JPS6316562A - Cooling device for fuel cell - Google Patents

Cooling device for fuel cell

Info

Publication number
JPS6316562A
JPS6316562A JP61161241A JP16124186A JPS6316562A JP S6316562 A JPS6316562 A JP S6316562A JP 61161241 A JP61161241 A JP 61161241A JP 16124186 A JP16124186 A JP 16124186A JP S6316562 A JPS6316562 A JP S6316562A
Authority
JP
Japan
Prior art keywords
temperature
shape memory
cooling
gas passage
memory alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61161241A
Other languages
Japanese (ja)
Inventor
Mutsuya Saito
斉藤 六弥
Osamu Tajima
収 田島
Koji Shindo
浩二 進藤
Masakazu Kumitani
組谷 雅一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP61161241A priority Critical patent/JPS6316562A/en
Publication of JPS6316562A publication Critical patent/JPS6316562A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Fuel Cell (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)

Abstract

PURPOSE:To improve the characteristic in the titled cell and the sevice life thereof by adjusting a gas flow rate in a cooling gas passage with a control plate made of a shape memory alloy which is reacted with a cell temperature, thereby almost equalizing a temperature distribution over the whole surface of a cell stack. CONSTITUTION:In each of cooling plates 3, a gas passage 2 is formed by joining two-piece carbon plates with a heat-proof and conductive adhesive. In this case, prior to the joining, a flow rate control plate 9 made of a shape memory alloy is previously mounted on the gas passage surface of one of the plates. The shape memory alloy, for example, Cu-13.5 Zn-8 Al(wt%), has a reversible shape memory effect and the transformation temperature thereof is about 180 deg.C in the case that the specified operating temperature in a cell is 190 deg.C. The shape memory alloy plate is previously bent in a doglegged shape. Then, the attaching base portion 91 is joined onto the gas passage surface with a heat- proof and conductive adhesive and the bent portion 92 is restored so as to be abutted onto the passage surface over the transformation temperature. Therefore, it is possible to almost equalize the temperature distribustion in the stacking direction of the cell stack.

Description

【発明の詳細な説明】 ビ)産業上の利用分野 本発明は燃料電池の冷却袋!ItK関するものであるO (嗜 従来技術 電池スタックは反応熱により発熱する六め、規定作動温
度に維持すべく冷却される。一般(で電池スタックに介
在する冷却板のガス通路だ冷却ガスを送り、スタック熱
を奪って高温となつ九排ガスを熱交換器で冷却して後再
びスタックに送ることKより電池スタックを冷却する。
[Detailed Description of the Invention] B) Industrial Application Field The present invention is a cooling bag for fuel cells! Regarding ItK, prior art battery stacks generate heat due to reaction heat, and are cooled to maintain a specified operating temperature. The battery stack is cooled by removing stack heat and cooling the high-temperature exhaust gas with a heat exchanger and then sending it to the stack again.

しかし電池スタックの積重方向に介在する多数の各冷却
板〈冷却ガスが均一に分配され難いと共に特に電池スタ
ックの上下端板からの放熱により電池スタック上下両端
部の温度が中央部よりも低くなる順向がある。又、電池
スタックの積重方向と直交する横方向への冷却ガスの分
配にも不均一性が生ずるなどの原因により、電池スタッ
クの上下・左右の温度勾配が発生する。電池の特性は温
度による影響が大きいので、前記のようVC温度分布が
不均一くなると電池特性の劣化ひいては寿命の低下をも
たらすなどの問題があつ念。
However, due to the large number of cooling plates interposed in the stacking direction of the battery stack, it is difficult for the cooling gas to be distributed uniformly, and the temperature at both the upper and lower ends of the battery stack is lower than that at the center due to heat dissipation from the upper and lower end plates of the battery stack. There is a positive trend. Furthermore, temperature gradients occur vertically and horizontally in the battery stack due to non-uniform distribution of the cooling gas in the lateral direction perpendicular to the stacking direction of the battery stack. Since battery characteristics are greatly affected by temperature, if the VC temperature distribution becomes uneven as described above, problems such as deterioration of battery characteristics and shortened lifespan may occur.

0→  目    的 本発明は前記問題点を解消し、電池スタックの全面に亘
る温度分布を均一化することを目的とするものである。
0→ Purpose The present invention aims to solve the above-mentioned problems and to make the temperature distribution uniform over the entire surface of the battery stack.

に)問題点を解決するための手段 本発明は電池スタック釦介在する冷却板の各冷却ガス通
路に1該通路面が所定温度以上のときガス通路面に当接
状態にあり、且前記所定温度以下でガス通路面より部分
的に立上って冷却ガス流量を絞る形状記憶合金より”な
る制御板を配設せしめ九ものである。
B.) Means for Solving the Problems The present invention provides a cooling gas passage for each cooling gas passage of a cooling plate interposed in a battery stack button, which is in contact with the gas passage surface when the passage surface is at a predetermined temperature or higher, and when the cooling plate is at the predetermined temperature. In the following, a control plate made of a shape memory alloy is provided which partially rises from the gas passage surface and throttles the flow rate of the cooling gas.

(ホ)実施例 本発明の実施例をりん駿燃料電池を例にとって説明する
(E) Embodiment An embodiment of the present invention will be explained by taking a Rinshun fuel cell as an example.

電池スタックfilは多数のセル積重体からなり、数セ
ル毎に冷却ガス通路(2)を有する冷却板(3)を介在
させ、上下端板(4)(41間で積重方向く締付けられ
る。電池スタックfl)の対向積重周面には、冷却ガス
の入口側及び出口側各マニホルドf5)(!が取付けら
れ、これらマニホルド+51 [51間は熱交換器(6
)及びブロワ(ア)を含む管路(8)で、連績されてい
る。
The battery stack fil consists of a large number of stacked cells, and is tightened in the stacking direction between upper and lower end plates (4) (41) with cooling plates (3) having cooling gas passages (2) interposed between them for every few cells. Cooling gas inlet and outlet manifolds f5) (!) are attached to the opposing stacked circumferential surfaces of the battery stack fl), and a heat exchanger (6) is installed between these manifolds +51
) and the blower (A) are connected in a conduit (8).

電池運転時入口側マニホルド(6)より冷却板(3)の
冷却ガス通路(2VC配分された冷去pガスは、電池反
応熱を奪って電池スタックfi+を冷却し、約180℃
に昇温した冷却ガスは、出口マニホルド(6)を経て熱
交換器(6)で約14(IK冷却されて後再びブロワ(
7)より電池スタック(1)K循環供給される。
During battery operation, the cooling gas passage (2 VC distributed) from the inlet side manifold (6) to the cooling plate (3) cools the battery stack fi+ by removing the heat of battery reaction, and cools the battery stack fi+ to approximately 180°C.
The cooling gas, whose temperature has been raised to
7) K is circulated and supplied to the battery stack (1).

前記各冷却板(3)は、二分割され九炭素質プレートを
耐熱導電性接着剤で接合してガス通路(2)を形成する
が、この接合前に予め一方のプレートのガス通路面に、
形状記憶合金からなる流量制御板(9)を配役する。こ
\で使用する制御板(9)ハ可逆的形状記憶効果を有し
、その変態温度は電池の規定作動温度が190℃の場合
約180℃前後のもので例えばCu−13,5Zn−8
Aj(wt%)合金板である。
Each of the cooling plates (3) is divided into two and nine carbonaceous plates are bonded together using a heat-resistant conductive adhesive to form a gas passage (2), but before this bonding, the gas passage surface of one plate is preliminarily coated with
A flow control plate (9) made of a shape memory alloy is provided. The control plate (9) used here has a reversible shape memory effect, and its transformation temperature is around 180°C when the specified operating temperature of the battery is 190°C. For example, it is made of Cu-13,5Zn-8.
Aj (wt%) alloy plate.

この形状記憶合金板は、第2図江示すよう予めく字状に
変形して取付基部(91)を耐熱導電性接着剤でガス通
路面に接着しておき、前記変態温度以上になると折曲部
(92)が通路面に当接するよう復元する。従って前記
変態温度より高い冷却板(3)は、制御板(9)がガス
通路(2)の流量をさま六げることがないので良く冷却
される。
This shape memory alloy plate is deformed into a dogleg shape in advance as shown in Figure 2, and the mounting base (91) is adhered to the gas passage surface with a heat-resistant conductive adhesive, and when the temperature exceeds the transformation temperature, it bends. The portion (92) is restored so as to come into contact with the passage surface. Therefore, the cooling plate (3) whose temperature is higher than the transformation temperature is well cooled because the control plate (9) does not obstruct the flow rate of the gas passage (2).

一方冷却板(3)が変態温度以下であれば制御板(9)
の折曲部(9りはそのままの状態を保って冷却ガス流量
を絞り、冷却を抑制する。
On the other hand, if the cooling plate (3) is below the transformation temperature, the control plate (9)
The bent portion (9) remains in the same state to throttle the cooling gas flow rate and suppress cooling.

このようにしてセル温度の高い(低い)部分の冷却板(
3)は、制御板(9)の作用により冷却ガスの流量が大
(小)となるよう制御され、電池スタックの積重方向温
度分布を略均−化する。同様に同一冷却板(3)の各ガ
ス通路(2)もセル温度及び冷却ガスの分配状態だ応じ
て第3図だ示すよう制御板(9)により冷却ガス流量を
制御し、電池スタックの水平方向温度分布も均一化され
る。
In this way, the cooling plate (
3), the flow rate of the cooling gas is controlled to be large (small) by the action of the control plate (9), and the temperature distribution in the stacking direction of the battery stack is approximately equalized. Similarly, the cooling gas flow rate of each gas passage (2) of the same cooling plate (3) is controlled by the control plate (9) according to the cell temperature and the distribution state of the cooling gas, as shown in Figure 3, so that the battery stack is horizontally The directional temperature distribution is also made uniform.

第4図の他実施例は、各ガス通路(2)に2個の制御板
+91 +91を流通方向に間隔を存して配置した場合
を示す。この場合下流側の制御板(9)は中挟とし、上
流側の制御板(9)と協同して冷却ガス流量を微調節す
ることができる。即ち冷却能は、両方の制御板+91 
tj+が共に水平又は立上る場合、いづれか一方の制御
板(9)もしくけ(イ)のみ立上る場合及びいづハか一
方が水平で他方が立上る場合によって、多段階に制御さ
れる。
Another embodiment in FIG. 4 shows a case in which two control plates +91 +91 are arranged in each gas passage (2) with an interval in the flow direction. In this case, the control plate (9) on the downstream side is interposed and can finely adjust the cooling gas flow rate in cooperation with the control plate (9) on the upstream side. In other words, the cooling capacity is both control boards + 91
When tj+ are both horizontal or rising, when only one of the control plates (9) or the mechanism (a) rises, and when one of them is horizontal and the other rises, multi-stage control is performed.

第′4図は単に作動原理を説明する九め一つの冷却板に
ついて示したが、この方式による冷却板により電池スタ
ック上下方向の温度分布が微調整されることは容易に理
解されるだろう。
Although FIG. '4 merely shows the ninth cooling plate to explain the operating principle, it will be easily understood that the temperature distribution in the vertical direction of the battery stack can be finely adjusted by the cooling plate of this type.

(へ)効 果 上述の如く本発明によれば冷却ガス通路のガス流量がセ
ル温度に応動する形状記憶合金より々る制御板で調節さ
れるので、電池スタック全面ば亘る温度分布が略均−化
され、電池特性及び寿命の向上を達成することができる
(F) Effects As described above, according to the present invention, the gas flow rate in the cooling gas passage is adjusted by a control plate made of a shape memory alloy that responds to the cell temperature, so the temperature distribution over the entire surface of the battery stack is approximately uniform. battery characteristics and service life can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置を備える燃料電池の冷却システム図
、!2図は本発明による冷却板の断面図、第3図は同上
冷却板を備える電池スタックの要部正面図、第4図は他
実施例による冷却板の内部を示す平面図である。 1:電池スタック、2:冷却ガス通路、3:冷却板、5
.5:マニホルド、6:熱交換器、7:ブロワ、9・d
:制御板、91:取付基部、92:折曲部(立上り部)
Figure 1 is a diagram of the cooling system of a fuel cell equipped with the device of the present invention. FIG. 2 is a sectional view of a cooling plate according to the present invention, FIG. 3 is a front view of a main part of a battery stack including the same cooling plate, and FIG. 4 is a plan view showing the inside of a cooling plate according to another embodiment. 1: Battery stack, 2: Cooling gas passage, 3: Cooling plate, 5
.. 5: Manifold, 6: Heat exchanger, 7: Blower, 9・d
: Control board, 91: Mounting base, 92: Bent part (rising part)

Claims (1)

【特許請求の範囲】[Claims] (1)セル積重体よりなる電池スタックに数セル毎に冷
却板を介在させ、前記冷却板の各冷却ガス通路に、その
通路面が所定温度以上のとき前記通路面に当接状態にあ
り、且前記所定温度以下で前記通路面より部分的に立上
つて冷却ガス流量を絞る形状記憶合金よりなる制御板を
配設したことを特徴とする燃料電池の冷却装置。
(1) A cooling plate is interposed between every few cells in a battery stack consisting of stacked cells, and the cooling plate is in contact with each cooling gas passageway surface when the passageway surface is at a predetermined temperature or higher, A cooling device for a fuel cell, further comprising a control plate made of a shape memory alloy that partially rises from the passage surface to throttle the flow rate of the cooling gas when the temperature is below the predetermined temperature.
JP61161241A 1986-07-09 1986-07-09 Cooling device for fuel cell Pending JPS6316562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61161241A JPS6316562A (en) 1986-07-09 1986-07-09 Cooling device for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61161241A JPS6316562A (en) 1986-07-09 1986-07-09 Cooling device for fuel cell

Publications (1)

Publication Number Publication Date
JPS6316562A true JPS6316562A (en) 1988-01-23

Family

ID=15731329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61161241A Pending JPS6316562A (en) 1986-07-09 1986-07-09 Cooling device for fuel cell

Country Status (1)

Country Link
JP (1) JPS6316562A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832988A (en) * 1981-08-21 1983-02-26 Hitachi Ltd Sealing device for scroll compressor
JPH0240865A (en) * 1988-08-01 1990-02-09 Hitachi Ltd Temperature control device of fuel cell
JPH0422788A (en) * 1990-05-17 1992-01-27 Daikin Ind Ltd Horizontal open type compressor
JPH07249419A (en) * 1994-03-08 1995-09-26 Hitachi Ltd Fuel cell
JP2005302658A (en) * 2004-04-15 2005-10-27 Toyota Motor Corp Cell, stack using this, fuel cell and vehicle
JP2005327672A (en) * 2004-05-17 2005-11-24 Toyota Motor Corp Fuel battery system
JP2005536033A (en) * 2002-08-13 2005-11-24 ダイムラークライスラー・アクチェンゲゼルシャフト Control of fluid flow in electrochemical cells
JP2010182509A (en) * 2009-02-04 2010-08-19 Toyota Boshoku Corp Cooling system of fuel cell
WO2012131267A1 (en) * 2011-03-30 2012-10-04 Commissariat A L'energie Atomique Et Aux Energies Alternatives Fuel-cell stack comprising a stack of cells and bipolar conductive plates
DE102013206323B4 (en) 2012-12-24 2024-05-16 Hyundai Motor Company Active thermal management system for a fuel cell stack

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH044476B2 (en) * 1981-08-21 1992-01-28
JPS5832988A (en) * 1981-08-21 1983-02-26 Hitachi Ltd Sealing device for scroll compressor
JPH0240865A (en) * 1988-08-01 1990-02-09 Hitachi Ltd Temperature control device of fuel cell
JPH0422788A (en) * 1990-05-17 1992-01-27 Daikin Ind Ltd Horizontal open type compressor
JPH07249419A (en) * 1994-03-08 1995-09-26 Hitachi Ltd Fuel cell
JP4780579B2 (en) * 2002-08-13 2011-09-28 ダイムラー・アクチェンゲゼルシャフト Control of fluid flow in electrochemical cells
JP2005536033A (en) * 2002-08-13 2005-11-24 ダイムラークライスラー・アクチェンゲゼルシャフト Control of fluid flow in electrochemical cells
JP2005302658A (en) * 2004-04-15 2005-10-27 Toyota Motor Corp Cell, stack using this, fuel cell and vehicle
JP2005327672A (en) * 2004-05-17 2005-11-24 Toyota Motor Corp Fuel battery system
JP4576880B2 (en) * 2004-05-17 2010-11-10 トヨタ自動車株式会社 Fuel cell system
JP2010182509A (en) * 2009-02-04 2010-08-19 Toyota Boshoku Corp Cooling system of fuel cell
WO2012131267A1 (en) * 2011-03-30 2012-10-04 Commissariat A L'energie Atomique Et Aux Energies Alternatives Fuel-cell stack comprising a stack of cells and bipolar conductive plates
FR2973583A1 (en) * 2011-03-30 2012-10-05 Peugeot Citroen Automobiles Sa FUEL CELL COMPRISING A STACK OF CELLS AND BIPOLAR CONDUCTIVE PLATES
DE102013206323B4 (en) 2012-12-24 2024-05-16 Hyundai Motor Company Active thermal management system for a fuel cell stack

Similar Documents

Publication Publication Date Title
US5009968A (en) Fuel cell end plate structure
JPS6316562A (en) Cooling device for fuel cell
KR20170057465A (en) Heating sink and power battery system
JP5234401B2 (en) Solid oxide fuel cell system
CA2264815A1 (en) Intermediate element for thermal, electrical and mechanical connection of two parts
JPS6217962A (en) Fuel cell
CN100533829C (en) Fuel cell system
CN214013020U (en) Water cooling plate and battery module
JPH0992322A (en) Fuel cell stack
JP2002298898A (en) Solid polymer type fuel cell
JPH1032016A (en) Fastening and heating device of fuel cell
JPS60254568A (en) Fuel cell
JP2000149976A (en) Fuel cell module
JP2000030726A5 (en)
JP2664799B2 (en) End structure of fuel cell
JPS58178964A (en) Air-cooled fuel cell
KR20200084404A (en) Cooling panel for battery module of electric vehicles
JPS62168350A (en) Fuel cell
JP2865025B2 (en) Molten carbonate fuel cell
JPS62211869A (en) Cooling gas supply deice for fuel cell
JPS599869A (en) Air cooling type fuel cell
JPH0622149B2 (en) Fuel cell
JPH0443389B2 (en)
JPH0414472B2 (en)
JPH0650646B2 (en) Molten carbonate fuel cell stack