JP2005302658A - Cell, stack using this, fuel cell and vehicle - Google Patents

Cell, stack using this, fuel cell and vehicle Download PDF

Info

Publication number
JP2005302658A
JP2005302658A JP2004120718A JP2004120718A JP2005302658A JP 2005302658 A JP2005302658 A JP 2005302658A JP 2004120718 A JP2004120718 A JP 2004120718A JP 2004120718 A JP2004120718 A JP 2004120718A JP 2005302658 A JP2005302658 A JP 2005302658A
Authority
JP
Japan
Prior art keywords
temperature
fuel cell
cell
stack
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004120718A
Other languages
Japanese (ja)
Other versions
JP5038585B2 (en
Inventor
Yasushi Matsuhiro
泰 松廣
Tetsuo Kikuchi
哲郎 菊地
Naohiro Takeshita
直宏 竹下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Soken Inc
Original Assignee
Nippon Soken Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc, Toyota Motor Corp filed Critical Nippon Soken Inc
Priority to JP2004120718A priority Critical patent/JP5038585B2/en
Publication of JP2005302658A publication Critical patent/JP2005302658A/en
Application granted granted Critical
Publication of JP5038585B2 publication Critical patent/JP5038585B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cell capable of increasing a fluid flow rate when an abnormally hot section appears in the cell etc., and to provide a fuel cell capable of realizing response and linearity at abnormally high temperature. <P>SOLUTION: This cell is provided with the fluid-flow regulation means 4 on a fluid flow passage 2. The flow regulation means 4 comprises at least two kinds of thermally deformable materials with different temperature-shape characteristics. In the fuel cell, a plurality of cells with the fluid flow passage 2 are piled in a stack, the fluid-flow regulation means 4 is provided on the fluid flow passage 2 in at least a part of the plurality of cells, and the flow regulation means 4 comprises at least two kinds of thermally deformable materials with the different temperature-shape characteristics. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、異常高温時における応答性と線形性を両立することのできる燃料電池に関し、詳細には、セル内部に異常な高温部が出現した場合等に、外部温度調整機能にかかわらず、流体流量を増やすこと等ができるセル、並びにこれを用いたスタック、燃料電池及び車両に関する。   The present invention relates to a fuel cell capable of achieving both responsiveness and linearity at an abnormally high temperature, and more specifically, when an abnormally high temperature portion appears inside the cell, the fluid regardless of the external temperature adjustment function. The present invention relates to a cell capable of increasing a flow rate and the like, and a stack, a fuel cell, and a vehicle using the cell.

従来から、燃料電池自動車等に有用な、PEFC(Polymer Electrolyte Fuel Cell:固体高分子型燃料電池)等の燃料電池(FC)が開発されている。   Conventionally, fuel cells (FC) such as PEFC (Polymer Electrolyte Fuel Cell) that are useful for fuel cell vehicles have been developed.

PEFCセルは、一般的に出力電流を増やすと出力電圧が低下する。セルの基本性能は、出力電流を増やしたときの電圧低下の少なさで測られる。ところで、セルからその能力以上の電流を取り出した場合、つまり、外部電源等によりこのセル電圧がマイナスになる領域まで強制的に電流を取り出した場合には、電圧がセルの電気化学的な系で決まる電解開始電圧以下になると生成水やセル構成材料が電解を起こし、劣化が生じる。このため、セルは出力電圧が電解開始電圧以下にならないように運転する必要があり、実用上はマージンを持たせてプラス0.数V程度以下にならないよう出力電流を制限している。   In general, the output voltage of the PEFC cell decreases as the output current is increased. The basic performance of the cell is measured by the small voltage drop when the output current is increased. By the way, when a current exceeding the capacity is taken out from the cell, that is, when the current is forcibly taken out to an area where the cell voltage becomes negative by an external power source or the like, the voltage is reduced by the electrochemical system of the cell. When the voltage is lower than the determined electrolysis start voltage, the generated water and the cell constituent material undergo electrolysis and deteriorate. For this reason, it is necessary to operate the cell so that the output voltage does not fall below the electrolysis start voltage. The output current is limited so that it does not fall below several volts.

FCスタックは単独セルより高い出力電圧を得るため多数のセルを電気的に直列に積み重ねたものであり、直列であるためスタック内の各セルの出力電流の値は必然的に同じになる。スタック中に他のセルより特性が低いセルがあり、同じ出力電流でもより低い出力電圧になるようなセルがあるとすると、スタックから電流を引き出したときに、このセルだけが電解開始電圧にまで電圧が低下し、他のセルはそのようなことがないということが起きる。このような事態によるセル劣化、破壊を防ぐために、スタックから取り出す電流は最も性能の低いセルの限界に合わせて制限する必要がある。つまり、一般的な直列スタックでは、1つの性能の低いセルがスタック全体の性能を制限する。   The FC stack is obtained by stacking a number of cells electrically in series in order to obtain a higher output voltage than a single cell, and since the cells are in series, the output current value of each cell in the stack is necessarily the same. If there is a cell in the stack that has lower characteristics than other cells, and there is a cell that has a lower output voltage even with the same output current, only this cell will reach the electrolysis start voltage when current is drawn from the stack. It happens that the voltage drops and other cells do not. In order to prevent cell deterioration and destruction due to such a situation, it is necessary to limit the current taken from the stack in accordance with the limit of the cell having the lowest performance. That is, in a general series stack, one low performance cell limits the performance of the entire stack.

ところで、PEFCセルの性能は温度にも大きく左右されるため、上記の理由からスタック内に温度異常のセルが一つ現れただけでスタックの性能が低下する。このため、スタックを構成する各セルの温度を揃え、温度異常のセルを作らないことが重要であるが、数10〜数100枚のセルを重ねるスタックでは、セル個別の温度管理は非常に複雑な構成となるため実施されていなかった。   By the way, since the performance of the PEFC cell greatly depends on the temperature, the performance of the stack is deteriorated only by the appearance of one abnormal temperature cell in the stack for the above reason. For this reason, it is important that the temperature of each cell constituting the stack is made uniform so as not to create a temperature abnormal cell. However, in a stack in which several tens to several hundreds of cells are stacked, temperature management for each cell is very complicated. It was not implemented because it was a complicated structure.

また、例えば、特開平7−249419号公報では、燃料電池を構成する各ユニットセルのセル面内における温度、電流密度の均一化を図ることを目的として、燃料ガス流路中に該燃料ガス流路内の温度に応じて開度が変化する流量調節弁等の燃料流量制御手段を設けた燃料電池が開示されている(特許文献1)。そして、該文献には、バイメタル又は形状記憶合金を含んで構成された弁を有する燃料流量制御手段を備えた燃料電池が開示されている。しかし、この燃料電池では、熱応答性と、温度に対する線形性の両立が困難であるという問題がある。
特開平7−249419号公報
Further, for example, in Japanese Patent Application Laid-Open No. 7-249419, for the purpose of achieving uniform temperature and current density in the cell surface of each unit cell constituting the fuel cell, the fuel gas flow in the fuel gas flow path is disclosed. A fuel cell provided with a fuel flow rate control means such as a flow rate control valve whose opening degree changes according to the temperature in the road is disclosed (Patent Document 1). The document discloses a fuel cell including a fuel flow rate control means having a valve configured to include a bimetal or a shape memory alloy. However, this fuel cell has a problem that it is difficult to achieve both thermal response and linearity with respect to temperature.
Japanese Patent Laid-Open No. 7-249419

本発明が解決しようとする問題点は、前述した従来技術の問題である。
従って、本発明の目的は、セル内部に異常な高温部が出現した場合等に、流体流量を増やすことのできるセルを提供することにある。
また、本発明の他の目的は、異常高温時における応答性と線形性を両立することのできる燃料電池を提供することにある。
The problem to be solved by the present invention is the problem of the prior art described above.
Therefore, an object of the present invention is to provide a cell capable of increasing the fluid flow rate when an abnormally high temperature portion appears inside the cell.
Another object of the present invention is to provide a fuel cell capable of achieving both responsiveness and linearity at an abnormally high temperature.

本発明者は、鋭意研究した結果、セル内の流体流路上に、該流体の流量を調節するための特定の手段を設けたセルが、前記目的を達成し得ることの知見を得た。   As a result of diligent research, the present inventor has found that a cell provided with a specific means for adjusting the flow rate of the fluid on the fluid flow path in the cell can achieve the object.

本発明は、前記知見に基づきなされたもので、下記1.のセルを提供するものである。
1.流体流路上に該流体の流量調節手段を備えたセルであって、
前記流量調節手段が、温度−形状特性の異なる少なくとも二種の温度変形材料からなることを特徴とするセル。
セル内部に異常な高温部が出現した場合等に、流体流量を増やすことができる。
The present invention has been made on the basis of the above findings. Cell.
1. A cell comprising a fluid flow rate adjusting means on the fluid flow path,
The cell characterized in that the flow rate adjusting means is made of at least two kinds of temperature deformable materials having different temperature-shape characteristics.
The fluid flow rate can be increased when an abnormally high temperature portion appears in the cell.

また、本発明は、以下の2.〜12.の発明をそれぞれ提供するものである。
2.二種の前記温度変形材料は、温度に対してリニアに変形する特性を有する一の材料と温度応答性の高い特性を有する他の材料である、前記1記載のセル。
The present invention also provides the following 2. -12. Each invention is provided.
2. 2. The cell according to 1 above, wherein the two types of temperature-deformable materials are one material having a characteristic of linearly deforming with respect to temperature and another material having a high temperature-responsive characteristic.

3.前記一の材料がバイメタルであり、前記他の材料が形状記憶合金である、前記2記載のセル。   3. 3. The cell according to 2, wherein the one material is a bimetal and the other material is a shape memory alloy.

4.前記流体流路が、ガス流路及び温度調節媒体流路の少なくとも一つである、前記1〜3の何れかに記載のセル。   4). 4. The cell according to any one of 1 to 3, wherein the fluid channel is at least one of a gas channel and a temperature control medium channel.

5.温度調節媒体流路上に該温度調節媒体の流量調節手段を備えたセルであって、
前記流量調節手段が、所定の温度−形状特性を有する温度変形材料からなることを特徴とするセル。
5). A cell comprising flow control means for the temperature control medium on the temperature control medium flow path;
The cell characterized in that the flow rate adjusting means is made of a temperature deformable material having a predetermined temperature-shape characteristic.

6.前記1〜5の何れかに記載のセルの二以上を、電気的に直列に積み重ねたことを特徴とするスタック。
このスタックによれば、スタック内の一部のセルが異常に高温になったり低温になったりすることを防ぐことができ、全体の温度分布が均一なスタックを提供できる。
6). A stack, wherein two or more of the cells according to any one of 1 to 5 are electrically stacked in series.
According to this stack, it is possible to prevent a part of the cells in the stack from becoming abnormally hot or cold, and to provide a stack having a uniform temperature distribution.

7.流体流路を有する複数のセルがスタック状に積み重ねられてなる燃料電池であって、
複数の前記セルの少なくとも一部のセル内の流体流路上に該流体の流量調節手段を備え、
前記流量調節手段が、温度−形状特性の異なる少なくとも二種の温度変形材料からなることを特徴とする燃料電池。
この燃料電池によれば、スタック内の温度分布が均一で、性能に優れた燃料電池を提供できる。また、この燃料電池は、異常高温時における応答性と線形性を両立することができるものである。
7). A fuel cell in which a plurality of cells having fluid flow paths are stacked in a stack,
The fluid flow rate adjusting means is provided on the fluid flow path in at least some of the plurality of cells,
The fuel cell according to claim 1, wherein the flow rate adjusting means is made of at least two kinds of temperature deformable materials having different temperature-shape characteristics.
According to this fuel cell, a fuel cell having a uniform temperature distribution in the stack and excellent performance can be provided. Further, this fuel cell can achieve both responsiveness and linearity at an abnormally high temperature.

8.二種の前記温度変形材料は、温度に対してリニアに変形する特性を有する一の材料と温度応答性の高い特性を有する他の材料である、前記7記載の燃料電池。
この燃料電池によれば、スタック内の温度分布がより均一で、性能により優れた燃料電池を提供できる。
8). 8. The fuel cell according to 7, wherein the two types of temperature deformable materials are one material having a property of linearly deforming with respect to temperature and another material having a property of high temperature response.
According to this fuel cell, it is possible to provide a fuel cell having a more uniform temperature distribution in the stack and superior performance.

9.前記一の材料がバイメタルであり、前記他の材料が形状記憶合金である、前記8記載の燃料電池。
この燃料電池によれば、スタック内の温度分布が更に均一で、性能に更に優れた燃料電池を提供できる。
9. 9. The fuel cell according to 8, wherein the one material is a bimetal and the other material is a shape memory alloy.
According to this fuel cell, it is possible to provide a fuel cell having a more uniform temperature distribution in the stack and further excellent performance.

10.前記流体流路が、ガス流路及び温度調節媒体流路の少なくとも一つである、前記7〜9の何れかに記載の燃料電池。
この燃料電池によれば、スタック内の温度分布が更に一層均一で、性能に更に一層優れた燃料電池を提供できる。
10. 10. The fuel cell according to any one of 7 to 9, wherein the fluid channel is at least one of a gas channel and a temperature control medium channel.
According to this fuel cell, it is possible to provide a fuel cell in which the temperature distribution in the stack is further uniform and the performance is further improved.

11.温度調節媒体流路を有する複数のセルがスタック状に積み重ねられてなる燃料電池であって、
複数の前記セルの少なくとも一部のセル内の温度調節媒体流路上に該温度調節媒体の流量調節手段を備え、
前記流量調節手段が、所定の温度−形状特性を有する温度変形材料からなることを特徴とする燃料電池。
この燃料電池によれば、冷却水等の温度調節媒体の流路に設けられた手段により、スタック内の温度分布が均一で、性能に優れた燃料電池を提供できる。
11. A fuel cell in which a plurality of cells having temperature control medium flow paths are stacked in a stack,
A flow rate adjusting means for the temperature adjustment medium on a temperature adjustment medium flow path in at least some of the plurality of cells;
The fuel cell, wherein the flow rate adjusting means is made of a temperature deformable material having a predetermined temperature-shape characteristic.
According to this fuel cell, a fuel cell having a uniform temperature distribution in the stack and excellent performance can be provided by means provided in a flow path of a temperature control medium such as cooling water.

12.前記7〜11の何れかに記載の燃料電池を少なくとも備えた車両。
この車両によれば、性能に優れた燃料電池自動車等を提供できる。
12 A vehicle comprising at least the fuel cell according to any one of 7 to 11 above.
According to this vehicle, a fuel cell vehicle having excellent performance can be provided.

本発明によれば、セル内部に異常な高温部が出現した場合等に、流体流量を増やすことのできるセルが提供される。また、本発明によれば、全体の温度分布が均一なスタックが提供される。また、本発明によれば、スタック内の温度分布が均一で、性能に優れ、異常高温時における応答性と線形性を両立することのできる燃料電池が提供される。また、本発明によれば、性能に優れた燃料電池自動車等の車両が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the cell which can increase a fluid flow rate is provided when an abnormal high temperature part appears in a cell inside. Further, according to the present invention, a stack having a uniform overall temperature distribution is provided. In addition, according to the present invention, a fuel cell is provided in which the temperature distribution in the stack is uniform, the performance is excellent, and both responsiveness and linearity at an abnormally high temperature can be achieved. Further, according to the present invention, a vehicle such as a fuel cell vehicle having excellent performance is provided.

以下に、本発明の実施例を挙げて、本発明をより具体的に説明するが、本発明は、斯かる実施例により何等制限されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples of the present invention. However, the present invention is not limited to the examples.

図1に、実施例1に係る燃料電池用セルを示す。実施例1に係る燃料電池用セル1は、セル面内の何れかの箇所に局所の異常高温部が発生した場合に、緊急に冷却水を増加させる構成のものである。尚、図1Aは、実施例1に係る燃料電池用セルを示す概略正面図であり、図1Bは、図1Aに示す燃料電池用セルの右側面図である。また、図1C及びDはそれぞれ、図1Bに示す燃料電池用セルの一部拡大図であって、異常高温部が発生した際に冷却水を増加させるコントロール機構を示す概略説明図である。   FIG. 1 shows a fuel cell according to the first embodiment. The fuel cell 1 according to the first embodiment has a configuration in which the cooling water is urgently increased when a local abnormally high temperature portion occurs in any part of the cell surface. 1A is a schematic front view showing the fuel cell according to the first embodiment, and FIG. 1B is a right side view of the fuel cell shown in FIG. 1A. 1C and 1D are partially enlarged views of the fuel cell shown in FIG. 1B, and are schematic explanatory views showing a control mechanism for increasing cooling water when an abnormally high temperature portion is generated.

本実施例1の燃料電池用セル1は、図1に示すように、冷却水流路2及び反応ガス流路3が設けられたもので、セル面内の該冷却水流路2上に該冷却水の流量調節手段4を備えるものである。そして、流量調節手段4は、温度−形状特性の異なる少なくとも二種の温度変形材料からなる。   As shown in FIG. 1, the fuel cell 1 according to the first embodiment is provided with a cooling water flow path 2 and a reaction gas flow path 3, and the cooling water is placed on the cooling water flow path 2 in the cell plane. The flow rate adjusting means 4 is provided. The flow rate adjusting means 4 is made of at least two types of temperature deformable materials having different temperature-shape characteristics.

流量調節手段4を構成する温度変形材料としては、温度に対しリニアに形状が変化するバイメタル又はワックス構造物と、温度に対する形状変化がリニアでないかある閾値温度で急激に変形する形状記憶合金又は相転移変形するポリマのアクチュエータとを組み合わせたもの等を用いることができる。図1では、バイメタルからなる感温オリフィス5と形状記憶合金ワイヤ(バネ)6とを組合せたものを示している。   The temperature deformation material constituting the flow rate adjusting means 4 includes a bimetal or wax structure whose shape changes linearly with respect to the temperature, and a shape memory alloy or phase whose shape change with respect to the temperature is not linear or changes rapidly at a threshold temperature. A combination with a polymer actuator that undergoes transformation deformation can be used. FIG. 1 shows a combination of a temperature-sensitive orifice 5 made of bimetal and a shape memory alloy wire (spring) 6.

形状記憶合金ワイヤ6は、その一端が感温オリフィス5に接続され、もう一端がセル1に固定されている。この形状記憶合金ワイヤ6は、ある閾値温度以上で、コイル状あるいは波状に変形するように作成されている。また、形状記憶合金ワイヤ6は、冷却水流路2に沿って、セル1の発電部全体にかかるように張られている。一方、感温オリフィス5には、引張りによって、全開となる機構が内蔵されている。   The shape memory alloy wire 6 has one end connected to the temperature-sensitive orifice 5 and the other end fixed to the cell 1. The shape memory alloy wire 6 is formed to be deformed into a coil shape or a wave shape at a certain threshold temperature or higher. Further, the shape memory alloy wire 6 is stretched along the cooling water flow path 2 so as to cover the entire power generation unit of the cell 1. On the other hand, the temperature-sensitive orifice 5 has a built-in mechanism that is fully opened by pulling.

形状記憶合金ワイヤ6と接続された感温オリフィス5による制御の機構は、次の通りである。即ち、図1C及びDに示すように、セル1の何処か局所が高温になり、それによって形状記憶合金ワイヤ6の一部Pが高温になると、そこがコイル状に変形して縮み(図1D)、感温オリフィス5を強制的に開く全開機構を作動させ、冷却水を増加させて温度上昇を防ぐことができる。   The control mechanism by the temperature-sensitive orifice 5 connected to the shape memory alloy wire 6 is as follows. That is, as shown in FIGS. 1C and 1D, when some part of the cell 1 becomes high temperature, and thereby a part P of the shape memory alloy wire 6 becomes high temperature, it deforms into a coil shape and shrinks (FIG. 1D ), The fully open mechanism for forcibly opening the temperature-sensitive orifice 5 can be operated to increase the cooling water and prevent the temperature from rising.

かかる構造の燃料電池用セル1によれば、セル内部に異常な高温部が出現した場合等に温度調整機能にかかわらず、冷却水量を増やすことのできる燃料電池を提供することができる。   According to the fuel cell 1 having such a structure, it is possible to provide a fuel cell capable of increasing the amount of cooling water regardless of the temperature adjustment function when an abnormally high temperature portion appears inside the cell.

そのような燃料電池としては、図1に示す燃料電池用セル1を少なくとも一部に用いて、複数のセルをスタック状に積み重ねたもの等が挙げられる。かかる燃料電池は、PEFC等として用いられ、また燃料電池自動車等の車両等に使用することができる。   Examples of such a fuel cell include those in which a plurality of cells are stacked in a stack using at least part of the fuel cell 1 shown in FIG. Such a fuel cell is used as a PEFC or the like, and can be used for a vehicle such as a fuel cell vehicle.

図2に、実施例2に係る燃料電池用セルを使用した例を示す。図2Aは、実施例2に係る燃料電池用セルを用いた燃料電池スタック(一例)の要部を示す概略構成図である。
具体的には、図2Aに示すように、実施例2の燃料電池用セル10を複数用いて、電気的に直列に積み重ねた燃料電池スタック20である。また、図2Bは、図2Aに示す燃料電池スタックを構成するセルの一部拡大図である。
FIG. 2 shows an example in which the fuel cell according to the second embodiment is used. FIG. 2A is a schematic configuration diagram illustrating a main part of a fuel cell stack (one example) using the fuel cell according to the second embodiment.
Specifically, as shown in FIG. 2A, a fuel cell stack 20 is electrically stacked in series using a plurality of fuel cell cells 10 of Example 2. FIG. 2B is a partially enlarged view of the cells constituting the fuel cell stack shown in FIG. 2A.

実施例2に係る燃料電池用セル10は、水を温度調節媒体として冷却により温度調節を行い、燃料電池用スタック20内の各セルの温度制御を行うものである。   The fuel cell 10 according to the second embodiment performs temperature control by cooling using water as a temperature control medium, and controls the temperature of each cell in the fuel cell stack 20.

燃料電池スタック20は、図2Aに示すように、冷却水流路11及び反応ガス流路12が設けられた複数の本実施例2に係るセル10がスタック状に積み重ねられてなるものである。そして、複数のセル10それぞれの冷却水流路11上に、該冷却水の流量調節手段13を備えている。この流量調節手段13は、所定の温度−形状特性を有する温度変形材料からなるものである。   As shown in FIG. 2A, the fuel cell stack 20 is formed by stacking a plurality of cells 10 according to the second embodiment provided with a cooling water flow path 11 and a reaction gas flow path 12 in a stack. The cooling water flow rate adjusting means 13 is provided on the cooling water flow path 11 of each of the plurality of cells 10. The flow rate adjusting means 13 is made of a temperature deformable material having a predetermined temperature-shape characteristic.

図2Bに示すように、セル10における冷却水流路11の出口側には、流量調節手段13である前記温度変形材料としての湾曲した金属板が取り付けられており、この金属板をオリフィス(感温オリフィス)としている。この金属板は、バイメタルを内蔵し、温度に感応して曲率を変化させるようになっている。バイメタルは、高温で曲率が低くなり、低温で曲率が高くなるように構成されている。   As shown in FIG. 2B, on the outlet side of the cooling water flow path 11 in the cell 10, a curved metal plate as the temperature deforming material that is the flow rate adjusting means 13 is attached, and this metal plate is connected to an orifice (temperature sensitive). Orifice). This metal plate has a built-in bimetal and changes the curvature in response to temperature. The bimetal is configured to have a low curvature at high temperatures and a high curvature at low temperatures.

本実施例2に係る燃料電池用セル10によれば、前述した構成を備えているため、次に示す働きをする。即ち、冷却水流路11から出てくる冷却水の温度が高い場合には、流量調節手段13としてのオリフィスが開く方向(図2Bの矢印X方向:高温時変位方向)に変形して冷却水量を増やす。逆に、冷却水流路11から出てくる冷却水の温度が低い場合には、流量調節手段13としてのオリフィスが閉じる方向(図2Bの矢印Y方向:低温時変位方向)に変形して冷却水量を減らす。   Since the fuel cell 10 according to the second embodiment has the above-described configuration, it operates as follows. That is, when the temperature of the cooling water flowing out from the cooling water channel 11 is high, the amount of the cooling water is changed by deforming in the direction in which the orifice as the flow rate adjusting means 13 opens (arrow X direction in FIG. 2B: high temperature displacement direction). increase. On the other hand, when the temperature of the cooling water coming out of the cooling water flow path 11 is low, the amount of the cooling water is deformed in the direction in which the orifice as the flow rate adjusting means 13 is closed (the arrow Y direction in FIG. 2B: the low temperature displacement direction). Reduce.

かかる構造の燃料電池用セル10によれば、セルの冷却水(又は冷却用流体)出口部の冷却水温度に応じて開度が変化するオリフィスを内蔵し、スタックを構成した、温度分布を自律的に制御できる燃料電池を提供することができる。   According to the fuel cell 10 having such a structure, an orifice whose opening degree changes in accordance with the cooling water temperature at the outlet of the cooling water (or cooling fluid) of the cell is built, and the temperature distribution is autonomously configured by forming a stack. A fuel cell that can be controlled automatically can be provided.

そのような燃料電池としては、燃料電池用セル10を少なくとも一部に用いて、複数のセルをスタック状に積み重ねた燃料電池等が挙げられる。かかる燃料電池は、PEFC等として用いられ、また燃料電池自動車等の車両等に使用することができる。   Examples of such a fuel cell include a fuel cell in which a plurality of cells are stacked in a stack using at least a part of the fuel cell 10. Such a fuel cell is used as a PEFC or the like, and can be used for a vehicle such as a fuel cell vehicle.

尚、実施例2では、冷却水を利用した冷却媒体(冷却液体等の冷却用流体)による作用を示しているが、温度調節媒体(温度調節液体等の温度調節用流体)が燃料電池より高温で暖める作用をする場合は、バイメタルの構成を実施例2に係る前記構成とは逆とし、逆の制御が働くようにすることもできる。   In addition, in Example 2, although the effect | action by the cooling medium (cooling fluids, such as a cooling liquid) using cooling water is shown, the temperature control medium (temperature control fluids, such as a temperature control liquid) is hotter than a fuel cell. In the case of performing the warming action, the configuration of the bimetal can be reversed from the configuration according to the second embodiment, and the reverse control can be performed.

また、流量調節手段13としてのオリフィスの流量調節の必要範囲によっては、バイメタルの構成材料に熱膨張の大きい樹脂や、熱膨張の小さい無機材料を使用してもよい。   Further, depending on the required range of flow rate adjustment of the orifice as the flow rate adjusting means 13, a resin having a large thermal expansion or an inorganic material having a small thermal expansion may be used as the constituent material of the bimetal.

更に、オリフィスは、同様にその流量調節の必要範囲に応じて、図5に示すような実施例2とは別構造の構成としても良い。図5に示すセル50に設けられた流量調節手段51としてのオリフィスは、温度調節媒体流路52の幅に応じて可変できるような構造となっている。   Furthermore, the orifice may have a structure different from that of the second embodiment as shown in FIG. 5 according to the necessary range of flow rate adjustment. The orifice as the flow rate adjusting means 51 provided in the cell 50 shown in FIG. 5 has a structure that can be changed according to the width of the temperature adjusting medium flow path 52.

図3に、実施例3に係る燃料電池用セルを示す。実施例3の燃料電池用セル30は、前述した実施例2の温度制御機構を、セル面内でもできるように拡張したものである。
尚、図3Aは、実施例3に係る燃料電池用セルを示す概略正面図であり、図3Bは、図3Aに示す燃料電池用セルの右側面図である。
FIG. 3 shows a fuel cell according to the third embodiment. The fuel cell 30 according to the third embodiment is obtained by extending the above-described temperature control mechanism according to the second embodiment so that it can be performed in the cell plane.
3A is a schematic front view showing the fuel cell according to the third embodiment, and FIG. 3B is a right side view of the fuel cell shown in FIG. 3A.

本実施例3の燃料電池用セル30は、図3に示すように、複数の反応ガス流路32とともに、セルに独立に並行して冷却水が流れるための複数の冷却水流路31が設けられたもので、セル面内の複数の冷却水流路31それぞれの出口に、該冷却水の流量調節手段33としての感温オリフィスが備えられ、各流路31に自律温度調節機構をもたせた構造を有している。   As shown in FIG. 3, the fuel cell 30 of the third embodiment is provided with a plurality of reaction gas channels 32 and a plurality of cooling water channels 31 for allowing cooling water to flow independently through the cells. In addition, a temperature-sensitive orifice as a flow rate adjusting means 33 for the cooling water is provided at the outlet of each of the plurality of cooling water flow paths 31 in the cell surface, and each flow path 31 is provided with an autonomous temperature control mechanism. Have.

流量調節手段33を構成する感温オリフィスとしては、前述した実施例2に係るセルに使用されるオリフィスと同様のものが用いられる。従って、各冷却水流路31におけるそれぞれの流量調節手段33としてのオリフィスの温度制御機構については、実施例2で説明した機構と同様である。   As the temperature-sensitive orifice constituting the flow rate adjusting means 33, the same orifice as that used in the cell according to the second embodiment is used. Therefore, the temperature control mechanism of the orifice as each flow rate adjusting means 33 in each cooling water channel 31 is the same as the mechanism described in the second embodiment.

かかる構造の燃料電池用セル30によれば、上記オリフィス構造が内蔵された冷却水流路31をセルに並列に複数有するため、セル面内の温度分布を自律的に制御でき、特に図面上の上下方向の温度分布をコントロールできる燃料電池を提供することができる。   According to the fuel cell 30 having such a structure, since the cooling water passage 31 having the orifice structure is provided in parallel with the cell, the temperature distribution in the cell surface can be controlled autonomously, A fuel cell capable of controlling the temperature distribution in the direction can be provided.

そのような燃料電池としては、燃料電池用セル30を少なくとも一部に用いて、複数のセルをスタック状に積み重ねた燃料電池等が挙げられる。かかる燃料電池は、PEFC等として用いられ、また燃料電池自動車等の車両等に使用することができる。   Examples of such a fuel cell include a fuel cell in which a plurality of cells are stacked in a stack using at least a portion of the fuel cell 30. Such a fuel cell is used as a PEFC or the like, and can be used for a vehicle such as a fuel cell vehicle.

図4に、実施例4に係る燃料電池用セルを示す。実施例4の燃料電池用セル40は、実施例2の温度制御機構をセル面内でもできるように拡張したもので、前述した実施例3とは別の構成のものである。尚、図4Aは、実施例4に係る燃料電池用セルを示す概略正面図であり、図4Bは、図4Aに示す燃料電池用セルの右側面図である。   FIG. 4 shows a fuel cell according to the fourth embodiment. The fuel cell 40 of the fourth embodiment is an expansion of the temperature control mechanism of the second embodiment so that it can be performed in the cell plane, and has a configuration different from that of the third embodiment. 4A is a schematic front view showing the fuel cell according to Example 4, and FIG. 4B is a right side view of the fuel cell shown in FIG. 4A.

本実施例4の燃料電池用セル40は、図4に示すように、複数の反応ガス流路42とともに、セルに独立に所定のルートで冷却水が流れるための複数の冷却水流路41が設けられたもので、セル面内の複数の冷却水流路41の出口またはその近辺に、該冷却水の流量調節手段43としての感温オリフィスが備えられ、各流路41に自律温度調節機構をもたせた構造を有している。   As shown in FIG. 4, the fuel cell 40 according to the fourth embodiment is provided with a plurality of reaction gas passages 42 and a plurality of cooling water passages 41 for allowing cooling water to flow independently through the cells through a predetermined route. A temperature-sensitive orifice as a flow rate adjusting means 43 of the cooling water is provided at or near the outlets of the plurality of cooling water flow paths 41 in the cell surface, and each flow path 41 is provided with an autonomous temperature adjustment mechanism. Have a structure.

流量調節手段43を構成する感温オリフィスとしては、前述した実施例2に係るセルに使用されるオリフィスと同様のものが用いられる。従って、各冷却水流路41におけるそれぞれの流量調節手段43としてのオリフィスの温度制御機構については、実施例2で説明した機構と同様である。   As the temperature-sensitive orifice constituting the flow rate adjusting means 43, the same orifice as that used in the cell according to the second embodiment is used. Therefore, the temperature control mechanism of the orifice as each flow rate adjusting means 43 in each cooling water channel 41 is the same as the mechanism described in the second embodiment.

かかる構造の燃料電池用セル40によれば、上記オリフィス構造が内蔵された冷却水流路41をセルに所定のルートが形成されるように複数有するため、セル面内の温度分布を自律的に制御でき、特にセル面内の中央及び周辺の温度分布のコントロールできる燃料電池を提供することができる。   According to the fuel cell 40 having such a structure, the temperature distribution in the cell plane is autonomously controlled since the cooling water passage 41 having the above-described orifice structure is provided in plural so that a predetermined route is formed in the cell. In particular, it is possible to provide a fuel cell capable of controlling the temperature distribution in the center and the periphery in the cell plane.

そのような燃料電池としては、燃料電池用セル40を少なくとも一部に用いて、複数のセルをスタック状に積み重ねた燃料電池等が挙げられる。かかる燃料電池は、PEFC等として用いられ、また燃料電池自動車等の車両等に使用することができる。   Examples of such a fuel cell include a fuel cell in which a plurality of cells are stacked in a stack using at least part of the fuel cell 40. Such a fuel cell is used as a PEFC or the like, and can be used for a vehicle such as a fuel cell vehicle.

前述した各実施例に係る燃料電池用セルを使用した燃料電池は、全て、スタック内の各セル温度をモニタし、外部機構により各セルの温度をコントロールする代わりに、各セルに自律的、つまり外部コントロール等が不要で単独で温度調節が可能な機能をもたせたものである。このようなセルを用いてスタックを構成すれば、スタックに複雑なコントロール系を付加させることなく、簡易な構成にて一部のセルに温度異常が出現するのを防ぐことができる。   All the fuel cells using the fuel cell according to each of the embodiments described above monitor the temperature of each cell in the stack and control the temperature of each cell by an external mechanism. It has a function that allows independent temperature control without the need for external control. If a stack is configured using such cells, it is possible to prevent temperature abnormalities from appearing in some cells with a simple configuration without adding a complicated control system to the stack.

かかる燃料電池における温度調節機構は、FCスタック内の一つのセルモジュールに内蔵した温度調節用流体量のコントロール機構、具体的には、セル内蔵の、流体温度に応じて開度が自律的に変化する小型の流体流路絞り機構である。スタックを構成する各セルにこの機能をもたせると、各セルの発熱具合により温度調節用流体の各セルへの分配が自動的に調節されてスタックの温度分布が均一化し、スタック内の一部のセルが異常に高温になったり低温になったりすることを防ぐことができる。また、セルに温度調節用流体通路を並列に複数本作り、それぞれの通路にこの絞り機構を設けると、セル面内の温度分布を均一化できる。この機構により、一部のセルや、更にセル内の一部分の温度異常によるスタック全体の性能低下を防ぐことができる。   The temperature adjustment mechanism in such a fuel cell is a temperature adjustment fluid amount control mechanism built in one cell module in the FC stack, specifically, the opening degree autonomously changes depending on the fluid temperature built in the cell. This is a small fluid flow path throttle mechanism. When this function is provided to each cell constituting the stack, the distribution of the temperature adjusting fluid to each cell is automatically adjusted according to the heating condition of each cell, and the temperature distribution of the stack is made uniform, and a part of the stack is partially distributed. It is possible to prevent the cell from becoming abnormally hot or cold. Further, if a plurality of temperature adjusting fluid passages are formed in parallel in the cell, and this throttle mechanism is provided in each passage, the temperature distribution in the cell plane can be made uniform. With this mechanism, it is possible to prevent degradation of the performance of the entire stack due to temperature abnormalities in some cells and further in some cells.

本発明は、セル内部に異常な高温部が出現した場合等に、外部温度調整機能にかかわらず、流体流量を増やすこと等ができるセル、並びにこれを用いたスタック、燃料電池及び車両として、産業上の利用可能性を有する。   The present invention relates to a cell capable of increasing the fluid flow rate regardless of the external temperature adjustment function when an abnormally high temperature portion appears inside the cell, and a stack, a fuel cell and a vehicle using the cell. With the above applicability.

図1Aは、実施例1に係る燃料電池用セルを示す概略正面図であり、図1Bは、図1Aに示す燃料電池用セルの右側面図であり、図1C及びDはそれぞれ、図1Bに示す燃料電池用セルの一部拡大図であって異常高温部が発生した際に冷却水を増加させるコントロール機構を示す概略説明図である1A is a schematic front view showing a fuel cell according to Example 1, FIG. 1B is a right side view of the fuel cell shown in FIG. 1A, and FIGS. 1C and D are respectively shown in FIG. 1B. FIG. 3 is a partially enlarged view of the fuel cell shown, and is a schematic explanatory view showing a control mechanism for increasing cooling water when an abnormally high temperature portion is generated. 図2Aは、実施例2に係る燃料電池用セルを用いた燃料電池スタック(一例)の要部を示す概略構成図であり、図2Bは、図2Aに示す燃料電池スタックを構成するセルの一部拡大図である。FIG. 2A is a schematic configuration diagram illustrating a main part of a fuel cell stack (one example) using the fuel cell according to the second embodiment, and FIG. 2B is a diagram illustrating a cell constituting the fuel cell stack illustrated in FIG. 2A. FIG. 図3Aは、実施例3に係る燃料電池用セルを示す概略正面図であり、図3Bは、図3Aに示す燃料電池用セルの右側面図である。FIG. 3A is a schematic front view showing a fuel cell according to Example 3, and FIG. 3B is a right side view of the fuel cell shown in FIG. 3A. 図4Aは、実施例4に係る燃料電池用セルを示す概略正面図であり、図4Bは、図4Aに示す燃料電池用セルの右側面図である。FIG. 4A is a schematic front view showing a fuel cell according to Example 4, and FIG. 4B is a right side view of the fuel cell shown in FIG. 4A. 図5は、本発明の燃料電池用セルが備える流量調節手段としての感温オリフィスの一例を示す概略図である。FIG. 5 is a schematic view showing an example of a temperature-sensitive orifice as flow rate adjusting means provided in the fuel cell of the present invention.

符号の説明Explanation of symbols

1…燃料電池用セル、2…冷却水流路、3…反応ガス流路、4…流量調節手段、5…感温オリフィス、6…形状記憶合金ワイヤ(バネ)、10…燃料電池用セル、11…冷却水流路、12…反応ガス流路、13…流量調節手段、20…燃料電池スタック、30…燃料電池用セル、31…冷却水流路、32…反応ガス流路、33…流量調節手段、40…燃料電池用セル、41…冷却水流路、42…反応ガス流路、43…流量調節手段、50…セル、51…流量調節手段、52…温度調節媒体流路   DESCRIPTION OF SYMBOLS 1 ... Fuel cell, 2 ... Cooling water flow path, 3 ... Reaction gas flow path, 4 ... Flow control means, 5 ... Temperature-sensing orifice, 6 ... Shape memory alloy wire (spring), 10 ... Fuel cell, 11 DESCRIPTION OF SYMBOLS ... Cooling water flow path, 12 ... Reaction gas flow path, 13 ... Flow control means, 20 ... Fuel cell stack, 30 ... Fuel cell cell, 31 ... Cooling water flow path, 32 ... Reaction gas flow path, 33 ... Flow control means, DESCRIPTION OF SYMBOLS 40 ... Fuel cell cell, 41 ... Cooling water flow path, 42 ... Reaction gas flow path, 43 ... Flow control means, 50 ... Cell, 51 ... Flow control means, 52 ... Temperature control medium flow path

Claims (12)

流体流路上に該流体の流量調節手段を備えたセルであって、
前記流量調節手段が、温度−形状特性の異なる少なくとも二種の温度変形材料からなることを特徴とするセル。
A cell comprising a fluid flow rate adjusting means on the fluid flow path,
The cell characterized in that the flow rate adjusting means is made of at least two kinds of temperature deformable materials having different temperature-shape characteristics.
二種の前記温度変形材料は、温度に対してリニアに変形する特性を有する一の材料と温度応答性の高い特性を有する他の材料である、請求項1記載のセル。   2. The cell according to claim 1, wherein the two types of temperature-deformable materials are one material having a characteristic of linearly deforming with respect to temperature and another material having a high temperature-responsive characteristic. 前記一の材料がバイメタルであり、前記他の材料が形状記憶合金である、請求項2記載のセル。   The cell according to claim 2, wherein the one material is a bimetal and the other material is a shape memory alloy. 前記流体流路が、ガス流路及び温度調節媒体流路の少なくとも一つである、請求項1〜3の何れかに記載のセル。   The cell according to claim 1, wherein the fluid channel is at least one of a gas channel and a temperature control medium channel. 温度調節媒体流路上に該温度調節媒体の流量調節手段を備えたセルであって、
前記流量調節手段が、所定の温度−形状特性を有する温度変形材料からなることを特徴とするセル。
A cell comprising flow control means for the temperature control medium on the temperature control medium flow path;
The cell characterized in that the flow rate adjusting means is made of a temperature deformable material having a predetermined temperature-shape characteristic.
請求項1〜5の何れかに記載のセルの二以上を、電気的に直列に積み重ねたことを特徴とするスタック。   A stack comprising two or more of the cells according to any one of claims 1 to 5 stacked electrically in series. 流体流路を有する複数のセルがスタック状に積み重ねられてなる燃料電池であって、
複数の前記セルの少なくとも一部のセル内の流体流路上に該流体の流量調節手段を備え、
前記流量調節手段が、温度−形状特性の異なる少なくとも二種の温度変形材料からなることを特徴とする燃料電池。
A fuel cell in which a plurality of cells having fluid flow paths are stacked in a stack,
The fluid flow rate adjusting means is provided on the fluid flow path in at least some of the plurality of cells,
The fuel cell according to claim 1, wherein the flow rate adjusting means is made of at least two kinds of temperature deformable materials having different temperature-shape characteristics.
二種の前記温度変形材料は、温度に対してリニアに変形する特性を有する一の材料と温度応答性の高い特性を有する他の材料である、請求項7記載の燃料電池。   The fuel cell according to claim 7, wherein the two types of temperature-deformable materials are one material having a characteristic of linearly deforming with respect to temperature and another material having a high temperature-responsive characteristic. 前記一の材料がバイメタルであり、前記他の材料が形状記憶合金である、請求項8記載の燃料電池。   The fuel cell according to claim 8, wherein the one material is a bimetal and the other material is a shape memory alloy. 前記流体流路が、ガス流路及び温度調節媒体流路の少なくとも一つである、請求項7〜9の何れかに記載の燃料電池。   The fuel cell according to claim 7, wherein the fluid flow path is at least one of a gas flow path and a temperature control medium flow path. 温度調節媒体流路を有する複数のセルがスタック状に積み重ねられてなる燃料電池であって、
複数の前記セルの少なくとも一部のセル内の温度調節媒体流路上に該温度調節媒体の流量調節手段を備え、
前記流量調節手段が、所定の温度−形状特性を有する温度変形材料からなることを特徴とする燃料電池。
A fuel cell in which a plurality of cells having temperature control medium flow paths are stacked in a stack,
A flow rate adjusting means for the temperature adjustment medium on a temperature adjustment medium flow path in at least some of the plurality of cells;
The fuel cell, wherein the flow rate adjusting means is made of a temperature deformable material having a predetermined temperature-shape characteristic.
請求項7〜11の何れかに記載の燃料電池を少なくとも備えた車両。

A vehicle comprising at least the fuel cell according to any one of claims 7 to 11.

JP2004120718A 2004-04-15 2004-04-15 Cell, stack using the same, fuel cell, and vehicle Expired - Fee Related JP5038585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004120718A JP5038585B2 (en) 2004-04-15 2004-04-15 Cell, stack using the same, fuel cell, and vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004120718A JP5038585B2 (en) 2004-04-15 2004-04-15 Cell, stack using the same, fuel cell, and vehicle

Publications (2)

Publication Number Publication Date
JP2005302658A true JP2005302658A (en) 2005-10-27
JP5038585B2 JP5038585B2 (en) 2012-10-03

Family

ID=35333873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004120718A Expired - Fee Related JP5038585B2 (en) 2004-04-15 2004-04-15 Cell, stack using the same, fuel cell, and vehicle

Country Status (1)

Country Link
JP (1) JP5038585B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012028233A (en) * 2010-07-27 2012-02-09 Nissan Motor Co Ltd Fuel cell system
WO2012131267A1 (en) * 2011-03-30 2012-10-04 Commissariat A L'energie Atomique Et Aux Energies Alternatives Fuel-cell stack comprising a stack of cells and bipolar conductive plates
JP2016096026A (en) * 2014-11-14 2016-05-26 三菱日立パワーシステムズ株式会社 Fuel cell cartridge and fuel cell module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6316562A (en) * 1986-07-09 1988-01-23 Sanyo Electric Co Ltd Cooling device for fuel cell
JPH0240865A (en) * 1988-08-01 1990-02-09 Hitachi Ltd Temperature control device of fuel cell
JPH07249419A (en) * 1994-03-08 1995-09-26 Hitachi Ltd Fuel cell
WO2004025763A1 (en) * 2002-08-13 2004-03-25 Daimlerchrysler Ag Control of a fluid flow in an electrochemical cell
JP2005285682A (en) * 2004-03-30 2005-10-13 Sanyo Electric Co Ltd Fuel cell stack

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6316562A (en) * 1986-07-09 1988-01-23 Sanyo Electric Co Ltd Cooling device for fuel cell
JPH0240865A (en) * 1988-08-01 1990-02-09 Hitachi Ltd Temperature control device of fuel cell
JPH07249419A (en) * 1994-03-08 1995-09-26 Hitachi Ltd Fuel cell
WO2004025763A1 (en) * 2002-08-13 2004-03-25 Daimlerchrysler Ag Control of a fluid flow in an electrochemical cell
JP2005285682A (en) * 2004-03-30 2005-10-13 Sanyo Electric Co Ltd Fuel cell stack

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012028233A (en) * 2010-07-27 2012-02-09 Nissan Motor Co Ltd Fuel cell system
WO2012131267A1 (en) * 2011-03-30 2012-10-04 Commissariat A L'energie Atomique Et Aux Energies Alternatives Fuel-cell stack comprising a stack of cells and bipolar conductive plates
FR2973583A1 (en) * 2011-03-30 2012-10-05 Peugeot Citroen Automobiles Sa FUEL CELL COMPRISING A STACK OF CELLS AND BIPOLAR CONDUCTIVE PLATES
JP2016096026A (en) * 2014-11-14 2016-05-26 三菱日立パワーシステムズ株式会社 Fuel cell cartridge and fuel cell module

Also Published As

Publication number Publication date
JP5038585B2 (en) 2012-10-03

Similar Documents

Publication Publication Date Title
Yu et al. Thermal management strategy for a proton exchange membrane fuel cell system with a large active cell area
JP6308189B2 (en) Fuel cell system
US7749632B2 (en) Flow shifting coolant during freeze start-up to promote stack durability and fast start-up
US8313871B2 (en) Fuel cell heating
JP4984534B2 (en) Fuel cell system
US7588845B2 (en) Advanced control for an electrical heatable wax thermostat in the thermal coolant loop of fuel cell systems
DE10236998B4 (en) Electrochemical cell
US8691456B2 (en) Air and coolant circuit configurations and control of fuel cell systems as power source in automotive, stationary, and portable applications
EP2288796A1 (en) Device for producing electrical energy from exhaust gas heat
KR20060044904A (en) Full cell stack
US20080105843A1 (en) Cartridge valve with integrated ceramic ring heater
US20060105213A1 (en) Separator, fuel cell device, and temperature control method for fuel cell device
US8039157B2 (en) Startup method for fuel cell stack structure, temperature control method for fuel cell stack structure, and fuel cell stack structure
US20080248365A1 (en) Flow Control Apparatus and Method for Fuel Cell Flow Fields
JP5038585B2 (en) Cell, stack using the same, fuel cell, and vehicle
JP2005285682A (en) Fuel cell stack
WO2023078982A1 (en) Passive coolant management
CN113725460A (en) High-power fuel cell engine temperature management system and control method thereof
JP2837625B2 (en) Fuel cell
US20140106253A1 (en) Fuel cell with improved thermal management
JP2006309984A (en) Temperature control method of fuel cell stack structure and fuel cell stack structure
JP2006120342A (en) Fuel cell system
JP2008147121A (en) Fuel cell evaluation device
JP5353438B2 (en) Fuel cell
JP2008226712A (en) Fuel cell system and its control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120611

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120706

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees