WO2017154071A1 - Battery device - Google Patents

Battery device Download PDF

Info

Publication number
WO2017154071A1
WO2017154071A1 PCT/JP2016/056972 JP2016056972W WO2017154071A1 WO 2017154071 A1 WO2017154071 A1 WO 2017154071A1 JP 2016056972 W JP2016056972 W JP 2016056972W WO 2017154071 A1 WO2017154071 A1 WO 2017154071A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
case
duct
terminal
exhaust
Prior art date
Application number
PCT/JP2016/056972
Other languages
French (fr)
Japanese (ja)
Inventor
中濱 敬文
小林 武則
Original Assignee
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝 filed Critical 株式会社東芝
Priority to PCT/JP2016/056972 priority Critical patent/WO2017154071A1/en
Priority to JP2018503865A priority patent/JP6542462B2/en
Publication of WO2017154071A1 publication Critical patent/WO2017154071A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6566Means within the gas flow to guide the flow around one or more cells, e.g. manifolds, baffles or other barriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Embodiments of the present invention relate to a battery device.
  • a battery device including a plurality of batteries and a case containing a plurality of batteries is known. Such a battery device is desired to have improved cooling performance.
  • the problem to be solved by the present invention is to provide a battery device capable of improving the cooling performance.
  • the battery device of the embodiment includes a plurality of batteries, an electrical connection portion, a battery case, a terminal portion case, a first ventilation duct, and a second ventilation duct.
  • Each of the plurality of batteries has a flat rectangular parallelepiped battery body and a terminal provided at one end of the battery body.
  • the battery body has a first surface having the largest area among the surfaces of the battery body, and a second surface having a smaller area than the first surface.
  • the plurality of batteries are arranged with the first surfaces facing each other with a gap between the first surfaces of the battery bodies adjacent to each other.
  • the electrical connection portion electrically connects the terminals of the plurality of batteries.
  • the battery case houses battery bodies of the plurality of batteries.
  • the terminal case is combined with the battery case, accommodates the electrical connection portion, and covers the gap formed between the first surfaces of the battery bodies adjacent to each other from one side.
  • the first ventilation duct extends substantially parallel to the first surface of the battery body at a position opposite to the terminal case with respect to the battery case, and the battery case from the opposite side to the terminal case. It communicates with the inside.
  • the second ventilation duct extends substantially parallel to the second surface of the battery body and communicates with the inside of the battery case from a direction different from the direction in which the battery case and the terminal case are arranged.
  • FIG. 1 is a perspective view showing the battery device 1 of the first embodiment.
  • the battery device 1 of the present embodiment is a device that includes a plurality of batteries (battery cells) 21 and a cooling structure that cools the plurality of batteries 21.
  • the battery device 1 may be referred to as, for example, “storage battery device”, “assembled battery device”, “battery cooling device”, and the like.
  • the battery device 1 is installed in various devices, machines, facilities, and the like, and is used as a power source for these various devices, machines, facilities, and the like.
  • the battery device 1 may be used as a mobile power source such as a power source mounted on an automobile, or may be used as a fixed power source such as a POS (Point Of Sales) system power source. .
  • POS Point Of Sales
  • the battery device 1 of this embodiment includes a battery module (battery pack) 11, an intake duct 12, and an exhaust duct 13.
  • the battery module 11 of the present embodiment includes a plurality of batteries (battery cells) 21, a plurality of bus bars 22 (see FIG. 3), a substrate 23 (see FIG. 3), a battery case 24, and a terminal portion case 25. Have.
  • Each of the plurality of batteries 21 is, for example, a lithium ion secondary battery.
  • the battery 21 may be another secondary battery such as a nickel metal hydride battery, a nickel cadmium battery, or a lead storage battery.
  • FIG. 2 is a perspective view showing the battery 21 of the present embodiment. As shown in FIG. 2, each battery 21 includes a battery main body 31 and a pair of terminals 32 ⁇ / b> A and 32 ⁇ / b> B.
  • the battery body 31 has a case C that forms the outer shape of the battery body 31.
  • Case C the positive electrode, the negative electrode, the insulating film, the electrolyte, and the like, which are components of the battery 21, are accommodated.
  • Case C is formed in a flat rectangular parallelepiped shape.
  • the battery main body 31 (battery 21) is formed in a flat rectangular parallelepiped shape.
  • the battery body 31 has an upper surface 31a, a lower surface 31b, a pair of first side surfaces 31c, and a pair of second side surfaces 31d.
  • a pair of terminals 32A and 32B are provided on the upper surface 31a.
  • the lower surface 31b is located on the opposite side to the upper surface 31a.
  • the pair of first side surfaces 31c and the pair of second side surfaces 31d extend in a direction substantially orthogonal to the upper surface 31a and the lower surface 31b, and connect the edge of the upper surface 31a and the edge of the lower surface 31b.
  • the pair of first side surfaces 31c and the pair of second side surfaces 31d are side surfaces that connect the upper end portion (first end portion) of the case C and the lower end portion (second end portion) of the case C.
  • the pair of first side surfaces 31c are substantially parallel to each other.
  • Each of the pair of first side surfaces 31 c is a surface having the largest area among the surfaces of the battery body 31.
  • Each of the pair of first side surfaces 31c is an example of a “first surface (main surface)”.
  • the pair of second side surfaces 31d extends in a direction substantially orthogonal to the first side surface 31c, and connects the edges of the pair of first side surfaces 31c.
  • the pair of second side surfaces 31d are substantially parallel to each other.
  • the second side surface 31d has a smaller area than the first side surface 31c.
  • Each of the pair of second side surfaces 31d is an example of a “second surface”.
  • the upper surface 31a may be referred to as a “third surface”.
  • the pair of terminals 32A and 32B are provided at one end (upper end) of the battery body 31.
  • the pair of terminals 32A and 32B includes a positive terminal 32A and a negative terminal 32B.
  • the positive terminal 32 ⁇ / b> A is electrically connected to the positive electrode in the case C.
  • the negative terminal 32B is electrically connected to the negative electrode in the case C.
  • the plurality of batteries 21 are arranged substantially parallel to each other, for example, with a pair of terminals 32 ⁇ / b> A and 32 ⁇ / b> B facing in the same direction.
  • the plurality of batteries 21 need not have the terminals 32A and 32B facing in the same direction.
  • the plurality of batteries 21 may be arranged with the terminals 32A and 32B facing in different directions (for example, opposite directions).
  • the plurality of batteries 21 include a plurality (for example, three or more) of batteries 21 arranged in the first row L1 and a plurality of (for example, three or more) batteries 21 arranged in the second row L2.
  • the plurality of batteries 21 included in the first row L1 are arranged with the first side surfaces 31c facing each other with a gap g between the first side surfaces 31c.
  • the plurality of batteries 21 included in the second row L2 are arranged with the first side surfaces 31c facing each other with a gap g between the first side surfaces 31c.
  • the gap g formed between the plurality of batteries 21 included in the first row L1 is connected to the gap g formed between the plurality of batteries 21 included in the second row L2.
  • the plurality of batteries 21 included in the first row L1 and the plurality of batteries 21 included in the second row L2 are spaced apart from each other or provided with an insulator therebetween, and the second side surface. 31d is arranged facing each other.
  • the ventilation gap g is a fluid path (fluid flow part) extending along the first side surface 31 a of the battery body 31.
  • the + X direction is a direction from the first row L1 toward the second row L2.
  • the ⁇ X direction is the opposite direction to the + X direction.
  • the Y direction is a direction in which the plurality of batteries 21 are arranged with the first side surfaces 31c facing each other.
  • the Z direction is a direction from the lower surface 31b of the battery body 31 toward the upper surface 31a.
  • the + X direction ( ⁇ X direction), the Y direction, and the Z direction intersect with each other (for example, substantially orthogonal).
  • the Z direction is an example of a “first direction”.
  • the + X direction is an example of a “second direction”.
  • the upper surface 31a and the lower surface 31b of each battery 21 are surfaces along the + X direction and the Y direction.
  • the first side surface 31c of each battery 21 is a surface along the + X direction and the Z direction.
  • the second side surface 31d of each battery 21 is a surface along the Y direction and the Z direction.
  • FIG. 3 is a cross-sectional view showing the internal configuration of the battery device 1 of the present embodiment.
  • the plurality of bus bars 22 are connected to the terminals 32 ⁇ / b> A and 32 ⁇ / b> B of the plurality of batteries 21.
  • the plurality of bus bars 22 is an example of an “electrical connection part”.
  • the plurality of bus bars 22 electrically connect the terminals 32 ⁇ / b> A and 32 ⁇ / b> B of the plurality of batteries 21.
  • the bus bar 22 electrically connects the positive terminal 32 ⁇ / b> A of one battery 21 and the negative terminal 32 ⁇ / b> B of another battery 21.
  • the plurality of batteries 21 are electrically connected in series or in parallel.
  • the board (circuit board) 23 is a monitoring board for monitoring the voltage and temperature of the battery 21, for example.
  • substrate 23 may be a control board which controls charging / discharging of the battery 21, and may be a board
  • the battery case 24 is formed in a box shape in which one side is opened, and a plurality of batteries 21 included in the first row L1 and the second row L2.
  • the battery main body 31 is accommodated integrally.
  • the battery case 24 has a lower wall 24a, a first side wall 24b, a second side wall 24c, a third side wall 24d, and a fourth side wall 24e.
  • the lower wall 24a is a wall along the + X direction and the Y direction.
  • the lower wall 24 a faces the lower surfaces 31 b of the plurality of batteries 21.
  • the four side walls 24b, 24c, 24d, 24e extend in the Z direction from the edge of the lower wall 24a.
  • the first side wall 24b and the second side wall 24c are separated from each other in the + X direction and extend substantially parallel to each other along the Y direction.
  • the first side wall 24b faces the second side surface 31d of the plurality of batteries 21 included in the first row L1.
  • the second side wall 24c is located on the opposite side of the plurality of batteries 21 from the first side wall 24b.
  • the second side wall 24c faces the second side surface 31d of the plurality of batteries 21 included in the second row L2.
  • the third side wall 24d and the fourth side wall 24e are separated from each other in the Y direction and extend substantially parallel to each other along the + X direction.
  • the third side wall 24d and the fourth side wall 24e face the first side surfaces 31c of the plurality of batteries 21 included in the first row L1 and the second row L2.
  • the lower wall 24a of the battery case 24 has an air inlet 41 facing the ventilation gap g.
  • the intake port 41 is an example of a “ventilator” and a “first vent”.
  • the intake port 41 is open in the Z direction.
  • the intake port 41 is, for example, a rectangular slot along the + X direction.
  • the shape of the inlet 41 is not limited to the above example.
  • a plurality of intake ports 41 may be provided for one ventilation gap g, or only one intake port 41 may be provided.
  • the lower wall 24 a of the battery case 24 does not have the air inlet 41 at a position facing the battery 21. That is, the lower surface 31 b of the battery 21 is covered with the lower wall 24 a of the battery case 24.
  • the second side wall 24c of the battery case 24 has an exhaust port 42 that faces the ventilation gap g.
  • the exhaust port 42 is an example of a “second vent”.
  • the exhaust port 42 opens in the + X direction.
  • the exhaust port 42 is, for example, a rectangular slot along the Z direction.
  • the shape of the exhaust port 42 is not limited to the above example.
  • a plurality of exhaust ports 42 may be provided for one ventilation gap g, or only one exhaust port 42 may be provided.
  • the second side wall 24 c of the battery case 24 does not have the exhaust port 42 at a position facing the battery 21. That is, the second side surface 31 d of the battery 21 is covered with the second side wall 24 c of the battery case 24.
  • the other side walls 24b, 24d, and 24e of the battery case 24 have neither the intake port 41 nor the exhaust port 42.
  • the terminal case 25 (terminal box, second case) is combined with the battery case 24 and closes the internal space (accommodating portion) of the battery case 24.
  • the terminal case 25 is formed in a flat box shape that is thin in the Z direction.
  • the terminal case 25 has substantially the same outer shape in the + X direction and the Y direction as the battery case 24.
  • the terminal case 25 is attached to the battery case 24 from the side opposite to the lower wall 24 a of the battery case 24 and covers the internal space of the battery case 24. Thereby, the battery case 24 and the terminal part case 25 are located in a line in the Z direction.
  • the terminal case 25 is connected to the battery case 24 by a coupler or an adhesive.
  • the terminal case 25 has an upper wall 25a, a first side wall 25b, a second side wall 25c, a third side wall 25d, a fourth side wall 25e, and a partition wall 25f (see FIG. 3).
  • the upper wall 25a faces away from the battery case 24.
  • the four side walls 25b, 25c, 25d, and 25e extend along the Z direction from the edge of the upper wall 25a.
  • the first side wall 25b and the second side wall 25c are separated from each other in the + X direction and extend substantially parallel to each other along the Y direction.
  • the third side wall 25d and the fourth side wall 25e are separated from each other in the Y direction and extend substantially parallel to each other along the + X direction.
  • the partition wall (partition plate) 25f of the terminal case 25 is located at the boundary between the battery case 24 and the terminal case 25.
  • the partition wall 25f is a flat wall along the + X direction and the Y direction.
  • the partition wall 25f has a plurality of insertion holes 45 through which the terminals 32A and 32B of the plurality of batteries 21 are passed.
  • the terminals 32 ⁇ / b> A and 32 ⁇ / b> B of the plurality of batteries 21 are passed through the insertion holes 45 of the partition wall 25 f and exposed inside the terminal portion case 25.
  • a plurality of bus bars 22 and a substrate 23 are accommodated inside the terminal case 25.
  • the terminals 32 ⁇ / b> A and 32 ⁇ / b> B of the plurality of batteries 21 are electrically connected by a plurality of bus bars 22 accommodated in the terminal portion case 25.
  • the partition wall 25f does not have a hole at a position facing the ventilation gap g.
  • the partition wall 25f faces a plurality of ventilation gaps g formed between the plurality of batteries 21, and integrally covers the plurality of ventilation gaps g. That is, the partition wall 25f covers the plurality of ventilation gaps g from one side. In other words, the plurality of ventilation gaps g are closed in the Z direction by the partition wall 25f.
  • the intake duct 12 forms an intake passage that guides a cooling fluid (refrigerant, for example, air) from the outside of the battery module 11 toward the battery module 11.
  • the intake duct 12 is an example of a “first ventilation duct”. More specifically, the intake duct 12 has a first portion 12a and a second portion 12b.
  • the first portion 12a of the intake duct 12 is provided at a position that does not overlap the battery case 24 in the Z direction.
  • the first portion 12a of the intake duct 12 extends from the outside of the battery case 24 in the direction approaching the battery case 24 along the + X direction.
  • the + X direction is a direction substantially parallel to the first side surface 31c of the battery body 31. Cooling fluid is supplied to the first portion 12a of the intake duct 12 from the outside by an unillustrated intake fan or the like.
  • the cooling fluid supplied to the first portion 12a of the intake duct 12 flows along the + X direction inside the first portion 12a of the intake duct 12.
  • the second portion 12b of the intake duct 12 is located downstream of the first portion 12a in the flow direction of the cooling fluid in the intake duct 12.
  • the second portion 12b of the intake duct 12 extends along the lower wall 24a of the battery case 24 from the first portion 12a. That is, the second portion 12 b of the intake duct 12 extends in the + X direction at a position opposite to the terminal case 25 with respect to the battery case 24.
  • the second portion 12b of the intake duct 12 extends over substantially the entire length of the battery case 24 in the + X direction.
  • the cooling fluid flows into the second portion 12b of the intake duct 12 from the first portion 12a.
  • the cooling fluid that has flowed into the second portion 12b of the intake duct 12 flows along the + X direction inside the second portion 12b.
  • the second portion 12b of the intake duct 12 overlaps the battery case 24 in the Z direction.
  • the second portion 12 b of the intake duct 12 communicates with the inside of the battery case 24 from the side opposite to the terminal case 25 through the intake port 41 of the battery case 24.
  • the second portion 12b of the intake duct 12 communicates with the inside of the battery case 24 in the Z direction.
  • the second portion 12 b of the intake duct 12 causes the cooling fluid flowing inside the second portion 12 b of the intake duct 12 to flow into the battery case 24 from the intake port 41 of the battery case 24.
  • the width of the intake duct 12 in the Y direction is substantially the same as the width of the battery case 24 in the Y direction.
  • the intake duct 12 overlaps all the ventilation gaps g formed between the plurality of batteries 21 in a plan view viewed along the Z direction.
  • the exhaust duct 13 forms an exhaust passage through which the cooling fluid that has passed through the inside of the battery module 11 flows out.
  • the exhaust duct 13 is an example of a “second ventilation duct”. More specifically, the exhaust duct 13 has a first portion 13a and a second portion 13b.
  • the first portion 13a of the exhaust duct 13 overlaps the second side wall 24c of the battery case 24 in the -X direction.
  • the first portion 13 a of the exhaust duct 13 extends in the Z direction along the second side wall 24 c of the battery case 24.
  • the Z direction is a direction substantially parallel to the second side surface 31d of the battery body 31.
  • the first portion 13a of the exhaust duct 13 extends over substantially the entire length of the battery case 24 in the Z direction.
  • the first portion 13 a of the exhaust duct 13 communicates with the inside of the battery case 24 through the exhaust port 42 of the battery case 24. That is, the first portion 13 a of the exhaust duct 13 communicates with the inside of the battery case 24 from a direction different from the direction in which the battery case 24 and the terminal case 25 are arranged. In the present embodiment, the battery case 24 and the exhaust duct 13 communicate with each other in the + X direction. The cooling fluid that has passed through the inside of the battery case 24 flows out from the exhaust port 42 of the battery case 24 to the first portion 13 a of the exhaust duct 13.
  • the second portion 13b of the exhaust duct 13 is located downstream of the first portion 13a in the flow direction of the cooling fluid in the exhaust duct 13.
  • the second portion 13b of the exhaust duct 13 extends in the Z direction from the first portion 13a.
  • the second portion 13 b of the exhaust duct 13 extends along the second side wall 25 c of the terminal case 25.
  • the cooling fluid flows into the second portion 13b of the exhaust duct 13 from the first portion 13a.
  • the second portion 13 b of the exhaust duct 13 guides the cooling fluid flowing from the first portion 13 a toward the outside of the battery module 11.
  • the width of the exhaust duct 13 in the Y direction is substantially the same as the width of the battery case 24 in the Y direction.
  • the exhaust duct 13 overlaps all the ventilation gaps g formed between the plurality of batteries 21 in a plan view viewed along the + X direction.
  • a plurality of energization cables (not shown) are arranged in the exhaust duct 13.
  • the plurality of energization cables are electrically connected to the plurality of batteries 21 via the plurality of bus bars 22.
  • the exhaust duct 13 of the present embodiment is also used as a space for connecting a plurality of energizing cables.
  • a cooling fluid is supplied to the intake duct 12 from the outside of the battery module 11.
  • the cooling fluid supplied to the intake duct 12 flows through the intake duct 12 along the + X direction.
  • the cooling fluid that has flowed inside the intake duct 12 changes its flow direction so as to go toward the inside of the battery case 24 in the second portion 12b of the intake duct 12.
  • the cooling fluid flowing inside the second portion 12 b of the intake duct 12 flows into the ventilation gap g between the plurality of batteries 21 from the intake port 41 of the battery case 24.
  • the cooling fluid that has flowed into the ventilation gap g takes heat away from the battery 21 by directly contacting the first side surface 31c of the battery 21 in the process of passing through the ventilation gap g. Thereby, cooling of the some battery 21 is accelerated
  • the cooling fluid that has flowed into the first portion 13 a of the exhaust duct 13 changes the flow direction toward the second portion 13 b of the exhaust duct 13 in the first portion 13 a of the exhaust duct 13, and toward the outside of the battery module 11. Flowing.
  • the cooling performance of the battery device 1 can be improved. That is, in the present embodiment, the intake duct 12 extends substantially parallel to the first side surface 31c (the surface having the largest area) of the battery body 31 at a position opposite to the terminal case 25 with respect to the battery case 24, The battery case 24 communicates with the inside of the battery case 24 from the side opposite to the terminal case 25. According to such a configuration, the cooling fluid flowing in the intake duct 12 flows in the direction of flowing toward the inside of the battery case 24 in a relatively wide range (region) along the first side surface 31 c of the battery body 31. Can be changed.
  • the cooling fluid flowing through the intake duct 12 is formed between the plurality of batteries 21. Can smoothly flow into the ventilation gap g. As a result, the flow rate of the cooling fluid from the intake duct 12 toward the inside of the battery case 24 can be increased, and the cooling performance of the battery device 1 can be improved.
  • the cooling fluid is evenly supplied to the plurality of batteries 21 arranged with the first side surfaces 31c facing each other. It becomes easy to do. Thereby, the temperature variation in the battery case 24 can be suppressed, and the plurality of batteries 21 can be efficiently cooled. Also from this viewpoint, the cooling performance of the battery device 1 can be improved.
  • the intake duct 12 extends substantially parallel to the first side surface 31 c of the battery body 31.
  • the exhaust duct 13 extends substantially parallel to the second side surface 31 d of the battery body 31.
  • both the intake duct 12 and the exhaust duct 13 can be accommodated in a region that is substantially the same as or smaller than the width of the battery case 24 in the Y direction. Thereby, size reduction of the battery apparatus 1 can be achieved.
  • the intake duct 12 and the exhaust duct 13 become an obstacle between the plurality of battery devices 1. Hateful. For this reason, the some battery apparatus 1 (battery module 11) can be arrange
  • the battery case 24 and the terminal case 25 are aligned in the Z direction.
  • the intake duct 12 extends in a + X direction that is substantially parallel to the first side surface 31c of the battery body 31 at a position opposite to the terminal case 25 with respect to the battery case 24 and intersects the Z direction. ing. According to such a structure, it can suppress that the battery apparatus 1 becomes thick compared with the case where the intake duct 12 is extended in the Z direction. Thereby, further size reduction of the battery apparatus 1 can be achieved.
  • the battery case 24 and the exhaust duct 13 communicate with each other in the + X direction.
  • a part of the cooling fluid flowing into the battery case 24 while having an inertial force component in the + X direction by flowing in the intake duct 12 in the + X direction is exhausted from the inside of the battery case 24. It can flow into the duct 13 in the + X direction.
  • the cooling fluid flowing through the intake duct 12 easily flows smoothly into the exhaust duct 13 through the inside of the battery case 24.
  • the flow rate of the cooling fluid from the intake duct 12 toward the inside of the battery case 24 can be further increased, and the cooling performance of the battery device 1 can be further improved.
  • the intake duct 12 and the battery case 24 are arranged in the Z direction.
  • the exhaust duct 13 extends in the Z direction. According to such a configuration, a part of the cooling fluid flowing into the battery case 24 while having an inertial force component in the Z direction by flowing in the Z direction from the intake duct 12 toward the inside of the battery case 24 is obtained.
  • the exhaust duct 13 can flow in the Z direction. For this reason, it becomes easier for the cooling fluid to flow into the exhaust duct 13 more smoothly from the inside of the battery case 24. As a result, the flow rate of the cooling fluid from the intake duct 12 toward the inside of the battery case 24 can be further increased, and the cooling performance of the battery device 1 can be further improved.
  • the present embodiment is different from the first embodiment in that the exhaust duct 13 has a plurality of exhaust passages 51 and 52.
  • the configurations other than those described below are the same as the configurations of the first embodiment.
  • the exhaust duct 13 has a first exhaust flow path 51 and a second exhaust flow path 52.
  • the first exhaust flow path 51 and the second exhaust flow path 52 are arranged separately on both sides of the battery case 24 in the + X direction, and communicate with the inside of the battery case 24, respectively.
  • the first exhaust passage 51 is an example of a “first ventilation passage”.
  • the second exhaust passage 52 is an example of a “second ventilation passage”.
  • the battery case 24 of the present embodiment has an exhaust port 42 in the first side wall 24b in addition to the second side wall 24c. That is, the first side wall 24b has an exhaust port 42 that faces the ventilation gap g. The exhaust port 42 of the first side wall 24b opens in the ⁇ X direction. The first side wall 24 b does not have the exhaust port 42 at a position facing the battery 21.
  • the first exhaust passage 51 overlaps the first side wall 24b of the battery case 24 in the + X direction.
  • the first exhaust passage 51 extends in the Z direction along the first side wall 24 b of the battery case 24.
  • the first exhaust passage 51 communicates with the inside of the battery case 24 in the + X direction through the exhaust port 42 of the first side wall 24b of the battery case 24.
  • the first exhaust passage 51 communicates with the inside of the battery case 24 from a direction different from the direction in which the battery case 24 and the terminal case 25 are arranged.
  • Part of the cooling fluid that has flowed into the battery case 24 flows out from the exhaust port 42 of the first side wall 24 b of the battery case 24 to the first exhaust flow path 51.
  • the second exhaust flow path 52 overlaps the second side wall 24c of the battery case 24 in the -X direction.
  • the second exhaust flow path 52 extends in the Z direction along the second side wall 24 c of the battery case 24.
  • the second exhaust passage 52 communicates with the inside of the battery case 24 in the ⁇ X direction through the exhaust port 42 of the second side wall 24 c of the battery case 24. That is, the second exhaust flow path 52 communicates with the inside of the battery case 24 from a direction different from the direction in which the battery case 24 and the terminal portion case 25 are arranged.
  • the cooling fluid that has flowed into the battery case 24 flows out from the exhaust port 42 of the second side wall 24 c of the battery case 24 to the second exhaust flow path 52.
  • the cooling performance of the battery device 1 can be improved as in the first embodiment.
  • the exhaust duct 13 includes a first exhaust passage 51 and a second exhaust passage 52.
  • the first exhaust flow path 51 and the second exhaust flow path 52 are arranged separately on both sides of the battery case 24 in the + X direction, and communicate with the inside of the battery case 24, respectively.
  • the ventilation cross-sectional area of the exhaust duct 13 can be increased.
  • the “ventilation cross-sectional area” referred to in the present application is a cross-sectional area along a direction substantially orthogonal to the flow direction of the cooling fluid, and means a flow path cross-sectional area through which the cooling fluid flows.
  • the ventilation resistance of the exhaust duct 13 can be reduced. Thereby, the quantity of the cooling fluid which flows into the ventilation gap g can be increased, and the cooling performance of the battery device 1 can be further improved.
  • each of the first exhaust passage 51 and the second exhaust passage 52 has a third portion 13c (extension portion) in addition to the first portion 13a and the second portion 13b described above.
  • the third portion 13 c is located on the downstream side of the second portion 13 b in the flow direction of the cooling fluid in the exhaust duct 13.
  • the third portion 13 c of the first exhaust flow path 51 extends in the + X direction along the upper wall 25 a of the terminal case 25 from the end of the second portion 13 b of the first exhaust flow path 51.
  • the third portion 13 c of the second exhaust passage 52 extends in the ⁇ X direction along the upper wall 25 a of the terminal case 25 from the end of the second portion 13 b of the second exhaust passage 52.
  • the third portions 13 c of the first exhaust flow path 51 and the second exhaust flow path 52 are located on the opposite side of the battery case 24 with respect to the terminal case 25.
  • the cooling fluid that has passed through the second portion 13b flows into the third portion 13c.
  • the cooling fluid that has flowed into the third portion 13 c flows inside the third portion 13 c along the upper wall 25 a of the terminal portion case 25.
  • the third portion 13 c of each of the first exhaust flow channel 51 and the second exhaust flow channel 52 is formed in a cylindrical shape in which one surface facing the terminal case 25 is opened. For this reason, the cooling fluid flowing through the third portion 13 c directly contacts the upper wall 25 a of the terminal portion case 25.
  • the first exhaust flow channel 51 and the second exhaust flow channel 52 merge with each other at the substantially central portion of the battery case 24 in the + X direction.
  • An outlet 62 of the exhaust duct 13 that opens in the Z direction is provided at a junction between the first exhaust flow path 51 and the second exhaust flow path 52.
  • the cooling performance of the battery device 1 can be improved.
  • the exhaust duct 13 has a third portion 13 c (extension portion) through which wind flows along the terminal portion case 25.
  • the terminal case 25 is directly cooled by the cooling fluid flowing through the third portion 13 c of the exhaust duct 13.
  • heat dissipation of components (such as the bus bar 22 and the substrate 23) accommodated in the terminal case 25, the terminals 32 ⁇ / b> A and 32 ⁇ / b> B of the battery 21, and the upper part of the battery main body 31 can be further promoted.
  • the cooling performance of the battery device 1 can be further improved.
  • the second exhaust flow path 52 does not have the third portion 13c.
  • the third portion 13c of the first exhaust passage 51 is provided over substantially the entire length of the terminal case 25 in the + X direction.
  • the third portion 13 c of the first exhaust passage 51 joins the second portion 13 b of the second exhaust passage 52.
  • the cooling performance of the battery device 1 can be improved.
  • the first exhaust flow path 51 has a third portion 13 c (extension part) that flows along the terminal part case 25 and merges with the second exhaust flow path 52.
  • the outlets of the first exhaust passage 51 and the second exhaust passage 52 are gathered at one end of the battery case 24. For this reason, for example, it becomes easy to arrange a plurality of battery devices 1 in multiple stages in the Z direction (see FIG. 9).
  • the terminal case 25 has a first opening 65a and a second opening 65b.
  • the first opening 65 a is provided in the first side wall 25 b of the terminal case 25 and opens (communicates) inside the first exhaust flow path 51.
  • the first opening 65 a allows a part of the cooling fluid flowing inside the first exhaust passage 51 to flow into the terminal case 25.
  • the second opening 65 b is provided in the second side wall 25 c of the terminal case 25 and opens (communicates) inside the second exhaust passage 52.
  • the second opening 65 b flows from the first opening 65 a into the terminal case 25 and allows the cooling fluid that has passed through the terminal case 25 to flow into the second exhaust flow path 52.
  • the cooling performance of the battery device 1 can be improved as in the fourth embodiment.
  • the terminal case 25 has an opening 65 a through which a part of the wind flowing in the exhaust duct 13 flows into the terminal case 25.
  • a part of the cooling fluid flowing through the exhaust duct 13 flows through the inside of the terminal portion case 25, so that the components (for example, the bus bar 22 and the substrate 23) housed in the terminal portion case 25, the battery
  • the heat radiation of the terminals 32A and 32B of the 21 and the upper part of the battery body 31 can be further promoted.
  • the cooling performance of the battery device 1 can be further improved.
  • the plurality of batteries 21 are arranged in a first row L1, a second row L2, and a third row L3.
  • the third row L3 is located on the opposite side to the second row L2 with respect to the first row L1.
  • Each of the first column L1, the second column L2, and the third column L3 includes a plurality of (for example, three or more) batteries 21.
  • the plurality of batteries 21 face each other in the Y direction with a gap g between the first side surfaces 31c.
  • the plurality of batteries 21 included in the first row L1, the plurality of batteries 21 included in the second row L2, and the plurality of batteries 21 included in the third row L3 are spaced from each other in the + X direction.
  • the second side surfaces 31d are arranged to face each other with a gap between them or an insulator.
  • the second row L2 and the third row L3 are located at the ends of the plurality of rows L1, L2, and L3.
  • the second row L2 is closest to the second exhaust passage 52 (exhaust duct 13) among the plurality of rows L1, L2, and L3.
  • the third row L3 is closest to the first exhaust passage 51 (exhaust duct 13) among the plurality of rows L1, L2, and L3.
  • the first row L1 is located between the second row L2 and the third row L3, and is sandwiched from both sides by the second row L2 and the third row L3. The first row L1 is farther from the exhaust duct 13 than the second row L2 and the third row L3.
  • the lower wall 24a of the battery case 24 includes a first region 71, a second region 72, and a third region 73.
  • the first area 71 is an area in which the plurality of batteries 21 included in the first row L1 are arranged.
  • the second area 72 is an area where the plurality of batteries 21 included in the second row L2 are arranged.
  • the third area 73 is an area in which the plurality of batteries 21 included in the third row L3 are arranged.
  • the second region 72 and the third region 73 are closer to the exhaust port 42 (exhaust duct 13) than the first region 71.
  • the first region 71, the second region 72, and the third region 73 each have at least one intake port 41.
  • the opening ratio of the intake port 41 in the second region 72 and the third region is smaller than the opening rate of the intake port 41 in the first region 71.
  • the “opening ratio” in the present application means the ratio of the opening area of the intake port 41 to the area (total area) of a certain region. That is, for example, “the opening ratio of the intake port 41 in the first region 71” means the opening area of the intake port 41 provided in the first region 71 (if a plurality of intake ports 41 are provided, This is a value obtained by dividing the total opening area of the intake port 41 by the area of the first region 71.
  • the second region 72 and the third region 73 are provided with a plurality of intake ports 41 at predetermined intervals.
  • the first region 71 is provided with a relatively large intake port 41 over the entire length of the first region 71 in the + X direction.
  • the opening ratio of the intake port 41 in the second region 72 and the third region 73 is smaller than the opening rate of the intake port 41 in the first region 71.
  • the plurality of batteries 21 included in the first row L1 are relatively far from the exhaust port 42 (exhaust duct 13). For this reason, the plurality of batteries 21 included in the first row L1 are less likely to be exposed to the cooling fluid and are less likely to be cooled than the plurality of batteries 21 included in the second row L2 and the third row L3. For this reason, temperature variation may occur in the battery case 24, and cooling performance may deteriorate.
  • the opening ratio of the intake port 41 in the second region 72 and the third region 73 is smaller than the opening rate of the intake port 41 in the first region 71.
  • the flow rate of air flowing into the battery case 24 from the air inlet 41 of the first region 71 can be increased.
  • line L1 comparatively far from the exhaust port 42 (exhaust duct 13) can be accelerated
  • the lifetime of each battery 21 can be improved by suppressing the temperature variation of the plurality of batteries 21.
  • the battery device 1 of this embodiment includes a plurality of battery modules 11, an intake duct 12, an exhaust duct 13, and a fan 81.
  • Each of the plurality of battery modules 11 includes a plurality of batteries 21, a plurality of bus bars 22, a substrate 23, a battery case 24, and a terminal part case 25.
  • the plurality of battery modules 11 are arranged in multiple stages in the Z direction, which is the direction in which the battery case 24 and the terminal case 25 are arranged.
  • the intake duct 12 has an intake main duct portion 91 and a plurality of intake passages 92.
  • the intake main duct portion 91 extends in a direction (Z direction) in which the plurality of battery modules 11 are arranged in multiple stages.
  • the intake main duct portion 91 extends over the plurality of battery modules 11 so as to be located on all sides of the plurality of battery modules 11.
  • the intake main duct portion 91 is a flow path through which the cooling fluid supplied to the plurality of battery modules 11 flows.
  • the intake main duct portion 91 has an inlet 61 that opens to the outside of the battery device 1 at one end portion (for example, an upper end portion) of the battery device 1.
  • the cooling fluid flows into the intake main duct portion 91 from the outside of the battery device 1 through the inlet 61.
  • the plurality of intake channels 92 are provided corresponding to the plurality of battery modules 11. Each intake channel 92 is an example of a “ventilating channel”.
  • the plurality of intake passages 92 are branched from the intake main duct portion 91.
  • the cooling fluid flowing in the intake main duct portion 91 flows into the plurality of intake flow paths 92, respectively.
  • Each of the plurality of intake flow paths 92 is substantially the same as the first side surface 31c of the battery body 31 at a position opposite to the terminal case 25 with respect to the battery case 24 with respect to the battery module 11 to which the intake flow path 92 corresponds. It extends in parallel and communicates with the inside of the battery case 24 from the side opposite to the terminal case 25.
  • each intake flow channel 92 includes a first portion 12a and a second portion 12b, as in the first embodiment. Accordingly, the plurality of intake passages 92 supply the cooling fluid to the inside of the battery cases 24 of the plurality of battery modules 11.
  • the exhaust duct 13 has an exhaust main duct portion 95 and a plurality of exhaust passages 51.
  • the exhaust main duct portion 95 is located on the side opposite to the intake main duct portion 91 with respect to the plurality of battery modules 11.
  • the exhaust main duct portion 95 extends in a direction (Z direction) in which the plurality of battery modules 11 are arranged in multiple stages.
  • the exhaust main duct portion 95 extends over the plurality of battery modules 11 so as to be positioned on all sides of the plurality of battery modules 11.
  • the exhaust main duct portion 95 is a flow path in which cooling fluids that have passed through the plurality of battery modules 11 merge.
  • the exhaust main duct portion 95 has an outlet 62 opened to the outside of the battery device 1 at one end portion (for example, an upper end portion) of the battery device 1.
  • the exhaust main duct 95 causes the air that has passed through the inside of the battery cases 24 of the plurality of battery modules 11 to flow out of the battery device 1 from the outlet 62.
  • the plurality of exhaust passages 51 are provided corresponding to the plurality of battery modules 11 and are connected to the exhaust main duct portion 95.
  • the fan 81 is provided at the outlet 62 of the exhaust duct 13 as an exhaust fan.
  • the cooling fluid in the exhaust duct 13 is exhausted to the outside of the battery device 1.
  • the pressure inside the battery device 1 decreases, and a new cooling fluid flows into the intake duct 12 from the outside of the battery device 1.
  • the place where the fan 81 is provided is not limited to the outlet 62 of the exhaust duct 13 but may be in the middle of the exhaust duct 13.
  • the plurality of battery modules 11 are arranged in multiple stages in the Z direction.
  • the intake duct 12 has a plurality of intake passages 92 provided corresponding to the plurality of battery modules 11.
  • Each of the plurality of intake passages 92 extends substantially parallel to the first side surface 31 c of the battery body 31 and communicates with the inside of the battery case 24 from the side opposite to the terminal portion case 25.
  • the plurality of battery modules 11 can be arranged densely. Thereby, size reduction of the battery apparatus 1 provided with the some battery module 11 can be achieved.
  • the fan 81 is provided at the inlet 61 of the intake duct 12 as an air supply fan.
  • the fan 81 is cooled toward the battery module 11 (the lowermost battery module 11 in the present embodiment) farthest from the inlet 61 of the intake duct 12 among the plurality of battery modules 11 arranged in multiple stages along the Z direction. Force the fluid.
  • the place where the fan 81 is provided is not limited to the inlet 61 of the intake duct 12 but may be in the middle of the intake duct 12.
  • the flow path height Ho of the exhaust main duct portion 95 is set to be approximately 0.5 times or more the flow path height Hi of the intake main duct 91.
  • the “flow path height” referred to in the present application means the duct width in the direction substantially orthogonal to the flow direction of the cooling fluid (in this embodiment, the duct width in the + X direction).
  • the width of the intake main duct portion 91 in the paper surface depth direction (Y direction) in FIG. 10 is substantially the same as the width of the exhaust main duct portion 95 in the paper surface depth direction.
  • the ventilation cross-sectional area of the exhaust main duct portion 95 is approximately 0.5 times or more the ventilation cross-sectional area of the intake main duct portion 91.
  • the ventilation cross-sectional area (or flow path height Hi) of the intake main duct portion 91 and the ventilation cross-sectional area (or flow path height Ho) of the exhaust main duct portion 95 are constant in the Z direction.
  • the “maximum temperature rise” in the graph is a temperature rise relative to the intake air temperature of the battery 21 having the highest temperature among the batteries 21 included in the plurality of battery modules 11 arranged in multiple stages.
  • the “minimum temperature rise” is a temperature rise relative to the intake air temperature of the battery 21 having the lowest temperature among the batteries 21 included in the plurality of battery modules 11 arranged in multiple stages.
  • the “temperature rise variation” is the difference between the “maximum temperature rise” and the “minimum temperature rise”.
  • the experiment is based on a model in which a uniform cooling fluid flows from the inlet 61 of the intake main duct portion 91 (for example, when the fan 81 is installed) and the outlet 62 of the exhaust duct 92 is opened to the atmosphere. Was done.
  • the maximum temperature rise in the plurality of batteries 21 becomes large.
  • the minimum temperature rise in the battery 21 becomes smaller, and the difference in temperature rise (temperature variation) among the plurality of batteries 21 suddenly increases.
  • the cooling performance of the battery device 1 can be improved.
  • the cooling fluid is forcibly sent by the fan 81 toward the battery module 11 farthest from the inlet 61 of the intake duct 12 among the plurality of battery modules 11 arranged in multiple stages. According to such a configuration, the cooling performance of the battery device 1 can be further improved.
  • the ventilation cross-sectional area of the exhaust main duct portion 95 is less than about 0.5 times the ventilation cross-sectional area of the intake main duct portion 91, the difference in temperature rise (temperature) of the plurality of batteries 21 as described above. (Variation) may increase suddenly. In this case, the life of the battery 21 having a large maximum temperature rise is shortened. For this reason, it is necessary to replace the battery module 11 and the battery device 1 despite the presence of the battery 21 whose temperature rise is relatively small and still has a life remaining. For this reason, the maintenance interval of the battery system such as replacement of the battery 21 is shortened.
  • the ventilation cross-sectional area of the exhaust main duct portion 95 is set to a size that is approximately 0.5 times or more the ventilation cross-sectional area of the intake main duct portion 91. According to such a configuration, the maximum temperature rise in the plurality of batteries 21 is reduced, and the maintenance interval of the battery system such as replacement of the batteries 21 can be extended. Further, the ventilation cross-sectional area of the exhaust main duct portion 95 is approximately 0.5 times as large as the ventilation cross-sectional area of the intake main duct portion 91 (or approximately 0.5 times or more and less than 1.0 times). When set, the electronic device 1 can be downsized.
  • the lower wall 24 a of the battery case 24 has a first region 71 and a second region 72.
  • the first area 71 is an area in which the plurality of batteries 21 included in the first row L1 are arranged.
  • the second area 72 is an area in which the plurality of batteries 21 included in the second row L2 are arranged.
  • the second region 72 is closer to the exhaust port 42 (exhaust duct 13) than the first region 71.
  • the first region 71 and the second region 72 each have at least one intake port 41.
  • the opening ratio of the intake port 41 in the second region 72 is smaller than the opening rate of the intake port 41 in the first region 71.
  • the individual opening areas of the intake ports 41 provided in the first region 71 are larger than the individual opening areas of the intake ports 41 provided in the second region 72, so that in the second region 72
  • the opening ratio of the intake port 41 is smaller than the opening ratio of the intake port 41 in the first region 71.
  • the opening ratio of the intake ports 41 in the second region 72 is increased.
  • the opening ratio of the intake port 41 in the first region 71 may be smaller.
  • the opening areas of the plurality of intake ports 41 provided in the first region 71 and the second region 72 are gradually increased as the intake ports 41 are further away from the exhaust port 42 (exhaust duct 13). It has become.
  • cooling of the plurality of batteries 21 included in the first row L1 that is relatively far from the exhaust port 42 (exhaust duct 13) can be promoted.
  • the improvement of the lifetime of each battery 21 can be aimed at.
  • the amount of cooling fluid flowing along the surface of the terminal case 25 and the amount of the terminal case 25 can be increased.
  • the cooling performance of the battery device 1 can be further improved.
  • the structure of embodiment is not limited to the said example.
  • the configurations of the first to eighth embodiments described above may be applied in combination with each other.
  • the flow direction of intake / exhaust air may be reversed. That is, the first ventilation port provided on the lower wall 24a of the battery case 24 may be an exhaust port, and the second ventilation port provided on the side wall 24b of the battery case 24 may be an exhaust port.
  • the first ventilation duct that communicates with the inside of the battery case 24 in the Z direction may be an exhaust duct
  • the second ventilation duct that communicates with the interior of the battery case 24 in the ⁇ X direction may be an intake duct.
  • the fan 81 may be provided in both the intake duct 12 and the exhaust duct 13.
  • the name 25f is given for convenience of explanation. Therefore, these walls may be referred to as “first wall”, “second wall”, “third wall”,.
  • the battery body of the battery has a first surface having the largest area among the surfaces of the battery body, and a second surface having a smaller area than the first surface.
  • the plurality of batteries are arranged with a gap between first surfaces of adjacent battery bodies.
  • the battery case houses battery bodies of the plurality of batteries.
  • the terminal case covers the gap between the first surfaces of the battery bodies adjacent to each other from one side.
  • the air intake duct extends substantially parallel to the first surface of the battery body at a position opposite to the terminal case with respect to the battery case, and enters the inside of the battery case from the side opposite to the terminal case. Communicate. According to such a configuration, the cooling performance of the battery device can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)

Abstract

A battery device according to an embodiment of the present invention comprises a plurality of batteries, a battery case, a terminal case, a first ventilation duct, and a second ventilation duct. The battery main bodies of the plurality of batteries each comprise a first surface having the widest surface area among the surfaces of said battery main bodies and a second surface having a narrower surface area than the first surface. The battery main bodies of the plurality of batteries are accommodated in the battery case. The terminal case covers gaps formed between the first surfaces of adjacent battery main bodies from one direction. The first ventilation duct extends substantially parallel to the first surfaces at a position on the opposite side from the terminal case with respect to the battery case and communicates with the interior of the battery case from the opposite side from the terminal case. The second ventilation duct extends substantially parallel to the second surfaces and communicates with the interior of the battery case.

Description

電池装置Battery device
 本発明の実施形態は、電池装置に関する。 Embodiments of the present invention relate to a battery device.
 複数のバッテリと、複数のバッテリを収容したケースとを備えた電池装置が知られている。
 このような電池装置は、冷却性能の向上が望まれている。
A battery device including a plurality of batteries and a case containing a plurality of batteries is known.
Such a battery device is desired to have improved cooling performance.
日本国特開2002-141114号公報Japanese Unexamined Patent Publication No. 2002-141114 日本国特開2013-187010号公報Japanese Unexamined Patent Publication No. 2013-187010
 本発明が解決しようとする課題は、冷却性能の向上を図ることができる電池装置を提供することである。 The problem to be solved by the present invention is to provide a battery device capable of improving the cooling performance.
 実施形態の電池装置は、複数のバッテリと、電気接続部と、バッテリケースと、端子部ケースと、第1通風ダクトと、第2通風ダクトとを持つ。前記複数のバッテリは、扁平な直方体状のバッテリ本体と、前記バッテリ本体の一端部に設けられた端子とをそれぞれ有する。前記バッテリ本体は、該バッテリ本体の表面のなかで面積が最も広い第1面と、前記第1面よりも面積が狭い第2面とを有する。前記複数のバッテリは、互いに隣り合うバッテリ本体の第1面同士の間に隙間を空けて前記第1面同士を向かい合わせにして配置されている。前記電気接続部は、前記複数のバッテリの端子同士を電気的に接続している。前記バッテリケースは、前記複数のバッテリのバッテリ本体を収容している。前記端子部ケースは、前記バッテリケースに組み合わされ、前記電気接続部を収容するとともに、前記互いに隣り合うバッテリ本体の前記第1面同士の間に形成された前記隙間を一方から覆う。前記第1通風ダクトは、前記バッテリケースに対して前記端子部ケースとは反対側の位置で前記バッテリ本体の第1面と略平行に延びるとともに、前記端子部ケースとは反対側から前記バッテリケースの内部に連通している。前記第2通風ダクトは、前記バッテリ本体の第2面と略平行に延びるとともに、前記バッテリケースと前記端子部ケースとが並ぶ方向とは異なる方向から前記バッテリケースの内部に連通している。 The battery device of the embodiment includes a plurality of batteries, an electrical connection portion, a battery case, a terminal portion case, a first ventilation duct, and a second ventilation duct. Each of the plurality of batteries has a flat rectangular parallelepiped battery body and a terminal provided at one end of the battery body. The battery body has a first surface having the largest area among the surfaces of the battery body, and a second surface having a smaller area than the first surface. The plurality of batteries are arranged with the first surfaces facing each other with a gap between the first surfaces of the battery bodies adjacent to each other. The electrical connection portion electrically connects the terminals of the plurality of batteries. The battery case houses battery bodies of the plurality of batteries. The terminal case is combined with the battery case, accommodates the electrical connection portion, and covers the gap formed between the first surfaces of the battery bodies adjacent to each other from one side. The first ventilation duct extends substantially parallel to the first surface of the battery body at a position opposite to the terminal case with respect to the battery case, and the battery case from the opposite side to the terminal case. It communicates with the inside. The second ventilation duct extends substantially parallel to the second surface of the battery body and communicates with the inside of the battery case from a direction different from the direction in which the battery case and the terminal case are arranged.
第1の実施形態の電池装置を示す斜視図。The perspective view which shows the battery apparatus of 1st Embodiment. 第1の実施形態のバッテリを示す斜視図。The perspective view which shows the battery of 1st Embodiment. 第1の実施形態の電池装置を示す断面図。Sectional drawing which shows the battery apparatus of 1st Embodiment. 第2の実施形態の電池装置を示す断面図。Sectional drawing which shows the battery apparatus of 2nd Embodiment. 第3の実施形態の電池装置を示す断面図。Sectional drawing which shows the battery apparatus of 3rd Embodiment. 第4の実施形態の電池装置を示す断面図。Sectional drawing which shows the battery apparatus of 4th Embodiment. 第5の実施形態の電池装置を示す断面図。Sectional drawing which shows the battery apparatus of 5th Embodiment. 第6の実施形態の電池装置を示す断面図。Sectional drawing which shows the battery apparatus of 6th Embodiment. 第7の実施形態の電池装置を示す断面図。Sectional drawing which shows the battery apparatus of 7th Embodiment. 第8の実施形態の電池装置を示す断面図。Sectional drawing which shows the battery apparatus of 8th Embodiment. 吸気主ダクト部の流路高さに対する排気主ダクト部の流路高さの流路高さ比Rhと冷却性能との関係を示すグラフ。The graph which shows the relationship between the channel height ratio Rh of the channel height of the exhaust main duct part with respect to the channel height of an intake main duct part, and cooling performance. 実施形態の電池装置の変形例を示す断面図。Sectional drawing which shows the modification of the battery apparatus of embodiment.
 以下、実施形態の電池装置を、図面を参照して説明する。なお以下の説明では、略同じまたは類似の機能を有する構成に同一の符号を付す。そして、それら構成の重複する説明は省略する場合がある。 Hereinafter, the battery device of the embodiment will be described with reference to the drawings. In the following description, components having substantially the same or similar functions are denoted by the same reference numerals. And the description which overlaps those structures may be abbreviate | omitted.
(第1の実施形態)
 まず、図1から図3を参照して、第1の実施形態について説明する。
 図1は、第1の実施形態の電池装置1を示す斜視図である。
 図1に示すように、本実施形態の電池装置1は、複数のバッテリ(電池セル)21と、これら複数のバッテリ21を冷却する冷却構造とを備えた装置である。電池装置1は、例えば、「蓄電池装置」、「組電池装置」、「バッテリ冷却装置」などと称されてもよい。電池装置1は、種々の装置や、機械、設備などに設置され、それら種々の装置、機械、設備などの電源として使用される。例えば、電池装置1は、自動車に搭載される電源のような移動型の電源として使用されてもよく、またはPOS(Point Of Sales)システムの電源のような固定型の電源として使用されてもよい。
(First embodiment)
First, a first embodiment will be described with reference to FIGS. 1 to 3.
FIG. 1 is a perspective view showing the battery device 1 of the first embodiment.
As shown in FIG. 1, the battery device 1 of the present embodiment is a device that includes a plurality of batteries (battery cells) 21 and a cooling structure that cools the plurality of batteries 21. The battery device 1 may be referred to as, for example, “storage battery device”, “assembled battery device”, “battery cooling device”, and the like. The battery device 1 is installed in various devices, machines, facilities, and the like, and is used as a power source for these various devices, machines, facilities, and the like. For example, the battery device 1 may be used as a mobile power source such as a power source mounted on an automobile, or may be used as a fixed power source such as a POS (Point Of Sales) system power source. .
 図1に示すように、本実施形態の電池装置1は、電池モジュール(バッテリパック)11と、吸気ダクト12と、排気ダクト13とを備える。 As shown in FIG. 1, the battery device 1 of this embodiment includes a battery module (battery pack) 11, an intake duct 12, and an exhaust duct 13.
 まず、電池モジュール11について説明する。
 本実施形態の電池モジュール11は、複数のバッテリ(電池セル)21と、複数のバスバー22(図3参照)と、基板23(図3参照)と、バッテリケース24と、端子部ケース25とを有する。
First, the battery module 11 will be described.
The battery module 11 of the present embodiment includes a plurality of batteries (battery cells) 21, a plurality of bus bars 22 (see FIG. 3), a substrate 23 (see FIG. 3), a battery case 24, and a terminal portion case 25. Have.
 複数のバッテリ21の各々は、例えばリチウムイオン二次電池である。これに代えて、バッテリ21は、ニッケル水素電池や、ニッケルカドミウム電池、鉛蓄電池など、他の二次電池であってもよい。
 図2は、本実施形態のバッテリ21を示す斜視図である。
 図2に示すように、各バッテリ21は、バッテリ本体31と、一対の端子32A,32Bとを有する。
Each of the plurality of batteries 21 is, for example, a lithium ion secondary battery. Instead of this, the battery 21 may be another secondary battery such as a nickel metal hydride battery, a nickel cadmium battery, or a lead storage battery.
FIG. 2 is a perspective view showing the battery 21 of the present embodiment.
As shown in FIG. 2, each battery 21 includes a battery main body 31 and a pair of terminals 32 </ b> A and 32 </ b> B.
 バッテリ本体31は、該バッテリ本体31の外形を形成するケースCを有する。ケースCの内部には、バッテリ21の構成要素である正極、負極、絶縁フィルム、および電解質などが収容されている。ケースCは、扁平な直方体状に形成されている。言い換えると、バッテリ本体31(バッテリ21)は、扁平な直方体状に形成されている。 The battery body 31 has a case C that forms the outer shape of the battery body 31. In the case C, the positive electrode, the negative electrode, the insulating film, the electrolyte, and the like, which are components of the battery 21, are accommodated. Case C is formed in a flat rectangular parallelepiped shape. In other words, the battery main body 31 (battery 21) is formed in a flat rectangular parallelepiped shape.
 詳しく述べると、バッテリ本体31は、上面31a、下面31b、一対の第1側面31c、および一対の第2側面31dを有する。上面31aには、一対の端子32A,32Bが設けられている。下面31bは、上面31aとは反対側に位置している。一対の第1側面31cおよび一対の第2側面31dは、上面31aおよび下面31bとは略直交する方向に延びており、上面31aの縁と下面31bの縁とを繋いでいる。言い換えると、一対の第1側面31cおよび一対の第2側面31dは、ケースCの上端部(第1端部)と、ケースCの下端部(第2端部)とを繋ぐ側面である。一対の第1側面31cは、互いに略平行である。一対の第1側面31cの各々は、バッテリ本体31の表面のなかで面積が最も広い面である。一対の第1側面31cの各々は、「第1面(主面)」の一例である。一方で、一対の第2側面31dは、第1側面31cとは略直交する方向に延びており、一対の第1側面31cの縁同士を繋いでいる。一対の第2側面31dは、互いに略平行である。第2側面31dは、第1側面31cよりも面積が狭い。一対の第2側面31dの各々は、「第2面」の一例である。また、上面31aは、「第3面」と称されてもよい。 Specifically, the battery body 31 has an upper surface 31a, a lower surface 31b, a pair of first side surfaces 31c, and a pair of second side surfaces 31d. A pair of terminals 32A and 32B are provided on the upper surface 31a. The lower surface 31b is located on the opposite side to the upper surface 31a. The pair of first side surfaces 31c and the pair of second side surfaces 31d extend in a direction substantially orthogonal to the upper surface 31a and the lower surface 31b, and connect the edge of the upper surface 31a and the edge of the lower surface 31b. In other words, the pair of first side surfaces 31c and the pair of second side surfaces 31d are side surfaces that connect the upper end portion (first end portion) of the case C and the lower end portion (second end portion) of the case C. The pair of first side surfaces 31c are substantially parallel to each other. Each of the pair of first side surfaces 31 c is a surface having the largest area among the surfaces of the battery body 31. Each of the pair of first side surfaces 31c is an example of a “first surface (main surface)”. On the other hand, the pair of second side surfaces 31d extends in a direction substantially orthogonal to the first side surface 31c, and connects the edges of the pair of first side surfaces 31c. The pair of second side surfaces 31d are substantially parallel to each other. The second side surface 31d has a smaller area than the first side surface 31c. Each of the pair of second side surfaces 31d is an example of a “second surface”. Further, the upper surface 31a may be referred to as a “third surface”.
 一対の端子32A,32Bは、バッテリ本体31の一端部(上端部)に設けられている。一対の端子32A,32Bは、正極端子32Aと、負極端子32Bとを含む。正極端子32Aは、ケースC内の正極に電気的に接続されている。負極端子32Bは、ケースC内の負極に電気的に接続されている。 The pair of terminals 32A and 32B are provided at one end (upper end) of the battery body 31. The pair of terminals 32A and 32B includes a positive terminal 32A and a negative terminal 32B. The positive terminal 32 </ b> A is electrically connected to the positive electrode in the case C. The negative terminal 32B is electrically connected to the negative electrode in the case C.
 図1に示すように、複数のバッテリ21は、例えば一対の端子32A,32Bを同じ方向に向けるとともに、互いに略平行に並べられている。なお、複数のバッテリ21は、端子32A,32Bが同じ方向に向いている必要はない。複数のバッテリ21は、端子32A,32Bを互いに異なる方向(例えば反対方向)に向けて並べられてもよい。
 複数のバッテリ21は、第1列L1に配置された複数(例えば3つ以上)のバッテリ21と、第2列L2に配置された複数(例えば3つ以上)のバッテリ21とを有する。第1列L1に含まれる複数のバッテリ21は、第1側面31c同士の間に隙間gを空けて第1側面31c同士を互いに向かい合わせにして配置されている。同様に、第2列L2に含まれる複数のバッテリ21は、第1側面31c同士の間に隙間gを空けて第1側面31c同士を互いに向かい合わせにして配置されている。第1列L1に含まれる複数のバッテリ21の間に形成された隙間gは、第2列L2に含まれる複数のバッテリ21の間に形成された隙間gと繋がっている。一方で、第1列L1に含まれる複数のバッテリ21と、第2列L2に含まれる複数のバッテリ21とは、互いの間に隙間を空ける、もしくは絶縁物を間に配し、第2側面31d同士を互いに向かい合わせして配置されている。
As shown in FIG. 1, the plurality of batteries 21 are arranged substantially parallel to each other, for example, with a pair of terminals 32 </ b> A and 32 </ b> B facing in the same direction. The plurality of batteries 21 need not have the terminals 32A and 32B facing in the same direction. The plurality of batteries 21 may be arranged with the terminals 32A and 32B facing in different directions (for example, opposite directions).
The plurality of batteries 21 include a plurality (for example, three or more) of batteries 21 arranged in the first row L1 and a plurality of (for example, three or more) batteries 21 arranged in the second row L2. The plurality of batteries 21 included in the first row L1 are arranged with the first side surfaces 31c facing each other with a gap g between the first side surfaces 31c. Similarly, the plurality of batteries 21 included in the second row L2 are arranged with the first side surfaces 31c facing each other with a gap g between the first side surfaces 31c. The gap g formed between the plurality of batteries 21 included in the first row L1 is connected to the gap g formed between the plurality of batteries 21 included in the second row L2. On the other hand, the plurality of batteries 21 included in the first row L1 and the plurality of batteries 21 included in the second row L2 are spaced apart from each other or provided with an insulator therebetween, and the second side surface. 31d is arranged facing each other.
 ここで、バッテリケース24の内面などには、複数のバッテリ21の間に挿入される突起部などが設けられている。複数のバッテリ21は、バッテリケース24に設けられた突起部などによって、互いの間に隙間gを空けた状態で保持されている。なお以下では、説明の便宜上、複数のバッテリ21の間に形成された隙間gを「通風隙間g」と称する。通風隙間gは、バッテリ本体31の第1側面31aに沿って延びた流体経路(流体流動部)である。 Here, on the inner surface of the battery case 24 or the like, a protrusion or the like inserted between the plurality of batteries 21 is provided. The plurality of batteries 21 are held in a state in which a gap g is left between them by a protrusion provided on the battery case 24. Hereinafter, for convenience of explanation, the gap g formed between the plurality of batteries 21 is referred to as “ventilating gap g”. The ventilation gap g is a fluid path (fluid flow part) extending along the first side surface 31 a of the battery body 31.
 またここで、+X方向、-X方向、Y方向、およびZ方向について定義する。+X方向は、第1列L1から第2列L2に向かう方向である。-X方向は、+X方向の反対方向である。Y方向は、複数のバッテリ21が第1側面31c同士を向かい合わせにして並べられた方向である。Z方向は、バッテリ本体31の下面31bから上面31aに向かう方向である。+X方向(-X方向)、Y方向、およびZ方向は、互いに交差する(例えば略直交する)。Z方向は、「第1方向」の一例である。+X方向は、「第2方向」の一例である。各バッテリ21の上面31aおよび下面31bは、+X方向およびY方向に沿う面である。各バッテリ21の第1側面31cは、+X方向およびZ方向に沿う面である。各バッテリ21の第2側面31dは、Y方向およびZ方向に沿う面である。 Here, the + X direction, -X direction, Y direction, and Z direction are defined. The + X direction is a direction from the first row L1 toward the second row L2. The −X direction is the opposite direction to the + X direction. The Y direction is a direction in which the plurality of batteries 21 are arranged with the first side surfaces 31c facing each other. The Z direction is a direction from the lower surface 31b of the battery body 31 toward the upper surface 31a. The + X direction (−X direction), the Y direction, and the Z direction intersect with each other (for example, substantially orthogonal). The Z direction is an example of a “first direction”. The + X direction is an example of a “second direction”. The upper surface 31a and the lower surface 31b of each battery 21 are surfaces along the + X direction and the Y direction. The first side surface 31c of each battery 21 is a surface along the + X direction and the Z direction. The second side surface 31d of each battery 21 is a surface along the Y direction and the Z direction.
 図3は、本実施形態の電池装置1の内部構成を示す断面図である。
 図3に示すように、複数のバスバー22は、複数のバッテリ21の端子32A,32Bに接続されている。複数のバスバー22は、「電気接続部」の一例である。複数のバスバー22は、複数のバッテリ21の端子32A,32B同士を電気的に接続している。例えば、バスバー22は、あるバッテリ21の正極端子32Aと、別のバッテリ21の負極端子32Bとを電気的に接続している。これにより、複数のバッテリ21は、電気的に直列または並列に接続されている。
FIG. 3 is a cross-sectional view showing the internal configuration of the battery device 1 of the present embodiment.
As shown in FIG. 3, the plurality of bus bars 22 are connected to the terminals 32 </ b> A and 32 </ b> B of the plurality of batteries 21. The plurality of bus bars 22 is an example of an “electrical connection part”. The plurality of bus bars 22 electrically connect the terminals 32 </ b> A and 32 </ b> B of the plurality of batteries 21. For example, the bus bar 22 electrically connects the positive terminal 32 </ b> A of one battery 21 and the negative terminal 32 </ b> B of another battery 21. Thereby, the plurality of batteries 21 are electrically connected in series or in parallel.
 基板(回路基板)23は、例えば、バッテリ21の電圧や温度を監視する監視基板である。なお基板23は、バッテリ21の充放電を制御する制御基板でもよく、その他の機能を有する基板でもよい。 The board (circuit board) 23 is a monitoring board for monitoring the voltage and temperature of the battery 21, for example. In addition, the board | substrate 23 may be a control board which controls charging / discharging of the battery 21, and may be a board | substrate which has another function.
 次に、バッテリケース24について説明する。
 図1および図3に示すように、バッテリケース(バッテリボックス、第1ケース)24は、一方が開放された箱状に形成され、第1列L1および第2列L2に含まれる複数のバッテリ21のバッテリ本体31を一体に収容している。バッテリケース24は、下壁24a、第1側壁24b、第2側壁24c、第3側壁24d,および第4側壁24eを有する。下壁24aは、+X方向およびY方向に沿う壁である。下壁24aは、複数のバッテリ21の下面31bに面する。4つの側壁24b,24c,24d,24eは、下壁24aの縁からZ方向に延びている。第1側壁24bおよび第2側壁24cは、+X方向に互いに離間するとともに、Y方向に沿って互いに略平行に延びている。第1側壁24bは、第1列L1に含まれる複数のバッテリ21の第2側面31dに面している。第2側壁24cは、複数のバッテリ21に対して第1側壁24bとは反対側に位置する。第2側壁24cは、第2列L2に含まれる複数のバッテリ21の第2側面31dに面している。第3側壁24dおよび第4側壁24eは、Y方向に互いに離間するとともに、+X方向に沿って互いに略平行に延びている。第3側壁24dおよび第4側壁24eは、第1列L1よび第2列L2に含まれる複数のバッテリ21の第1側面31cに面している。
Next, the battery case 24 will be described.
As shown in FIGS. 1 and 3, the battery case (battery box, first case) 24 is formed in a box shape in which one side is opened, and a plurality of batteries 21 included in the first row L1 and the second row L2. The battery main body 31 is accommodated integrally. The battery case 24 has a lower wall 24a, a first side wall 24b, a second side wall 24c, a third side wall 24d, and a fourth side wall 24e. The lower wall 24a is a wall along the + X direction and the Y direction. The lower wall 24 a faces the lower surfaces 31 b of the plurality of batteries 21. The four side walls 24b, 24c, 24d, 24e extend in the Z direction from the edge of the lower wall 24a. The first side wall 24b and the second side wall 24c are separated from each other in the + X direction and extend substantially parallel to each other along the Y direction. The first side wall 24b faces the second side surface 31d of the plurality of batteries 21 included in the first row L1. The second side wall 24c is located on the opposite side of the plurality of batteries 21 from the first side wall 24b. The second side wall 24c faces the second side surface 31d of the plurality of batteries 21 included in the second row L2. The third side wall 24d and the fourth side wall 24e are separated from each other in the Y direction and extend substantially parallel to each other along the + X direction. The third side wall 24d and the fourth side wall 24e face the first side surfaces 31c of the plurality of batteries 21 included in the first row L1 and the second row L2.
 図3に示すように、バッテリケース24の下壁24aは、通風隙間gに面する吸気口41を有する。吸気口41は、「通風口」および「第1通風口」の一例である。吸気口41は、Z方向に開口している。吸気口41は、例えば+X方向に沿う長方形状のスロットである。ただし、吸気口41の形状は、上記例に限らない。吸気口41は、1つの通風隙間gに対して、複数設けられてもよいし、または1つだけ設けられてもよい。一方で、バッテリケース24の下壁24aは、バッテリ21に面する位置には吸気口41を有しない。すなわち、バッテリ21の下面31bは、バッテリケース24の下壁24aによって覆われている。 As shown in FIG. 3, the lower wall 24a of the battery case 24 has an air inlet 41 facing the ventilation gap g. The intake port 41 is an example of a “ventilator” and a “first vent”. The intake port 41 is open in the Z direction. The intake port 41 is, for example, a rectangular slot along the + X direction. However, the shape of the inlet 41 is not limited to the above example. A plurality of intake ports 41 may be provided for one ventilation gap g, or only one intake port 41 may be provided. On the other hand, the lower wall 24 a of the battery case 24 does not have the air inlet 41 at a position facing the battery 21. That is, the lower surface 31 b of the battery 21 is covered with the lower wall 24 a of the battery case 24.
 また、バッテリケース24の第2側壁24cは、通風隙間gに面する排気口42を有する。排気口42は、「第2通風口」の一例である。排気口42は、+X方向に開口している。排気口42は、例えばZ方向に沿う長方形状のスロットである。ただし、排気口42の形状は、上記例に限らない。排気口42は、1つの通風隙間gに対して、複数設けられてもよいし、または1つだけ設けられてもよい。一方で、バッテリケース24の第2側壁24cは、バッテリ21に面する位置には排気口42を有しない。すなわち、バッテリ21の第2側面31dは、バッテリケース24の第2側壁24cによって覆われている。なお、バッテリケース24の他の側壁24b,24d,24eは、吸気口41および排気口42のいずれも有しない。 The second side wall 24c of the battery case 24 has an exhaust port 42 that faces the ventilation gap g. The exhaust port 42 is an example of a “second vent”. The exhaust port 42 opens in the + X direction. The exhaust port 42 is, for example, a rectangular slot along the Z direction. However, the shape of the exhaust port 42 is not limited to the above example. A plurality of exhaust ports 42 may be provided for one ventilation gap g, or only one exhaust port 42 may be provided. On the other hand, the second side wall 24 c of the battery case 24 does not have the exhaust port 42 at a position facing the battery 21. That is, the second side surface 31 d of the battery 21 is covered with the second side wall 24 c of the battery case 24. The other side walls 24b, 24d, and 24e of the battery case 24 have neither the intake port 41 nor the exhaust port 42.
 次に、端子部ケース25について説明する。
 図1に示すように、端子部ケース25(端子ボックス、第2ケース)は、バッテリケース24に組み合わされ、バッテリケース24の内部空間(収容部)を閉じている。詳しく述べると、端子部ケース25は、Z方向に薄い扁平な箱状に形成されている。端子部ケース25は、+X方向およびY方向の外形がバッテリケース24と略同じである。端子部ケース25は、バッテリケース24の下壁24aとは反対側からバッテリケース24に取り付けられ、バッテリケース24の内部空間を覆っている。これにより、バッテリケース24と端子部ケース25とは、Z方向で並んでいる。端子部ケース25は、結合具または接着剤などによってバッテリケース24に連結されている。
Next, the terminal part case 25 will be described.
As shown in FIG. 1, the terminal case 25 (terminal box, second case) is combined with the battery case 24 and closes the internal space (accommodating portion) of the battery case 24. Specifically, the terminal case 25 is formed in a flat box shape that is thin in the Z direction. The terminal case 25 has substantially the same outer shape in the + X direction and the Y direction as the battery case 24. The terminal case 25 is attached to the battery case 24 from the side opposite to the lower wall 24 a of the battery case 24 and covers the internal space of the battery case 24. Thereby, the battery case 24 and the terminal part case 25 are located in a line in the Z direction. The terminal case 25 is connected to the battery case 24 by a coupler or an adhesive.
 さらに詳しく述べると、端子部ケース25は、上壁25a、第1側壁25b、第2側壁25c、第3側壁25d、第4側壁25e、および仕切壁25f(図3参照)を有する。上壁25aは、バッテリケース24とは反対側に向いている。4つの側壁25b,25c,25d,25eは、上壁25aの縁からZ方向に沿って延びている。第1側壁25bおよび第2側壁25cは、+X方向に互いに離間するとともに、Y方向に沿って互いに略平行に延びている。第3側壁25dおよび第4側壁25eは、Y方向に互いに離間するとともに、+X方向に沿って互いに略平行に延びている。 More specifically, the terminal case 25 has an upper wall 25a, a first side wall 25b, a second side wall 25c, a third side wall 25d, a fourth side wall 25e, and a partition wall 25f (see FIG. 3). The upper wall 25a faces away from the battery case 24. The four side walls 25b, 25c, 25d, and 25e extend along the Z direction from the edge of the upper wall 25a. The first side wall 25b and the second side wall 25c are separated from each other in the + X direction and extend substantially parallel to each other along the Y direction. The third side wall 25d and the fourth side wall 25e are separated from each other in the Y direction and extend substantially parallel to each other along the + X direction.
 図3に示すように、端子部ケース25の仕切壁(仕切板)25fは、バッテリケース24と端子部ケース25との境界部に位置する。仕切壁25fは、+X方向およびY方向に沿う平壁である。仕切壁25fは、複数のバッテリ21の端子32A,32Bが通される複数の挿通穴45を有する。複数のバッテリ21の端子32A,32Bは、仕切壁25fの挿通穴45に通されて、端子部ケース25の内部に露出している。端子部ケース25の内部には、複数のバスバー22および基板23が収容されている。複数のバッテリ21の端子32A,32Bは、端子部ケース25に収容された複数のバスバー22によって電気的に接続されている。 As shown in FIG. 3, the partition wall (partition plate) 25f of the terminal case 25 is located at the boundary between the battery case 24 and the terminal case 25. The partition wall 25f is a flat wall along the + X direction and the Y direction. The partition wall 25f has a plurality of insertion holes 45 through which the terminals 32A and 32B of the plurality of batteries 21 are passed. The terminals 32 </ b> A and 32 </ b> B of the plurality of batteries 21 are passed through the insertion holes 45 of the partition wall 25 f and exposed inside the terminal portion case 25. A plurality of bus bars 22 and a substrate 23 are accommodated inside the terminal case 25. The terminals 32 </ b> A and 32 </ b> B of the plurality of batteries 21 are electrically connected by a plurality of bus bars 22 accommodated in the terminal portion case 25.
 一方で、仕切壁25fは、通風隙間gに面する位置には穴を有しない。仕切壁25fは、複数のバッテリ21の間に形成された複数の通風隙間gに面し、これら複数の通風隙間gを一体に覆っている。つまり、仕切壁25fは、複数の通風隙間gを一方から覆っている。言い換えると、複数の通風隙間gは、Z方向が仕切壁25fによって塞がれている。 On the other hand, the partition wall 25f does not have a hole at a position facing the ventilation gap g. The partition wall 25f faces a plurality of ventilation gaps g formed between the plurality of batteries 21, and integrally covers the plurality of ventilation gaps g. That is, the partition wall 25f covers the plurality of ventilation gaps g from one side. In other words, the plurality of ventilation gaps g are closed in the Z direction by the partition wall 25f.
 次に、吸気ダクト12について説明する。
 図3に示すように、吸気ダクト12は、電池モジュール11の外部から電池モジュール11に向けて冷却流体(冷媒、例えば空気)を案内する吸気流路を形成している。吸気ダクト12は、「第1通風ダクト」の一例である。詳しく述べると、吸気ダクト12は、第1部分12aと、第2部分12bとを有する。
Next, the intake duct 12 will be described.
As shown in FIG. 3, the intake duct 12 forms an intake passage that guides a cooling fluid (refrigerant, for example, air) from the outside of the battery module 11 toward the battery module 11. The intake duct 12 is an example of a “first ventilation duct”. More specifically, the intake duct 12 has a first portion 12a and a second portion 12b.
 吸気ダクト12の第1部分12aは、Z方向でバッテリケース24と重ならない位置に設けられている。吸気ダクト12の第1部分12aは、バッテリケース24の外部から+X方向に沿ってバッテリケース24に近付く方向に延びている。なお、+X方向は、バッテリ本体31の第1側面31cと略平行な方向である。吸気ダクト12の第1部分12aには、図示しない吸気ファンなどによって外部から冷却流体が供給される。吸気ダクト12の第1部分12aに供給された冷却流体は、吸気ダクト12の第1部分12aの内部を+X方向に沿って流れる。 The first portion 12a of the intake duct 12 is provided at a position that does not overlap the battery case 24 in the Z direction. The first portion 12a of the intake duct 12 extends from the outside of the battery case 24 in the direction approaching the battery case 24 along the + X direction. The + X direction is a direction substantially parallel to the first side surface 31c of the battery body 31. Cooling fluid is supplied to the first portion 12a of the intake duct 12 from the outside by an unillustrated intake fan or the like. The cooling fluid supplied to the first portion 12a of the intake duct 12 flows along the + X direction inside the first portion 12a of the intake duct 12.
 吸気ダクト12の第2部分12bは、吸気ダクト12内の冷却流体の流れ方向において第1部分12aの下流側に位置する。吸気ダクト12の第2部分12bは、第1部分12aからバッテリケース24の下壁24aに沿って延びている。すなわち、吸気ダクト12の第2部分12bは、バッテリケース24に対して端子部ケース25とは反対側の位置で+X方向に延びている。吸気ダクト12の第2部分12bは、+X方向においてバッテリケース24の略全長に亘って延びている。吸気ダクト12の第2部分12bには、第1部分12aから冷却流体が流入する。吸気ダクト12の第2部分12bに流入した冷却流体は、第2部分12bの内部を+X方向に沿って流れる。 The second portion 12b of the intake duct 12 is located downstream of the first portion 12a in the flow direction of the cooling fluid in the intake duct 12. The second portion 12b of the intake duct 12 extends along the lower wall 24a of the battery case 24 from the first portion 12a. That is, the second portion 12 b of the intake duct 12 extends in the + X direction at a position opposite to the terminal case 25 with respect to the battery case 24. The second portion 12b of the intake duct 12 extends over substantially the entire length of the battery case 24 in the + X direction. The cooling fluid flows into the second portion 12b of the intake duct 12 from the first portion 12a. The cooling fluid that has flowed into the second portion 12b of the intake duct 12 flows along the + X direction inside the second portion 12b.
 図3に示すように、吸気ダクト12の第2部分12bは、Z方向でバッテリケース24に重なる。吸気ダクト12の第2部分12bは、バッテリケース24の吸気口41を通じて、端子部ケース25とは反対側からバッテリケース24の内部に連通している。例えば、吸気ダクト12の第2部分12bは、Z方向でバッテリケース24の内部に連通している。吸気ダクト12の第2部分12bは、該吸気ダクト12の第2部分12bの内部を流れる冷却流体を、バッテリケース24の吸気口41からバッテリケース24の内部に流入させる。 As shown in FIG. 3, the second portion 12b of the intake duct 12 overlaps the battery case 24 in the Z direction. The second portion 12 b of the intake duct 12 communicates with the inside of the battery case 24 from the side opposite to the terminal case 25 through the intake port 41 of the battery case 24. For example, the second portion 12b of the intake duct 12 communicates with the inside of the battery case 24 in the Z direction. The second portion 12 b of the intake duct 12 causes the cooling fluid flowing inside the second portion 12 b of the intake duct 12 to flow into the battery case 24 from the intake port 41 of the battery case 24.
 図3に示すように、吸気ダクト12のY方向の幅は、バッテリケース24のY方向の幅と略同じである。吸気ダクト12は、Z方向に沿って見た平面視で、複数のバッテリ21の間に形成された全ての通風隙間gと重なる。 As shown in FIG. 3, the width of the intake duct 12 in the Y direction is substantially the same as the width of the battery case 24 in the Y direction. The intake duct 12 overlaps all the ventilation gaps g formed between the plurality of batteries 21 in a plan view viewed along the Z direction.
 次に、排気ダクト13について説明する。
 図3に示すように、排気ダクト13は、電池モジュール11の内部を通った冷却流体を流出させる排気流路を形成している。排気ダクト13は、「第2通風ダクト」の一例である。詳しく述べると、排気ダクト13は、第1部分13aと、第2部分13bとを有する。
Next, the exhaust duct 13 will be described.
As shown in FIG. 3, the exhaust duct 13 forms an exhaust passage through which the cooling fluid that has passed through the inside of the battery module 11 flows out. The exhaust duct 13 is an example of a “second ventilation duct”. More specifically, the exhaust duct 13 has a first portion 13a and a second portion 13b.
 排気ダクト13の第1部分13aは、-X方向でバッテリケース24の第2側壁24cに重なる。排気ダクト13の第1部分13aは、バッテリケース24の第2側壁24cに沿ってZ方向に延びている。なお、Z方向は、バッテリ本体31の第2側面31dと略平行な方向である。例えば、排気ダクト13の第1部分13aは、Z方向においてバッテリケース24の略全長に亘って延びている。 The first portion 13a of the exhaust duct 13 overlaps the second side wall 24c of the battery case 24 in the -X direction. The first portion 13 a of the exhaust duct 13 extends in the Z direction along the second side wall 24 c of the battery case 24. The Z direction is a direction substantially parallel to the second side surface 31d of the battery body 31. For example, the first portion 13a of the exhaust duct 13 extends over substantially the entire length of the battery case 24 in the Z direction.
 排気ダクト13の第1部分13aは、バッテリケース24の排気口42を通じてバッテリケース24の内部に連通している。すなわち、排気ダクト13の第1部分13aは、バッテリケース24と端子部ケース25とが並ぶ方向とは異なる方向からバッテリケース24の内部に連通している。本実施形態では、バッテリケース24と排気ダクト13とは、+X方向で連通している。バッテリケース24の内部を通った冷却流体は、バッテリケース24の排気口42から排気ダクト13の第1部分13aに流出する。 The first portion 13 a of the exhaust duct 13 communicates with the inside of the battery case 24 through the exhaust port 42 of the battery case 24. That is, the first portion 13 a of the exhaust duct 13 communicates with the inside of the battery case 24 from a direction different from the direction in which the battery case 24 and the terminal case 25 are arranged. In the present embodiment, the battery case 24 and the exhaust duct 13 communicate with each other in the + X direction. The cooling fluid that has passed through the inside of the battery case 24 flows out from the exhaust port 42 of the battery case 24 to the first portion 13 a of the exhaust duct 13.
 排気ダクト13の第2部分13bは、排気ダクト13内の冷却流体の流れ方向において第1部分13aの下流側に位置する。排気ダクト13の第2部分13bは、第1部分13aからZ方向に延びている。例えば、排気ダクト13の第2部分13bは、端子部ケース25の第2側壁25cに沿って延びている。排気ダクト13の第2部分13bには、第1部分13aから冷却流体が流入する。排気ダクト13の第2部分13bは、第1部分13aから流入した冷却流体を電池モジュール11の外部に向けて案内する。 The second portion 13b of the exhaust duct 13 is located downstream of the first portion 13a in the flow direction of the cooling fluid in the exhaust duct 13. The second portion 13b of the exhaust duct 13 extends in the Z direction from the first portion 13a. For example, the second portion 13 b of the exhaust duct 13 extends along the second side wall 25 c of the terminal case 25. The cooling fluid flows into the second portion 13b of the exhaust duct 13 from the first portion 13a. The second portion 13 b of the exhaust duct 13 guides the cooling fluid flowing from the first portion 13 a toward the outside of the battery module 11.
 図3に示すように、排気ダクト13のY方向の幅は、バッテリケース24のY方向の幅と略同じである。排気ダクト13は、+X方向に沿って見た平面視で、複数のバッテリ21の間に形成される全ての通風隙間gと重なる。
 また、排気ダクト13には、図示しない複数の通電ケーブルが配置されている。複数の通電ケーブルは、複数のバスバー22を介して複数のバッテリ21に電気的に接続されている。本実施形態の排気ダクト13は、複数の通電ケーブルの接続用の空間としても利用される。
As shown in FIG. 3, the width of the exhaust duct 13 in the Y direction is substantially the same as the width of the battery case 24 in the Y direction. The exhaust duct 13 overlaps all the ventilation gaps g formed between the plurality of batteries 21 in a plan view viewed along the + X direction.
In addition, a plurality of energization cables (not shown) are arranged in the exhaust duct 13. The plurality of energization cables are electrically connected to the plurality of batteries 21 via the plurality of bus bars 22. The exhaust duct 13 of the present embodiment is also used as a space for connecting a plurality of energizing cables.
 次に、電池装置1の作用について説明する。
 電池装置1の充電時や放電時には、吸気ダクト12に電池モジュール11の外部から冷却流体が供給される。吸気ダクト12に供給された冷却流体は、+X方向に沿って吸気ダクト12の内部を流れる。そして、吸気ダクト12の内部を流れた冷却流体は、吸気ダクト12の第2部分12bにおいて、バッテリケース24の内部に向かうように流れ方向を変える。そして、吸気ダクト12の第2部分12bの内部を流れる冷却流体は、バッテリケース24の吸気口41から複数のバッテリ21の間の通風隙間gに流入する。通風隙間gに流入した冷却流体は、通風隙間gを通る過程でバッテリ21の第1側面31cに直接に接することで、バッテリ21から熱を奪う。これにより、複数のバッテリ21の冷却が促進される。また、通風隙間gに流入した冷却流体は、通風隙間gを通る間に、排気ダクト13に向かうように流れ方向を変える。そして、通風隙間gを通過した冷却流体は、バッテリケース24の排気口42から排気ダクト13の第1部分13aに流入する。排気ダクト13の第1部分13aに流入した冷却流体は、排気ダクト13の第1部分13aにおいて、排気ダクト13の第2部分13bに向かうように流れ方向を変え、電池モジュール11の外部に向けて流れる。
Next, the operation of the battery device 1 will be described.
When the battery device 1 is charged or discharged, a cooling fluid is supplied to the intake duct 12 from the outside of the battery module 11. The cooling fluid supplied to the intake duct 12 flows through the intake duct 12 along the + X direction. The cooling fluid that has flowed inside the intake duct 12 changes its flow direction so as to go toward the inside of the battery case 24 in the second portion 12b of the intake duct 12. Then, the cooling fluid flowing inside the second portion 12 b of the intake duct 12 flows into the ventilation gap g between the plurality of batteries 21 from the intake port 41 of the battery case 24. The cooling fluid that has flowed into the ventilation gap g takes heat away from the battery 21 by directly contacting the first side surface 31c of the battery 21 in the process of passing through the ventilation gap g. Thereby, cooling of the some battery 21 is accelerated | stimulated. Further, the cooling fluid that has flowed into the ventilation gap g changes its flow direction toward the exhaust duct 13 while passing through the ventilation gap g. And the cooling fluid which passed the ventilation gap g flows in into the 1st part 13a of the exhaust duct 13 from the exhaust port 42 of the battery case 24. FIG. The cooling fluid that has flowed into the first portion 13 a of the exhaust duct 13 changes the flow direction toward the second portion 13 b of the exhaust duct 13 in the first portion 13 a of the exhaust duct 13, and toward the outside of the battery module 11. Flowing.
 以上のような構成によれば、電池装置1の冷却性能の向上を図ることができる。すなわち本実施形態では、吸気ダクト12は、バッテリケース24に対して端子部ケース25とは反対側の位置でバッテリ本体31の第1側面31c(最も面積が大きな面)と略平行に延びるとともに、端子部ケース25とは反対側からバッテリケース24の内部に連通している。このような構成によれば、吸気ダクト12の内部を流れる冷却流体は、バッテリ本体31の第1側面31cに沿う比較的広い範囲(領域)のなかでバッテリケース24の内部に向かうように流れ方向を変化させればよい。このため、バッテリ本体31の第1側面31cに対して略直交する方向に沿って吸気ダクト12が設けられた場合に比べて、吸気ダクト12を流れる冷却流体が複数のバッテリ21の間に形成された通風隙間gにスムーズに流入することができる。これにより、吸気ダクト12からバッテリケース24の内部に向かう冷却流体の流量を増加させることができ、電池装置1の冷却性能の向上を図ることができる。 According to the above configuration, the cooling performance of the battery device 1 can be improved. That is, in the present embodiment, the intake duct 12 extends substantially parallel to the first side surface 31c (the surface having the largest area) of the battery body 31 at a position opposite to the terminal case 25 with respect to the battery case 24, The battery case 24 communicates with the inside of the battery case 24 from the side opposite to the terminal case 25. According to such a configuration, the cooling fluid flowing in the intake duct 12 flows in the direction of flowing toward the inside of the battery case 24 in a relatively wide range (region) along the first side surface 31 c of the battery body 31. Can be changed. For this reason, as compared with the case where the intake duct 12 is provided along a direction substantially orthogonal to the first side surface 31 c of the battery body 31, the cooling fluid flowing through the intake duct 12 is formed between the plurality of batteries 21. Can smoothly flow into the ventilation gap g. As a result, the flow rate of the cooling fluid from the intake duct 12 toward the inside of the battery case 24 can be increased, and the cooling performance of the battery device 1 can be improved.
 また、吸気ダクト12がバッテリ本体31の第1側面31cと略平行に延びていると、第1側面31c同士を互いに向かい合わせにして配置された複数のバッテリ21に対して冷却流体を均等に供給しやすくなる。これにより、バッテリケース24内における温度ばらつきを抑制することができ、複数のバッテリ21を効率的に冷却することができる。この観点でも電池装置1の冷却性能の向上を図ることができる。 Further, when the intake duct 12 extends substantially parallel to the first side surface 31c of the battery body 31, the cooling fluid is evenly supplied to the plurality of batteries 21 arranged with the first side surfaces 31c facing each other. It becomes easy to do. Thereby, the temperature variation in the battery case 24 can be suppressed, and the plurality of batteries 21 can be efficiently cooled. Also from this viewpoint, the cooling performance of the battery device 1 can be improved.
 また本実施形態では、吸気ダクト12は、バッテリ本体31の第1側面31cと略平行に延びている。一方で、排気ダクト13は、バッテリ本体31の第2側面31dと略平行に延びている。このような構成によれば、吸気ダクト12および排気ダクト13の両方を、Y方向においてバッテリケース24の幅と略同じまたはそれよりも小さな領域内に収めることができる。これにより、電池装置1の小型化を図ることができる。また本実施形態の構成によれば、複数の電池装置1(電池モジュール11)がY方向に並べて配置される場合でも、複数の電池装置1の間で吸気ダクト12や排気ダクト13が邪魔になりにくい。このため、複数の電池装置1(電池モジュール11)を密に配置することができる。 In the present embodiment, the intake duct 12 extends substantially parallel to the first side surface 31 c of the battery body 31. On the other hand, the exhaust duct 13 extends substantially parallel to the second side surface 31 d of the battery body 31. According to such a configuration, both the intake duct 12 and the exhaust duct 13 can be accommodated in a region that is substantially the same as or smaller than the width of the battery case 24 in the Y direction. Thereby, size reduction of the battery apparatus 1 can be achieved. Further, according to the configuration of the present embodiment, even when the plurality of battery devices 1 (battery modules 11) are arranged in the Y direction, the intake duct 12 and the exhaust duct 13 become an obstacle between the plurality of battery devices 1. Hateful. For this reason, the some battery apparatus 1 (battery module 11) can be arrange | positioned densely.
 本実施形態では、バッテリケース24と端子部ケース25とはZ方向で並ぶ。そして、吸気ダクト12は、バッテリケース24に対して端子部ケース25とは反対側の位置でバッテリ本体31の第1側面31cと略平行な方向であってZ方向とは交差する+X方向に延びている。このような構成によれば、吸気ダクト12がZ方向に延びている場合に比べて、電池装置1が厚くなることを抑制することができる。これにより、電池装置1のさらなる小型化を図ることができる。 In the present embodiment, the battery case 24 and the terminal case 25 are aligned in the Z direction. The intake duct 12 extends in a + X direction that is substantially parallel to the first side surface 31c of the battery body 31 at a position opposite to the terminal case 25 with respect to the battery case 24 and intersects the Z direction. ing. According to such a structure, it can suppress that the battery apparatus 1 becomes thick compared with the case where the intake duct 12 is extended in the Z direction. Thereby, further size reduction of the battery apparatus 1 can be achieved.
 本実施形態では、バッテリケース24と排気ダクト13とは+X方向で連通している。このような構成によれば、吸気ダクト12を+X方向に流れることで+X方向の慣性力成分を有しながらバッテリケース24の内部に流入した冷却流体の一部が、バッテリケース24の内部から排気ダクト13に+X方向で流入することができる。このため、吸気ダクト12を流れる冷却流体がバッテリケース24の内部を通って排気ダクト13にスムーズに流入しやすくなる。これにより、吸気ダクト12からバッテリケース24の内部に向かう冷却流体の流量をさらに増加させることができ、電池装置1の冷却性能の向上をさらに図ることができる。 In this embodiment, the battery case 24 and the exhaust duct 13 communicate with each other in the + X direction. According to such a configuration, a part of the cooling fluid flowing into the battery case 24 while having an inertial force component in the + X direction by flowing in the intake duct 12 in the + X direction is exhausted from the inside of the battery case 24. It can flow into the duct 13 in the + X direction. For this reason, the cooling fluid flowing through the intake duct 12 easily flows smoothly into the exhaust duct 13 through the inside of the battery case 24. As a result, the flow rate of the cooling fluid from the intake duct 12 toward the inside of the battery case 24 can be further increased, and the cooling performance of the battery device 1 can be further improved.
 本実施形態では、吸気ダクト12とバッテリケース24とは、Z方向に並ぶ。そして、排気ダクト13は、Z方向に延びている。このような構成によれば、吸気ダクト12からバッテリケース24の内部に向けてZ方向に流れることでZ方向の慣性力成分を有しながらバッテリケース24の内部に流入した冷却流体の一部が、排気ダクト13をZ方向に流れることができる。このため、冷却流体がバッテリケース24の内部から排気ダクト13にさらにスムーズに流入しやすくなる。これにより、吸気ダクト12からバッテリケース24の内部に向かう冷却流体の流量をさらに増加させることができ、電池装置1の冷却性能の向上をさらに図ることができる。 In the present embodiment, the intake duct 12 and the battery case 24 are arranged in the Z direction. The exhaust duct 13 extends in the Z direction. According to such a configuration, a part of the cooling fluid flowing into the battery case 24 while having an inertial force component in the Z direction by flowing in the Z direction from the intake duct 12 toward the inside of the battery case 24 is obtained. The exhaust duct 13 can flow in the Z direction. For this reason, it becomes easier for the cooling fluid to flow into the exhaust duct 13 more smoothly from the inside of the battery case 24. As a result, the flow rate of the cooling fluid from the intake duct 12 toward the inside of the battery case 24 can be further increased, and the cooling performance of the battery device 1 can be further improved.
 (第2の実施形態)
 次に、図4を参照して、第2の実施形態について説明する。本実施形態は、排気ダクト13が複数の排気流路51,52を有する点で、第1の実施形態とは異なる。なお以下に説明する以外の構成は、第1の実施形態の構成と同様である。
(Second Embodiment)
Next, a second embodiment will be described with reference to FIG. The present embodiment is different from the first embodiment in that the exhaust duct 13 has a plurality of exhaust passages 51 and 52. The configurations other than those described below are the same as the configurations of the first embodiment.
 図4に示すように、排気ダクト13は、第1排気流路51と、第2排気流路52とを有する。第1排気流路51および第2排気流路52は、+X方向においてバッテリケース24の両側に分かれて配置され、それぞれバッテリケース24の内部に連通している。第1排気流路51は、「第1通風流路」の一例である。第2排気流路52は、「第2通風流路」の一例である。 As shown in FIG. 4, the exhaust duct 13 has a first exhaust flow path 51 and a second exhaust flow path 52. The first exhaust flow path 51 and the second exhaust flow path 52 are arranged separately on both sides of the battery case 24 in the + X direction, and communicate with the inside of the battery case 24, respectively. The first exhaust passage 51 is an example of a “first ventilation passage”. The second exhaust passage 52 is an example of a “second ventilation passage”.
 詳しく述べると、本実施形態のバッテリケース24は、第2側壁24cに加えて、第1側壁24bにも排気口42を有する。すなわち、第1側壁24bは、通風隙間gに面する排気口42を有する。第1側壁24bの排気口42は、-X方向に開口している。なお、第1側壁24bは、バッテリ21に面する位置には排気口42を有しない。 More specifically, the battery case 24 of the present embodiment has an exhaust port 42 in the first side wall 24b in addition to the second side wall 24c. That is, the first side wall 24b has an exhaust port 42 that faces the ventilation gap g. The exhaust port 42 of the first side wall 24b opens in the −X direction. The first side wall 24 b does not have the exhaust port 42 at a position facing the battery 21.
 第1排気流路51は、+X方向でバッテリケース24の第1側壁24bに重なる。第1排気流路51は、バッテリケース24の第1側壁24bに沿ってZ方向に延びている。第1排気流路51は、バッテリケース24の第1側壁24bの排気口42を通じて、+X方向でバッテリケース24の内部と連通している。すなわち、第1排気流路51は、バッテリケース24と端子部ケース25とが並ぶ方向とは異なる方向からバッテリケース24の内部に連通している。バッテリケース24の内部に流入した冷却流体の一部は、バッテリケース24の第1側壁24bの排気口42から第1排気流路51に流出する。 The first exhaust passage 51 overlaps the first side wall 24b of the battery case 24 in the + X direction. The first exhaust passage 51 extends in the Z direction along the first side wall 24 b of the battery case 24. The first exhaust passage 51 communicates with the inside of the battery case 24 in the + X direction through the exhaust port 42 of the first side wall 24b of the battery case 24. In other words, the first exhaust passage 51 communicates with the inside of the battery case 24 from a direction different from the direction in which the battery case 24 and the terminal case 25 are arranged. Part of the cooling fluid that has flowed into the battery case 24 flows out from the exhaust port 42 of the first side wall 24 b of the battery case 24 to the first exhaust flow path 51.
 一方で、第2排気流路52は、-X方向でバッテリケース24の第2側壁24cに重なる。第2排気流路52は、バッテリケース24の第2側壁24cに沿ってZ方向に延びている。第2排気流路52は、バッテリケース24の第2側壁24cの排気口42を通じて、-X方向でバッテリケース24の内部と連通している。すなわち、第2排気流路52は、バッテリケース24と端子部ケース25とが並ぶ方向とは異なる方向からバッテリケース24の内部に連通している。バッテリケース24の内部に流入した冷却流体は、バッテリケース24の第2側壁24cの排気口42から第2排気流路52に流出する。 On the other hand, the second exhaust flow path 52 overlaps the second side wall 24c of the battery case 24 in the -X direction. The second exhaust flow path 52 extends in the Z direction along the second side wall 24 c of the battery case 24. The second exhaust passage 52 communicates with the inside of the battery case 24 in the −X direction through the exhaust port 42 of the second side wall 24 c of the battery case 24. That is, the second exhaust flow path 52 communicates with the inside of the battery case 24 from a direction different from the direction in which the battery case 24 and the terminal portion case 25 are arranged. The cooling fluid that has flowed into the battery case 24 flows out from the exhaust port 42 of the second side wall 24 c of the battery case 24 to the second exhaust flow path 52.
 このような構成によれば、第1の実施形態と同様に、電池装置1の冷却性能の向上を図ることができる。また本実施形態では、排気ダクト13は、第1排気流路51と、第2排気流路52とを有する。そして、第1排気流路51および第2排気流路52は、+X方向においてバッテリケース24の両側に分かれて配置され、それぞれバッテリケース24の内部に連通している。このような構成によれば、排気ダクト13の通風断面積を増やすことができる。なお、本願で言う「通風断面積」とは、冷却流体の流れ方向とは略直交した方向に沿う断面積であり、冷却流体が流れる流路断面積を意味する。排気ダクト13の通風断面積が増加すると、排気ダクト13の通風抵抗を低減することができる。これにより、通風隙間gに流入する冷却流体の量を増やすことができ、電池装置1の冷却性能の向上をさらに図ることができる。 According to such a configuration, the cooling performance of the battery device 1 can be improved as in the first embodiment. In the present embodiment, the exhaust duct 13 includes a first exhaust passage 51 and a second exhaust passage 52. The first exhaust flow path 51 and the second exhaust flow path 52 are arranged separately on both sides of the battery case 24 in the + X direction, and communicate with the inside of the battery case 24, respectively. According to such a structure, the ventilation cross-sectional area of the exhaust duct 13 can be increased. The “ventilation cross-sectional area” referred to in the present application is a cross-sectional area along a direction substantially orthogonal to the flow direction of the cooling fluid, and means a flow path cross-sectional area through which the cooling fluid flows. When the ventilation cross-sectional area of the exhaust duct 13 increases, the ventilation resistance of the exhaust duct 13 can be reduced. Thereby, the quantity of the cooling fluid which flows into the ventilation gap g can be increased, and the cooling performance of the battery device 1 can be further improved.
 (第3の実施形態)
 次に、図5を参照して、第3の実施形態について説明する。本実施形態は、第1排気流路51および第2排気流路52が端子部ケース25の上方を迂回するように設けられた点で、第2の実施形態とは異なる。なお以下に説明する以外の構成は、第2の実施形態の構成と同様である。
(Third embodiment)
Next, a third embodiment will be described with reference to FIG. This embodiment is different from the second embodiment in that the first exhaust flow path 51 and the second exhaust flow path 52 are provided so as to bypass the terminal portion case 25. The configurations other than those described below are the same as the configurations of the second embodiment.
 図5に示すように、第1排気流路51および第2排気流路52の各々は、上述の第1部分13aおよび第2部分13bに加えて、第3部分13c(延長部)を有する。第3部分13cは、排気ダクト13内の冷却流体の流れ方向において、第2部分13bの下流側に位置する。 As shown in FIG. 5, each of the first exhaust passage 51 and the second exhaust passage 52 has a third portion 13c (extension portion) in addition to the first portion 13a and the second portion 13b described above. The third portion 13 c is located on the downstream side of the second portion 13 b in the flow direction of the cooling fluid in the exhaust duct 13.
 第1排気流路51の第3部分13cは、第1排気流路51の第2部分13bの端部から端子部ケース25の上壁25aに沿って+X方向に延びている。一方で、第2排気流路52の第3部分13cは、第2排気流路52の第2部分13bの端部から端子部ケース25の上壁25aに沿って-X方向に延びている。第1排気流路51および第2排気流路52の各々の第3部分13cは、端子部ケース25に対してバッテリケース24とは反対側に位置する。第3部分13cには、第2部分13bを通った冷却流体が流入する。第3部分13cに流入した冷却流体は、端子部ケース25の上壁25aに沿って第3部分13cの内部を流れる。例えば、第1排気流路51および第2排気流路52の各々の第3部分13cは、端子部ケース25に面する一面が開放された筒状に形成されている。このため、第3部分13cに流れる冷却流体は、端子部ケース25の上壁25aに直接に接する。 The third portion 13 c of the first exhaust flow path 51 extends in the + X direction along the upper wall 25 a of the terminal case 25 from the end of the second portion 13 b of the first exhaust flow path 51. On the other hand, the third portion 13 c of the second exhaust passage 52 extends in the −X direction along the upper wall 25 a of the terminal case 25 from the end of the second portion 13 b of the second exhaust passage 52. The third portions 13 c of the first exhaust flow path 51 and the second exhaust flow path 52 are located on the opposite side of the battery case 24 with respect to the terminal case 25. The cooling fluid that has passed through the second portion 13b flows into the third portion 13c. The cooling fluid that has flowed into the third portion 13 c flows inside the third portion 13 c along the upper wall 25 a of the terminal portion case 25. For example, the third portion 13 c of each of the first exhaust flow channel 51 and the second exhaust flow channel 52 is formed in a cylindrical shape in which one surface facing the terminal case 25 is opened. For this reason, the cooling fluid flowing through the third portion 13 c directly contacts the upper wall 25 a of the terminal portion case 25.
 本実施形態では、第1排気流路51および第2排気流路52は、+X方向において、バッテリケース24の略中央部で互いに合流している。第1排気流路51と第2排気流路52との合流部には、Z方向に開口した排気ダクト13の出口62が設けられている。 In the present embodiment, the first exhaust flow channel 51 and the second exhaust flow channel 52 merge with each other at the substantially central portion of the battery case 24 in the + X direction. An outlet 62 of the exhaust duct 13 that opens in the Z direction is provided at a junction between the first exhaust flow path 51 and the second exhaust flow path 52.
 このような構成によれば、第2の実施形態と同様に、電池装置1の冷却性能の向上を図ることができる。また本実施形態では、排気ダクト13は、端子部ケース25に沿って風が流れる第3部分13c(延長部)を有する。このような構成によれば、排気ダクト13の第3部分13cを流れる冷却流体によって、端子部ケース25が直接に冷却される。これにより、端子部ケース25に収容された部品(バスバー22および基板23など)や、バッテリ21の端子32A,32B、およびバッテリ本体31の上部などの放熱をさらに促進することができる。これにより、電池装置1の冷却性能の向上をさらに図ることができる。 According to such a configuration, as in the second embodiment, the cooling performance of the battery device 1 can be improved. In the present embodiment, the exhaust duct 13 has a third portion 13 c (extension portion) through which wind flows along the terminal portion case 25. According to such a configuration, the terminal case 25 is directly cooled by the cooling fluid flowing through the third portion 13 c of the exhaust duct 13. Thereby, heat dissipation of components (such as the bus bar 22 and the substrate 23) accommodated in the terminal case 25, the terminals 32 </ b> A and 32 </ b> B of the battery 21, and the upper part of the battery main body 31 can be further promoted. Thereby, the cooling performance of the battery device 1 can be further improved.
 (第4の実施形態)
 次に、図6を参照して、第4の実施形態について説明する。本実施形態は、第2排気流路52に比べて第1排気流路51が長く延びた点で、第3の実施形態とは異なる。なお以下に説明する以外の構成は、第3の実施形態の構成と同様である。
(Fourth embodiment)
Next, a fourth embodiment will be described with reference to FIG. This embodiment is different from the third embodiment in that the first exhaust passage 51 extends longer than the second exhaust passage 52. The configurations other than those described below are the same as the configurations of the third embodiment.
 図6に示すように、本実施形態では、第2排気流路52は、第3部分13cを有しない。一方で、第1排気流路51の第3部分13cは、+X方向において、端子部ケース25の略全長に亘って設けられている。第1排気流路51の第3部分13cは、第2排気流路52の第2部分13bに合流している。 As shown in FIG. 6, in the present embodiment, the second exhaust flow path 52 does not have the third portion 13c. On the other hand, the third portion 13c of the first exhaust passage 51 is provided over substantially the entire length of the terminal case 25 in the + X direction. The third portion 13 c of the first exhaust passage 51 joins the second portion 13 b of the second exhaust passage 52.
 このような構成によれば、第3の実施形態と同様に、電池装置1の冷却性能の向上を図ることができる。また本実施形態では、第1排気流路51は、端子部ケース25に沿って風が流れるとともに第2排気流路52に合流する第3部分13c(延長部)を有する。このような構成によれば、第1排気流路51および第2排気流路52の出口がバッテリケース24の一端部に纏まる。このため、例えば、複数の電池装置1をZ方向に多段に重ねて配置しやすくなる(図9ご参照)。 According to such a configuration, as in the third embodiment, the cooling performance of the battery device 1 can be improved. In the present embodiment, the first exhaust flow path 51 has a third portion 13 c (extension part) that flows along the terminal part case 25 and merges with the second exhaust flow path 52. According to such a configuration, the outlets of the first exhaust passage 51 and the second exhaust passage 52 are gathered at one end of the battery case 24. For this reason, for example, it becomes easy to arrange a plurality of battery devices 1 in multiple stages in the Z direction (see FIG. 9).
 (第5の実施形態)
 次に、図7を参照して、第5の実施形態について説明する。本実施形態は、冷却流体を流入させる開口部65aを端子部ケース25が有した点で、第4の実施形態とは異なる。なお以下に説明する以外の構成は、第4の実施形態の構成と同様である。
(Fifth embodiment)
Next, a fifth embodiment will be described with reference to FIG. This embodiment is different from the fourth embodiment in that the terminal part case 25 has an opening 65a through which a cooling fluid flows. The configuration other than that described below is the same as the configuration of the fourth embodiment.
 図7に示すように、端子部ケース25は、第1開口部65aと、第2開口部65bとを有する。第1開口部65aは、端子部ケース25の第1側壁25bに設けられ、第1排気流路51の内部に開口している(連通している)。第1開口部65aは、第1排気流路51の内部を流れる冷却流体の一部を端子部ケース25の内部に流入させる。
 一方で、第2開口部65bは、端子部ケース25の第2側壁25cに設けられ、第2排気流路52の内部に開口している(連通している)。第2開口部65bは、第1開口部65aから端子部ケース25の内部に流入して端子部ケース25の内部を通った冷却流体を第2排気流路52に流出させる。
As illustrated in FIG. 7, the terminal case 25 has a first opening 65a and a second opening 65b. The first opening 65 a is provided in the first side wall 25 b of the terminal case 25 and opens (communicates) inside the first exhaust flow path 51. The first opening 65 a allows a part of the cooling fluid flowing inside the first exhaust passage 51 to flow into the terminal case 25.
On the other hand, the second opening 65 b is provided in the second side wall 25 c of the terminal case 25 and opens (communicates) inside the second exhaust passage 52. The second opening 65 b flows from the first opening 65 a into the terminal case 25 and allows the cooling fluid that has passed through the terminal case 25 to flow into the second exhaust flow path 52.
 このような構成によれば、第4の実施形態と同様に、電池装置1の冷却性能の向上を図ることができる。また本実施形態では、端子部ケース25は、排気ダクト13内を流れる風の一部が端子部ケース25内に流入する開口部65aを有する。このような構成によれば、排気ダクト13を流れる冷却流体の一部が端子部ケース25の内部を通って流れるため、端子部ケース25に収容された部品(例えばバスバー22や基板23)、バッテリ21の端子32A,32B、およびバッテリ本体31の上部などの放熱をさらに促進することができる。これにより、電池装置1の冷却性能の向上をさらに図ることができる。 According to such a configuration, the cooling performance of the battery device 1 can be improved as in the fourth embodiment. In the present embodiment, the terminal case 25 has an opening 65 a through which a part of the wind flowing in the exhaust duct 13 flows into the terminal case 25. According to such a configuration, a part of the cooling fluid flowing through the exhaust duct 13 flows through the inside of the terminal portion case 25, so that the components (for example, the bus bar 22 and the substrate 23) housed in the terminal portion case 25, the battery The heat radiation of the terminals 32A and 32B of the 21 and the upper part of the battery body 31 can be further promoted. Thereby, the cooling performance of the battery device 1 can be further improved.
 (第6の実施形態)
 次に、図8を参照して、第6の実施形態について説明する。本実施形態は、複数のバッテリ21が3列に分かれて配置された点、およびバッテリケース24の下壁24aの領域によって吸気口41の開口率が異なる点で、第4の実施形態とは異なる。なお以下に説明する以外の構成は、第4の実施形態の構成と同様である。
(Sixth embodiment)
Next, a sixth embodiment will be described with reference to FIG. This embodiment is different from the fourth embodiment in that the plurality of batteries 21 are arranged in three rows and the opening ratio of the air inlet 41 is different depending on the region of the lower wall 24a of the battery case 24. . The configuration other than that described below is the same as the configuration of the fourth embodiment.
 図8に示すように、複数のバッテリ21は、第1列L1と、第2列L2と、第3列L3とに分かれて配置されている。第3列L3は、第1列L1に対して、第2列L2とは反対側に位置する。 As shown in FIG. 8, the plurality of batteries 21 are arranged in a first row L1, a second row L2, and a third row L3. The third row L3 is located on the opposite side to the second row L2 with respect to the first row L1.
 第1列L1、第2列L2、第3列L3の各々は、複数(例えば3つ以上)のバッテリ21を含む。第1列L1、第2列L2、第3列L3の各々では、複数のバッテリ21は、Y方向において、第1側面31c同士の間に隙間gを空けて第1側面31c同士を互いに向かい合わせにして配置されている。また、第1列L1に含まれる複数のバッテリ21と、第2列L2に含まれる複数のバッテリ21と、第3列L3に含まれる複数のバッテリ21は、+X方向において、互いの間に隙間を空ける、もしくは絶縁物を間に配し、第2側面31d同士を互いに向かい合わせして配置されている。 Each of the first column L1, the second column L2, and the third column L3 includes a plurality of (for example, three or more) batteries 21. In each of the first row L1, the second row L2, and the third row L3, the plurality of batteries 21 face each other in the Y direction with a gap g between the first side surfaces 31c. Are arranged. The plurality of batteries 21 included in the first row L1, the plurality of batteries 21 included in the second row L2, and the plurality of batteries 21 included in the third row L3 are spaced from each other in the + X direction. The second side surfaces 31d are arranged to face each other with a gap between them or an insulator.
 別の観点で見ると、第2列L2および第3列L3は、複数の列L1,L2,L3のなかで端に位置する。第2列L2は、複数の列L1,L2,L3のなかで、第2排気流路52(排気ダクト13)に最も近い。同様に、第3列L3は、複数の列L1,L2,L3のなかで、第1排気流路51(排気ダクト13)に最も近い。一方で、第1列L1は、第2列L2と第3列L3との間に位置し、第2列L2および第3列L3によって両側から挟まれている。第1列L1は、第2列L2および第3列L3に比べて、排気ダクト13から遠い。 From another viewpoint, the second row L2 and the third row L3 are located at the ends of the plurality of rows L1, L2, and L3. The second row L2 is closest to the second exhaust passage 52 (exhaust duct 13) among the plurality of rows L1, L2, and L3. Similarly, the third row L3 is closest to the first exhaust passage 51 (exhaust duct 13) among the plurality of rows L1, L2, and L3. On the other hand, the first row L1 is located between the second row L2 and the third row L3, and is sandwiched from both sides by the second row L2 and the third row L3. The first row L1 is farther from the exhaust duct 13 than the second row L2 and the third row L3.
 本実施形態では、バッテリケース24の下壁24aは、第1領域71と、第2領域72と、第3領域73とを有する。第1領域71は、第1列L1に含まれる複数のバッテリ21が配置される領域である。第2領域72は、第2列L2に含まれる複数のバッテリ21が配置される領域である。第3領域73は、第3列L3に含まれる複数のバッテリ21が配置される領域である。第2領域72および第3領域73は、第1領域71に比べて、排気口42(排気ダクト13)に近い。 In the present embodiment, the lower wall 24a of the battery case 24 includes a first region 71, a second region 72, and a third region 73. The first area 71 is an area in which the plurality of batteries 21 included in the first row L1 are arranged. The second area 72 is an area where the plurality of batteries 21 included in the second row L2 are arranged. The third area 73 is an area in which the plurality of batteries 21 included in the third row L3 are arranged. The second region 72 and the third region 73 are closer to the exhaust port 42 (exhaust duct 13) than the first region 71.
 第1領域71、第2領域72、および第3領域73は、それぞれ少なくとも1つの吸気口41を有する。そして、第2領域72および第3領域における吸気口41の開口率は、第1領域71における吸気口41の開口率よりも小さい。なお本願でいう「開口率」とは、ある領域の面積(総面積)に対する吸気口41の開口面積の比率を意味する。すなわち、例えば「第1領域71における吸気口41の開口率」とは、第1領域71に設けられた吸気口41の開口面積(複数の吸気口41が設けられている場合には、複数の吸気口41の開口面積の合計)を、第1領域71の面積で除算した値である。 The first region 71, the second region 72, and the third region 73 each have at least one intake port 41. The opening ratio of the intake port 41 in the second region 72 and the third region is smaller than the opening rate of the intake port 41 in the first region 71. The “opening ratio” in the present application means the ratio of the opening area of the intake port 41 to the area (total area) of a certain region. That is, for example, “the opening ratio of the intake port 41 in the first region 71” means the opening area of the intake port 41 provided in the first region 71 (if a plurality of intake ports 41 are provided, This is a value obtained by dividing the total opening area of the intake port 41 by the area of the first region 71.
 例えば本実施形態では、第2領域72および第3領域73には、複数の吸気口41が所定の間隔で設けられている。一方で、第1領域71には、+X方向において第1領域71の全長に亘る比較的大きな吸気口41が設けられている。これにより、第2領域72および第3領域73における吸気口41の開口率は、第1領域71における吸気口41の開口率よりも小さくなっている。 For example, in the present embodiment, the second region 72 and the third region 73 are provided with a plurality of intake ports 41 at predetermined intervals. On the other hand, the first region 71 is provided with a relatively large intake port 41 over the entire length of the first region 71 in the + X direction. Thereby, the opening ratio of the intake port 41 in the second region 72 and the third region 73 is smaller than the opening rate of the intake port 41 in the first region 71.
 このような構成によれば、第4の実施形態と同様に、電池装置1の冷却性能の向上を図ることができる。
 ここで、第1列L1に含まれる複数のバッテリ21は、排気口42(排気ダクト13)から比較的遠い。このため、第1列L1に含まれる複数のバッテリ21は、第2列L2および第3列L3に含まれる複数のバッテリ21に比べて、冷却流体に晒されにくく、冷却が促進されにくい。このため、バッテリケース24内で温度ばらつきが生じ、冷却性能が低下する場合がある。
According to such a configuration, it is possible to improve the cooling performance of the battery device 1 as in the fourth embodiment.
Here, the plurality of batteries 21 included in the first row L1 are relatively far from the exhaust port 42 (exhaust duct 13). For this reason, the plurality of batteries 21 included in the first row L1 are less likely to be exposed to the cooling fluid and are less likely to be cooled than the plurality of batteries 21 included in the second row L2 and the third row L3. For this reason, temperature variation may occur in the battery case 24, and cooling performance may deteriorate.
 ただし、本実施形態では、第2領域72および第3領域73における吸気口41の開口率は、第1領域71における吸気口41の開口率よりも小さい。このような構成によれば、第1領域71の吸気口41からバッテリケース24の内部に流入する空気流量を増やすことができる。これにより、排気口42(排気ダクト13)から比較的遠い第1列L1に含まれる複数のバッテリ21の冷却を効果的に促進することができる。その結果、バッテリケース24内で温度ばらつきが生じることを抑制し、電池装置1の冷却性能の向上を図ることができる。また、複数のバッテリ21の温度ばらつきを抑制することで、各バッテリ21の寿命の向上を図ることができる。 However, in the present embodiment, the opening ratio of the intake port 41 in the second region 72 and the third region 73 is smaller than the opening rate of the intake port 41 in the first region 71. According to such a configuration, the flow rate of air flowing into the battery case 24 from the air inlet 41 of the first region 71 can be increased. Thereby, cooling of the some battery 21 contained in the 1st row | line L1 comparatively far from the exhaust port 42 (exhaust duct 13) can be accelerated | stimulated effectively. As a result, it is possible to suppress temperature variations in the battery case 24 and improve the cooling performance of the battery device 1. Moreover, the lifetime of each battery 21 can be improved by suppressing the temperature variation of the plurality of batteries 21.
 (第7の実施形態)
 次に、図9を参照して、第7の実施形態について説明する。本実施形態は、複数の電池モジュール11が多段に配置された点で、第4の実施形態とは異なる。なお以下に説明する以外の構成は、第4の実施形態の構成と同様である。
(Seventh embodiment)
Next, a seventh embodiment will be described with reference to FIG. This embodiment is different from the fourth embodiment in that a plurality of battery modules 11 are arranged in multiple stages. The configuration other than that described below is the same as the configuration of the fourth embodiment.
 図9に示すように、本実施形態の電池装置1は、複数の電池モジュール11と、吸気ダクト12と、排気ダクト13と、ファン81とを備える。複数の電池モジュール11の各々は、複数のバッテリ21、複数のバスバー22、基板23、バッテリケース24、および端子部ケース25を有する。複数の電池モジュール11は、バッテリケース24と端子部ケース25とが並ぶ方向であるZ方向に多段に配置されている。 As shown in FIG. 9, the battery device 1 of this embodiment includes a plurality of battery modules 11, an intake duct 12, an exhaust duct 13, and a fan 81. Each of the plurality of battery modules 11 includes a plurality of batteries 21, a plurality of bus bars 22, a substrate 23, a battery case 24, and a terminal part case 25. The plurality of battery modules 11 are arranged in multiple stages in the Z direction, which is the direction in which the battery case 24 and the terminal case 25 are arranged.
 吸気ダクト12は、吸気主ダクト部91と、複数の吸気流路92とを有する。吸気主ダクト部91は、複数の電池モジュール11が多段に配置された方向(Z方向)に延びている。吸気主ダクト部91は、複数の電池モジュール11の全ての側方に位置するように複数の電池モジュール11に亘って延びている。吸気主ダクト部91は、複数の電池モジュール11に供給される冷却流体が流れる流路である。吸気主ダクト部91は、電池装置1の一端部(例えば上端部)において、電池装置1の外部に開口した入口61を有する。吸気主ダクト部91には、入口61を通じて電池装置1の外部から冷却流体が流入する。 The intake duct 12 has an intake main duct portion 91 and a plurality of intake passages 92. The intake main duct portion 91 extends in a direction (Z direction) in which the plurality of battery modules 11 are arranged in multiple stages. The intake main duct portion 91 extends over the plurality of battery modules 11 so as to be located on all sides of the plurality of battery modules 11. The intake main duct portion 91 is a flow path through which the cooling fluid supplied to the plurality of battery modules 11 flows. The intake main duct portion 91 has an inlet 61 that opens to the outside of the battery device 1 at one end portion (for example, an upper end portion) of the battery device 1. The cooling fluid flows into the intake main duct portion 91 from the outside of the battery device 1 through the inlet 61.
 複数の吸気流路92は、複数の電池モジュール11に対応して設けられている。各吸気流路92は、「通風流路」の一例である。複数の吸気流路92は、吸気主ダクト部91から分岐している。複数の吸気流路92には、吸気主ダクト部91の内部を流れる冷却流体がそれぞれ流入する。複数の吸気流路92の各々は、その吸気流路92が対応する電池モジュール11に関して、バッテリケース24に対して端子部ケース25とは反対側の位置でバッテリ本体31の第1側面31cと略平行に延びるとともに端子部ケース25とは反対側からバッテリケース24の内部に連通している。本実施形態では、各吸気流路92は、第1の実施形態と同様に、第1部分12aと、第2部分12bとを有する。これにより、複数の吸気流路92は、複数の電池モジュール11のバッテリケース24の内部に冷却流体を供給する。 The plurality of intake channels 92 are provided corresponding to the plurality of battery modules 11. Each intake channel 92 is an example of a “ventilating channel”. The plurality of intake passages 92 are branched from the intake main duct portion 91. The cooling fluid flowing in the intake main duct portion 91 flows into the plurality of intake flow paths 92, respectively. Each of the plurality of intake flow paths 92 is substantially the same as the first side surface 31c of the battery body 31 at a position opposite to the terminal case 25 with respect to the battery case 24 with respect to the battery module 11 to which the intake flow path 92 corresponds. It extends in parallel and communicates with the inside of the battery case 24 from the side opposite to the terminal case 25. In the present embodiment, each intake flow channel 92 includes a first portion 12a and a second portion 12b, as in the first embodiment. Accordingly, the plurality of intake passages 92 supply the cooling fluid to the inside of the battery cases 24 of the plurality of battery modules 11.
 排気ダクト13は、排気主ダクト部95と、複数の排気流路51とを有する。排気主ダクト部95は、複数の電池モジュール11に対して吸気主ダクト部91とは反対側に位置する。排気主ダクト部95は、複数の電池モジュール11が多段に配置された方向(Z方向)に延びている。排気主ダクト部95は、複数の電池モジュール11の全ての側方に位置するように複数の電池モジュール11に亘って延びている。排気主ダクト部95は、複数の電池モジュール11を通った冷却流体が合流する流路である。排気主ダクト部95は、電池装置1の一端部(例えば上端部)において、電池装置1の外部に開口した出口62を有する。排気主ダクト95は、複数の電池モジュール11のバッテリケース24の内部を通った空気を、出口62から電池装置1の外部に流出させる。複数の排気流路51は、複数の電池モジュール11に対応して設けられるとともに、排気主ダクト部95に接続されている。 The exhaust duct 13 has an exhaust main duct portion 95 and a plurality of exhaust passages 51. The exhaust main duct portion 95 is located on the side opposite to the intake main duct portion 91 with respect to the plurality of battery modules 11. The exhaust main duct portion 95 extends in a direction (Z direction) in which the plurality of battery modules 11 are arranged in multiple stages. The exhaust main duct portion 95 extends over the plurality of battery modules 11 so as to be positioned on all sides of the plurality of battery modules 11. The exhaust main duct portion 95 is a flow path in which cooling fluids that have passed through the plurality of battery modules 11 merge. The exhaust main duct portion 95 has an outlet 62 opened to the outside of the battery device 1 at one end portion (for example, an upper end portion) of the battery device 1. The exhaust main duct 95 causes the air that has passed through the inside of the battery cases 24 of the plurality of battery modules 11 to flow out of the battery device 1 from the outlet 62. The plurality of exhaust passages 51 are provided corresponding to the plurality of battery modules 11 and are connected to the exhaust main duct portion 95.
 本実施形態では、ファン81は、排気ファンとして、排気ダクト13の出口62に設けられている。ファン81が駆動されることで、排気ダクト13内の冷却流体が電池装置1の外部に排気される。これにより、電池装置1の内部の圧力が下がり、電池装置1の外部から吸気ダクト12に新しい冷却流体が流入する。なお、ファン81が設けられる場所は、排気ダクト13の出口62に限らず、排気ダクト13の途中でもよい。 In this embodiment, the fan 81 is provided at the outlet 62 of the exhaust duct 13 as an exhaust fan. When the fan 81 is driven, the cooling fluid in the exhaust duct 13 is exhausted to the outside of the battery device 1. As a result, the pressure inside the battery device 1 decreases, and a new cooling fluid flows into the intake duct 12 from the outside of the battery device 1. The place where the fan 81 is provided is not limited to the outlet 62 of the exhaust duct 13 but may be in the middle of the exhaust duct 13.
 このような構成によれば、第4の実施形態と同様に、電池装置1の冷却性能の向上を図ることができる。
 また本実施形態では、複数の電池モジュール11がZ方向で多段に配置されている。吸気ダクト12は、複数の電池モジュール11に対応して設けられた複数の吸気流路92を有する。複数の吸気流路92の各々は、バッテリ本体31の第1側面31cと略平行に延びるとともに端子部ケース25とは反対側からバッテリケース24の内部に連通している。このような構成によれば、複数の電池モジュール11を密に配置することができる。これにより、複数の電池モジュール11を備える電池装置1の小型化を図ることができる。
According to such a configuration, it is possible to improve the cooling performance of the battery device 1 as in the fourth embodiment.
In the present embodiment, the plurality of battery modules 11 are arranged in multiple stages in the Z direction. The intake duct 12 has a plurality of intake passages 92 provided corresponding to the plurality of battery modules 11. Each of the plurality of intake passages 92 extends substantially parallel to the first side surface 31 c of the battery body 31 and communicates with the inside of the battery case 24 from the side opposite to the terminal portion case 25. According to such a configuration, the plurality of battery modules 11 can be arranged densely. Thereby, size reduction of the battery apparatus 1 provided with the some battery module 11 can be achieved.
 (第8の実施形態)
 次に、図10を参照して、第8の実施形態について説明する。本実施形態は、ファン81が吸気ダクト12に設けられた点で、第7の実施形態とは異なる。なお以下に説明する以外の構成は、第7の実施形態の構成と同様である。
(Eighth embodiment)
Next, an eighth embodiment will be described with reference to FIG. This embodiment is different from the seventh embodiment in that the fan 81 is provided in the intake duct 12. The configuration other than that described below is the same as the configuration of the seventh embodiment.
 図10に示すように、本実施形態では、ファン81は、給気ファンとして、吸気ダクト12の入口61に設けられている。ファン81は、Z方向に沿って多段に配置された複数の電池モジュール11のなかで吸気ダクト12の入口61から最も遠い電池モジュール11(本実施形態では最下部の電池モジュール11)に向けて冷却流体を強制的に送る。なお、ファン81が設けられる場所は、吸気ダクト12の入口61に限らず、吸気ダクト12の途中でもよい。 As shown in FIG. 10, in this embodiment, the fan 81 is provided at the inlet 61 of the intake duct 12 as an air supply fan. The fan 81 is cooled toward the battery module 11 (the lowermost battery module 11 in the present embodiment) farthest from the inlet 61 of the intake duct 12 among the plurality of battery modules 11 arranged in multiple stages along the Z direction. Force the fluid. The place where the fan 81 is provided is not limited to the inlet 61 of the intake duct 12 but may be in the middle of the intake duct 12.
 次に、吸気ダクト12の通風断面積と排気ダクト13の通風断面積との関係について説明する。図10に示すように、本実施形態では、排気主ダクト部95の流路高さHoは、吸気主ダクト91の流路高さHiの略0.5倍以上の大きさに設定される。なお本願で言う「流路高さ」とは、冷却流体の流れ方向とは略直交する方向におけるダクト幅(本実施形態では+X方向のダクト幅)を意味する。ここで本実施形態では、吸気主ダクト部91の図10中の紙面奥行き方向(Y方向)の幅と、排気主ダクト部95の紙面奥行き方向の幅は略同じである。すなわち言い換えると、排気主ダクト部95の通風断面積は、吸気主ダクト部91の通風断面積の略0.5倍以上の大きさである。なお本実施形態では、吸気主ダクト部91の通風断面積(または流路高さHi)および排気主ダクト部95の通風断面積(または流路高さHo)は、Z方向において一定である。 Next, the relationship between the ventilation cross section of the intake duct 12 and the ventilation cross section of the exhaust duct 13 will be described. As shown in FIG. 10, in the present embodiment, the flow path height Ho of the exhaust main duct portion 95 is set to be approximately 0.5 times or more the flow path height Hi of the intake main duct 91. The “flow path height” referred to in the present application means the duct width in the direction substantially orthogonal to the flow direction of the cooling fluid (in this embodiment, the duct width in the + X direction). Here, in the present embodiment, the width of the intake main duct portion 91 in the paper surface depth direction (Y direction) in FIG. 10 is substantially the same as the width of the exhaust main duct portion 95 in the paper surface depth direction. In other words, the ventilation cross-sectional area of the exhaust main duct portion 95 is approximately 0.5 times or more the ventilation cross-sectional area of the intake main duct portion 91. In the present embodiment, the ventilation cross-sectional area (or flow path height Hi) of the intake main duct portion 91 and the ventilation cross-sectional area (or flow path height Ho) of the exhaust main duct portion 95 are constant in the Z direction.
 図11は、本願発明者らによる実験によって得られた吸気主ダクト部91の流路高さHiと排気主ダクト部95の流路高さHoとの流路高さ比Rh(=Ho/Hi)と冷却性能との関係を示すグラフである。なお、グラフ中の「最大温度上昇」とは、多段に配置された複数の電池モジュール11に含まれるバッテリ21のなかで、最も温度が高かったバッテリ21の吸気温度に対する温度上昇である。また、「最小温度上昇」は、多段に配置された複数の電池モジュール11に含まれるバッテリ21のなかで、最も温度が低かったバッテリ21の吸気温度に対する温度上昇である。「温度上昇のばらつき」とは、「最大温度上昇」と「最小温度上昇」の差である。なお上記実験は、吸気主ダクト部91の入口61から一様な冷却流体の流入があり(例えばファン81が設置された場合であり)、排気ダクト92の出口62が大気開放されたモデルに基づいて行われた。 FIG. 11 shows a flow path height ratio Rh (= Ho / Hi) between the flow path height Hi of the intake main duct section 91 and the flow path height Ho of the exhaust main duct section 95 obtained by experiments by the inventors of the present application. ) And the cooling performance. The “maximum temperature rise” in the graph is a temperature rise relative to the intake air temperature of the battery 21 having the highest temperature among the batteries 21 included in the plurality of battery modules 11 arranged in multiple stages. The “minimum temperature rise” is a temperature rise relative to the intake air temperature of the battery 21 having the lowest temperature among the batteries 21 included in the plurality of battery modules 11 arranged in multiple stages. The “temperature rise variation” is the difference between the “maximum temperature rise” and the “minimum temperature rise”. The experiment is based on a model in which a uniform cooling fluid flows from the inlet 61 of the intake main duct portion 91 (for example, when the fan 81 is installed) and the outlet 62 of the exhaust duct 92 is opened to the atmosphere. Was done.
 図11に示すように、排気主ダクト部95の流路高さHoが吸気主ダクト部91の流路高さHiの略0.5倍以上の領域では、バッテリ21の温度上昇(例えば複数のバッテリ21における最大温度上昇)が比較的小さい。また、排気主ダクト部95の流路高さHoが吸気主ダクト部91の流路高さHiの略0.5倍以上の領域では、流路高さ比Rh(=Ho/Hi)が大きくなっても、すなわち排気主ダクト部95の流路高さHoがそれ以上大きくなってもバッテリ21の温度上昇(例えば複数のバッテリ21における最大温度上昇)はほとんど変わらない。 As shown in FIG. 11, in a region where the flow path height Ho of the exhaust main duct portion 95 is approximately 0.5 times or more the flow path height Hi of the intake main duct portion 91, the temperature of the battery 21 rises (for example, a plurality of The maximum temperature rise in the battery 21) is relatively small. Further, in the region where the flow passage height Ho of the exhaust main duct portion 95 is approximately 0.5 times or more the flow passage height Hi of the intake main duct portion 91, the flow passage height ratio Rh (= Ho / Hi) is large. Even when the flow path height Ho of the exhaust main duct portion 95 is further increased, the temperature rise of the battery 21 (for example, the maximum temperature rise in the plurality of batteries 21) hardly changes.
 一方で、排気主ダクト部95の流路高さHoが吸気主ダクト部91の流路高さHiの略0.5倍未満の領域では、複数のバッテリ21における最大温度上昇が大きくなり、複数のバッテリ21における最小温度上昇は小さくなり、複数のバッテリ21の温度上昇の差(温度ばらつき)が急に増加する。 On the other hand, in the region where the flow passage height Ho of the exhaust main duct portion 95 is less than about 0.5 times the flow passage height Hi of the intake main duct portion 91, the maximum temperature rise in the plurality of batteries 21 becomes large. The minimum temperature rise in the battery 21 becomes smaller, and the difference in temperature rise (temperature variation) among the plurality of batteries 21 suddenly increases.
 このような構成によれば、第7の実施形態と同様に、電池装置1の冷却性能の向上を図ることができる。
 また本実施形態では、多段に配置された複数の電池モジュール11のなかで吸気ダクト12の入口61から最も遠い電池モジュール11に向けてファン81によって冷却流体が強制的に送られる。このような構成によれば、電池装置1の冷却性能の向上をさらに図ることができる。
According to such a configuration, as in the seventh embodiment, the cooling performance of the battery device 1 can be improved.
In the present embodiment, the cooling fluid is forcibly sent by the fan 81 toward the battery module 11 farthest from the inlet 61 of the intake duct 12 among the plurality of battery modules 11 arranged in multiple stages. According to such a configuration, the cooling performance of the battery device 1 can be further improved.
 ここで、排気主ダクト部95の通風断面積が吸気主ダクト部91の通風断面積の略0.5倍未満の大きさの場合、上述したように複数のバッテリ21の温度上昇の差(温度ばらつき)が急に増加する場合がある。この場合、最大温度上昇が大きいバッテリ21の寿命が短くなる。このため、温度上昇が比較的小さくまだ寿命が残っているバッテリ21があるにもかかわらず、電池モジュール11や電池装置1の交換が必要になる。このため、バッテリ21の交換などバッテリシステムのメンテナンスインターバルが短くなる。 Here, when the ventilation cross-sectional area of the exhaust main duct portion 95 is less than about 0.5 times the ventilation cross-sectional area of the intake main duct portion 91, the difference in temperature rise (temperature) of the plurality of batteries 21 as described above. (Variation) may increase suddenly. In this case, the life of the battery 21 having a large maximum temperature rise is shortened. For this reason, it is necessary to replace the battery module 11 and the battery device 1 despite the presence of the battery 21 whose temperature rise is relatively small and still has a life remaining. For this reason, the maintenance interval of the battery system such as replacement of the battery 21 is shortened.
 そこで本実施形態では、排気主ダクト部95の通風断面積は、吸気主ダクト部91の通風断面積の略0.5倍以上の大きさに設定される。このような構成によれば、複数のバッテリ21における最大温度上昇が小さくなり、バッテリ21の交換などバッテリシステムのメンテナンスインターバルを長くすることができる。また、排気主ダクト部95の通風断面積が吸気主ダクト部91の通風断面積の略0.5倍程度の大きさ(または略0.5倍以上、1.0倍未満の大きさ)に設定されると、電子装置1の小型化を図ることができる。 Therefore, in this embodiment, the ventilation cross-sectional area of the exhaust main duct portion 95 is set to a size that is approximately 0.5 times or more the ventilation cross-sectional area of the intake main duct portion 91. According to such a configuration, the maximum temperature rise in the plurality of batteries 21 is reduced, and the maintenance interval of the battery system such as replacement of the batteries 21 can be extended. Further, the ventilation cross-sectional area of the exhaust main duct portion 95 is approximately 0.5 times as large as the ventilation cross-sectional area of the intake main duct portion 91 (or approximately 0.5 times or more and less than 1.0 times). When set, the electronic device 1 can be downsized.
 (実施形態の変形例)
 次に、図12を参照して、実施形態の電池装置1の変形例について説明する。この変形例は、第1、第4、第5、第7、および第8の実施形態などに適用可能である。なお図12では、第1の実施形態の構成に適用された例を取り上げて説明する。
(Modification of the embodiment)
Next, with reference to FIG. 12, the modification of the battery apparatus 1 of embodiment is demonstrated. This modification is applicable to the first, fourth, fifth, seventh, and eighth embodiments. In FIG. 12, an example applied to the configuration of the first embodiment will be described.
 図12に示すように、バッテリケース24の下壁24aは、第1領域71と、第2領域72とを有する。第1領域71は、第1列L1に含まれる複数のバッテリ21が配置される領域である。一方で、第2領域72は、第2列L2に含まれる複数のバッテリ21が配置される領域である。第2領域72は、第1領域71に比べて、排気口42(排気ダクト13)に近い。 As shown in FIG. 12, the lower wall 24 a of the battery case 24 has a first region 71 and a second region 72. The first area 71 is an area in which the plurality of batteries 21 included in the first row L1 are arranged. On the other hand, the second area 72 is an area in which the plurality of batteries 21 included in the second row L2 are arranged. The second region 72 is closer to the exhaust port 42 (exhaust duct 13) than the first region 71.
 第1領域71および第2領域72は、それぞれ少なくとも1つの吸気口41を有する。そして、第2領域72における吸気口41の開口率は、第1領域71における吸気口41の開口率よりも小さい。 The first region 71 and the second region 72 each have at least one intake port 41. The opening ratio of the intake port 41 in the second region 72 is smaller than the opening rate of the intake port 41 in the first region 71.
 例えば本実施形態では、第1領域71に設けられた吸気口41の個々の開口面積が第2領域72に設けられた吸気口41の個々の開口面積よりも大きいことで、第2領域72における吸気口41の開口率が第1領域71における吸気口41の開口率よりも小さくなっている。これに代えて、第1領域71に設けられた吸気口41の数が第2領域72に設けられた吸気口41の数よりも多いことで、第2領域72における吸気口41の開口率が第1領域71における吸気口41の開口率よりも小さくてもよい。例えば本実施形態では、第1領域71および第2領域72に設けられた複数の吸気口41は、排気口42(排気ダクト13)から離れた吸気口41であるほど、開口面積が徐々に大きくなっている。 For example, in the present embodiment, the individual opening areas of the intake ports 41 provided in the first region 71 are larger than the individual opening areas of the intake ports 41 provided in the second region 72, so that in the second region 72 The opening ratio of the intake port 41 is smaller than the opening ratio of the intake port 41 in the first region 71. Instead, since the number of intake ports 41 provided in the first region 71 is larger than the number of intake ports 41 provided in the second region 72, the opening ratio of the intake ports 41 in the second region 72 is increased. The opening ratio of the intake port 41 in the first region 71 may be smaller. For example, in the present embodiment, the opening areas of the plurality of intake ports 41 provided in the first region 71 and the second region 72 are gradually increased as the intake ports 41 are further away from the exhaust port 42 (exhaust duct 13). It has become.
 このような構成によれば、第6の実施形態と同様に、排気口42(排気ダクト13)から比較的遠い第1列L1に含まれる複数のバッテリ21の冷却を促進することができる。これにより、バッテリケース24内で温度ばらつきが生じることを抑制し、電池装置1の冷却性能の向上を図ることができる。また、複数のバッテリ21の温度ばらつきを抑制することができると、各バッテリ21の寿命の向上を図ることができる。 According to such a configuration, similarly to the sixth embodiment, cooling of the plurality of batteries 21 included in the first row L1 that is relatively far from the exhaust port 42 (exhaust duct 13) can be promoted. Thereby, it is possible to suppress the temperature variation in the battery case 24 and to improve the cooling performance of the battery device 1. Moreover, if the temperature variation of the some battery 21 can be suppressed, the improvement of the lifetime of each battery 21 can be aimed at.
 また本変形例の構成を第4、第5、第7、および第8の実施形態などに適用することで、端子部ケース25の表面に沿って流れる冷却流体の量や、端子部ケース25の内部を流れる冷却流体の量を増やすことができる。これらにより、電池装置1の冷却性能の向上をさらに図ることができる。 Further, by applying the configuration of this modification to the fourth, fifth, seventh, and eighth embodiments, the amount of cooling fluid flowing along the surface of the terminal case 25 and the amount of the terminal case 25 The amount of cooling fluid flowing inside can be increased. As a result, the cooling performance of the battery device 1 can be further improved.
 以上、いくつかの実施形態および変形例に係る電池装置1について説明したが、実施形態の構成は上記例に限定されない。例えば、上述の第1から第8の実施形態の構成は、互いに組み合わせて適用されても良い。上記実施形態の構成において、吸気/排気の流れ方向が逆でもよい。すなわち、バッテリケース24の下壁24aに設けられた第1通風口が排気口であり、バッテリケース24の側壁24bに設けられた第2通風口が排気口でもよい。また、Z方向でバッテリケース24の内部に連通した第1通風ダクトが排気ダクトであり、-X方向でバッテリケース24の内部に連通した第2通風ダクトが吸気ダクトであってもよい。ファン81は、吸気ダクト12と排気ダクト13の両方に設けられてもよい。バッテリケース24の下壁24a、第1から第4の側壁24b,24c,24d,24e、端子部ケース25の上壁25a、第1から第4の側壁25b,25c,25d,25e、および仕切壁25fの名称は、説明の便宜上、付されてものである。このため、これら壁は、順不同で、「第1壁」、「第2壁」、「第3壁」、…などと称されてもよい。 As mentioned above, although the battery apparatus 1 which concerns on some embodiment and modification was demonstrated, the structure of embodiment is not limited to the said example. For example, the configurations of the first to eighth embodiments described above may be applied in combination with each other. In the configuration of the above embodiment, the flow direction of intake / exhaust air may be reversed. That is, the first ventilation port provided on the lower wall 24a of the battery case 24 may be an exhaust port, and the second ventilation port provided on the side wall 24b of the battery case 24 may be an exhaust port. Further, the first ventilation duct that communicates with the inside of the battery case 24 in the Z direction may be an exhaust duct, and the second ventilation duct that communicates with the interior of the battery case 24 in the −X direction may be an intake duct. The fan 81 may be provided in both the intake duct 12 and the exhaust duct 13. Lower wall 24a of battery case 24, first to fourth side walls 24b, 24c, 24d, 24e, upper wall 25a of terminal case 25, first to fourth side walls 25b, 25c, 25d, 25e, and partition walls The name 25f is given for convenience of explanation. Therefore, these walls may be referred to as “first wall”, “second wall”, “third wall”,.
 以上説明した少なくともひとつの実施形態によれば、バッテリのバッテリ本体は、該バッテリ本体の表面のなかで面積が最も広い第1面と、前記第1面よりも面積が狭い第2面とを有する。複数のバッテリは、互いに隣り合うバッテリ本体の第1面同士の間に隙間を空けて配置されている。バッテリケースは、前記複数のバッテリのバッテリ本体を収容している。端子部ケースは、前記互いに隣り合うバッテリ本体の前記第1面同士の間の前記隙間を一方から覆う。吸気ダクトは、前記バッテリケースに対して前記端子部ケースとは反対側の位置で前記バッテリ本体の第1面と略平行に延びるとともに、前記端子部ケースとは反対側から前記バッテリケースの内部に連通している。このような構成によれば、電池装置の冷却性能の向上を図ることができる。 According to at least one embodiment described above, the battery body of the battery has a first surface having the largest area among the surfaces of the battery body, and a second surface having a smaller area than the first surface. . The plurality of batteries are arranged with a gap between first surfaces of adjacent battery bodies. The battery case houses battery bodies of the plurality of batteries. The terminal case covers the gap between the first surfaces of the battery bodies adjacent to each other from one side. The air intake duct extends substantially parallel to the first surface of the battery body at a position opposite to the terminal case with respect to the battery case, and enters the inside of the battery case from the side opposite to the terminal case. Communicate. According to such a configuration, the cooling performance of the battery device can be improved.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.
 1…電池装置、11…電池モジュール、12…吸気ダクト(第1通風ダクト)、13…排気ダクト(第2通風ダクト)、21…バッテリ、22…バスバー(電気接続部)、24…バッテリケース、25…端子部ケース、25a…端子部ケースの開口部、31…バッテリ本体、31c…第1側面(第1面)、31d…第2側面(第2面)、32A,32B…端子、41…吸気口(通風口)、42…排気口、51…第1排気流路、52…第2排気流路、81…ファン、91…吸気主ダクト部、92…吸気流路、95…排気主ダクト部、g…通風隙間(隙間)。 DESCRIPTION OF SYMBOLS 1 ... Battery device, 11 ... Battery module, 12 ... Intake duct (1st ventilation duct), 13 ... Exhaust duct (2nd ventilation duct), 21 ... Battery, 22 ... Bus bar (electrical connection part), 24 ... Battery case, 25 ... Terminal part case, 25a ... Opening of terminal part case, 31 ... Battery body, 31c ... First side surface (first surface), 31d ... Second side surface (second surface), 32A, 32B ... Terminal, 41 ... Intake port (ventilation port), 42 ... exhaust port, 51 ... first exhaust channel, 52 ... second exhaust channel, 81 ... fan, 91 ... intake main duct, 92 ... intake channel, 95 ... exhaust main duct Part, g: Ventilation gap (gap).

Claims (11)

  1.  扁平な直方体状のバッテリ本体と、前記バッテリ本体の一端部に設けられた端子とをそれぞれ有し、前記バッテリ本体は、該バッテリ本体の表面のなかで面積が最も広い第1面と、前記第1面よりも面積が狭い第2面とを有し、互いに隣り合うバッテリ本体の第1面同士の間に隙間を空けて前記第1面同士を向かい合わせにして配置された複数のバッテリと、
     前記複数のバッテリの端子同士を電気的に接続した電気接続部と、
     前記複数のバッテリのバッテリ本体を収容したバッテリケースと、
     前記バッテリケースに組み合わされ、前記電気接続部を収容するとともに、前記互いに隣り合うバッテリ本体の前記第1面同士の間に形成された前記隙間を一方から覆う端子部ケースと、
     前記バッテリケースに対して前記端子部ケースとは反対側の位置で前記バッテリ本体の第1面と略平行に延びるとともに、前記端子部ケースとは反対側から前記バッテリケースの内部に連通した第1通風ダクトと、
     前記バッテリ本体の第2面と略平行に延びるとともに、前記バッテリケースと前記端子部ケースとが並ぶ方向とは異なる方向から前記バッテリケースの内部に連通した第2通風ダクトと、
     を備えた電池装置。
    The battery body has a flat rectangular parallelepiped battery body and a terminal provided at one end of the battery body. The battery body has a first surface having the largest area among the surfaces of the battery body, the first body A plurality of batteries having a second surface having a smaller area than one surface and having the first surfaces facing each other with a gap between the first surfaces of adjacent battery bodies;
    An electrical connection part electrically connecting the terminals of the plurality of batteries;
    A battery case containing battery bodies of the plurality of batteries;
    A terminal case that is combined with the battery case and accommodates the electrical connection portion, and covers the gap formed between the first surfaces of the battery bodies adjacent to each other from one side, and
    The battery case extends substantially parallel to the first surface of the battery body at a position opposite to the terminal case with respect to the battery case, and communicates with the inside of the battery case from the side opposite to the terminal case. A ventilation duct;
    A second ventilation duct that extends substantially parallel to the second surface of the battery body and communicates with the inside of the battery case from a direction different from the direction in which the battery case and the terminal case are aligned;
    A battery device comprising:
  2.  前記バッテリケースと前記端子部ケースとは第1方向に並び、
     前記第1通風ダクトは、前記バッテリケースに対して前記端子部ケースとは反対側の位置で前記バッテリ本体の第1面と略平行な方向であって前記第1方向とは交差する前記第2方向に延びた、
     請求項1に記載の電池装置。
    The battery case and the terminal case are aligned in a first direction,
    The first ventilation duct is a direction substantially parallel to the first surface of the battery body at a position opposite to the terminal case with respect to the battery case, and intersects the first direction. Extended in the direction,
    The battery device according to claim 1.
  3.  前記バッテリケースと前記第2通風ダクトとは前記第2方向で連通した、
     請求項2に記載の電池装置。
    The battery case and the second ventilation duct communicated in the second direction;
    The battery device according to claim 2.
  4.  前記第1通風ダクトは、前記バッテリケースの内部に冷却流体を流入させる吸気ダクトであり、前記第2通風ダクトは、前記バッテリケースの内部を通った前記冷却流体を流出させる排気ダクトである、
     請求項2に記載の電池装置。
    The first ventilation duct is an intake duct that allows cooling fluid to flow into the battery case, and the second ventilation duct is an exhaust duct that allows the cooling fluid to flow through the battery case.
    The battery device according to claim 2.
  5.  前記第2通風ダクトは、第1排気流路と、第2排気流路とを有し、
     前記第1排気流路および前記第2排気流路は、前記第2方向において前記バッテリケースの両側に分かれて配置され、それぞれ前記バッテリケースの内部に連通した、
     請求項4に記載の電池装置。
    The second ventilation duct has a first exhaust passage and a second exhaust passage,
    The first exhaust passage and the second exhaust passage are arranged separately on both sides of the battery case in the second direction, and communicate with the inside of the battery case, respectively.
    The battery device according to claim 4.
  6.  前記第2通風ダクトは、前記端子部ケースに対して前記バッテリケースとは反対側に位置して前記端子部ケースに沿って風が流れる延長部を有した、
     請求項1に記載の電池装置。
    The second ventilation duct has an extension portion that is located on a side opposite to the battery case with respect to the terminal portion case and through which the wind flows along the terminal portion case.
    The battery device according to claim 1.
  7.  前記第1排気流路は、前記端子部ケースに対して前記バッテリケースとは反対側に位置して前記端子部ケースに沿って風が流れるとともに前記第2排気流路に合流する延長部を有した、
     請求項5に記載の電池装置。
    The first exhaust passage has an extension portion that is located on the opposite side of the battery case with respect to the terminal case and that has an extension portion that flows along the terminal case and merges with the second exhaust passage. did,
    The battery device according to claim 5.
  8.  前記端子部ケースは、前記第2通風ダクトの内部に連通して前記第2通風ダクト内を流れる冷却流体の一部が該端子部ケース内に流入する開口部を有した、
     請求項1に記載の電池装置。
    The terminal part case has an opening that communicates with the inside of the second ventilation duct and a part of the cooling fluid that flows in the second ventilation duct flows into the terminal part case.
    The battery device according to claim 1.
  9.  前記バッテリケースは、第1領域と、第2領域とを有し、前記第1領域および前記第2領域は、それぞれ前記第1通風ダクトと該バッテリケースの内部とを連通させる少なくとも1つの通風口を有し、前記第2領域は、前記第1領域に比べて、前記第2通風ダクトに近く、
     前記第2領域における前記通風口の開口率は、前記第1領域における前記通風口の開口率よりも小さい、
     請求項1に記載の電池装置。
    The battery case has a first region and a second region, and the first region and the second region each have at least one ventilation port for communicating the first ventilation duct with the inside of the battery case. The second region is closer to the second ventilation duct than the first region,
    The opening rate of the ventilation hole in the second region is smaller than the opening rate of the ventilation port in the first region,
    The battery device according to claim 1.
  10.  前記複数のバッテリと、前記電気接続部と、前記バッテリケースと、前記端子部ケースとをそれぞれ有し、前記バッテリケースと前記端子部ケースとが並ぶ方向において多段に配置された複数の電池モジュールと、
     ファンと、
     をさらに備え、
     前記第1通風ダクトは、前記複数の電池モジュールに対応して設けられた複数の通風流路を有し、前記複数の通風流路の各々は、前記バッテリケースに対して前記端子部ケースとは反対側の位置で前記バッテリ本体の第1面と略平行に延びるとともに前記端子部ケースとは反対側から前記バッテリケースの内部に連通し、
     前記第2通風ダクトは、前記複数の電池モジュールの前記バッテリケースの内部に連通し、
     前記ファンは、前記第1通風ダクトおよび前記第2通風ダクトの少なくとも一方に設けられた、
     請求項1に記載の電池装置。
    A plurality of battery modules each including the plurality of batteries, the electrical connection portion, the battery case, and the terminal portion case, and arranged in multiple stages in the direction in which the battery case and the terminal portion case are arranged; ,
    With fans,
    Further comprising
    The first ventilation duct has a plurality of ventilation channels provided corresponding to the plurality of battery modules, and each of the plurality of ventilation channels is different from the terminal case with respect to the battery case. It extends substantially parallel to the first surface of the battery body at the opposite side position and communicates with the inside of the battery case from the opposite side of the terminal case,
    The second ventilation duct communicates with the inside of the battery case of the plurality of battery modules,
    The fan is provided in at least one of the first ventilation duct and the second ventilation duct.
    The battery device according to claim 1.
  11.  前記第1通風ダクトは、前記複数の電池モジュールが多段に配置された方向に延びた吸気主ダクト部を有した吸気ダクトであり、
     前記第2通風ダクトは、前記複数の電池モジュールが多段に配置された方向に延びた排気主ダクト部を有した排気ダクトであり、
     前記排気主ダクト部の通風断面積は、前記吸気主ダクト部の通風断面積の略0.5倍以上の大きさである、
     請求項10に記載の電池装置。
    The first ventilation duct is an intake duct having an intake main duct portion extending in a direction in which the plurality of battery modules are arranged in multiple stages,
    The second ventilation duct is an exhaust duct having an exhaust main duct portion extending in a direction in which the plurality of battery modules are arranged in multiple stages,
    The ventilation cross-sectional area of the exhaust main duct part is approximately 0.5 times or more the ventilation cross-sectional area of the intake main duct part.
    The battery device according to claim 10.
PCT/JP2016/056972 2016-03-07 2016-03-07 Battery device WO2017154071A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/056972 WO2017154071A1 (en) 2016-03-07 2016-03-07 Battery device
JP2018503865A JP6542462B2 (en) 2016-03-07 2016-03-07 Battery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/056972 WO2017154071A1 (en) 2016-03-07 2016-03-07 Battery device

Publications (1)

Publication Number Publication Date
WO2017154071A1 true WO2017154071A1 (en) 2017-09-14

Family

ID=59789060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056972 WO2017154071A1 (en) 2016-03-07 2016-03-07 Battery device

Country Status (2)

Country Link
JP (1) JP6542462B2 (en)
WO (1) WO2017154071A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019071261A (en) * 2017-10-11 2019-05-09 株式会社東芝 Battery module and battery device
JP2021168247A (en) * 2020-04-10 2021-10-21 プライムアースEvエナジー株式会社 Temperature adjustment device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102399509B1 (en) * 2017-03-30 2022-05-18 삼성에스디아이 주식회사 Battery module
KR102378425B1 (en) * 2017-06-07 2022-03-24 삼성에스디아이 주식회사 Battery pack
KR102391118B1 (en) * 2017-06-07 2022-04-27 삼성에스디아이 주식회사 Battery pack

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001167806A (en) * 1999-12-09 2001-06-22 Toyota Motor Corp Battery pack for car
JP2010123298A (en) * 2008-11-17 2010-06-03 Calsonic Kansei Corp System for cooling vehicle battery
JP2015201369A (en) * 2014-04-09 2015-11-12 株式会社東芝 Battery cooling device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001167806A (en) * 1999-12-09 2001-06-22 Toyota Motor Corp Battery pack for car
JP2010123298A (en) * 2008-11-17 2010-06-03 Calsonic Kansei Corp System for cooling vehicle battery
JP2015201369A (en) * 2014-04-09 2015-11-12 株式会社東芝 Battery cooling device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019071261A (en) * 2017-10-11 2019-05-09 株式会社東芝 Battery module and battery device
JP2021168247A (en) * 2020-04-10 2021-10-21 プライムアースEvエナジー株式会社 Temperature adjustment device
JP7290598B2 (en) 2020-04-10 2023-06-13 プライムアースEvエナジー株式会社 temperature controller

Also Published As

Publication number Publication date
JP6542462B2 (en) 2019-07-10
JPWO2017154071A1 (en) 2018-10-18

Similar Documents

Publication Publication Date Title
CN110100325B (en) Battery module
WO2017154071A1 (en) Battery device
KR102142669B1 (en) Air cooling type Battery Module having Guide vane
US9413045B2 (en) Battery pack
JP4827558B2 (en) Power supply for vehicle
US10873115B2 (en) Housing for accommodation of a plurality of battery cells having a cooling device integrated in the housing
EP1986252A2 (en) A frame to support a plurality of unit batteries to form a battery module
US10116020B2 (en) Battery pack with branching cooling duct
US10950907B2 (en) Battery pack
US20160111762A1 (en) Electrical storage apparatus
JP6256439B2 (en) Battery pack
JP6045198B2 (en) Battery pack
JP5096842B2 (en) Battery storage unit
JP2007250515A (en) Battery cooling structure
JP2009224226A (en) Battery module and battery pack equipped with the same
JP2010238551A (en) Battery-pack device
JP5960076B2 (en) Battery pack structure
JP2018116816A (en) Battery module
WO2017042930A1 (en) Battery device
JP6546339B2 (en) Battery device
JP5821798B2 (en) Battery pack
JP6553284B2 (en) Battery module
JP2019071261A (en) Battery module and battery device
KR100805114B1 (en) Secondary battery module
JP6007641B2 (en) Battery pack

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2018503865

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16893403

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16893403

Country of ref document: EP

Kind code of ref document: A1