JP2005116342A - Battery pack - Google Patents

Battery pack Download PDF

Info

Publication number
JP2005116342A
JP2005116342A JP2003349187A JP2003349187A JP2005116342A JP 2005116342 A JP2005116342 A JP 2005116342A JP 2003349187 A JP2003349187 A JP 2003349187A JP 2003349187 A JP2003349187 A JP 2003349187A JP 2005116342 A JP2005116342 A JP 2005116342A
Authority
JP
Japan
Prior art keywords
cooling medium
assembled battery
rectifying plate
battery
cooling air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003349187A
Other languages
Japanese (ja)
Inventor
Toshiyuki Itabashi
利幸 板橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003349187A priority Critical patent/JP2005116342A/en
Publication of JP2005116342A publication Critical patent/JP2005116342A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact battery pack which can easily provide a cooling channel for uniformly cooling cells in the battery pack. <P>SOLUTION: The battery pack 100 comprises single cells 10<SB>1</SB>-10<SB>12</SB>and a module case 40 for housing the single cells. The single cells are arranged at specific intervals. The battery pack 100 further comprises a cooling air supply channel 30 formed along the top surfaces of the single cells 10<SB>1</SB>-10<SB>12</SB>, for supplying cooling air to the spaces between adjacent cells. The battery pack 100 further comprises case-side straightening vanes 21<SB>1</SB>-21<SB>6</SB>provided on the module case 40, and single-cell-side straightening vanes 22<SB>1</SB>-22<SB>6</SB>provided on the single cells. The case-side straightening vanes 21 and the single-cell-side straightening vanes 22 are alternately arranged. By providing these straightening vanes, the cooling air flowing in the cooling air supply channel 30 is allowed to meander. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は,複数の電池を組み合わせてなる組電池に関する。さらに詳細には,冷却媒体が流れる流路(以下,「冷却流路」とする)を備え,各電池の温度の上昇が抑制された組電池に関するものである。   The present invention relates to an assembled battery formed by combining a plurality of batteries. More specifically, the present invention relates to an assembled battery that includes a flow path (hereinafter referred to as “cooling flow path”) through which a cooling medium flows, and that suppresses an increase in the temperature of each battery.

従来から,複数の電池を繋ぎ合わせた組電池が各種の電子機器に利用されている。組電池の構成要素となる電池としては,リチウムイオン電池やニッケル水素電池等の蓄電池がある。近年,組電池は,携帯型PCを始めとする電子機器のみならず,ハイブリッド車や電気自動車の電源として注目されている。   Conventionally, assembled batteries obtained by connecting a plurality of batteries are used in various electronic devices. Examples of the battery that is a constituent element of the assembled battery include a storage battery such as a lithium ion battery or a nickel metal hydride battery. In recent years, assembled batteries are attracting attention as power sources not only for electronic devices such as portable PCs but also for hybrid vehicles and electric vehicles.

組電池は,高エネルギーを供給することができる一方,各電池の充放電時に発生する熱で高温になり易いという問題がある。また,組電池は通常モジュールケース等に収納されているため,ケース内に熱が籠もり易く,温度の上昇が顕著となる傾向がある。このように高温にさらされた各電池は,充放電に影響を受けるとともにエネルギー効率が低下する。そのため,一般的な組電池では,図6に示すように組電池内に冷却媒体供給通路35を設け,冷却媒体として冷却風等を供給することで各電池15を冷却する工夫がなされている。   The assembled battery can supply high energy, but has a problem that it tends to become high temperature due to heat generated during charging and discharging of each battery. Further, since the assembled battery is usually stored in a module case or the like, heat tends to be trapped in the case, and the temperature rise tends to be remarkable. Thus, each battery exposed to high temperature is affected by charging and discharging, and energy efficiency is reduced. Therefore, in a general assembled battery, as shown in FIG. 6, a cooling medium supply passage 35 is provided in the assembled battery, and cooling of each battery 15 is performed by supplying cooling air or the like as a cooling medium.

さらに,図6に示した組電池では,冷却媒体供給系路の入口近傍の電池間に冷却風が流れ難く,各電池15が均一に冷却されないという問題がある。そのため,図7に示すように冷却媒体供給通路35内に長さが異なる複数の整流板25を設け,冷却風を各電池間に均一に誘導するものがある(例えば,特許文献1)。これらの整流板25により,組電池内の各電池15を均一に冷却している。
特開2000−67934号公報
Furthermore, the assembled battery shown in FIG. 6 has a problem in that the cooling air hardly flows between the batteries in the vicinity of the inlet of the cooling medium supply system path, and the respective batteries 15 are not uniformly cooled. For this reason, as shown in FIG. 7, a plurality of rectifying plates 25 having different lengths are provided in the cooling medium supply passage 35 and the cooling air is uniformly guided between the batteries (for example, Patent Document 1). These rectifying plates 25 uniformly cool each battery 15 in the assembled battery.
JP 2000-67934 A

しかしながら,前記した従来の組電池には次のような問題があった。すなわち,図7に示した組電池では,整流板25の高さおよび設置角度に正確性が求められる。そのため,各電池15および整流板25を高精度に作製することが要求される。また,作製段階では高精度に作製されたとしても,使用段階で電池15の配列にずれが生じることで均一に冷却する効果が著しく低下してしまう。   However, the above-described conventional assembled battery has the following problems. That is, in the assembled battery shown in FIG. 7, the height and the installation angle of the rectifying plate 25 are required to be accurate. Therefore, it is required to manufacture each battery 15 and the current plate 25 with high accuracy. Further, even if the battery 15 is manufactured with high accuracy in the manufacturing stage, the effect of uniform cooling is significantly reduced due to a shift in the arrangement of the batteries 15 in the use stage.

また,特許文献1に記載された整流板25は,電池15の数に比例してその数が増加し,その長さは冷却媒体供給通路35の下流ほど長くする必要がある。そのため,組電池を構成する電池15の数が多いほど,冷却媒体供給通路35内に広いスペースを要する。従って,組電池全体のコンパクト化の妨げになる。   Further, the number of the rectifying plates 25 described in Patent Document 1 increases in proportion to the number of the batteries 15, and the length thereof needs to be longer toward the downstream side of the cooling medium supply passage 35. Therefore, the larger the number of batteries 15 constituting the assembled battery, the more space is required in the cooling medium supply passage 35. This hinders the compactness of the entire assembled battery.

本発明は,前記した従来の組電池が有する問題点を解決するためになされたものである。すなわちその課題とするところは,組電池内の各電池を均一に冷却する冷却流路を容易に設けることができるとともにコンパクトな組電池を提供することにある。   The present invention has been made to solve the problems of the above-described conventional assembled battery. That is, an object of the present invention is to provide a compact assembled battery in which a cooling flow path for uniformly cooling each battery in the assembled battery can be easily provided.

この課題の解決を目的としてなされた組電池は,複数の電池を配列してなる組電池であって,配列された各電池の一側面に沿って形成され,冷却媒体を電池間に供給する冷却媒体供給通路と,電池の一側面に設けられ,冷却媒体供給通路中の冷却媒体の流れの向きを変更する第1整流板と,配列された電池の一側面と対向する面に設けられ,冷却媒体供給通路中の冷却媒体の流れの向きを変更する第2整流板とを有し,第1整流板と第2整流板とは冷却媒体供給通路内で交互に配置されているものである。   An assembled battery formed for the purpose of solving this problem is an assembled battery in which a plurality of batteries are arranged, and is formed along one side of each arranged battery, and a cooling medium that supplies a cooling medium between the batteries. A medium supply passage, provided on one side of the battery, provided on a surface facing the one side of the arranged batteries, a first rectifying plate for changing the flow direction of the cooling medium in the cooling medium supply passage, and cooled And a second rectifying plate that changes the flow direction of the cooling medium in the medium supply passage, and the first rectifying plate and the second rectifying plate are alternately arranged in the cooling medium supply passage.

すなわち,本発明の組電池では,冷却媒体供給通路内に,電池側に付設された第1整流板と電池と対向する面側に付設された第2整流板とが設けられている。さらに,これらの整流板は,冷却媒体供給通路内で交互に配置されている。これにより,冷却媒体供給通路内に供給された冷却媒体は,第1整流板によりその流れの向きを電池と対向する面側に変更され,第2整流板によりその流れの向きを電池側に変更される。すなわち,冷却媒体は冷却媒体供給通路内を蛇行して流れるようになる。これにより,各電池間に供給される冷却媒体の流量のばらつきが小さくなり,各電池を均一に冷却することができる。また,本発明の組電池では,第1整流板と第2整流板とを交互に配置するだけでよく,高精度に配列することまでは要求されていない。また,本発明の組電池では,数多くの電池が配列されたとしても各整流板の長さに影響を与えない。よって,組電池全体のコンパクト化が図られる。   That is, in the assembled battery of the present invention, the first rectifying plate attached to the battery side and the second rectifying plate attached to the surface facing the battery are provided in the cooling medium supply passage. Further, these rectifying plates are alternately arranged in the cooling medium supply passage. As a result, the flow direction of the cooling medium supplied into the cooling medium supply passage is changed by the first rectifying plate to the side facing the battery, and the flow direction is changed to the battery side by the second rectifying plate. Is done. That is, the cooling medium flows in a meandering manner in the cooling medium supply passage. Thereby, the dispersion | variation in the flow volume of the cooling medium supplied between each battery becomes small, and each battery can be cooled uniformly. In the assembled battery of the present invention, the first rectifying plates and the second rectifying plates need only be arranged alternately, and it is not required to arrange them with high accuracy. Moreover, in the assembled battery of this invention, even if many batteries are arranged, the length of each rectifying plate is not affected. Therefore, the entire assembled battery can be made compact.

また,本発明の組電池の第1整流板および第2整流板は,冷却媒体の流路の下流側に向けて傾斜しており,第1整流板と電池の一側面の法線とがなす角度が冷却媒体の流路の下流側のものほど小さく,第2整流板と電池の一側面と対向する面の法線とがなす角度が冷却媒体の流路の下流側のものほど大きいこととするとよりよい。すなわち,第1整流板は,下流側ほど整流板による抵抗を大きくしている。一方,第2整流板は,下流側ほど整流板による抵抗を小さくしている。この各整流板の角度調整により,冷却媒体をより均一に各電池間に誘導することができる。   Further, the first rectifying plate and the second rectifying plate of the assembled battery of the present invention are inclined toward the downstream side of the flow path of the cooling medium, and the first rectifying plate and a normal line on one side of the battery are formed. The angle downstream of the cooling medium flow path is smaller, and the angle between the second rectifying plate and the normal of the surface facing the one side of the battery is larger toward the downstream of the cooling medium flow path. Then better. That is, the resistance of the first rectifying plate is increased toward the downstream side. On the other hand, the resistance of the second rectifying plate is reduced toward the downstream side. By adjusting the angle of each current plate, the cooling medium can be guided more uniformly between the batteries.

また,本発明の組電池は,第1整流板の各先端部を結ぶ線と,第2整流板の各先端部を結ぶ線との間の領域の幅が冷却媒体の流路の下流側ほど狭いこととするとよりよい。この幅の調整によっても,冷却媒体を均一に各電池間に誘導することができる。   In the assembled battery of the present invention, the width of the region between the line connecting the leading ends of the first rectifying plate and the line connecting the leading ends of the second rectifying plate is closer to the downstream side of the flow path of the cooling medium. It is better if it is narrow. By adjusting the width, the cooling medium can be uniformly guided between the batteries.

また,本発明の組電池は,冷却媒体の一部を冷却媒体の流路の上流側から下流側にバイパスするバイパス通路が設けられていることとするとよりよい。これにより,下流側までの冷却媒体の流量を確保することができ,各電池の温度の均一化を図ることができる。また,下流側の電池をより早期に冷却することができる。   The assembled battery of the present invention is preferably provided with a bypass passage that bypasses a part of the cooling medium from the upstream side to the downstream side of the flow path of the cooling medium. Thereby, the flow rate of the cooling medium to the downstream side can be secured, and the temperature of each battery can be made uniform. Further, the downstream battery can be cooled earlier.

また,本発明の組電池は,第1整流板または第2整流板のうち少なくとも一方に,冷却媒体の一部を通過させる切り口が設けられていることとするとよりよい。この切り口によっても,下流側までの冷却媒体の流量を確保することができ,各電池の温度の均一化を図ることができる。また,下流側の電池をより早期に冷却することができる。   In the assembled battery of the present invention, it is preferable that at least one of the first rectifying plate and the second rectifying plate is provided with a cut opening through which a part of the cooling medium passes. Also with this cut, the flow rate of the cooling medium to the downstream side can be secured, and the temperature of each battery can be made uniform. Further, the downstream battery can be cooled earlier.

本発明によれば,第1整流板と第2整流板とが冷却媒体供給通路内で交互に配置されていることで,冷却媒体が冷却媒体供給通路内を蛇行して移動することとなる。これにより,各電池間に均一に冷却媒体を誘導することができる。よって,組電池内の各電池を均一に冷却する冷却流路を容易に設けることができるとともにコンパクトな組電池が提供されている。   According to the present invention, the first rectifying plate and the second rectifying plate are alternately arranged in the cooling medium supply passage, so that the cooling medium meanders and moves in the cooling medium supply passage. Thereby, a cooling medium can be uniformly induced | guided | derived between each battery. Therefore, a compact assembled battery can be provided which can easily provide a cooling flow path for uniformly cooling each battery in the assembled battery.

以下,本発明を具体化した実施の形態について,添付図面を参照しつつ詳細に説明する。なお,本実施の形態は,電気自動車等に車載されるリチウムイオン組電池に本発明を適用したものである。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments embodying the present invention will be described below in detail with reference to the accompanying drawings. In this embodiment, the present invention is applied to a lithium ion assembled battery mounted on an electric vehicle or the like.

[第1の形態]
第1の形態に係る組電池100は,図1に示すように12個の単電池101 〜1012と,それらの単電池を収納するモジュールケース40とを有している。各単電池は,所定の間隔で配列されている。また,組電池100には,単電池101 〜1012の上面に沿って形成され,冷却風を電池間に供給するための冷却風供給通路30が設けられている。なお,冷却風供給通路30に送り込まれる冷却媒体は,各単電池を冷却し得る流動体であればよい。すなわち,冷却風(気体)に限らず,冷却水(液体)等であってもよい。また,本形態の単電池には,冷却風供給通路30内の冷却流路の上流側(以下,本明細書での「上流側」,「下流側」は冷却風供給通路30の冷却流路に対するものとする)から順に1〜12の符号を付している。
[First embodiment]
As shown in FIG. 1, the assembled battery 100 according to the first embodiment includes twelve unit cells 10 1 to 10 12 and a module case 40 that houses these unit cells. Each unit cell is arranged at a predetermined interval. The assembled battery 100 is provided with a cooling air supply passage 30 that is formed along the upper surfaces of the single cells 10 1 to 10 12 and supplies cooling air between the batteries. The cooling medium fed into the cooling air supply passage 30 may be a fluid that can cool each unit cell. That is, it is not limited to cooling air (gas) but may be cooling water (liquid) or the like. Further, in the unit cell of this embodiment, the upstream side of the cooling flow path in the cooling air supply passage 30 (hereinafter, “upstream side” and “downstream side” in this specification are the cooling flow paths of the cooling air supply passage 30). 1 to 12 in order.

また,組電池100は,モジュールケース40に付設された6枚のケース側整流板211 〜216 と,単電池に付設された6枚の単電池側整流板221 〜226 とを有している。なお,本形態のケース側整流板および単電池側整流板には,上流側から順に1〜6の符号を付している。ケース側整流板21と単電池側整流板22とは,冷却流路上に交互に配置されている。具体的には,図1に示したように単電池102 ,単電池104 ,単電池106 ,単電池108 ,単電池1012の上面上にそれぞれ単電池側整流板221 〜226 が設けられている。さらに,単電池側整流板221 の上流側にケース側整流板211 が設けられている。また,単電池側整流板221 と単電池側整流板222 との間の位置にケース側整流板212 が設けられている。以降,単電池側整流板間に1枚ずつケース側整流板が設けられている。 The assembled battery 100 includes six case-side rectifying plates 21 1 to 21 6 attached to the module case 40 and six unit-cell rectifying plates 22 1 to 22 6 attached to the unit cells. doing. In addition, the code | symbol of 1-6 is attached | subjected to the case side rectifier plate and the cell side rectifier plate of this form in order from the upstream side. The case side rectifying plates 21 and the cell side rectifying plates 22 are alternately arranged on the cooling flow path. Specifically, as shown in FIG. 1, the unit cell side rectifying plates 22 1 to 22 on the upper surfaces of the unit cell 10 2 , unit cell 10 4 , unit cell 10 6 , unit cell 10 8 , unit cell 10 12 , respectively. 6 is provided. Further, a case side rectifying plate 21 1 is provided upstream of the unit cell side rectifying plate 22 1 . Further, a case side rectifying plate 21 2 is provided at a position between the single cell side rectifying plate 22 1 and the single cell side rectifying plate 22 2 . Thereafter, one case-side rectifying plate is provided between the single cell-side rectifying plates.

なお,本形態の各整流板は,効率よく冷却風を伝達するため,図1に示したように所定の角度だけ傾けて配置されている。具体的に,ケース側整流板211 〜216 は,下流側ほど角度θaが小さくなるように配置されている(条件1)。すなわち,下流側ほど整流板による抵抗を大きくしている。一方,単電池側整流板221 〜226 は,下流側ほど角度θbが大きくなるように配置されている(条件2)。すなわち,下流側ほど整流板による抵抗を小さくしている。この各整流板の角度調整により,冷却風の流量が少ない下流側ほど単電池間に優先的に冷却風を誘導することができる。よって,各単電池間を流れる冷却風の流量が均一に保たれる。各整流板の微調整は,例えば実験もしくはCAE解析により行うことが可能である。 In addition, in order to transmit cooling air efficiently, each baffle plate of this form is inclined and arranged by a predetermined angle as shown in FIG. Specifically, the case side rectifying plates 21 1 to 21 6 are arranged so that the angle θa becomes smaller toward the downstream side (Condition 1). That is, the resistance by the current plate is increased toward the downstream side. On the other hand, the cell-side rectifying plates 22 1 to 22 6 are arranged so that the angle θb becomes larger toward the downstream side (condition 2). That is, the resistance by the rectifying plate is reduced toward the downstream side. By adjusting the angle of each current plate, the cooling air can be preferentially guided between the cells toward the downstream side where the flow rate of the cooling air is smaller. Therefore, the flow rate of the cooling air flowing between the single cells is kept uniform. Fine adjustment of each rectifying plate can be performed, for example, by experiment or CAE analysis.

さらに,各ケース側整流板の先端部を結ぶ線と,各単電池側整流板の先端部を結ぶ線との間の領域の幅Lが下流側ほど狭くなるようになっている(条件3)。この幅Lの調整によっても,冷却風の流量が少ない下流側ほど単電池間に優先的に冷却風を誘導することができる。よって,各単電池間を流れる冷却風の流量が均一に保たれる。なお,これら(角度θa,角度θb,幅L)の調整は,前述した条件1ないし条件3を満たす程度の精度でよく,高水準の調整を要しない。   Further, the width L of the region between the line connecting the tip portions of the case side rectifying plates and the line connecting the tip portions of the single cell side rectifying plates is made narrower toward the downstream side (Condition 3). . Even by adjusting the width L, the cooling air can be preferentially guided between the cells toward the downstream side where the flow rate of the cooling air is small. Therefore, the flow rate of the cooling air flowing between the single cells is kept uniform. These adjustments (angle θa, angle θb, width L) may be accurate to satisfy the above-described conditions 1 to 3, and do not require high-level adjustment.

次に,組電池100内の冷却風の流れについて説明する。まず,図2に示すように冷却風供給通路30に冷却風が送り込まれる。冷却風は,最上流側に配置されたケース側整流板211 にてその風向きが単電池側に向けられる。そして,冷却風の一部がケース40と単電池101 との隙間や,単電池101 と単電池102 との隙間に流れ込む。一方,単電池間に流れ込まない大部分の冷却風は,単電池側整流板221 にてその風向きがケース側に向けられる。すなわち,単電池に対して反対側に向けられる。以降,ケース側整流板での風向きの変更と単電池側整流板での風向きの変更とを繰り返すことで,冷却風は冷却風供給通路30内を蛇行するように流れる。そして,冷却風の風向きが単電池側に向けられている際に,単電池間の隙間に冷却風が送り込まれる。これにより,各単電池の高温化の抑制が図られる。また,冷却風が冷却風供給通路30内を蛇行して移動することで,各電池間に均一な流量の冷却風が誘導され,各単電池の温度の均一化が図られる。 Next, the flow of cooling air in the assembled battery 100 will be described. First, as shown in FIG. 2, the cooling air is sent into the cooling air supply passage 30. The direction of the cooling air is directed toward the unit cell by the case side rectifying plate 21 1 disposed on the most upstream side. A part of the cooling air flows into the gap between the case 40 and the single cell 10 1 or the gap between the single cell 10 1 and the single cell 10 2 . On the other hand, most of the cooling air that does not flow between the unit cells is directed toward the case by the unit cell side rectifying plate 22 1 . That is, it is directed to the opposite side with respect to the unit cell. Subsequently, the cooling air flows in a meandering manner in the cooling air supply passage 30 by repeating the change in the air direction at the case side rectifying plate and the change in the air direction at the single cell side rectifying plate. Then, when the direction of the cooling air is directed toward the single cells, the cooling air is sent into the gap between the single cells. Thereby, suppression of the high temperature of each cell is achieved. In addition, the cooling air meanders and moves in the cooling air supply passage 30 to induce a uniform flow rate of cooling air between the cells, so that the temperature of each unit cell is made uniform.

図3は,本形態の組電池(整流板あり)と従来の組電池(整流板なし,図6参照)とを温度について比較したものである。両組電池は,組電池全体の平均温度には違いが生じなかったが,各単電池の温度には違いが生じた。すなわち,本形態の組電池(図3中のA)の場合は,単電池101 〜1012の温度差△aが小さい。一方,従来の組電池(図3中のB)の場合は,単電池101 〜1012の温度差△bが大きい。すなわち,冷却風供給通路30の上流側の単電池ほど高温であり,冷却効果が低いことがわかる。具体的に本実施例では,温度差△aが温度差△bのおよそ1/3であった。なお,本形態の組電池では,上流側の単電池の温度が低くなっているが,各整流板の角度等を微調整することにより更に温度差を小さくすることが可能である。 FIG. 3 shows a comparison of the temperature of the assembled battery (with a rectifying plate) of this embodiment and a conventional assembled battery (without a rectifying plate, see FIG. 6). There was no difference in the average temperature of the entire assembled battery, but there was a difference in the temperature of each unit cell. That is, in the case of the assembled battery of this embodiment (A in FIG. 3), the temperature difference Δa between the cells 10 1 to 10 12 is small. On the other hand, in the case of the conventional assembled battery (B in FIG. 3), the temperature difference Δb between the cells 10 1 to 10 12 is large. That is, it can be seen that the unit cell upstream of the cooling air supply passage 30 has a higher temperature and a lower cooling effect. Specifically, in this example, the temperature difference Δa was about 1/3 of the temperature difference Δb. In the assembled battery of this embodiment, the temperature of the upstream unit cell is low, but the temperature difference can be further reduced by finely adjusting the angle of each rectifying plate.

なお,本形態の組電池100は,12個の単電池と12枚の整流板とを設けているが,これに限るものではない。すなわち,単電池の数を増やすとともに整流板の数も増やせばよい。その際,整流板は,ケース側整流板21と単電池側整流板22とを冷却流路上に交互に配置すればよく,整流板を設置するための広いスペースを必要としない。すなわち,整流板の配列パターンが単純であり,単電池の数が多いほど有効である。また,必ずしも12個の単電池と12枚の整流板とを同数にする必要はない。すなわち,ケース側整流板21と単電池側整流板22とが冷却流路上に交互に配置されていればよく,例えば単電池3つごとに単電池側整流板を配置するとしてもよい。   In addition, although the assembled battery 100 of this form is provided with 12 unit cells and 12 rectifying plates, it is not limited to this. That is, it is only necessary to increase the number of cells and the number of rectifying plates. At that time, the rectifying plate may be formed by alternately arranging the case-side rectifying plate 21 and the unit cell-side rectifying plate 22 on the cooling flow path, and does not require a wide space for installing the rectifying plate. That is, the arrangement pattern of the rectifying plates is simple, and the more cells, the more effective. Further, it is not always necessary to have the same number of 12 unit cells and 12 rectifying plates. In other words, the case-side rectifying plates 21 and the cell-side rectifying plates 22 need only be alternately arranged on the cooling flow path. For example, the cell-side rectifying plates may be arranged for every three cells.

[第2の形態]
第2の形態に係る組電池200は,図4に示すように12個の単電池101 〜1012と,各単電池を収納するモジュールケース40とを有している。また,冷却風供給通路30内であって,各単電池の上面と対向する位置に分配板23が設けられている。さらに,分配板23には,冷却風供給通路30の上流側に開口部231,232が,下流側に開口部233,234がそれぞれ設けられている。これにより,冷却風のバイパス通路31が形成されている。また,組電池200は,分配板23に付設された6枚のケース側整流板211 〜216 と,単電池に付設された6枚の単電池側整流板221 〜226 とを有している。
[Second form]
As shown in FIG. 4, the assembled battery 200 according to the second embodiment includes 12 unit cells 10 1 to 10 12 and a module case 40 that houses each unit cell. A distribution plate 23 is provided in the cooling air supply passage 30 at a position facing the upper surface of each unit cell. Further, the distribution plate 23 is provided with openings 231 and 232 on the upstream side of the cooling air supply passage 30 and openings 233 and 234 on the downstream side, respectively. Thereby, a bypass passage 31 for cooling air is formed. The assembled battery 200 includes six case-side rectifying plates 21 1 to 21 6 attached to the distribution plate 23 and six unit-cell rectifying plates 22 1 to 22 6 attached to the unit cells. doing.

組電池200では,冷却風供給通路30内に送られてきた冷却風の一部が開口部231,232を介してバイパス通路31に送られる。そして,バイパス通路31内を移動し,開口部233,234を介して再度冷却風供給通路30内に送られる。これにより,下流側までの冷却風の流量を確保することができる。また,バイパス内では蛇行しないため,冷却風を下流側まで早期に伝達させることができ,上流側との温度差を早期に縮めることができる。   In the assembled battery 200, a part of the cooling air sent into the cooling air supply passage 30 is sent to the bypass passage 31 through the openings 231 and 232. Then, it moves in the bypass passage 31 and is sent again into the cooling air supply passage 30 through the openings 233 and 234. Thereby, the flow volume of the cooling air to the downstream side can be ensured. In addition, since it does not meander in the bypass, the cooling air can be transmitted early to the downstream side, and the temperature difference from the upstream side can be shortened early.

[第3の形態]
第3の形態に係る組電池300は,図5に示すように6個の単電池101 〜1012と,各単電池を収納するモジュールケース40とを有している。また,組電池300は,モジュールケース40に付設された6枚のケース側整流板211 〜216 と,単電池に付設された6枚の単電池側整流板221 〜226 とを有している。さらに,各ケース側整流板には,スリット211が設けられている。これにより,冷却風供給通路30内に送られてきた冷却風の一部が圧力を損失することなくスリット211を通過する。そのため,下流側までの冷却風の流量を確保することができる。
[Third embodiment]
As shown in FIG. 5, the assembled battery 300 according to the third embodiment includes six unit cells 10 1 to 10 12 and a module case 40 that houses each unit cell. The assembled battery 300 includes six case-side rectifying plates 21 1 to 21 6 attached to the module case 40 and six unit-cell rectifying plates 22 1 to 22 6 attached to the unit cells. doing. Further, each case-side rectifying plate is provided with a slit 211. Thereby, a part of the cooling air sent into the cooling air supply passage 30 passes through the slit 211 without losing pressure. Therefore, it is possible to secure the flow rate of the cooling air to the downstream side.

なお,図5に示した組電池300では,スリット211がケース側整流板211 〜216 に設けられているが,これに限るものではない。すなわち,単電池側整流板221 〜226 に設けることとしてもよい。また,両方の整流板に設けることとしてもよい。いずれの配置によっても,下流側までの冷却風の流量を十分に確保することが可能である。 In the assembled battery 300 shown in FIG. 5, the slit 211 is provided in the case side rectifying plates 21 1 to 21 6 , but is not limited thereto. In other words, it may be provided in single cell-side regulating plate 22 1-22 6. Moreover, it is good also as providing in both the baffle plates. In any arrangement, it is possible to secure a sufficient flow rate of the cooling air to the downstream side.

以上詳細に説明したように第1の形態の組電池100では,単電池101 〜1012の上面に沿って形成され,冷却風を電池間に供給するための冷却風供給通路30を設けることとしている。そして,冷却風供給通路30内に,モジュールケース40に付設された6枚のケース側整流板211 〜216 と,単電池に付設された6枚の単電池側整流板221 〜226 とを設けることとしている。そして,これらの整流板は,冷却風供給通路30内に交互に配置されている。これにより,冷却風供給通路30内を冷却風が蛇行して流れるようになり,各単電池間に均一な流量の冷却風を供給することができる。よって,各単電池を均一に冷却することができる。また,ケース側整流板と単電池側整流板とを交互に配置するだけでよく,高精度に配列することは要求されていない。また,単電池の数を増やしたとしても高精度な調整を必要としない。また,単電池の数が多い場合であっても,長さの長い整流板を設ける必要がない。よって,組電池全体としてコンパクトである。 As described in detail above, the assembled battery 100 of the first embodiment is provided with the cooling air supply passage 30 that is formed along the upper surfaces of the unit cells 10 1 to 10 12 and supplies the cooling air between the batteries. It is said. In the cooling air supply passage 30, six case-side rectifying plates 21 1 to 21 6 attached to the module case 40 and six unit cell-side rectifying plates 22 1 to 22 6 attached to the unit cells are provided. And will be established. These rectifying plates are alternately arranged in the cooling air supply passage 30. As a result, the cooling air snakes and flows in the cooling air supply passage 30, and a uniform flow rate of cooling air can be supplied between the single cells. Therefore, each unit cell can be cooled uniformly. Further, it is only necessary to alternately arrange the case side rectifying plates and the single cell side rectifying plates, and it is not required to arrange them with high accuracy. Even if the number of cells is increased, high-precision adjustment is not required. Further, even when the number of single cells is large, there is no need to provide a long rectifying plate. Therefore, the battery pack as a whole is compact.

また,ケース側整流板211 〜216 とモジュールケース40の上面の法線とがなす角度θaが下流側のものほど小さくすることとしている。一方,単電池側整流板221 〜226 と電池の上面の法線とがなす角度θbが下流側のものほど大きくすることとしている。これにより,より効率よく冷却風を伝達させることができている。さらに,各ケース側整流板の先端部を結ぶ線と各単電池側整流板の先端部を結ぶ線との間の領域の幅Lを下流側ほど狭くすることとしている。これによっても,より効率よく冷却風を伝達させることができている。従って,簡易に組電池内の各電池を均一に冷却することができ,コンパクトな組電池が実現されている。 Further, the angle θa formed by the case-side rectifying plates 21 1 to 21 6 and the normal line of the upper surface of the module case 40 is made smaller as the downstream side becomes smaller. On the other hand, the angle θb formed by the cell-side rectifying plates 22 1 to 22 6 and the normal line of the upper surface of the battery is increased as the downstream side increases. As a result, the cooling air can be transmitted more efficiently. Further, the width L of the region between the line connecting the tip portions of the case side rectifying plates and the line connecting the tip portions of the unit cell side rectifying plates is made narrower toward the downstream side. This also allows the cooling air to be transmitted more efficiently. Therefore, each battery in the assembled battery can be easily cooled uniformly, and a compact assembled battery is realized.

また,第2の形態の組電池200では,バイパス通路31を設けることとしている。これにより,下流側までの冷却風の流量を確保することができている。また,下流側の電池を早期に冷却することができている。また,第3の形態の組電池300では,各ケース側整流板にスリット211を設けることとしている。これによっても,下流側までの冷却風の流量を確保することができている。また,下流側の電池を早期に冷却することができている。   In the assembled battery 200 of the second embodiment, the bypass passage 31 is provided. Thereby, the flow volume of the cooling air to the downstream side can be secured. In addition, the downstream battery can be cooled early. Moreover, in the assembled battery 300 of the 3rd form, it is supposed that the slit 211 is provided in each case side rectification | straightening board. This also ensures the flow rate of the cooling air to the downstream side. In addition, the downstream battery can be cooled early.

なお,本実施の形態は単なる例示にすぎず,本発明を何ら限定するものではない。したがって本発明は当然に,その要旨を逸脱しない範囲内で種々の改良,変形が可能である。例えば,組電池の構成部品である電池はリチウムイオン電池に限るものではない。すなわち,ニッケル水素電池やニッカド電池でも本発明を適用できる。   Note that this embodiment is merely an example and does not limit the present invention. Therefore, the present invention can naturally be improved and modified in various ways without departing from the gist thereof. For example, the battery that is a component of the assembled battery is not limited to a lithium ion battery. That is, the present invention can be applied to a nickel metal hydride battery or a nickel cadmium battery.

第1の形態に係る組電池の構成を示す断面図である。It is sectional drawing which shows the structure of the assembled battery which concerns on a 1st form. 組電池内の冷却風の流れを示す断面図である。It is sectional drawing which shows the flow of the cooling air in an assembled battery. 第1の形態に係る組電池と従来の形態に係る組電池との温度を比較した例を示すグラフである。It is a graph which shows the example which compared the temperature of the assembled battery which concerns on a 1st form, and the assembled battery which concerns on the conventional form. 第2の形態に係る組電池の構成を示す断面図である。It is sectional drawing which shows the structure of the assembled battery which concerns on a 2nd form. 第3の形態に係る組電池の構成を示す断面図である。It is sectional drawing which shows the structure of the assembled battery which concerns on a 3rd form. 従来の形態に係る組電池の構成を示す断面図である。It is sectional drawing which shows the structure of the assembled battery which concerns on the conventional form. 従来の形態に係る組電池の構成(整流板付)を示す断面図である。It is sectional drawing which shows the structure (with a baffle plate) of the assembled battery which concerns on the conventional form.

符号の説明Explanation of symbols

101 〜1012 単電池(電池)
211 〜216 ケース側整流板(第2整流板)
221 〜226 単電池側整流板(第1整流板)
211 スリット(切り口)
30 冷却風供給通路(冷却媒体供給通路)
31 バイパス通路
40 モジュールケース
100 組電池
10 1 -10 12 cells (batteries)
21 1 to 21 6 Case side current plate (second current plate)
22 1 to 22 6 single cell side rectifier (first rectifier)
211 Slit (Cut)
30 Cooling air supply passage (cooling medium supply passage)
31 Bypass passage 40 Module case 100 Battery pack

Claims (5)

複数の電池を配列してなる組電池において,
配列された各電池の一側面に沿って形成され,冷却媒体を電池間に供給する冷却媒体供給通路と,
電池の一側面に設けられ,前記冷却媒体供給通路中の冷却媒体の流れの向きを変更する第1整流板と,
配列された電池の一側面と対向する面に設けられ,前記冷却媒体供給通路中の冷却媒体の流れの向きを変更する第2整流板とを有し,
前記第1整流板と前記第2整流板とは前記冷却媒体供給通路内で交互に配置されていることを特徴とする組電池。
In an assembled battery comprising a plurality of batteries arranged,
A cooling medium supply passage formed along one side surface of each of the arranged batteries and supplying a cooling medium between the batteries;
A first rectifying plate that is provided on one side of the battery and changes a flow direction of the cooling medium in the cooling medium supply passage;
A second baffle plate provided on a surface facing one side surface of the arranged batteries and changing a flow direction of the cooling medium in the cooling medium supply passage;
The assembled battery, wherein the first rectifying plate and the second rectifying plate are alternately arranged in the cooling medium supply passage.
請求項1に記載する組電池において,
前記第1整流板および前記第2整流板は,冷却媒体の流路の下流側に向けて傾斜しており,
前記第1整流板と電池の一側面の法線とがなす角度が冷却媒体の流路の下流側のものほど小さく,
前記第2整流板と電池の一側面と対向する面の法線とがなす角度が冷却媒体の流路の下流側のものほど大きいことを特徴とする組電池。
The assembled battery according to claim 1,
The first rectifying plate and the second rectifying plate are inclined toward the downstream side of the flow path of the cooling medium,
The angle formed by the first rectifying plate and the normal of one side of the battery is smaller toward the downstream side of the cooling medium flow path,
An assembled battery, wherein an angle formed between the second rectifying plate and a normal line of a surface facing one side of the battery is larger toward a downstream side of the flow path of the cooling medium.
請求項1または請求項2に記載する組電池において,
前記第1整流板の各先端部を結ぶ線と,前記第2整流板の各先端部を結ぶ線との間の領域の幅が冷却媒体の流路の下流側ほど狭いことを特徴とする組電池。
In the assembled battery according to claim 1 or 2,
The group characterized in that the width of the region between the line connecting the tip portions of the first rectifying plate and the line connecting the tip portions of the second rectifying plate is narrower toward the downstream side of the flow path of the cooling medium. battery.
請求項1から請求項3のいずれか1つに記載する組電池において,
冷却媒体の一部を冷却媒体の流路の上流側から下流側にバイパスするバイパス通路が設けられていることを特徴とする組電池。
In the assembled battery according to any one of claims 1 to 3,
An assembled battery comprising a bypass passage for bypassing a part of the cooling medium from the upstream side to the downstream side of the flow path of the cooling medium.
請求項1から請求項4のいずれか1つに記載する組電池において,
前記第1整流板または前記第2整流板のうち少なくとも一方に,冷却媒体の一部を通過させる切り口が設けられていることを特徴とする組電池。
In the assembled battery according to any one of claims 1 to 4,
An assembled battery, wherein at least one of the first rectifying plate and the second rectifying plate is provided with a cut opening through which a part of the cooling medium passes.
JP2003349187A 2003-10-08 2003-10-08 Battery pack Pending JP2005116342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003349187A JP2005116342A (en) 2003-10-08 2003-10-08 Battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003349187A JP2005116342A (en) 2003-10-08 2003-10-08 Battery pack

Publications (1)

Publication Number Publication Date
JP2005116342A true JP2005116342A (en) 2005-04-28

Family

ID=34541119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003349187A Pending JP2005116342A (en) 2003-10-08 2003-10-08 Battery pack

Country Status (1)

Country Link
JP (1) JP2005116342A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007042637A (en) * 2005-07-29 2007-02-15 Samsung Sdi Co Ltd Battery module
KR100938626B1 (en) * 2006-12-30 2010-01-22 주식회사 엘지화학 Middle or Large-sized Battery Pack Case Providing Improved Distribution Uniformity in Coolant Flux
JP2010536126A (en) * 2007-08-06 2010-11-25 ダイムラー・アクチェンゲゼルシャフト battery
JP2011138730A (en) * 2010-01-04 2011-07-14 Mitsubishi Heavy Ind Ltd Battery pack
CN102222808A (en) * 2010-04-16 2011-10-19 科达汽车公司 Battery temperature control
EP2403049A2 (en) * 2009-02-27 2012-01-04 LG Chem, Ltd. Medium- to large-size battery pack case having improved uniformity of distribution of coolant flow
JP2012018910A (en) * 2010-07-06 2012-01-26 Sb Limotive Co Ltd Battery pack and automobile
CN103988359A (en) * 2011-12-08 2014-08-13 Sk新技术株式会社 Cell assembly type battery cooling apparatus
KR101562712B1 (en) 2012-12-07 2015-10-22 독터. 인제니어. 하.체. 에프. 포르쉐 악티엔게젤샤프트 Battery arrangement for using in a motor vehicle
JP2015191867A (en) * 2014-03-28 2015-11-02 Fdkリチウムイオンキャパシタ株式会社 Power storage module and method for cooling storage battery
JP2016151391A (en) * 2015-02-18 2016-08-22 ダイキョーニシカワ株式会社 Heat generating body cooling structure
US9568555B2 (en) 2010-12-06 2017-02-14 Peter Fredrick Nortman Electrochemical cell monitoring and balancing circuit with self-diagnostic feature
GB2546739A (en) * 2016-01-26 2017-08-02 Daimler Ag Battery with at least one housing opening for supplying a cooling medium
CN107453004A (en) * 2017-07-28 2017-12-08 杭州欣卓科技有限公司 A kind of electric car power supply Pack
KR101861179B1 (en) 2016-09-27 2018-05-28 홍익대학교 산학협력단 Battery pack capable of changing cooling channel
JP2018107087A (en) * 2016-12-28 2018-07-05 三菱自動車工業株式会社 Battery pack cooling system
JP2018163732A (en) * 2017-03-24 2018-10-18 三菱自動車工業株式会社 Battery case
US10116020B2 (en) 2015-06-01 2018-10-30 Gs Yuasa International Ltd. Battery pack with branching cooling duct
CN115347268A (en) * 2021-05-14 2022-11-15 比亚迪股份有限公司 Battery pack and vehicle
CN116799372A (en) * 2023-08-26 2023-09-22 深圳海辰储能控制技术有限公司 Liquid cooling device, liquid cooling device control method and energy storage system

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4659699B2 (en) * 2005-07-29 2011-03-30 三星エスディアイ株式会社 Battery module
JP2007042637A (en) * 2005-07-29 2007-02-15 Samsung Sdi Co Ltd Battery module
US8003245B2 (en) 2005-07-29 2011-08-23 Samsung Sdi Co., Ltd. Battery module having improved cooling efficiency
US8673475B2 (en) 2006-12-30 2014-03-18 Lg Chem, Ltd. Middle or large-sized battery pack case providing improved distribution uniformity in coolant flux
KR100938626B1 (en) * 2006-12-30 2010-01-22 주식회사 엘지화학 Middle or Large-sized Battery Pack Case Providing Improved Distribution Uniformity in Coolant Flux
JP2010536126A (en) * 2007-08-06 2010-11-25 ダイムラー・アクチェンゲゼルシャフト battery
US8951655B2 (en) 2009-02-27 2015-02-10 Lg Chem, Ltd. Middle or large-sized battery pack case providing improved distribution uniformity in coolant flux
EP2403049A2 (en) * 2009-02-27 2012-01-04 LG Chem, Ltd. Medium- to large-size battery pack case having improved uniformity of distribution of coolant flow
JP2012519353A (en) * 2009-02-27 2012-08-23 エルジー・ケム・リミテッド Medium to large battery pack cases with improved uniformity of refrigerant flow distribution
EP2403049A4 (en) * 2009-02-27 2014-03-05 Lg Chemical Ltd Medium- to large-size battery pack case having improved uniformity of distribution of coolant flow
JP2011138730A (en) * 2010-01-04 2011-07-14 Mitsubishi Heavy Ind Ltd Battery pack
US8703317B2 (en) 2010-01-04 2014-04-22 Mitsubishi Heavy Industries, Ltd. Battery pack
CN102222808A (en) * 2010-04-16 2011-10-19 科达汽车公司 Battery temperature control
WO2011130227A3 (en) * 2010-04-16 2011-12-08 Coda Automotive, Inc. Battery temperature control
JP2012018910A (en) * 2010-07-06 2012-01-26 Sb Limotive Co Ltd Battery pack and automobile
US8785025B2 (en) 2010-07-06 2014-07-22 Samsung Sdi Co., Ltd. Air-cooled battery pack
US9568555B2 (en) 2010-12-06 2017-02-14 Peter Fredrick Nortman Electrochemical cell monitoring and balancing circuit with self-diagnostic feature
US9588181B2 (en) 2010-12-06 2017-03-07 Coda Energy Holdings Llc Electrochemical cell monitoring and balancing circuit with self-diagnostic feature
US10416238B2 (en) 2010-12-06 2019-09-17 Exergonix, Inc. Electrochemical cell monitoring and balancing circuit with self-diagnostic feature
CN103988359B (en) * 2011-12-08 2016-11-16 Sk新技术株式会社 The chiller of the battery of unit block form
CN103988359A (en) * 2011-12-08 2014-08-13 Sk新技术株式会社 Cell assembly type battery cooling apparatus
KR101562712B1 (en) 2012-12-07 2015-10-22 독터. 인제니어. 하.체. 에프. 포르쉐 악티엔게젤샤프트 Battery arrangement for using in a motor vehicle
JP2015191867A (en) * 2014-03-28 2015-11-02 Fdkリチウムイオンキャパシタ株式会社 Power storage module and method for cooling storage battery
JP2016151391A (en) * 2015-02-18 2016-08-22 ダイキョーニシカワ株式会社 Heat generating body cooling structure
US10116020B2 (en) 2015-06-01 2018-10-30 Gs Yuasa International Ltd. Battery pack with branching cooling duct
GB2546739A (en) * 2016-01-26 2017-08-02 Daimler Ag Battery with at least one housing opening for supplying a cooling medium
KR101861179B1 (en) 2016-09-27 2018-05-28 홍익대학교 산학협력단 Battery pack capable of changing cooling channel
JP2018107087A (en) * 2016-12-28 2018-07-05 三菱自動車工業株式会社 Battery pack cooling system
JP2018163732A (en) * 2017-03-24 2018-10-18 三菱自動車工業株式会社 Battery case
CN107453004B (en) * 2017-07-28 2019-07-26 江西胜菱科技有限公司 A kind of electric car power supply Pack
CN107453004A (en) * 2017-07-28 2017-12-08 杭州欣卓科技有限公司 A kind of electric car power supply Pack
CN115347268A (en) * 2021-05-14 2022-11-15 比亚迪股份有限公司 Battery pack and vehicle
CN115347268B (en) * 2021-05-14 2023-07-14 比亚迪股份有限公司 Battery pack and vehicle
CN116799372A (en) * 2023-08-26 2023-09-22 深圳海辰储能控制技术有限公司 Liquid cooling device, liquid cooling device control method and energy storage system
CN116799372B (en) * 2023-08-26 2023-12-26 深圳海辰储能控制技术有限公司 Liquid cooling device, liquid cooling device control method and energy storage system

Similar Documents

Publication Publication Date Title
JP2005116342A (en) Battery pack
KR100862436B1 (en) Holder for cooling of battery module
US7666543B2 (en) Battery
KR102142669B1 (en) Air cooling type Battery Module having Guide vane
JP5409635B2 (en) Uniform air cooling structure for high capacity battery system
JP4921629B2 (en) Fluid-cooled battery pack system
US8673475B2 (en) Middle or large-sized battery pack case providing improved distribution uniformity in coolant flux
KR101954897B1 (en) Manifold assembly for controlling gas flow and flow distribution in a fuel cell stack
EP2456004A1 (en) Battery pack device
EP1986252A2 (en) A frame to support a plurality of unit batteries to form a battery module
WO1999060653A1 (en) Battery
US20160111762A1 (en) Electrical storage apparatus
EP2575195B1 (en) Battery pack
JP2013539166A (en) Battery pack with new structure
JP2011076967A (en) Battery pack
JP2007172983A (en) Battery pack
JP2006294336A (en) Battery pack
JP2007227030A (en) Battery pack
KR20180081996A (en) Battery Pack having indirect cooling system
JPWO2012147126A1 (en) Power supply
JP5096842B2 (en) Battery storage unit
EP2949897A1 (en) Thermoelectric generator
WO2017154071A1 (en) Battery device
CN117616619A (en) Thermal management of liquid cooling modules
KR20110095561A (en) Air cooling type fuel cell