JP2011076967A - Battery pack - Google Patents

Battery pack Download PDF

Info

Publication number
JP2011076967A
JP2011076967A JP2009229425A JP2009229425A JP2011076967A JP 2011076967 A JP2011076967 A JP 2011076967A JP 2009229425 A JP2009229425 A JP 2009229425A JP 2009229425 A JP2009229425 A JP 2009229425A JP 2011076967 A JP2011076967 A JP 2011076967A
Authority
JP
Japan
Prior art keywords
cooling air
separator
flow path
battery
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009229425A
Other languages
Japanese (ja)
Inventor
Kenji Tsukamoto
謙二 塚本
Kenichi Fukuda
健一 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2009229425A priority Critical patent/JP2011076967A/en
Publication of JP2011076967A publication Critical patent/JP2011076967A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery pack capable of cooling uniformly every unit cell constituting the battery pack, and capable of restraining a battery from being locally deteriorated caused by dispersion of temperatures. <P>SOLUTION: This battery pack includes the plurality of unit cells, separators arranged respectively between the unit cells and having a flow channel for a cooling wind, a cooling wind introducing duct for introducing the cooling wind into the flow channel, and a cooling wind discharge duct for discharging the cooling wind from the flow channel, the flow channel is extended perpendicularly to cooling wind flow directions in insides of the cooling wind introducing duct and the cooling wind discharge duct, the separator has thermal conductivity, and the flow the channel is provided only in one face of the separator, in the battery pack. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、たとえば自動車駆動用電源に用いて好適なリチウムイオン電池に係り、特に、複数の単電池からなる組電池において各電池の冷却のばらつきを抑制する技術に関する。   The present invention relates to a lithium ion battery suitable for use in, for example, an automobile driving power source, and more particularly to a technique for suppressing variation in cooling of each battery in an assembled battery including a plurality of single batteries.

車載用のリチウムイオン2次電池においては、それぞれ正極、負極および電解液を有する単電池が複数個直列に配置されてケーシングに収納され、充放電制御のためのセルコントローラが接続され、必要な電圧が得られる組電池として利用されている。   In an in-vehicle lithium ion secondary battery, a plurality of cells each having a positive electrode, a negative electrode, and an electrolytic solution are arranged in series and housed in a casing, and a cell controller for charge / discharge control is connected to the battery. Is used as an assembled battery.

リチウムイオン電池においては、充放電の際の電気化学反応にともなって熱が発生し、この熱に長期間曝されることによって電池が劣化するので、電池の耐久性を向上させるために電池を冷却することが求められている。特に、組電池においては、複数の単電池が配列されているために排熱が困難であり、温度上昇が著しく、組電池を構成する各単電池の冷却が課題となっている。   In lithium-ion batteries, heat is generated due to the electrochemical reaction during charging and discharging, and the batteries deteriorate due to long-term exposure to this heat, so the batteries are cooled to improve battery durability. It is requested to do. In particular, in an assembled battery, since a plurality of single cells are arranged, it is difficult to exhaust heat, the temperature rises remarkably, and cooling of each single cell constituting the assembled battery is an issue.

従来、このような組電池の冷却方法がいくつか提案されているが、隣接する単電池の間にセパレータを介在させ、このセパレータの両面に流路を形成して冷却風(空気)を流通させて、セパレータ両面に接触している単電池を冷却する技術が開示されている(例えば、特許文献1参照)。   Conventionally, several methods for cooling such an assembled battery have been proposed. A separator is interposed between adjacent unit cells, and a flow path is formed on both sides of the separator so that cooling air (air) is circulated. Thus, a technique for cooling a single battery that is in contact with both surfaces of a separator has been disclosed (for example, see Patent Document 1).

特開2006−252821号公報JP 2006-252821 A

しかしながら、組電池の収納スペースの限度上、単電池の間に設けられるセパレータの厚さは極めて薄くせざるを得ず、その薄いセパレータ両面に形成された流路はさらに狭いものとなり、冷却風を十分に流通させることは困難であり、有効な冷却効果が得られなかった。   However, due to the limitation of the storage space of the assembled battery, the thickness of the separator provided between the single cells must be extremely thin, and the flow paths formed on both sides of the thin separator are further narrowed, so It was difficult to circulate sufficiently, and an effective cooling effect could not be obtained.

また、各セパレータの両側に流路が設けられた構造、すなわち狭い2つの流路が近接した間隔で設けられた構造を有し、さらに冷却風が導入方向から直角に曲げられて流路に流入する構造においては、後述するように、冷却風の導入方向に対して上流側に位置する一方の流路では冷却風の流速が速いため、冷却風が流路に流入し難く、下流側に位置する他方の流路では、冷却風の流速が遅いため冷却風が流路に流入し易い。このため、一のセパレータの両面に均等な量の冷却風が流れず、電池間の冷却がばらつき、結果として電池の冷却が十分でない箇所から局部的に電池が劣化するという問題があった。   In addition, it has a structure in which flow paths are provided on both sides of each separator, that is, a structure in which two narrow flow paths are provided at close intervals, and cooling air is bent at a right angle from the introduction direction and flows into the flow paths. In this structure, as will be described later, since the flow velocity of the cooling air is fast in one of the flow passages located upstream with respect to the introduction direction of the cooling air, it is difficult for the cooling air to flow into the flow passage. In the other channel, the flow rate of the cooling air is slow, so that the cooling air easily flows into the channel. For this reason, there is a problem in that an equal amount of cooling air does not flow on both surfaces of one separator, cooling between batteries varies, and as a result, the battery deteriorates locally from a location where the battery is not sufficiently cooled.

電池が局部的に劣化すると、その電池の充放電特性が低下するが、充放電特性が最も低下した電池に合わせてセルコントローラによって組電池全体の充放電が制御されるため、劣化の程度が軽い他の電池の性能を十分に活かせず、組電池全体としての能力が低下してしまう。   When a battery deteriorates locally, the charge / discharge characteristics of the battery decrease, but the charge / discharge of the entire assembled battery is controlled by the cell controller according to the battery with the lowest charge / discharge characteristics. The performance of other batteries cannot be fully utilized, and the capacity of the assembled battery as a whole is reduced.

さらに、全体を通して突起部分のみでの支持となり、緊縛による電池の変形が生じ、高強度な電池缶が必要になるなどという問題があった。   In addition, there is a problem that the entire portion is supported only by the protruding portion, the battery is deformed by tight binding, and a high-strength battery can is required.

したがって、本発明は、上記従来技術の課題を解決するためになされたもので、組電池を構成する単電池ごとの冷却を均等にし、温度ばらつきによる電池の局部的劣化を抑制することができる組電池を提供することを目的としている。   Accordingly, the present invention has been made to solve the above-described problems of the prior art, and is a set capable of equalizing cooling for each unit cell constituting the assembled battery and suppressing local deterioration of the battery due to temperature variation. It aims to provide a battery.

本発明の組電池は、複数の単電池と、単電池間のそれぞれに配置され冷却風の流路を有するセパレータと、流路へ冷却風を導入する冷却風導入ダクトと、流路からの冷却風を排出する冷却風排出ダクトとを備えた組電池であって、流路は、冷却風導入ダクトおよび冷却風排出ダクト内の冷却風流通方向に対して垂直に延在し、セパレータは、熱伝導性を有し、流路は、セパレータの一方の面にのみ設けられていることを特徴としている。   The assembled battery of the present invention includes a plurality of unit cells, a separator disposed between each unit cell and having a cooling air flow path, a cooling air introduction duct for introducing cooling air into the flow path, and cooling from the flow path. The battery pack includes a cooling air discharge duct that discharges wind, the flow path extending perpendicularly to the cooling air flow direction in the cooling air introduction duct and the cooling air discharge duct, and the separator It has conductivity, and the flow path is provided only on one surface of the separator.

上記構成の組電池にあっては、従来一のセパレータの両面の流路において起こっていた冷却風のどうしの干渉が軽減して、冷却風がスムーズに流路を流れる。結果として、一の単電池と他の単電池との冷却のばらつきを抑制することができる。また、両面に流路が形成された従来のセパレータと比較して流路の数が半減するので、流路の設置間隔を広くして圧力損失やバラツキを抑制したり、単電池の間隔を狭めて、組電池を小型化することができる。   In the battery pack having the above-described configuration, interference between cooling airs that has conventionally occurred in the flow paths on both sides of one separator is reduced, and the cooling air flows smoothly through the flow paths. As a result, variation in cooling between one unit cell and another unit cell can be suppressed. In addition, the number of flow paths is halved compared to conventional separators with flow paths formed on both sides, so the flow path installation interval is widened to suppress pressure loss and variations, and the unit cell spacing is narrowed. Thus, the assembled battery can be reduced in size.

また、セパレータの流路が形成されていない面では、直接冷却風が電池に当たらないが、セパレータが熱伝導性を有しているので、これと熱交換して間接的に冷却風によって冷却される。   In addition, on the surface where the separator channel is not formed, the cooling air does not directly hit the battery, but since the separator has thermal conductivity, heat is exchanged with this and indirectly cooled by the cooling air. The

さらに、セパレータの一方の面にのみ流路を形成すればよいから、両面に流路が形成された従来のセパレータと比較して、片側の流路分の厚さを削減することができる。これにより、単電池間の間隔を狭めることができ、組電池全体として小型化を図ることができる。   Furthermore, since the flow path only needs to be formed on one side of the separator, the thickness of the flow path on one side can be reduced as compared with the conventional separator in which the flow path is formed on both sides. Thereby, the space | interval between single cells can be narrowed and size reduction can be achieved as the whole assembled battery.

また、セパレータの一方の面には流路は形成されておらず平面で単電池と接触しているので、その接触面については、緊縛による電池の変形を抑制することができる。   In addition, since the flow path is not formed on one surface of the separator and is in contact with the unit cell in a plane, deformation of the battery due to binding can be suppressed on the contact surface.

本発明の組電池においては、セパレータに設けられた流路の幅は、冷却風導入ダクト内の冷却風流通方向の上流側から下流側に向かって、連続的に小さくなることを好ましい態様としている。   In the assembled battery of the present invention, it is preferable that the width of the flow path provided in the separator continuously decreases from the upstream side to the downstream side in the cooling air flow direction in the cooling air introduction duct. .

上述のとおり、冷却風の導入方向に対して上流側に位置する流路では冷却風が流路に流入し難く、下流側に位置する流路では冷却風が流路に流入し易いが、上記構成の組電池にあっては、冷却風の流入し難い上流側で流路が広く、冷却風の流入し易い下流側で流路が狭くなるように形成されているので、結果として冷却風の流入し易さが均等になり、単電池ごとの冷却のばらつきをさらに抑制することができる。   As described above, it is difficult for the cooling air to flow into the flow path in the flow path located upstream with respect to the introduction direction of the cooling air, and the cooling air easily flows into the flow path in the flow path positioned downstream, In the battery pack having the configuration, the flow path is wide on the upstream side where the cooling air hardly flows, and the flow path is narrow on the downstream side where the cooling air easily flows. Ease of inflow becomes uniform, and variation in cooling for each unit cell can be further suppressed.

本発明によれば、セパレータに形成された流路ごとに均等に冷却風が流入するので、単電池ごとの冷却のばらつきを抑制して、結果として電池の局所的な温度上昇による出力制限や、劣化を抑制するという効果を奏する。   According to the present invention, since the cooling air flows evenly for each flow path formed in the separator, the variation in cooling of each unit cell is suppressed, and as a result, the output limitation due to the local temperature rise of the battery, There is an effect of suppressing deterioration.

本発明の単電池およびセパレータを示す斜視図である。It is a perspective view which shows the cell and separator of this invention. 本発明の単電池およびセパレータの装着状態を示す斜視図である。It is a perspective view which shows the mounting state of the cell and separator of this invention. 本発明の単電池を複数配列した状態を示す斜視図である。It is a perspective view which shows the state which arranged the several cell of this invention. 本発明の組電池を示す斜視図である。It is a perspective view which shows the assembled battery of this invention. 図4におけるA−A線断面図である。It is the sectional view on the AA line in FIG. (a)は、従来の組電池を示す断面図であり、(b)は、(a)における線分O−Pに沿う断面を視点Bから見た図であり、(c)は、線分O−Pに沿う断面におけるセパレータ流路の位置と冷却風の流速との関係を示すグラフである。(A) is sectional drawing which shows the conventional assembled battery, (b) is the figure which looked at the cross section along line segment OP in (a) from the viewpoint B, (c) is a line segment. It is a graph which shows the relationship between the position of the separator flow path in the cross section along OP, and the flow velocity of cooling air. (a)は、本発明の組電池を示す断面図であり、(b)は、(a)における線分O−Pに沿う断面を視点Cから見た図であり、(c)は、線分O−Pに沿う断面におけるセパレータ流路の位置と冷却風の流速との関係を示すグラフである。(A) is sectional drawing which shows the assembled battery of this invention, (b) is the figure which looked at the cross section in alignment with line segment OP in (a) from the viewpoint C, (c) is a line It is a graph which shows the relationship between the position of the separator flow path in the cross section along a part OP, and the flow velocity of cooling air. 本発明のセパレータの変形例を示す斜視図である。It is a perspective view which shows the modification of the separator of this invention. 本発明のセパレータの変形例を示す斜視図である。It is a perspective view which shows the modification of the separator of this invention. 本発明のセパレータの変形例を示す斜視図である。It is a perspective view which shows the modification of the separator of this invention. 本発明のセパレータ流路の変形例を示す斜視図である。It is a perspective view which shows the modification of the separator flow path of this invention. 本発明の冷却風導入ダクトの変形例を示す斜視図である。It is a perspective view which shows the modification of the cooling air introduction duct of this invention.

以下、図面を参照して本発明の実施の形態を説明する。
図1は、本発明の組電池に用いられる単電池10およびセパレータ(ホルダ型)20を示す斜視図である。単電池10は、内部に図示しない電解液を有し、正極11および負極12を有する公知のリチウムイオン2次電池等である。セパレータ20は、公知の金属材料あるいは樹脂材料等の熱伝導性を有する材料で構成されており、表面には、突起21と、相対的に凹部である流路22が形成されている。また、図示しない裏面は、平滑な平面状であり、単電池10を保持して密着する。図2は、単電池10に対するセパレータ20の装着状態を示す。尚、密着性を向上させるため、電池とセパレータ間に接着剤またはエポキシのような密着剤を入れる。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a perspective view showing a unit cell 10 and a separator (holder type) 20 used in the assembled battery of the present invention. The unit cell 10 is a known lithium ion secondary battery or the like having an electrolyte solution (not shown) inside and having a positive electrode 11 and a negative electrode 12. The separator 20 is made of a material having thermal conductivity such as a known metal material or resin material, and a projection 21 and a flow path 22 that is a relatively concave portion are formed on the surface. Moreover, the back surface which is not shown in figure is a smooth planar shape, hold | maintains the cell 10 and closely_contact | adheres. FIG. 2 shows a state where the separator 20 is attached to the unit cell 10. In order to improve the adhesion, an adhesive such as an adhesive or epoxy is inserted between the battery and the separator.

図3に示すように、セパレータ20を装着した単電池10は、所望の電圧を得るために複数個が配列されて組電池Mを構成する。また、組電池Mは、図4に示すように、位置決め部材40およびケーシング30で固定され、各単電池の充放電を制御するセルコントローラ50に接続される、符号31は、冷却風導入ダクトであり、冷却風導入口33から冷却風を導入して、各単電池に導く。符号32は、冷却風排出ダクトであり、各単電池を冷却した後の冷却風を、冷却風排出口34から排出する。   As shown in FIG. 3, a plurality of single cells 10 equipped with the separator 20 are arranged to form a battery pack M in order to obtain a desired voltage. As shown in FIG. 4, the assembled battery M is fixed by a positioning member 40 and a casing 30, and connected to a cell controller 50 that controls charging / discharging of each unit cell. Reference numeral 31 denotes a cooling air introduction duct. Yes, the cooling air is introduced from the cooling air introduction port 33 and led to each cell. Reference numeral 32 denotes a cooling air discharge duct, which discharges the cooling air after cooling each unit cell from the cooling air discharge port 34.

図5は、図4の斜視図におけるA−A線断面である。各セパレータ20は、図2に示すように一方の面に突起21および流路22を有しており、他方の面は平滑であるので、図5において縦の太線で示す箇所には、セパレータ20の一方の側には流路が形成され、他方の側は単電池10と密着している。   FIG. 5 is a cross-sectional view taken along line AA in the perspective view of FIG. As shown in FIG. 2, each separator 20 has a protrusion 21 and a flow path 22 on one surface, and the other surface is smooth. Therefore, in each portion indicated by a vertical thick line in FIG. A flow path is formed on one side of the battery, and the other side is in close contact with the unit cell 10.

冷却風は、図5において右方向の矢印で示すように冷却風導入口33から導入され、下方向の矢印で示すように直角に曲げられて各単電池の間に設けられたセパレータ20の流路を通過して単電池を冷却し、続いて再び右方向の矢印で示すように直角に曲げられて冷却風排出口34から排出される。   The cooling air is introduced from the cooling air introduction port 33 as shown by the right arrow in FIG. 5 and is bent at a right angle as shown by the downward arrow to flow the separator 20 provided between the single cells. The unit cell is cooled by passing through the road, and is then bent again at a right angle as indicated by the right arrow and discharged from the cooling air outlet 34.

本発明においては、セパレータの片方の面にのみ流路が形成されており、セパレータを挟む2つの単電池のうち、流路側の単電池は、冷却風により直接冷却され、流路と反対側の単電池は、接触するセパレータの熱伝導性によって熱交換して、冷却風によって間接的に冷却される。   In the present invention, the flow path is formed only on one side of the separator, and of the two single cells sandwiching the separator, the single cell on the flow path side is directly cooled by the cooling air and is on the opposite side of the flow path. The cell is heat-exchanged by the thermal conductivity of the separator in contact, and is indirectly cooled by cooling air.

ここで、従来技術に対する本発明の優位性を示すため、セパレータの両側に流路が設けられた従来の組電池について説明する。図6(a)は、そのようなセパレータの両側に流路が設けられた従来の組電池を示す断面図であり、図6(b)は、(a)におけるO−P線断面を視点Bから見た図である。また、図6(c)は、各流路のうち、線分OP上にある点Oからの変位がa〜aである各流路における、冷却風の流速を示すグラフである。 Here, in order to show the superiority of the present invention over the prior art, a conventional assembled battery in which channels are provided on both sides of the separator will be described. FIG. 6A is a cross-sectional view showing a conventional assembled battery in which flow paths are provided on both sides of such a separator, and FIG. 6B is a cross-sectional view taken along line O-P in FIG. It is the figure seen from. Also, FIG. 6 (c), of each channel, in each flow path in which the displacement from O points on the line segment OP is at a 1 ~a 8, it is a graph showing the flow rate of the cooling air.

単電池10、冷却風導入ダクト31、冷却風排出ダクト32については本発明と共通の構成要素であるため、説明を省略する。図6(a)および(b)に示す組電池においては、セパレータ60の両面に、単電池10を支持する突起61と、その間の相対的に凹部である流路62が形成されている。   The unit cell 10, the cooling air introduction duct 31, and the cooling air discharge duct 32 are components common to the present invention, and thus description thereof is omitted. In the assembled battery shown in FIGS. 6A and 6B, a protrusion 61 that supports the unit cell 10 and a flow path 62 that is a relatively concave portion therebetween are formed on both surfaces of the separator 60.

冷却風導入口33から導入された冷却風は、図において右に流れながら、直角に曲げられて各単電池間に挟持されたセパレータ60の両面に形成された流路62を通り、再び直角に曲げられて冷却風排出口34から排出される。図6(c)に示すように、一のセパレータの両側に設けられた流路、例えばaとaを比較すると、冷却風の上流側の流路aにおいて、下流側の流路aよりも流速が低下している。 While the cooling air introduced from the cooling air introduction port 33 flows to the right in the drawing, the cooling air is bent at a right angle and passes through the flow paths 62 formed on both surfaces of the separator 60 sandwiched between the single cells, and again at a right angle. It is bent and discharged from the cooling air outlet 34. As shown in FIG. 6C, when the flow paths provided on both sides of one separator, for example, a 1 and a 2 are compared, in the flow path a 1 on the upstream side of the cooling air, the downstream flow path a The flow rate is lower than 2 .

これは、冷却風が直角に曲げられる際に、セパレータの両側に設けられた流路のように近接している場合、その流路の間の空気(冷却風)は、上流側では流速が速いが下流側では相対的に流速が低下するため、下流側の流路aの方に流入するためである。また、冷却風といった流体は直角に曲げられることを嫌い弧を描いて曲がるため、曲がる際に急な角度で弧を描く必要がある上流側には冷却風が流入し難く、緩い角度で弧を描く下流側には冷却風が流入し易いという現象にも起因する。 This is because, when the cooling air is bent at a right angle, the air (cooling air) between the flow paths has a high flow velocity on the upstream side when close to each other like the flow paths provided on both sides of the separator. There because on the downstream side relatively velocity is reduced, in order to flow towards the flow channel a 2 on the downstream side. In addition, since fluids such as cooling air do not like to be bent at right angles and bend in an arc, it is difficult for the cooling air to flow into the upstream side where it is necessary to draw an arc at a steep angle when bending, and an arc is formed at a gentle angle. This is also caused by the phenomenon that the cooling air easily flows into the downstream side.

この傾向は、aとa、aとa、およびaとaの組み合わせのそれぞれにおいても同様であり、それぞれの下流側流路(a、aおよびa)においてより冷却風の流速が速い。さらに、4つのセパレータ間においても、下流側に位置するほど流速が速い傾向が見られる(a、a、a、a間の比較、およびa、a、a、a間の比較)。このように、従来のセパレータ構造では、冷却風の流速に著しいばらつきがあり、この結果、単電池の面ごとの冷却にもばらつきが生じ、局部的に単電池の温度が上昇し、出力制限や劣化が生じていた。 This tendency is the same in each of the combinations of a 3 and a 4 , a 5 and a 6 , and a 7 and a 8 , and more in each downstream flow path (a 4 , a 6 and a 8 ). Cooling air flow rate is fast. Furthermore, among the four separators, there is a tendency that the flow velocity tends to be faster as it is located downstream (a 1 , a 3 , a 5 , a 7 comparison, and a 2 , a 4 , a 6 , a 8 Comparison between). As described above, in the conventional separator structure, there is a significant variation in the flow velocity of the cooling air. As a result, there is also a variation in the cooling of each surface of the unit cell, the temperature of the unit cell rises locally, and the output limit and Deterioration has occurred.

また、図6(b)に示すように、単電池10を支持しているのは突起61のみであるため、緊縛により高い圧力が発生し、単電池10の容器が凹むという問題があった。   Moreover, as shown in FIG.6 (b), since only the protrusion 61 is supporting the single cell 10, there existed a problem that a high pressure generate | occur | produced by binding and the container of the single cell 10 was dented.

これに対して、図7(a)は、セパレータの片側のみに流路が設けられた本発明の組電池を示す断面図であり、図7(b)は、(a)におけるO−P線断面を視点Cから見た図である。また、図7(c)は、各流路のうち、線分OP上にある点Oからの変位がb〜bである各流路における、冷却風の流速を示すグラフである。図7(a)および(b)に示す組電池においては、セパレータ20の両面に、単電池10を支持する突起21と、その間の相対的に凹部である流路22が形成されている(図1参照)。 On the other hand, FIG. 7A is a cross-sectional view showing the assembled battery of the present invention in which a flow path is provided only on one side of the separator, and FIG. 7B is an OP line in FIG. It is the figure which looked at the cross section from the viewpoint C. FIG. Further, FIG. 7 (c), of each channel, in each flow path in which the displacement from O points on the line segment OP is a b 1 ~b 4, is a graph showing the flow rate of the cooling air. In the assembled battery shown in FIGS. 7A and 7B, the projections 21 that support the unit cell 10 and the flow path 22 that is a relatively concave portion therebetween are formed on both surfaces of the separator 20 (FIG. 7). 1).

冷却風導入口33から導入された冷却風は、図において右に流れながら、直角に曲げられて各単電池間に挟持されたセパレータ20の両面に形成された流路22を通り、再び直角に曲げられて冷却風排出口34から排出される。本発明においては流路がセパレータの片側のみに設けられているので、従来の流路aとaで生じていたばらつきは存在せず、図7(c)に示すように、単一の流速bを示し、各単電池に対して均等な冷却を行うことができる。ここで、流路に面した単電池は冷却風で直接冷却され、流路に面さない単電池はセパレータの熱交換を介して間接的に冷却される。これにより、組電池全体の冷却のばらつきは軽減される。 While the cooling air introduced from the cooling air introduction port 33 flows to the right in the figure, it is bent at a right angle and passes through the flow paths 22 formed on both surfaces of the separator 20 sandwiched between the single cells, and then again at a right angle. It is bent and discharged from the cooling air outlet 34. In the present invention, since the flow path is provided only on one side of the separator, there is no variation that has occurred in the conventional flow paths a 1 and a 2 , and as shown in FIG. It indicates the flow rate b 1, it is possible to perform uniform cooling for each unit cell. Here, the unit cell facing the channel is directly cooled by the cooling air, and the unit cell not facing the channel is indirectly cooled through heat exchange of the separator. Thereby, the dispersion | variation in the cooling of the whole assembled battery is reduced.

本発明によれば、冷却のばらつきを抑制することにより、局部的な電池の劣化を抑制し、また均一温度管理による電池出力の安定化を図れる。また、流路を片側のみに形成すれば良いので、他方の流路に相当する厚み分を削減することができ、電池間が詰まるため、組電池をモジュール体積比で30%程度まで小型化することができる。   According to the present invention, by suppressing variation in cooling, local battery deterioration can be suppressed, and battery output can be stabilized by uniform temperature management. In addition, since the flow path only needs to be formed on one side, the thickness corresponding to the other flow path can be reduced, and the space between the batteries is clogged, so that the assembled battery is downsized to about 30% in module volume ratio. be able to.

さらに、図7(b)に示すように、単電池10を支持しているのは一方の面では突起21であるが、他方の面では平滑面であるため、流路の突起による支持が1面に減り、電池を効果的に保持できるため、緊縛によるセルの凹みを抑制できるとともにより強固に電池を保持できる。   Further, as shown in FIG. 7B, the cell 10 is supported by the protrusions 21 on one surface, but is smooth on the other surface, so that the support by the protrusions of the flow path is 1 The surface can be reduced and the battery can be effectively held, so that the depression of the cell due to tight binding can be suppressed and the battery can be held more firmly.

また、樹脂部品に単電池が覆われているため、保温効果があり、長い信号待ちや一時駐車、気温の急激な変化に対して、出力効率のよい温度に保つことができる。   In addition, since the battery cell is covered with the resin parts, there is a heat retention effect, and it is possible to maintain a temperature with good output efficiency against a long signal waiting, temporary parking, and a rapid change in temperature.

セパレータの変更例
本発明の組電池に用いられるセパレータは、図1に示す突起および流路を有するセパレータ20に限定されず、本発明の効果が得られる範囲において任意に変更することができる。例えば、図8に示すように、冷却風の流通方向に沿った直線状の突起および流路を有するセパレータ(ホルダ型)23とすることもできる。
Example of Change of Separator The separator used in the assembled battery of the present invention is not limited to the separator 20 having the protrusions and flow paths shown in FIG. 1, and can be arbitrarily changed within a range where the effects of the present invention can be obtained. For example, as shown in FIG. 8, a separator (holder type) 23 having linear protrusions and flow paths along the flow direction of the cooling air may be used.

また、セパレータは、図1および8に示す単電池を保持するホルダ型に限定されず、図9に示すようなセパレータ(板状)24として、図示しない位置決め部材やケーシングによって固定してもよい。   Further, the separator is not limited to the holder type that holds the unit cell shown in FIGS. 1 and 8, and may be fixed as a separator (plate-like) 24 as shown in FIG. 9 by a positioning member or a casing (not shown).

さらに、図10に示すように、単電池10と一体化したセパレータ25、あるいは単電池10の容器表面に突起21および流路22を直接形成したものとしてもよい。電池表面にセパレータを一体成形することで、熱伝導および組立性の向上を図ることができる。   Furthermore, as shown in FIG. 10, the separator 25 integrated with the unit cell 10 or the protrusion 21 and the flow path 22 may be directly formed on the surface of the unit cell 10. By integrally forming the separator on the battery surface, it is possible to improve heat conduction and assembly.

セパレータ流路間隔の変更例
本発明の組電池において、単電池間に設けられる流路の幅は、図7に示すような全ての流路の間隔が等しいものに限定されない。図11は、単電池間の流路幅を変更した例を示す。なお、図11では、セパレータの図示は省略して、流路C〜Cのみを示している。図11に示すように、流路は、冷却風の上流側流路Cの幅が最大で、以降連続的に幅が減少し、下流側流路Cの幅が最小となるようにすることができる。冷却風は、上流側に行くほど流路に流入し難く、下流側に行くほど流入し易いので、この傾向と相殺するように流路幅を上流から下流に向けて狭めていけば、全ての流路において冷却風の流速すなわち単電池間の冷却のばらつきをより抑制することができる。
Example of changing separator channel spacing In the assembled battery of the present invention, the width of the channel provided between the single cells is not limited to that in which the intervals of all the channels are equal as shown in FIG. FIG. 11 shows an example in which the channel width between the cells is changed. In FIG. 11, the illustration of the separator is omitted, and only the flow paths C 1 to C 5 are shown. As shown in FIG. 11, the flow path, the width of the upstream flow channel C 1 of the cooling air is maximum, the width continuously decreases later, so that the width of the downstream-side passage C 5 is minimum be able to. Cooling air is less likely to flow into the flow path as it goes upstream, and it is easier to flow into the flow path as it goes downstream, so if you narrow the flow path width from upstream to downstream to offset this trend, The flow rate of the cooling air in the flow path, that is, the variation in cooling between the single cells can be further suppressed.

冷却風導入ダクトの変形例
図12に、冷却風導入ダクトを変更した例を示す。図12においても、セパレータの図示は省略している。図12に示すように、冷却風導入ダクト35は、冷却風導入口33において開口幅が最大であり、冷却風の下流側に行くほど狭まった構造を有している。冷却風は、上流側に行くほど流速が速く、下流側に行くほど流速が遅いので、この傾向と相殺するように冷却風導入ダクト35を上流から下流に向けて狭めていけば、上流から下流にかけての流速が均一となり、全ての流路において冷却風の流入し易さの程度も均一化され、これにより単電池間の冷却のばらつきをより抑制することができる。
To a modification 12 of the cooling air introduction duct shows an example of changing the cooling air introducing duct. Also in FIG. 12, illustration of the separator is omitted. As shown in FIG. 12, the cooling air introduction duct 35 has a maximum opening width at the cooling air introduction port 33 and has a structure that narrows toward the downstream side of the cooling air. The cooling air velocity increases as it goes upstream, and the flow velocity decreases as it goes downstream. Therefore, if the cooling air introduction duct 35 is narrowed from upstream to downstream so as to offset this tendency, the cooling air flows from upstream to downstream. And the degree of easiness of inflow of the cooling air in all the channels is made uniform, whereby the variation in cooling between the single cells can be further suppressed.

冷却の制御方法
リチウムイオン2次電池は、著しい低温においては充放電特性が低下するため、ある程度の温度までは加熱された方が性能が向上する。そのため、本発明では、周囲の環境が極度の低温である場合や始動直後においては冷却風を流通させずに組電池の発熱によって電池の温度を上昇させ、所望の温度に達した際に冷却風の流通を開始するように制御することが好ましい。このように制御するためには、組電池に温度センサーを設け、このセンサーと冷却風の導入手段を連動させる等、公知の方法を利用することができる。
Cooling Control Method Lithium ion secondary batteries have poor charge / discharge characteristics at a remarkably low temperature. Therefore, the performance is improved when heated to a certain temperature. Therefore, in the present invention, when the surrounding environment is extremely low temperature or immediately after starting, the cooling air is not circulated and the temperature of the battery is increased by the heat generated by the assembled battery. It is preferable to control so as to start distribution. In order to control in this way, it is possible to use a known method such as providing a temperature sensor in the assembled battery and linking this sensor with the cooling air introducing means.

本発明によれば、組電池を構成する各単電池の冷却のばらつきを抑制することによって各単電池の局部的な劣化を抑制して、長期に亘って安定した組電池の運転が可能となるから、厳格な安定運転が要求される車載用リチウムイオン2次電池システムに適用して極めて有望である。   According to the present invention, it is possible to suppress the local deterioration of each single cell by suppressing the variation in cooling of each single cell constituting the assembled battery, and to stably operate the assembled battery over a long period of time. Therefore, it is extremely promising when applied to an in-vehicle lithium ion secondary battery system that requires strict and stable operation.

10…単電池、
11…正極、
12…負極、
20…セパレータ(ホルダ型)、
21…突起、
22…流路、
23…セパレータ(ホルダ型)、
24…セパレータ(板状)、
25…セパレータ(一体型)、
30…ケーシング、
31…冷却風導入ダクト、
32…冷却風排出ダクト、
33…冷却風導入口、
34…冷却風排出口、
40…位置決め部材、
50…セルコントローラ、
60…セパレータ(従来)、
61…突起(従来)、
62…流路(従来)、
〜a…従来のセパレータ流路の座標、
〜b…本発明のセパレータ流路の座標、
〜c…流路の変更例、
M…組電池。

10 ... single cell,
11 ... positive electrode,
12 ... negative electrode,
20: Separator (holder type),
21 ... protrusions,
22 ... flow path,
23 ... Separator (holder type),
24 ... separator (plate-like),
25 ... separator (integral type),
30 ... casing,
31 ... Cooling air introduction duct,
32. Cooling air discharge duct,
33 ... Cooling air inlet,
34 ... Cooling air outlet,
40: positioning member,
50 ... Cell controller,
60 ... Separator (conventional),
61 ... protrusion (conventional),
62 ... flow path (conventional),
a 1 to a 8 ... conventional separator flow path coordinates,
b 1 to b 4 ... the coordinates of the separator flow path of the present invention,
c 1 to c 5 ...
M ... assembled battery.

Claims (2)

複数の単電池と、
前記単電池間のそれぞれに配置され冷却風の流路を有するセパレータと、
前記流路へ冷却風を導入する冷却風導入ダクトと、
前記流路からの冷却風を排出する冷却風排出ダクトとを備えた組電池であって、
前記流路は、前記冷却風導入ダクトおよび前記冷却風排出ダクト内の冷却風流通方向に対して垂直に延在し、
前記セパレータは、熱伝導性を有し、
前記流路は、前記セパレータの一方の面にのみ設けられていることを特徴とする組電池。
Multiple cells,
A separator having a cooling air flow path disposed between each of the unit cells;
A cooling air introduction duct for introducing cooling air into the flow path;
A battery pack comprising a cooling air discharge duct for discharging cooling air from the flow path,
The flow path extends perpendicular to the cooling air flow direction in the cooling air introduction duct and the cooling air discharge duct,
The separator has thermal conductivity,
The assembled battery, wherein the flow path is provided only on one surface of the separator.
前記セパレータに設けられた流路の幅は、前記冷却風導入ダクト内の冷却風流通方向の上流側から下流側に向かって、連続的に小さくなることを特徴とする請求項1に記載の組電池。

2. The set according to claim 1, wherein the width of the flow path provided in the separator continuously decreases from the upstream side to the downstream side in the cooling air flow direction in the cooling air introduction duct. battery.

JP2009229425A 2009-10-01 2009-10-01 Battery pack Pending JP2011076967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009229425A JP2011076967A (en) 2009-10-01 2009-10-01 Battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009229425A JP2011076967A (en) 2009-10-01 2009-10-01 Battery pack

Publications (1)

Publication Number Publication Date
JP2011076967A true JP2011076967A (en) 2011-04-14

Family

ID=44020737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009229425A Pending JP2011076967A (en) 2009-10-01 2009-10-01 Battery pack

Country Status (1)

Country Link
JP (1) JP2011076967A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013054869A (en) * 2011-09-01 2013-03-21 Toshiba Corp Assembled battery and manufacturing method of the same
EP2575193A1 (en) 2011-09-29 2013-04-03 Lithium Energy Japan Battery pack
JP2013187101A (en) * 2012-03-09 2013-09-19 Kojima Press Industry Co Ltd Refrigerant passage formation structure between battery cases
JP2015050064A (en) * 2013-09-02 2015-03-16 株式会社Gsユアサ Power storage device
JP2015079598A (en) * 2013-10-15 2015-04-23 株式会社デンソー Battery pack
JPWO2015019429A1 (en) * 2013-08-07 2017-03-02 株式会社日立製作所 Battery module
WO2017064906A1 (en) * 2015-10-15 2017-04-20 株式会社豊田自動織機 Battery module
JP2017111872A (en) * 2015-12-14 2017-06-22 株式会社豊田自動織機 Method of manufacturing battery module and battery pack, battery module, and battery pack
KR101865940B1 (en) * 2012-03-19 2018-06-08 현대자동차주식회사 Radiating apparatus for battery cell using interface plate
JPWO2017154077A1 (en) * 2016-03-07 2018-10-18 株式会社東芝 Battery device and battery system
JP2020119884A (en) * 2019-01-25 2020-08-06 トヨタ自動車株式会社 Cooling structure for power storage stack and cooling system for power storage stack
CN112713354A (en) * 2019-10-08 2021-04-27 通用汽车环球科技运作有限责任公司 Thermal insulation layer incorporating phase change material for power module assembly
US11509003B2 (en) 2019-01-25 2022-11-22 Toyota Jidosha Kabushiki Kaisha Cooling structure for power storage stack and cooling system for power storage stack
EP4358238A1 (en) 2022-10-20 2024-04-24 Prime Planet Energy & Solutions, Inc. Battery module

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013054869A (en) * 2011-09-01 2013-03-21 Toshiba Corp Assembled battery and manufacturing method of the same
KR102017089B1 (en) 2011-09-29 2019-09-02 가부시키가이샤 지에스 유아사 Assembled battery
EP2575193A1 (en) 2011-09-29 2013-04-03 Lithium Energy Japan Battery pack
KR20130035244A (en) 2011-09-29 2013-04-08 가부시키가이샤 리튬 에너지 재팬 Assembled battery
US9028996B2 (en) 2011-09-29 2015-05-12 Lithium Energy Japan Battery pack
JP2013187101A (en) * 2012-03-09 2013-09-19 Kojima Press Industry Co Ltd Refrigerant passage formation structure between battery cases
KR101865940B1 (en) * 2012-03-19 2018-06-08 현대자동차주식회사 Radiating apparatus for battery cell using interface plate
JPWO2015019429A1 (en) * 2013-08-07 2017-03-02 株式会社日立製作所 Battery module
JP2015050064A (en) * 2013-09-02 2015-03-16 株式会社Gsユアサ Power storage device
JP2015079598A (en) * 2013-10-15 2015-04-23 株式会社デンソー Battery pack
WO2017064906A1 (en) * 2015-10-15 2017-04-20 株式会社豊田自動織機 Battery module
JP2017076540A (en) * 2015-10-15 2017-04-20 株式会社豊田自動織機 Battery module
JP2017111872A (en) * 2015-12-14 2017-06-22 株式会社豊田自動織機 Method of manufacturing battery module and battery pack, battery module, and battery pack
JPWO2017154077A1 (en) * 2016-03-07 2018-10-18 株式会社東芝 Battery device and battery system
JP2020119884A (en) * 2019-01-25 2020-08-06 トヨタ自動車株式会社 Cooling structure for power storage stack and cooling system for power storage stack
US11509003B2 (en) 2019-01-25 2022-11-22 Toyota Jidosha Kabushiki Kaisha Cooling structure for power storage stack and cooling system for power storage stack
JP7200907B2 (en) 2019-01-25 2023-01-10 トヨタ自動車株式会社 Energy storage stack cooling structure and energy storage stack cooling system
CN112713354A (en) * 2019-10-08 2021-04-27 通用汽车环球科技运作有限责任公司 Thermal insulation layer incorporating phase change material for power module assembly
CN112713354B (en) * 2019-10-08 2023-04-07 通用汽车环球科技运作有限责任公司 Thermal insulation layer incorporating phase change material for power module assembly
EP4358238A1 (en) 2022-10-20 2024-04-24 Prime Planet Energy & Solutions, Inc. Battery module

Similar Documents

Publication Publication Date Title
JP2011076967A (en) Battery pack
JP4726691B2 (en) Battery module
US8673475B2 (en) Middle or large-sized battery pack case providing improved distribution uniformity in coolant flux
KR100981878B1 (en) Middle or Large-sized Battery Pack Case Providing Improved Distribution Uniformity of Coolant Flux
KR102082385B1 (en) Cooling Member for Battery Module Comprising Member for Providing Coolant Flow Channels
US8492019B2 (en) Extruded thermal fin for temperature control of battery cells
KR100839374B1 (en) Battery module
JP5364791B2 (en) Power storage module
JP5307138B2 (en) battery
CN104051818A (en) Micro-Channel Cooling Fin Design Based on an Equivalent Temperature Gradient
KR101601442B1 (en) Battery system and thermal adjusting unit therefor
WO2009038322A3 (en) Unified air cooling structure of high-capacity battery system
KR20140138412A (en) Battery cooling apparatus in electric vehicle
CN218498198U (en) Liquid cooling assembly and battery pack
JP2005116342A (en) Battery pack
CN116526015B (en) Battery module and energy storage system
KR101805167B1 (en) Battery pack of improved cooling efficiency
JP2014130780A (en) Battery module and battery unit
JP2013191397A (en) Battery module
KR20200084404A (en) Cooling panel for battery module of electric vehicles
JP5876057B2 (en) Battery compartment for vehicles
JP6082309B2 (en) In-vehicle fuel cell system
KR100805114B1 (en) Secondary battery module
CN216288626U (en) Liquid cooling board and battery package
CN221352915U (en) Cooling structure, battery pack, power utilization device and energy storage device