回路に接続する縦配線は、中間部分にある光電変換膜や電極膜と電気的に接触しないように絶縁しながら製造する必要があり、製造が困難で製造コストが嵩んでしまうという問題がある。   However, this operation has a problem that alignment is difficult, and if a positional shift occurs, the vertical wiring is disconnected and the photoelectric conversion signal cannot be read out. Moreover, in order to manufacture millions of pixels in one solid-state imaging device, three times as many vertical wirings are required. Further, the photoelectric conversion signal generated in the upper photoelectric conversion film is converted into a signal on the semiconductor substrate. The vertical wiring connected to the readout circuit needs to be manufactured while being insulated so as not to be in electrical contact with the photoelectric conversion film and electrode film in the intermediate portion, which makes it difficult to manufacture and increases the manufacturing cost. .

本発明の目的は、製造コストを削減することができ、光電変換膜で発生した光電変換信号を断線無く信号読出回路に接続できる縦配線を施した光電変換膜積層型固体撮像素子の製造方法を提供することにある。   An object of the present invention is to provide a method of manufacturing a photoelectric conversion film stacked solid-state imaging device having a vertical wiring that can reduce the manufacturing cost and can connect a photoelectric conversion signal generated in the photoelectric conversion film to a signal readout circuit without disconnection. It is to provide.

本発明の光電変換膜積層型固体撮像素子の製造方法は、共通電極膜と画素対応の画素電極膜とによって挟まれた光電変換膜が半導体基板の上に積層される光電変換膜積層型固体撮像素子の製造方法において、前記半導体基板の表面部に形成されている信号読出回路に接続され対応の前記画素電極膜の位置まで先端部が達する縦配線を形成し、次に該縦配線が埋設される層の構成物を形成し、その後、該層の表面に前記先端部が接続される前記画素電極膜を形成することを特徴とする。   The method of manufacturing a photoelectric conversion film stacked solid-state imaging device according to the present invention includes a photoelectric conversion film stacked solid-state imaging in which a photoelectric conversion film sandwiched between a common electrode film and a pixel electrode film corresponding to a pixel is stacked on a semiconductor substrate. In the device manufacturing method, a vertical wiring that is connected to a signal readout circuit formed on the surface portion of the semiconductor substrate and reaches the tip of the corresponding pixel electrode film is formed, and then the vertical wiring is embedded. And forming the pixel electrode film having the tip connected to the surface of the layer.

この構成により、縦配線は断線無く信号読出回路と対応画素電極膜とを接続することができる。   With this configuration, the vertical wiring can connect the signal readout circuit and the corresponding pixel electrode film without disconnection.

本発明の光電変換膜積層型固体撮像素子の製造方法の前記光電変換膜は緑色の入射光量を検出する光電変換膜であり、前記層の構成物は前記半導体基板の表面部に設けられた赤色検出用フォトダイオード及び青色検出用フォトダイオードの夫々の上に設けられる赤色光透過用及び青色光透過用のカラーフィルタと該カラーフィルタを埋設する絶縁層であることを特徴とする。   In the method for producing a photoelectric conversion film stack type solid-state imaging device of the present invention, the photoelectric conversion film is a photoelectric conversion film that detects a green incident light amount, and the constituent of the layer is a red color provided on a surface portion of the semiconductor substrate. A color filter for transmitting red light and a light transmitting blue light provided on each of the detection photodiode and the blue detection photodiode, and an insulating layer in which the color filter is embedded.

この構成により、製造が容易な光電変換膜積層型固体撮像素子を提供できる。   With this configuration, it is possible to provide a photoelectric conversion film stacked solid-state imaging device that is easy to manufacture.

本発明の光電変換膜積層型固体撮像素子の製造方法は、共通電極膜と画素対応の画素電極膜とによって挟まれた光電変換膜が絶縁膜を介して半導体基板の上に複数積層される光電変換膜積層型固体撮像素子の製造方法において、前記半導体基板の表面部に形成されている信号読出回路に接続される縦配線であって下層の前記光電変換膜及び該光電変換膜を挟む前記共通電極膜並びに前記絶縁膜を貫通し上層の前記光電変換膜を挟む前記画素電極膜に接続される縦配線を先に製造して絶縁材で被覆し、その後に、前記下層の光電変換膜、該光電変換膜を挟む前記共通電極膜、前記絶縁膜を積層することを特徴とする。   According to the method of manufacturing a photoelectric conversion film stacked solid-state imaging device of the present invention, a plurality of photoelectric conversion films sandwiched between a common electrode film and a pixel electrode film corresponding to a pixel are stacked on a semiconductor substrate via an insulating film. In the method for manufacturing a conversion film stack type solid-state imaging device, the photoelectric conversion film in the lower layer and connected to the signal readout circuit formed on the surface portion of the semiconductor substrate and the common sandwiching the photoelectric conversion film The vertical wiring connected to the pixel electrode film that penetrates the electrode film and the insulating film and sandwiches the upper photoelectric conversion film is first manufactured and covered with an insulating material, and then the lower photoelectric conversion film, The common electrode film and the insulating film sandwiching the photoelectric conversion film are stacked.

この構成により、断線無く縦配線の製造ができ、各層の積層も容易となるため、光電変換膜積層型固体撮像素子の製造コストの低減と製造歩留まりの向上を図ることが可能となる。   With this configuration, the vertical wiring can be manufactured without disconnection, and the layers can be easily stacked. Therefore, it is possible to reduce the manufacturing cost and improve the manufacturing yield of the photoelectric conversion film stacked solid-state imaging device.

本発明の光電変換膜積層型固体撮像素子の製造方法は、赤色検出用,緑色検出用,青色検出用の3つ光電変換膜を検出波長の短い順に上から順に備え、3つの光電変換膜のうち2つの光電変換膜に設ける前記共通電極膜を共用したことを特徴とする。   The method for manufacturing a photoelectric conversion film stack type solid-state imaging device of the present invention comprises three photoelectric conversion films for red detection, green detection, and blue detection in order from the shortest detection wavelength in order from the top. The common electrode film provided on two of the photoelectric conversion films is shared.

この構成により、3原色によるカラー撮像が可能な光電変換膜積層型固体撮像素子の製造を容易に行うことが可能となる。   With this configuration, it is possible to easily manufacture a photoelectric conversion film stacked solid-state imaging device capable of color imaging with three primary colors.

本発明の光電変換膜積層型固体撮像素子の製造方法は、赤色検出用,緑色検出用,青色検出用,エメラルド色検出用の4つの光電変換膜を検出波長の短い順に上から備え、4つの光電変換膜のうちの隣接する2つの光電変換膜に設ける前記共通電極膜を共用したことを特徴とする。   The manufacturing method of the photoelectric conversion film laminated solid-state imaging device of the present invention includes four photoelectric conversion films for red detection, green detection, blue detection, and emerald color detection from the top in order of short detection wavelength. The common electrode film provided on two adjacent photoelectric conversion films among the photoelectric conversion films is shared.

この構成により、人間の視感度に応じたカラー画像の撮像が可能な光電変換膜積層型固体撮像素子を容易に製造可能となる。   With this configuration, it is possible to easily manufacture a photoelectric conversion film stacked solid-state imaging device capable of capturing a color image according to human visibility.

本発明によれば、光電変換膜積層型固体撮像素子で重要な縦配線を容易且つ断線無く製造できるため、製造コストの低廉化と、製造歩留まりの向上を図ることが可能となる。   According to the present invention, important vertical wirings can be manufactured easily and without disconnection in a photoelectric conversion film stacked solid-state imaging device, so that manufacturing costs can be reduced and manufacturing yields can be improved.

以下、本発明の一実施形態について、図面を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態に係る光電変換膜積層型固体撮像素子の2画素分の断面模式図である。本実施形態に係る縦配線(以下、柱状の電極ともいう。)の製造方法を述べる前に、この図1を用いて光電変換膜積層型固体撮像素子の構成について説明する。   FIG. 1 is a schematic cross-sectional view of two pixels of a photoelectric conversion film stacked solid-state imaging device according to an embodiment of the present invention. Before describing a method for manufacturing a vertical wiring (hereinafter also referred to as a columnar electrode) according to the present embodiment, the configuration of a photoelectric conversion film stacked solid-state imaging device will be described with reference to FIG.

光電変換膜積層型固体撮像素子の下地となる半導体基板1には、この例ではCMOS型の信号読出回路が表面部に形成されている。即ち、n型シリコン基板に形成されたPウェル層1の表面部には、赤色信号蓄積用の高濃度不純物領域2と、赤色信号読出用のMOS回路3と、緑色信号蓄積用の高濃度不純物領域4と、緑色信号読出用のMOS回路5と、青色信号蓄積用の高濃度不純物領域6と、青色信号読出用のMOS回路7とが形成されている。   In this example, a CMOS type signal readout circuit is formed on the surface of the semiconductor substrate 1 which is the base of the photoelectric conversion film stacked solid-state imaging device. That is, on the surface portion of the P well layer 1 formed on the n-type silicon substrate, a high concentration impurity region 2 for red signal storage, a MOS circuit 3 for red signal readout, and a high concentration impurity for green signal storage. A region 4, a green signal readout MOS circuit 5, a blue signal storage high concentration impurity region 6, and a blue signal readout MOS circuit 7 are formed.

各MOS回路3,5,6は、半導体基板表面に形成されたソース用,ドレイン用の不純物領域と、ゲート絶縁膜8を介して形成されたゲート電極とから成る。これらのゲート絶縁膜8及びゲート電極の上部には絶縁膜9が積層されて平坦化され、その上に、遮光膜10が積層される。遮光膜は、多くの場合、金属薄膜で形成されるため、更にその上に絶縁膜11が形成される。   Each MOS circuit 3, 5, 6 comprises a source and drain impurity region formed on the surface of the semiconductor substrate and a gate electrode formed via a gate insulating film 8. An insulating film 9 is laminated and planarized on the gate insulating film 8 and the gate electrode, and a light shielding film 10 is laminated thereon. Since the light shielding film is often formed of a metal thin film, an insulating film 11 is further formed thereon.

斯かる構成の半導体基板上に、受光部となる光電変換膜を積層する。先ず、絶縁膜11の上に、画素毎に区分けした画素電極膜31を形成する。この画素電極膜31を、柱状の電極32によって、対応画素の高濃度不純物領域2と導通させる。この柱状の電極32は、画素電極膜31及び高濃度不純物領域2以外とは電気的に絶縁される。   A photoelectric conversion film serving as a light receiving portion is stacked on the semiconductor substrate having such a configuration. First, the pixel electrode film 31 divided for each pixel is formed on the insulating film 11. The pixel electrode film 31 is electrically connected to the high concentration impurity region 2 of the corresponding pixel by the columnar electrode 32. This columnar electrode 32 is electrically insulated from other than the pixel electrode film 31 and the high concentration impurity region 2.

画素電極膜31の上に、赤色検出用の光電変換膜33を画素毎に区分けすることなく全面に1枚構成で積層し、更にその上部に、同様に1枚構成の透明の共通電極膜34を積層する。   A red detection photoelectric conversion film 33 is laminated on the entire surface of the pixel electrode film 31 without being divided for each pixel, and a transparent common electrode film 34 having a single structure is similarly formed on the upper layer. Are laminated.

本実施形態では、この共通電極膜34の上に、画素毎に区分けせずに1枚構成の緑色検出用の光電変換膜35を積層し、その上部に、画素毎に区分けした透明の画素電極膜36を積層する。この画素電極膜36は、柱状の電極37によって、対応画素の高濃度不純物領域4に導通される。この柱状の電極37は、画素電極膜36及び高濃度不純物領域4以外とは電気的に絶縁される。   In the present embodiment, a single green detection photoelectric conversion film 35 is laminated on the common electrode film 34 without being divided for each pixel, and a transparent pixel electrode divided for each pixel is formed thereon. A film 36 is stacked. This pixel electrode film 36 is electrically connected to the high concentration impurity region 4 of the corresponding pixel by a columnar electrode 37. The columnar electrode 37 is electrically insulated from other than the pixel electrode film 36 and the high concentration impurity region 4.

画素電極膜36の上には、透明の絶縁膜38が積層され、その上に、画素毎に区分けされた透明の画素電極膜39が積層される。各画素電極膜39は、夫々柱状の電極40によって、対応画素の高濃度不純物領域6に導通される。この柱状の電極40は、画素電極膜39及び高濃度不純物領域6以外とは電気的に絶縁される。   A transparent insulating film 38 is laminated on the pixel electrode film 36, and a transparent pixel electrode film 39 divided for each pixel is laminated thereon. Each pixel electrode film 39 is electrically connected to the high concentration impurity region 6 of the corresponding pixel by a columnar electrode 40. This columnar electrode 40 is electrically insulated from areas other than the pixel electrode film 39 and the high concentration impurity region 6.

画素電極膜39の上には、画素毎に区分けせずに1枚構成の青色検出用の光電変換膜41が積層され、その上に、同様に1枚構成の透明の共通電極膜42が積層され、最上層に透明の保護膜43が積層される。   On the pixel electrode film 39, a single-layer blue detection photoelectric conversion film 41 is laminated without being divided for each pixel, and a single-layer transparent common electrode film 42 is similarly laminated thereon. A transparent protective film 43 is laminated on the uppermost layer.

斯かる構成の光電変換膜積層型固体撮像素子では、被写体からの光が入射すると、青色光の入射光量に応じた光電荷が光電変換膜41で発生し、共通電極膜42と画素電極膜39との間に電圧が印加されると青色光の光電荷が高濃度不純物領域6に流れる。   In the photoelectric conversion film stacked solid-state imaging device having such a configuration, when light from a subject is incident, a photoelectric charge corresponding to the amount of blue light incident is generated in the photoelectric conversion film 41, and the common electrode film 42 and the pixel electrode film 39. When a voltage is applied between the two, a blue light photoelectric charge flows into the high concentration impurity region 6.

同様に、入射光のうちの緑色光の光量に応じた光電荷が光電変換膜35で発生し、共通電極膜34と画素電極膜36との間に電圧が印加されると緑色光の光電荷が高濃度不純物領域4に流れる。   Similarly, a photoelectric charge corresponding to the amount of green light in the incident light is generated in the photoelectric conversion film 35, and when a voltage is applied between the common electrode film 34 and the pixel electrode film 36, the green light photoelectric charge is generated. Flows into the high concentration impurity region 4.

同様に、入射光のうちの赤色光の光量に応じた光電荷が光電変換膜33で発生し、共通電極膜34と画素電極膜31との間に電圧が印加されると緑色光の光電荷が高濃度不純物領域2に流れる。そして、各高濃度不純物領域2,4,6の信号電荷に応じた信号が、MOS回路3,5,7によって外部に読み出される。   Similarly, a photoelectric charge corresponding to the amount of red light in the incident light is generated in the photoelectric conversion film 33, and when a voltage is applied between the common electrode film 34 and the pixel electrode film 31, a green light photoelectric charge is generated. Flows into the high concentration impurity region 2. Then, signals corresponding to the signal charges in the high concentration impurity regions 2, 4, 6 are read out to the outside by the MOS circuits 3, 5, 7.

尚、この実施形態は、半導体基板に形成したMOS回路で信号を読み出す構成としたが、色信号蓄積用の高濃度不純物領域2,4,6の蓄積電荷を、従来のCCD型イメージセンサと同様に、垂直転送路に沿って移動させ、水平転送路に沿って外部に読み出す構成とすることもできる。   In this embodiment, the signal is read out by the MOS circuit formed on the semiconductor substrate. However, the charges accumulated in the high-concentration impurity regions 2, 4 and 6 for color signal accumulation are the same as those in the conventional CCD image sensor. Further, it is also possible to adopt a configuration in which it is moved along the vertical transfer path and read out along the horizontal transfer path.

図1に示した実施形態は、赤色(R),緑色(G),青色(B)の3原色を検出する光電変換膜積層型固体撮像素子の例であるが、4色を検出できる構成にすることも可能である。図2は、4色を検出する光電変換膜積層型固体撮像素子の2画素分の断面模式図であり、図1の構成に対し、緑色(G)と青色(B)の中間色(GB:エメラルド色)を検出する光電変換膜50及び電極膜を積層している点が異なる。   The embodiment shown in FIG. 1 is an example of a photoelectric conversion film stacked solid-state imaging device that detects three primary colors of red (R), green (G), and blue (B), but has a configuration that can detect four colors. It is also possible to do. FIG. 2 is a schematic cross-sectional view of two pixels of a photoelectric conversion film stacked solid-state imaging device that detects four colors, and is an intermediate color (GB: emerald) of green (G) and blue (B) with respect to the configuration of FIG. The difference is that the photoelectric conversion film 50 for detecting the color) and the electrode film are laminated.

例えば、波長480〜520nmのエメラルド(GB)色を検出する利点は、人間の視感度に応じて赤色を補正するためである。人間の視感度は、図3にα,β,γとして示す様に、緑色(G),赤色(R),青色(B)で負の感度を持っている。このため、固体撮像素子でR,G,Bの正の感度のみ検出して色再現を行っても、人間の見た画像を再現することはできない。そこで、負感度の一番大きいβすなわち赤の負感度を光電変換膜50によって検出し、光電変換膜31で検出した赤の感度から、この負感度分を差し引くことで、人間の赤色に対する感度を再現することができる。   For example, an advantage of detecting an emerald (GB) color having a wavelength of 480 to 520 nm is to correct red according to human visual sensitivity. As shown in FIG. 3 as α, β, and γ, human visual sensitivity is negative in green (G), red (R), and blue (B). For this reason, even if color reproduction is performed by detecting only positive sensitivities of R, G, and B with a solid-state imaging device, an image seen by humans cannot be reproduced. Therefore, β having the greatest negative sensitivity, that is, negative red sensitivity is detected by the photoelectric conversion film 50, and the sensitivity to human red is obtained by subtracting this negative sensitivity from the red sensitivity detected by the photoelectric conversion film 31. Can be reproduced.

図2において、絶縁膜38を形成するまでは、図1の実施形態と同じである。この実施形態では、絶縁膜38の上に、エメラルド色検出用の画素毎に区分けされた透明の画素電極膜49が形成される。各画素電極膜49は、夫々柱状の電極51によって、各画素対応に半導体基板表面に設けられたGB色用の高濃度不純物領域52に導通される。この柱状の電極52は、画素電極膜49及び高濃度不純物領域52以外とは電気的に絶縁され、また、高濃度不純物領域52の信号電荷量は、領域52に隣接して設けられたMOS回路53によって読み出される。   In FIG. 2, the process until the insulating film 38 is formed is the same as that of the embodiment of FIG. In this embodiment, a transparent pixel electrode film 49 divided for each pixel for emerald color detection is formed on the insulating film 38. Each pixel electrode film 49 is electrically connected to a high-concentration impurity region 52 for GB color provided on the surface of the semiconductor substrate corresponding to each pixel by a columnar electrode 51. This columnar electrode 52 is electrically insulated from areas other than the pixel electrode film 49 and the high concentration impurity region 52, and the signal charge amount of the high concentration impurity region 52 is a MOS circuit provided adjacent to the region 52. 53.

各画素電極膜49の上には、エメラルド(GB)色検出用の光電変換膜50が画素毎に区分けせずに1枚構成で積層され、その上に、透明の共通電極膜42が1枚構成で形成される。   On each pixel electrode film 49, a photoelectric conversion film 50 for emerald (GB) color detection is laminated in a single configuration without being divided for each pixel, and a transparent common electrode film 42 is formed thereon. Formed with configuration.

共通電極膜42の上には、青色(B)検出用の光電変換膜41が積層され、その上に、画素毎に区分けされた透明の画素電極膜39が積層される。各画素電極膜39は、夫々柱状の電極40によって、対応画素の高濃度不純物領域6に導通される。この柱状の電極40は、画素電極膜39及び高濃度不純物領域6以外とは電気的に絶縁される。最上層には、透明の保護膜43が形成される。   A blue (B) detection photoelectric conversion film 41 is laminated on the common electrode film 42, and a transparent pixel electrode film 39 divided for each pixel is laminated thereon. Each pixel electrode film 39 is electrically connected to the high concentration impurity region 6 of the corresponding pixel by a columnar electrode 40. This columnar electrode 40 is electrically insulated from areas other than the pixel electrode film 39 and the high concentration impurity region 6. A transparent protective film 43 is formed on the uppermost layer.

次に、図4以下を用い、図1に示す実施形態における縦配線(柱状の電極32,37,40)の製造手順を詳細に説明する。各図(a)は半導体基板(のPウェル層)1及びその上の積層物の縦配線部分の断面図であり、各図(b)はその製造工程における最上層の上面図である。各図(a)は、各図(b)のA―A線断面に相当する。   Next, the manufacturing procedure of the vertical wiring (columnar electrodes 32, 37, 40) in the embodiment shown in FIG. 1 will be described in detail with reference to FIG. Each figure (a) is a cross-sectional view of the vertical wiring portion of the semiconductor substrate (the P well layer) 1 and the laminate thereon, and each figure (b) is a top view of the uppermost layer in the manufacturing process. Each drawing (a) corresponds to a cross section taken along line AA of each drawing (b).

先ず、図4に示す様に、半導体基板1を用意する。この基板1には、図1で説明したMOS回路3,5,7や高濃度不純物領域2,4,6が既に形成されており、最上層には遮光膜10が積層された状態になっている。   First, as shown in FIG. 4, a semiconductor substrate 1 is prepared. The substrate 1 is already formed with the MOS circuits 3, 5, 7 and the high concentration impurity regions 2, 4, 6 described in FIG. 1, and the light shielding film 10 is laminated on the uppermost layer. Yes.

この半導体基板1の上に、図5に示す様に、絶縁膜11を積層する。例えば、SiO膜を低温CVD等で積層する。 An insulating film 11 is laminated on the semiconductor substrate 1 as shown in FIG. For example, a SiO 2 film is laminated by low temperature CVD or the like.

次に、図6に示す様に、レジスト膜60を積層し、このレジスト膜60をパターニングして柱状電極用の穴61r,61g,61bを開ける。尚、r,g,bの添え字は、赤色(R),緑色(G),青色(B)に対応する。図6に示す例では、3画素分の柱状電極が設けられるため、計9個の穴が設けられる。   Next, as shown in FIG. 6, a resist film 60 is laminated, and the resist film 60 is patterned to open columnar electrode holes 61r, 61g, 61b. The subscripts r, g, and b correspond to red (R), green (G), and blue (B). In the example shown in FIG. 6, since columnar electrodes for three pixels are provided, a total of nine holes are provided.

次に、エッチングを行い、図7に示す様に、レジスト膜60の穴61r,61g,61bの箇所の絶縁膜11に、夫々、図1で説明した高濃度不純物領域2,4,6に達する穴62r,62g,62bを穿設し、その後、レジスト膜60を除去する。   Next, etching is performed to reach the high-concentration impurity regions 2, 4, 6 described in FIG. 1 in the insulating film 11 at the holes 61 r, 61 g, 61 b of the resist film 60, as shown in FIG. Holes 62r, 62g, and 62b are formed, and then the resist film 60 is removed.

次に、図8に示す様に、透明な電極膜63を積層すると共に、穴62r,62g,62bを電極膜材料で埋めて高濃度不純物領域2,4,6に電気的に接触させる。電極膜の材料としては、酸化錫(SnO)、酸化チタン(TiO)、酸化インジウム(InO)、酸化インジウム−錫(ITO)薄膜を用いるが、これに限るものではない。例えば、高濃度不純物を注入したポリシリコンを柱状電極や電極膜材料としてもよい。電極膜の形成方法としては、レーザアブレーション法やスパッタ法など、従来の成膜技術を使用して製造する。 Next, as shown in FIG. 8, a transparent electrode film 63 is laminated, and the holes 62r, 62g, and 62b are filled with an electrode film material to be in electrical contact with the high-concentration impurity regions 2, 4, and 6. As the material of the electrode film, tin oxide (SnO 2 ), titanium oxide (TiO 2 ), indium oxide (InO 2 ), and indium oxide-tin (ITO) thin film are used, but the material is not limited thereto. For example, polysilicon implanted with high-concentration impurities may be used as the columnar electrode or electrode film material. The electrode film is formed by using a conventional film forming technique such as a laser ablation method or a sputtering method.

次に、レジスト膜64を積層し、図9に示す様に、このレジスト膜64をパターニングして、赤色用画素電極膜31の箇所と、柱状の電極32,37,40の箇所以外のレジスト膜64を除去する。   Next, a resist film 64 is laminated, and as shown in FIG. 9, the resist film 64 is patterned, and a resist film other than the position of the red pixel electrode film 31 and the positions of the columnar electrodes 32, 37, and 40 is obtained. 64 is removed.

次に、エッチングを行い、レジスト膜64が残った箇所以外の電極膜63を除去する。 これにより、図10に示す様に、赤色用画素電極膜31と、柱状の電極32,37,40の下層部分が製造される。   Next, etching is performed to remove the electrode film 63 other than the portion where the resist film 64 remains. As a result, as shown in FIG. 10, the red pixel electrode film 31 and the lower layer portions of the columnar electrodes 32, 37, and 40 are manufactured.

次に、例えば、絶縁膜を積層した後にこの絶縁膜を削るなどして、赤色用画素電極膜31や柱状の電極32,37,40の周りを絶縁材料11で埋め尽くす。この後、図11に示す様に、柱状の電極37,40を高く形成する。高さは、緑色用電極膜36に達する高さにする。   Next, for example, the insulating film is stacked after the insulating film is stacked, and the periphery of the red pixel electrode film 31 and the columnar electrodes 32, 37, and 40 is filled with the insulating material 11. Thereafter, as shown in FIG. 11, the columnar electrodes 37 and 40 are formed high. The height is set to reach the green electrode film 36.

例えば、その高さまで、上記の酸化錫等の電極材料を積層し、レジストを用い、柱状の電極37,40の箇所を残して電極材料をエッチングして形成する。あるいは、厚手にレジスト膜を形成した後、柱状電極37,40の箇所のレジスト膜に穴を開け、電極材料で穴を埋めることで形成する。柱状の電極37,40の高さが高い場合には、例えば2回に分け、高さ1/2づつ積み上げて形成してもよい。   For example, the electrode material such as tin oxide is laminated up to the height, and the resist is used to etch the electrode material while leaving the portions of the columnar electrodes 37 and 40. Alternatively, after forming a thick resist film, holes are formed in the resist film at the positions of the columnar electrodes 37 and 40, and the holes are filled with an electrode material. When the columnar electrodes 37 and 40 are high in height, they may be formed, for example, in two steps and stacked by 1/2 height.

次に、図12に示す様に、突出した柱状の電極37,40の周りを、低温CVD等によってSiO膜等の絶縁皮膜65で被覆する。 Next, as shown in FIG. 12, the periphery of the protruding columnar electrodes 37 and 40 is covered with an insulating film 65 such as a SiO 2 film by low temperature CVD or the like.

次に、図13に示す様に、赤色検出用の光電変換膜33を積層する。積層方法は特に限定するものではなく、スパッタ法やレーザアブレーション法,印刷技術,スプレー法等で積層する。材料としては、無機材料でも有機材料でよく、無機材料の場合は、例えば、GaAlAs,Siを用いる。有機材料の場合には、例えば、ZnPc(亜鉛フタロシアニン)/Alq3(キノリノールアルミ錯体)を用いる。   Next, as shown in FIG. 13, a photoelectric conversion film 33 for detecting red color is laminated. The lamination method is not particularly limited, and lamination is performed by a sputtering method, a laser ablation method, a printing technique, a spray method, or the like. The material may be an inorganic material or an organic material. In the case of an inorganic material, for example, GaAlAs, Si is used. In the case of an organic material, for example, ZnPc (zinc phthalocyanine) / Alq3 (quinolinol aluminum complex) is used.

次に、図14に示す様に、ITO等の透明な共通電極膜34を積層し、次に、図15に示す様に、緑色検出用の光電変換膜35を積層する。材料としては、無機材料の場合には、例えば、AnGaAlPやGaPAsを用い、有機材料の場合には、例えば、R6G/PMPS(rhodamine 6G (R6G)-doped polymethylphenylsilane)を用いる。   Next, as shown in FIG. 14, a transparent common electrode film 34 such as ITO is laminated, and then, as shown in FIG. 15, a green color detection photoelectric conversion film 35 is laminated. As the material, for example, AnGaAlP or GaPAs is used in the case of an inorganic material, and for example, R6G / PMPS (rhodamine 6G (R6G) -doped polymethylphenylsilane) is used in the case of an organic material.

次に、図16に示す様に、最上層にレジスト膜66を形成する。柱37,40の周りには、図13,図14,図15の工程により、光電変換膜材料や電極膜材料等が付着しているが、これらは、このレジスト膜66中に溶ける。そして、エッチングを行い、レジスト膜66から上に飛び出している柱状電極37,40の周りの絶縁皮膜65を落とし、その後に、レジスト膜66を除去する(図17)。   Next, as shown in FIG. 16, a resist film 66 is formed on the uppermost layer. A photoelectric conversion film material, an electrode film material, and the like are attached around the pillars 37 and 40 by the steps of FIGS. 13, 14, and 15, and these are dissolved in the resist film 66. Then, etching is performed to remove the insulating film 65 around the columnar electrodes 37 and 40 protruding upward from the resist film 66, and then the resist film 66 is removed (FIG. 17).

次に、図18に示す様に、透明の電極膜67を積層する。そして、赤色用画素電極膜を形成したと同様の手順により、レジスト膜を用いて、緑色用画素電極膜36と、柱状の電極40の箇所を残す(図19)。   Next, as shown in FIG. 18, a transparent electrode film 67 is laminated. Then, by the same procedure as that for forming the red pixel electrode film, the green pixel electrode film 36 and the columnar electrode 40 are left using the resist film (FIG. 19).

次に、図20に示す様に、緑色用画素電極膜36周りを透明の絶縁膜38で埋め尽くし、更に、その上に透明絶縁膜38を積層する。そして、図21に示す様に、柱状の電極40の箇所に穴38bをレジスト膜を用いて穿設する。その後、透明の電極膜材料で穴38bを埋め柱状の電極40を高くすると共に、電極膜を一面に積層する。   Next, as shown in FIG. 20, the periphery of the green pixel electrode film 36 is filled with a transparent insulating film 38, and a transparent insulating film 38 is further laminated thereon. Then, as shown in FIG. 21, a hole 38b is formed in the location of the columnar electrode 40 using a resist film. Thereafter, the hole 38b is filled with a transparent electrode film material to elevate the columnar electrode 40, and the electrode film is laminated on one surface.

そして、図22に示す様に、この電極膜をレジストを用いてパターニングして青色画素電極膜39を形成する。そして、図23に示す様に、青色画素電極膜39の周りを透明の絶縁膜38で埋め尽くし、青色画素電極膜39の上に、青色検出用の光電変換膜41を積層する。青色検出用光電変換膜41の材料としては、無機材料であれば、例えばInAlPを使用し、有機材料であれば、例えば、C6/PHPPS(coumarin 6 (C6)-doped poly(m-hexoxyphenyl)phenylsilane)を用いる。   Then, as shown in FIG. 22, this electrode film is patterned using a resist to form a blue pixel electrode film 39. Then, as shown in FIG. 23, the blue pixel electrode film 39 is completely filled with a transparent insulating film 38, and a blue detection photoelectric conversion film 41 is laminated on the blue pixel electrode film 39. As the material for the blue color detection photoelectric conversion film 41, for example, InAlP is used for an inorganic material, and for example, C6 / PHPPS (coumarin 6 (C6) -doped poly (m-hexoxyphenyl) phenylsilane) is used for an organic material. ) Is used.

最後に、図24に示す様に、透明の共通電極膜42を積層し、更に最上層に保護膜43を形成して、光電変換膜積層型固体撮像素子の製造を終了する。   Finally, as shown in FIG. 24, a transparent common electrode film 42 is laminated, and a protective film 43 is further formed on the uppermost layer, thereby completing the production of the photoelectric conversion film laminated solid-state imaging device.

以上は、図1に示す光電変換膜積層型固体撮像素子の製造手順であるが、図2に示す光電変換膜積層型固体撮像素子の製造も同様に行うことができる。また、図4以下では、柱状の電極の立設場所を各色の画素電極膜31,36,39を避けた位置に設けたが、画素電極膜の本体部分を突き抜けるように柱状の電極を立設することでもよい。   The above is the manufacturing procedure of the photoelectric conversion film stacked solid-state imaging device shown in FIG. 1, but the photoelectric conversion film stacked solid-state imaging device shown in FIG. 2 can be manufactured in the same manner. In FIG. 4 and subsequent figures, the columnar electrode is provided at a position avoiding the pixel electrode films 31, 36, and 39 for each color, but the columnar electrode is provided so as to penetrate the main body of the pixel electrode film. You may do it.

図25は、緑色検出用の光電変換膜を一層だけ半導体基板の上層に積層し、赤色と青色とは従来のイメージセンサと同様に半導体基板表面部に設けたフォトダイオードで検出する構成とした光電変換膜積層型固体撮像素子の断面模式図である。   In FIG. 25, a photoelectric conversion film for detecting green color is laminated on the upper layer of a semiconductor substrate, and red and blue are detected by a photodiode provided on the surface of the semiconductor substrate as in a conventional image sensor. It is a cross-sectional schematic diagram of a conversion film lamination type solid-state image sensor.

この光電変換膜積層型固体撮像素子のn型半導体基板71の表面部にはpウェル層81が形成され、pウェル層81の表面部の赤色(R)画素領域にはn領域82が形成され、同様に、pウェル層81の表面部の青色(B)画素領域にはn領域84が形成され、pウェル層81とn領域82との間、pウェル層81とn領域84との間に、夫々光電変換素子としてのフォトダイオードが形成され、発生した信号電荷は、n領域82,84に蓄積される。   A p-well layer 81 is formed on the surface portion of the n-type semiconductor substrate 71 of the photoelectric conversion film stacked solid-state imaging device, and an n-region 82 is formed in the red (R) pixel region on the surface portion of the p-well layer 81. Similarly, an n region 84 is formed in the blue (B) pixel region on the surface portion of the p well layer 81, between the p well layer 81 and the n region 82, and between the p well layer 81 and the n region 84. In addition, photodiodes as photoelectric conversion elements are formed, and the generated signal charges are accumulated in the n regions 82 and 84.

図示の例では、n領域82とn領域84との間のpウェル層81の表面部にn領域83が形成され、このn領域83が、緑色の信号電荷蓄積部となる。各n領域82,83,84の右側には、夫々少し離間してn領域86が設けられ、夫々のn領域86が、垂直転送路を構成する。n領域86の表面部には各信号蓄積部82,83,84まで達する読み出し電極92を兼用する転送電極が形成され、各転送電極92の上には、遮光膜93が設けられている。   In the illustrated example, an n region 83 is formed on the surface portion of the p well layer 81 between the n region 82 and the n region 84, and this n region 83 serves as a green signal charge storage portion. On the right side of each of the n regions 82, 83, 84, n regions 86 are provided a little apart from each other, and each n region 86 forms a vertical transfer path. A transfer electrode that also serves as a readout electrode 92 reaching each signal storage portion 82, 83, 84 is formed on the surface portion of the n region 86, and a light shielding film 93 is provided on each transfer electrode 92.

各n領域82,83,84の左側面部及び表面部にはp領域94が設けられ、隣接垂直転送路86との分離が図られると共に、表面部の欠陥準位低減が図られる。半導体基板71の最表面には、図示しない酸化シリコン膜が形成され、その上に、上記の転送電極92が形成される。 A p + region 94 is provided on the left side surface portion and the surface portion of each of the n regions 82, 83, and 84, so as to be separated from the adjacent vertical transfer path 86 and to reduce the defect level of the surface portion. A silicon oxide film (not shown) is formed on the outermost surface of the semiconductor substrate 71, and the transfer electrode 92 is formed thereon.

n領域82の上方の遮光膜93の開口位置の上部には、赤色光を透過するカラーフィルタ95が設けられ、n領域84の上方の遮光膜93の開口位置の上部には、青色光を透過するカラーフィルタ96が設けられる。カラーフィルタ95,96及び遮光膜93,転送電極92は透明の絶縁層87内に埋設される。   A color filter 95 that transmits red light is provided above the opening position of the light shielding film 93 above the n region 82, and blue light is transmitted above the opening position of the light shielding film 93 above the n region 84. A color filter 96 is provided. The color filters 95 and 96, the light shielding film 93, and the transfer electrode 92 are embedded in a transparent insulating layer 87.

絶縁層87の表面には、画素毎に区分けされた透明の画素電極膜75が形成され、各画素電極膜75とn領域83とは、縦配線78によって接続される。この縦配線78は、対応画素電極膜75及びn領域83以外とは電気的に絶縁される。各画素電極膜75の上には、半導体基板71の表面全面にわたる光電変換膜79が積層され、その上に、透明の共通電極膜80が形成される。緑色を検出する光電変換膜79は、例えば、2.9‐ジメチルキナクリドン等のキナクリドン化合物で構成する。   A transparent pixel electrode film 75 divided for each pixel is formed on the surface of the insulating layer 87, and each pixel electrode film 75 and the n region 83 are connected by a vertical wiring 78. The vertical wiring 78 is electrically insulated from portions other than the corresponding pixel electrode film 75 and the n region 83. A photoelectric conversion film 79 over the entire surface of the semiconductor substrate 71 is laminated on each pixel electrode film 75, and a transparent common electrode film 80 is formed thereon. The photoelectric conversion film 79 that detects green is made of, for example, a quinacridone compound such as 2.9-dimethylquinacridone.

斯かる構成の光電変換膜積層型固体撮像装置に光が入射すると、入射光の内の緑色の波長領域の光は光電変換膜79に吸収され、光電荷が光電変換膜79内に発生するが、この光電荷は、縦配線78を通ってn領域83に流れ込み、保持される。共通電極膜80にバイアス電位を印加することで、光電荷のn領域83への流れが促進される。   When light is incident on the photoelectric conversion film stacked solid-state imaging device having such a configuration, light in the green wavelength region of incident light is absorbed by the photoelectric conversion film 79, and photocharge is generated in the photoelectric conversion film 79. The photoelectric charge flows into the n region 83 through the vertical wiring 78 and is held. By applying a bias potential to the common electrode film 80, the flow of photocharge to the n region 83 is promoted.

入射光のうちの赤色(R)及び青色(B)の波長領域の光は光電変換膜79を透過し、赤色光はカラーフィルタ95を透過してn領域82に入射する。これにより、赤色光の光量に応じた信号電荷が発生しn領域82に蓄積される。同様に、青色光はカラーフィルタ96を透過してn領域84に入射し、青色光の光量に応じた信号電荷がn領域84に蓄積される。   Of the incident light, light in the red (R) and blue (B) wavelength regions passes through the photoelectric conversion film 79, and the red light passes through the color filter 95 and enters the n region 82. As a result, signal charges corresponding to the amount of red light are generated and accumulated in the n region 82. Similarly, blue light passes through the color filter 96 and enters the n region 84, and signal charges corresponding to the amount of blue light are accumulated in the n region 84.

各n領域82,83,84に蓄積された赤色,緑色,青色の各信号電荷は、垂直転送路86に読み出され、垂直転送路86を図示しない水平転送路まで転送され、その後、水平転送路を転送されて半導体基板71から出力される。   The red, green, and blue signal charges accumulated in the n regions 82, 83, and 84 are read out to the vertical transfer path 86, transferred to the horizontal transfer path (not shown), and then transferred horizontally. The path is transferred and output from the semiconductor substrate 71.

尚、上述した実施形態は、信号読出回路をCCDセンサと同様に電荷転送路で構成したが、各n領域82,83,84の脇に信号読出用のMOSトランジスタを形成し、第1,第2の実施形態と同様に各n領域82,83,84から蓄積電荷に応じた色信号を読み出す構成としてもよい。   In the above-described embodiment, the signal readout circuit is configured by a charge transfer path in the same manner as the CCD sensor. However, a signal readout MOS transistor is formed beside each of the n regions 82, 83, 84, and the first, first, Similarly to the second embodiment, a color signal corresponding to the accumulated charge may be read from each of the n regions 82, 83, and 84.

本実施形態では、n領域82(R画素)によって赤色信号が検出され、n領域84(B画素)によって青色信号が検出されると共に、n領域82,83の上部の2画素分、またはn領域83,84の上部の2画素分の面積によって緑色信号が検出されるため、輝度信号として使用することができる緑色の感度が向上する。   In the present embodiment, a red signal is detected by the n region 82 (R pixel), a blue signal is detected by the n region 84 (B pixel), and two pixels above the n regions 82 and 83, or the n region. Since the green signal is detected by the area of two pixels above 83 and 84, the sensitivity of green that can be used as a luminance signal is improved.

図26,図27は、図25で示した光電変換膜積層型固体撮像素子の製造工程を示す図である。半導体基板71の表面部に赤色検出用のフォトダイオードや青色検出用のフォトダイオードを形成する工程までは従来のCCDやCMOSイメージセンサの製造工程と同じである。図25に示す遮光膜93までが形成された後は、図26(a)に示す様に、透明の絶縁膜87、例えばボロンリンドープ酸化膜(BPSG)を製膜し、CMP等で絶縁膜87の表面を平滑化する。   26 and 27 are diagrams showing a manufacturing process of the photoelectric conversion film laminated solid-state imaging device shown in FIG. The process up to forming a red detection photodiode or a blue detection photodiode on the surface portion of the semiconductor substrate 71 is the same as the manufacturing process of a conventional CCD or CMOS image sensor. After the formation of the light shielding film 93 shown in FIG. 25, as shown in FIG. 26A, a transparent insulating film 87, for example, a boron phosphorus doped oxide film (BPSG) is formed, and the insulating film is formed by CMP or the like. The surface of 87 is smoothed.

そして、図26(b)に示す様に、絶縁膜87に、n領域83まで貫通する孔72をエッチングにより開け、次に、図26(c)に示す様に、孔72が埋まるまで金属例えばタングステン(W)73を絶縁膜87上に製膜する。   Then, as shown in FIG. 26B, a hole 72 penetrating to the n region 83 is opened in the insulating film 87 by etching. Next, as shown in FIG. Tungsten (W) 73 is formed on the insulating film 87.

次に、図26(d)に示す様に、タングステンの縦配線78が残る様に不要なタングステン層73をフォトリソグラフィ及びエッチングにより削り、今度は、図26(e)に示す様に、絶縁膜87の上に、B用カラーフィルタ96やR用カラーフィルタ95(図26,図27には図示せず)を形成する。   Next, as shown in FIG. 26D, the unnecessary tungsten layer 73 is shaved by photolithography and etching so that the tungsten vertical wiring 78 remains, and this time, as shown in FIG. A B color filter 96 and an R color filter 95 (not shown in FIGS. 26 and 27) are formed on 87.

次に、図27(a)に示す様に、カラーフィルタ96,95が絶縁膜87内に埋設されるまで透明の絶縁膜87を更に積層し、CMP等で絶縁膜87表面を平滑化する。このとき、縦配線78の先端表面の金属面が露出するまで平滑化する。   Next, as shown in FIG. 27A, a transparent insulating film 87 is further laminated until the color filters 96 and 95 are embedded in the insulating film 87, and the surface of the insulating film 87 is smoothed by CMP or the like. At this time, smoothing is performed until the metal surface of the front end surface of the vertical wiring 78 is exposed.

次に、図27(b)に示す様に、ITO等の透明な金属膜を製膜し、フォトリソグラフィ及びエッチングにより金属膜を画素毎に区分けして画素電極膜75を形成する。   Next, as shown in FIG. 27B, a transparent metal film such as ITO is formed, and the metal film is divided into pixels by photolithography and etching to form a pixel electrode film 75.

次に、図27(c)に示す様に、画素電極膜75の上に光電変換膜79を製膜し、図27(d)に示す様に、光電変換膜79の上に共通電極膜80を製膜する。以上の工程で縦配線78を形成することで、断線無く画素電極膜75をn領域83に接続することが可能となる。   Next, a photoelectric conversion film 79 is formed on the pixel electrode film 75 as shown in FIG. 27C, and a common electrode film 80 is formed on the photoelectric conversion film 79 as shown in FIG. Is formed. By forming the vertical wiring 78 through the above steps, the pixel electrode film 75 can be connected to the n region 83 without disconnection.

以上述べた各実施形態によれば、縦配線を先に形成し、その後に縦配線を埋設する層の構成物を形成するため、光電変換膜製膜後に縦配線用の孔を穿設したとき孔内に光電変換膜材料が流れ込んでしまう虞がなくなり、製造が容易になる。   According to each embodiment described above, when the vertical wiring is formed first, and then the vertical wiring hole is drilled after the photoelectric conversion film is formed in order to form the layer structure in which the vertical wiring is embedded. There is no risk of the photoelectric conversion film material flowing into the holes, and the manufacture becomes easy.

本発明に係る柱状の電極の製造方法を用いることで、光電変換膜積層型固体撮像素子を低コスト,高製造歩留まりで製造可能となるため、従来のCCD型やCMOS型のイメージセンサの代わりに光電変換膜積層型固体撮像素子を使用することが可能となる。   By using the columnar electrode manufacturing method according to the present invention, it becomes possible to manufacture a photoelectric conversion film laminated solid-state imaging device at a low cost and a high manufacturing yield. Therefore, instead of a conventional CCD type or CMOS type image sensor. It is possible to use a photoelectric conversion film stacked solid-state imaging device.

本発明の第1の実施形態に係る3層構造の光電変換膜積層型固体撮像素子の2画素分の断面模式図である。It is a cross-sectional schematic diagram for 2 pixels of the photoelectric conversion film laminated | stacked solid-state image sensor of the 3 layer structure which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る4層構造の光電変換膜積層型固体撮像素子の2画素分の断面模式図である。It is a cross-sectional schematic diagram for 2 pixels of the photoelectric conversion film laminated | stacked solid-state image sensor of the 4 layer structure which concerns on the 2nd Embodiment of this invention. 人間の視感度を示すグラフである。It is a graph which shows human visibility. 図1に示す光電変換膜積層型固体撮像素子の製造手順の説明図である。It is explanatory drawing of the manufacture procedure of the photoelectric converting film laminated | stacked solid-state image sensor shown in FIG. 図1に示す光電変換膜積層型固体撮像素子の製造手順のうち図4の次の手順説明図である。FIG. 5 is an explanatory diagram of a procedure next to FIG. 4 in the manufacturing procedure of the photoelectric conversion film stacked solid-state imaging device shown in FIG. 1. 図1に示す光電変換膜積層型固体撮像素子の製造手順のうち図5の次の手順説明図である。FIG. 6 is an explanatory diagram of a procedure next to FIG. 5 in the manufacturing procedure of the photoelectric conversion film stacked solid-state imaging device shown in FIG. 1. 図1に示す光電変換膜積層型固体撮像素子の製造手順のうち図6の次の手順説明図である。FIG. 7 is an explanatory diagram of a procedure next to FIG. 6 in the manufacturing procedure of the photoelectric conversion film stacked solid-state imaging device shown in FIG. 1. 図1に示す光電変換膜積層型固体撮像素子の製造手順のうち図7の次の手順説明図である。FIG. 8 is an explanatory diagram of a procedure next to FIG. 7 in the manufacturing procedure of the photoelectric conversion film laminated solid-state imaging device shown in FIG. 1. 図1に示す光電変換膜積層型固体撮像素子の製造手順のうち図8の次の手順説明図である。FIG. 9 is an explanatory diagram of a procedure next to FIG. 8 in the manufacturing procedure of the photoelectric conversion film stacked solid-state imaging device shown in FIG. 1. 図1に示す光電変換膜積層型固体撮像素子の製造手順のうち図9の次の手順説明図である。FIG. 10 is an explanatory diagram of a procedure next to FIG. 9 in the manufacturing procedure of the photoelectric conversion film stacked solid-state imaging device shown in FIG. 1. 図1に示す光電変換膜積層型固体撮像素子の製造手順のうち図10の次の手順説明図である。FIG. 11 is an explanatory diagram of a procedure next to FIG. 10 in the manufacturing procedure of the photoelectric conversion film stacked solid-state imaging device shown in FIG. 1. 図1に示す光電変換膜積層型固体撮像素子の製造手順のうち図11の次の手順説明図である。FIG. 12 is an explanatory diagram of a procedure next to FIG. 11 in the manufacturing procedure of the photoelectric conversion film stacked solid-state imaging device shown in FIG. 1. 図1に示す光電変換膜積層型固体撮像素子の製造手順のうち図12の次の手順説明図である。FIG. 13 is an explanatory diagram of a procedure next to FIG. 12 in the manufacturing procedure of the photoelectric conversion film stacked solid-state imaging device shown in FIG. 1. 図1に示す光電変換膜積層型固体撮像素子の製造手順のうち図13の次の手順説明図である。FIG. 14 is an explanatory diagram of a procedure next to FIG. 13 in the manufacturing procedure of the photoelectric conversion film stacked solid-state imaging device shown in FIG. 1. 図1に示す光電変換膜積層型固体撮像素子の製造手順のうち図14の次の手順説明図である。FIG. 15 is an explanatory diagram of a procedure next to FIG. 14 in the manufacturing procedure of the photoelectric conversion film stacked solid-state imaging device shown in FIG. 1. 図1に示す光電変換膜積層型固体撮像素子の製造手順のうち図15の次の手順説明図である。FIG. 16 is an explanatory diagram of a procedure next to FIG. 15 in the manufacturing procedure of the photoelectric conversion film stacked solid-state imaging device shown in FIG. 1. 図1に示す光電変換膜積層型固体撮像素子の製造手順のうち図16の次の手順説明図である。FIG. 17 is an explanatory diagram of a procedure next to FIG. 16 in the manufacturing procedure of the photoelectric conversion film stacked solid-state imaging device shown in FIG. 1. 図1に示す光電変換膜積層型固体撮像素子の製造手順のうち図17の次の手順説明図である。FIG. 18 is an explanatory diagram of a procedure next to FIG. 17 in the manufacturing procedure of the photoelectric conversion film stacked solid-state imaging device shown in FIG. 1. 図1に示す光電変換膜積層型固体撮像素子の製造手順のうち図18の次の手順説明図である。FIG. 19 is an explanatory diagram of a procedure next to FIG. 18 in the manufacturing procedure of the photoelectric conversion film stacked solid-state imaging device shown in FIG. 1. 図1に示す光電変換膜積層型固体撮像素子の製造手順のうち図19の次の手順説明図である。FIG. 20 is an explanatory diagram of a procedure next to FIG. 19 in the manufacturing procedure of the photoelectric conversion film stacked solid-state imaging device shown in FIG. 1. 図1に示す光電変換膜積層型固体撮像素子の製造手順のうち図20の次の手順説明図である。FIG. 21 is an explanatory diagram of a procedure next to FIG. 20 in the manufacturing procedure of the photoelectric conversion film stacked solid-state imaging device shown in FIG. 1. 図1に示す光電変換膜積層型固体撮像素子の製造手順のうち図21の次の手順説明図である。FIG. 22 is an explanatory diagram of a procedure next to FIG. 21 in the manufacturing procedure of the photoelectric conversion film stacked solid-state imaging device shown in FIG. 1. 図1に示す光電変換膜積層型固体撮像素子の製造手順のうち図22の次の手順説明図である。FIG. 23 is an explanatory diagram of a procedure next to FIG. 22 in the manufacturing procedure of the photoelectric conversion film stacked solid-state imaging device shown in FIG. 1. 図1に示す光電変換膜積層型固体撮像素子の製造手順のうち図23の次の手順説明図である。FIG. 24 is an explanatory diagram of a procedure next to FIG. 23 in the manufacturing procedure of the photoelectric conversion film stacked solid-state imaging device shown in FIG. 1. 本発明の第3の実施形態に係る光電変換膜積層型固体撮像素子の要部断面模式図である。It is a principal part cross-sectional schematic diagram of the photoelectric conversion film laminated | stacked solid-state image sensor which concerns on the 3rd Embodiment of this invention. 図25に示す光電変換膜積層型固体撮像素子の製造工程を示す図である。It is a figure which shows the manufacturing process of the photoelectric converting film laminated | stacked solid-state image sensor shown in FIG. 図25に示す光電変換膜積層型固体撮像素子の製造工程を示す図である。It is a figure which shows the manufacturing process of the photoelectric converting film laminated | stacked solid-state image sensor shown in FIG.

符号の説明Explanation of symbols

1,81 Pウェル層(半導体基板)
2,4,6,52 高濃度不純物領域
3,5,7,53 MOS回路
8 ゲート絶縁膜
9,11,38,87 絶縁膜
31,36,39,75 画素電極膜
32,37,40,78 縦配線
34,42,80 共通電極膜
33,35,41,50,79 光電変換膜
43 保護膜
82,83,84 n領域
1,81 P well layer (semiconductor substrate)
2, 4, 6, 52 High-concentration impurity regions 3, 5, 7, 53 MOS circuit 8 Gate insulating films 9, 11, 38, 87 Insulating films 31, 36, 39, 75 Pixel electrode films 32, 37, 40, 78 Vertical wiring 34, 42, 80 Common electrode film 33, 35, 41, 50, 79 Photoelectric conversion film 43 Protective film 82, 83, 84 n region

Claims (5)

共通電極膜と画素対応の画素電極膜とによって挟まれた光電変換膜が半導体基板の上に積層される光電変換膜積層型固体撮像素子の製造方法において、前記半導体基板の表面部に形成されている信号読出回路に接続され対応の前記画素電極膜の位置まで先端部が達する縦配線を形成し、次に該縦配線が埋設される層の構成物を形成し、その後、該層の表面に前記先端部が接続される前記画素電極膜を形成することを特徴とする光電変換膜積層型固体撮像素子の製造方法。   In a method of manufacturing a photoelectric conversion film stacked solid-state imaging device in which a photoelectric conversion film sandwiched between a common electrode film and a pixel electrode film corresponding to a pixel is stacked on a semiconductor substrate, the photoelectric conversion film is formed on a surface portion of the semiconductor substrate. A vertical wiring that reaches the position of the corresponding pixel electrode film and is connected to the corresponding signal readout circuit, and then a layer structure in which the vertical wiring is embedded is formed, and then the surface of the layer is formed. A method of manufacturing a photoelectric conversion film stack type solid-state imaging device, comprising forming the pixel electrode film to which the tip is connected. 前記光電変換膜は緑色の入射光量を検出する光電変換膜であり、前記層の構成物は前記半導体基板の表面部に設けられた赤色検出用フォトダイオード及び青色検出用フォトダイオードの夫々の上に設けられる赤色光透過用及び青色光透過用のカラーフィルタと該カラーフィルタを埋設する絶縁層であることを特徴とする請求項1に記載の光電変換膜積層型固体撮像素子。   The photoelectric conversion film is a photoelectric conversion film for detecting the amount of green incident light, and the constituents of the layer are formed on each of the red detection photodiode and the blue detection photodiode provided on the surface portion of the semiconductor substrate. 2. The photoelectric conversion film stacked solid-state imaging device according to claim 1, which is a color filter for transmitting red light and blue light and an insulating layer in which the color filter is embedded. 共通電極膜と画素対応の画素電極膜とによって挟まれた光電変換膜が絶縁膜を介して半導体基板の上に複数積層される光電変換膜積層型固体撮像素子の製造方法において、前記半導体基板の表面部に形成されている信号読出回路に接続される縦配線であって下層の前記光電変換膜及び該光電変換膜を挟む前記共通電極膜並びに前記絶縁膜を貫通し上層の前記光電変換膜を挟む前記画素電極膜に接続される縦配線を先に製造して絶縁材で被覆し、その後に、前記下層の光電変換膜、該光電変換膜を挟む前記共通電極膜、前記絶縁膜を積層することを特徴とする光電変換膜積層型固体撮像素子の製造方法。   In a method of manufacturing a photoelectric conversion film stack type solid-state imaging device in which a plurality of photoelectric conversion films sandwiched between a common electrode film and a pixel electrode film corresponding to a pixel are stacked on a semiconductor substrate via an insulating film, A vertical wiring connected to a signal readout circuit formed on the surface, the lower photoelectric conversion film, the common electrode film sandwiching the photoelectric conversion film, and the upper photoelectric conversion film through the insulating film The vertical wiring connected to the sandwiched pixel electrode film is first manufactured and covered with an insulating material, and then the lower layer photoelectric conversion film, the common electrode film sandwiching the photoelectric conversion film, and the insulating film are stacked. A method of manufacturing a photoelectric conversion film stack type solid-state imaging device. 赤色検出用,緑色検出用,青色検出用の3つ光電変換膜を検出波長の短い順に上から順に備え、3つの光電変換膜のうち2つの光電変換膜に設ける前記共通電極膜を共用したことを特徴とする請求項3に記載の光電変換膜積層型固体撮像素子の製造方法。   Three photoelectric conversion films for red detection, green detection, and blue detection are provided in order from the top in the shortest detection wavelength, and the common electrode film provided on two photoelectric conversion films among the three photoelectric conversion films is shared. The manufacturing method of the photoelectric conversion film laminated | stacked solid-state image sensor of Claim 3 characterized by these. 赤色検出用,緑色検出用,青色検出用,エメラルド色検出用の4つの光電変換膜を検出波長の短い順に上から備え、4つの光電変換膜のうちの隣接する2つの光電変換膜に設ける前記共通電極膜を共用したことを特徴とする請求項3に記載の光電変換膜積層型固体撮像素子の製造方法。   The four photoelectric conversion films for red color detection, green color detection, blue color detection, and emerald color detection are provided from the top in the order of the shortest detection wavelength, and are provided on two adjacent photoelectric conversion films among the four photoelectric conversion films. The method for manufacturing a photoelectric conversion film stacked solid-state imaging device according to claim 3, wherein the common electrode film is shared.
JP2005037909A 2004-03-18 2005-02-15 Method of manufacturing photoelectric conversion film lamination type solid-state image pickup device Pending JP2005303263A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005037909A JP2005303263A (en) 2004-03-18 2005-02-15 Method of manufacturing photoelectric conversion film lamination type solid-state image pickup device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004077664 2004-03-18
JP2005037909A JP2005303263A (en) 2004-03-18 2005-02-15 Method of manufacturing photoelectric conversion film lamination type solid-state image pickup device

Publications (1)

Publication Number Publication Date
JP2005303263A true JP2005303263A (en) 2005-10-27

Family

ID=35334357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005037909A Pending JP2005303263A (en) 2004-03-18 2005-02-15 Method of manufacturing photoelectric conversion film lamination type solid-state image pickup device

Country Status (1)

Country Link
JP (1) JP2005303263A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006120773A (en) * 2004-10-20 2006-05-11 Fuji Photo Film Co Ltd Photoelectric converting film laminating single-plate color solid-state imaging apparatus
JP2017098513A (en) * 2015-11-27 2017-06-01 株式会社ニコン Imaging device, imaging apparatus, and focusing apparatus
CN110828493A (en) * 2018-08-14 2020-02-21 三星电子株式会社 Image sensor with a plurality of pixels
WO2020218047A1 (en) * 2019-04-26 2020-10-29 パナソニックIpマネジメント株式会社 Imaging element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006120773A (en) * 2004-10-20 2006-05-11 Fuji Photo Film Co Ltd Photoelectric converting film laminating single-plate color solid-state imaging apparatus
JP4700947B2 (en) * 2004-10-20 2011-06-15 富士フイルム株式会社 Single layer color solid-state imaging device with photoelectric conversion film
JP2017098513A (en) * 2015-11-27 2017-06-01 株式会社ニコン Imaging device, imaging apparatus, and focusing apparatus
CN110828493A (en) * 2018-08-14 2020-02-21 三星电子株式会社 Image sensor with a plurality of pixels
CN110828493B (en) * 2018-08-14 2024-06-07 三星电子株式会社 Image sensor
WO2020218047A1 (en) * 2019-04-26 2020-10-29 パナソニックIpマネジメント株式会社 Imaging element

Similar Documents

Publication Publication Date Title
US7400023B2 (en) Photoelectric converting film stack type solid-state image pickup device and method of producing the same
US7858433B2 (en) Photoelectric converting film stack type solid-state image pickup device, and method of producing the same
TWI595638B (en) Semiconductor device, solid-state imaging device and electronic apparatus
RU2521224C1 (en) Image acquisition solid-state device
US7791158B2 (en) CMOS image sensor including an interlayer insulating layer and method of manufacturing the same
TWI393250B (en) Solid-state imaging device and method for manufacturing the same
US9991305B2 (en) Stacked type solid state imaging apparatus and imaging system
JP6789653B2 (en) Photoelectric converter and camera
JP2015095468A (en) Solid state imaging element, method for manufacturing solid state imaging element, and electronic apparatus
JP4972924B2 (en) Solid-state imaging device, manufacturing method thereof, and camera
JP2009252949A (en) Solid-state imaging device and manufacturing method thereof
JP2013135123A (en) Semiconductor device, manufacturing method of semiconductor device, solid-state imaging device and electronic apparatus
JP2005353626A (en) Photoelectric conversion film laminated solid state imaging element and its manufacturing method
JP2009088511A (en) Image sensor and method for manufacturing the same
JP2005303263A (en) Method of manufacturing photoelectric conversion film lamination type solid-state image pickup device
US20140124888A1 (en) Image Sensor and Method for Manufacturing the Same
US20230005971A1 (en) Image sensor and method of fabricating the same
JP5229354B2 (en) Solid-state imaging device
JP2009123780A (en) Photoelectric conversion film laminated image pickup element, and its manufacturing method
JP4535766B2 (en) Solid-state imaging device, manufacturing method thereof, and electronic information device
JP2010045083A (en) Solid-state imaging element
TWI590476B (en) Image sensor and fabricating method thereof
WO2024090039A1 (en) Light detecting device and electronic apparatus
US20240162263A1 (en) Imaging device
JP2009158957A (en) Method of manufacturing image sensor

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060327

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061124