JP2005300395A - Foreign matter and flaw inspecting device - Google Patents

Foreign matter and flaw inspecting device Download PDF

Info

Publication number
JP2005300395A
JP2005300395A JP2004118701A JP2004118701A JP2005300395A JP 2005300395 A JP2005300395 A JP 2005300395A JP 2004118701 A JP2004118701 A JP 2004118701A JP 2004118701 A JP2004118701 A JP 2004118701A JP 2005300395 A JP2005300395 A JP 2005300395A
Authority
JP
Japan
Prior art keywords
substrate
detection
light
defect
foreign matter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004118701A
Other languages
Japanese (ja)
Inventor
Kazunobu Irie
一伸 入江
Masahiro Yokoo
正浩 横尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2004118701A priority Critical patent/JP2005300395A/en
Publication of JP2005300395A publication Critical patent/JP2005300395A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a foreign matter and flaw inspecting device, capable of efficiently detecting the foreign matter and flaws (pinholes) on a substrate, the height of the foreign matter and the depth of the flaws. <P>SOLUTION: The foreign matter and flaw inspecting device is equipped with a light source 101 for irradiating the substrate with an incident light 201, of which the optical axis is inclined at an angle θ and matching the focus of the incident light with the confocal surface 204, corresponding to the pinhole perpendicular to the optical axis of reflected light at a point (P) reflected by the surface of the substrate 105; an object lens 102 which condenses the reflected light and has the optical system of a confocal point arranged on the optical axis of the reflected light; the pinhole 103 at a position which is conjugate with the point (P) reflected by the surface of the substrate; an optical detection element 104 for detecting the reflacted light passed through the pinhole and a mechanism for scanning the substrate in an x-axis direction, inclined by the angle θ for optical axis. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、異物及び欠陥の検査装置に関するものであり、特に、フルカラー有機ELディスプレイや液晶ディスプレイに用いられるカラーフィルタ基板上の異物や欠陥(ピンホール)を検査する装置に関する。   The present invention relates to a foreign matter and defect inspection apparatus, and more particularly, to an apparatus for inspecting foreign matters and defects (pinholes) on a color filter substrate used in a full-color organic EL display or a liquid crystal display.

有機EL素子は、電子注入電極をなす陰極と正孔注入電極をなす陽極との間に蛍光性有機化合物を含む薄膜の有機層を挟んだ構造を有し、有機層に電子及び正孔を注入して再結合させることにより励起子を生成させ、この励起子が基底状態に戻る際の光の放出(蛍光・燐光)を利用して表示を行う表示素子である。
有機EL素子を利用してフルカラー有機ELディスプレイを作成するにはいくつかの方法があるが、そのフルカラー化方式には以下のようなものが知られている。
An organic EL device has a structure in which a thin organic layer containing a fluorescent organic compound is sandwiched between a cathode forming an electron injection electrode and an anode forming a hole injection electrode, and electrons and holes are injected into the organic layer. In this display element, an exciton is generated by recombination, and display is performed using light emission (fluorescence / phosphorescence) when the exciton returns to the ground state.
There are several methods for producing a full-color organic EL display using an organic EL element, and the following are known as the full-color method.

赤、緑、青の三色を発光する3種類のEL素子を画素に合わせてパターニングする方式は、発光した光がそのまま利用できるため効率が高い。しかし、ELを塗り分ける工程が複雑でメタルマスクによる蒸着を行うため画面サイズの大型化が難しく、また、各色の寿命を揃える必要があるという問題がある。   The method of patterning three types of EL elements that emit three colors of red, green, and blue in accordance with the pixels is highly efficient because the emitted light can be used as it is. However, there is a problem that the process of painting EL is complicated and it is difficult to increase the screen size because vapor deposition is performed using a metal mask, and it is necessary to make the life of each color uniform.

青色の光を放つEL素子を画面全体にベタで作成して、赤と緑の画素には青の光を吸収してそれぞれ赤と緑の蛍光を発する色変換層が画素に合わせてパターニングされた層によりフルカラー化を行う方式は、一色の光を他の光に変換するので光の利用効率が良く、EL素子の方は複雑な塗り分けの必要がない。
しかし、この方式の場合、色変換層において、膜中に含有される蛍光色素が濃度消光を起こさないようにするために膜中の色素濃度を一定量以下に押さえる必要がある。
The EL element that emits blue light is made solid on the entire screen, and the red and green pixels have a color conversion layer that absorbs blue light and emits red and green fluorescence, respectively, and is patterned according to the pixels The method of full color using layers converts light of one color into other light, so that the light use efficiency is good, and the EL element does not require complicated painting.
However, in the case of this method, in the color conversion layer, it is necessary to suppress the dye concentration in the film to a certain amount or less so that the fluorescent dye contained in the film does not cause concentration quenching.

色素濃度を押さえつつ光変換効率を高める為には変換層の膜厚を厚くする必要があり、一般的にその膜厚は10μm程度とされている。しかしながら、この膜厚はフォトリソ法でパターニングするにはかなり厚すぎる膜厚である。更に色変換層の蛍光色素が外部の光で励起してしまうのを防ぐ為に色変換層の下地に、さらに赤と緑のカラーフィルタを積層する必要がある。そのために色変換層の製造工程が複雑になってしまうという難点がある。   In order to increase the light conversion efficiency while suppressing the dye concentration, it is necessary to increase the film thickness of the conversion layer, and the film thickness is generally about 10 μm. However, this film thickness is too thick for patterning by the photolithography method. Furthermore, in order to prevent the fluorescent dye of the color conversion layer from being excited by external light, it is necessary to further stack red and green color filters on the base of the color conversion layer. Therefore, there is a difficulty that the manufacturing process of the color conversion layer becomes complicated.

EL素子が白色に発光し、その上に赤、緑、青のカラーフィルタを重ねてフルカラー化する方法は、透過型LCDのフルカラー化の方式に良く似た方式で、構造が最も簡単で生産性が良く、ELの経時変化による色ズレもないという利点があるが、この方式は白色の光源をRGBに変更するために光の利用効率が他のフルカラー化方式よりも劣っている。しかし、この方式は量産時のコスト、大画面化への展開のし易さから注目されている方法である。   The EL element emits white light, and the red, green, and blue color filters are superimposed on it to make it full color. Although there is an advantage that there is no color misregistration due to a change in EL with time, this method is inferior in light utilization efficiency to other full color methods because the white light source is changed to RGB. However, this method is attracting attention because of the cost of mass production and the ease of expansion to a larger screen.

前記の有機EL素子のフルカラー化方式の内、EL素子が発光した白色の光を赤、緑、青のカラーフィルタでカラー化する方式や、EL素子が発光した青色の光を赤と緑に変換する方式は、カラーフィルタ層や色変換層を形成した基板の上にEL発光層を積層する方法が一般的である。
この時、パターニングされたカラーフィルタ層や色変換層の画素間の段差の凹凸、またカラーフィルタ層や色変換層の表面の表面粗さによって上部に形成する電極や発光層が断線してしまうのを防ぐ為に、カラーフィルタ層や色変換層の上に表面を平滑化するオーバーコート層を設ける事がよく行われている。
Of the above-mentioned full color schemes for organic EL elements, the white light emitted by the EL elements is colored with red, green, and blue color filters, and the blue light emitted by the EL elements is converted into red and green. In general, the EL light emitting layer is laminated on a substrate on which a color filter layer or a color conversion layer is formed.
At this time, the unevenness of the step between the pixels of the patterned color filter layer and the color conversion layer, and the surface of the color filter layer and the color conversion layer, the surface of the surface of the color filter layer and the color conversion layer, breaks the electrode and the light emitting layer. In order to prevent this, an overcoat layer for smoothing the surface is often provided on the color filter layer or the color conversion layer.

更に、オーバーコート層やカラーフィルタ層、色変換層のバインダー樹脂に含まれる水分の影響で有機EL素子が劣化してしまうのを防ぐ為に、オーバーコート層の上にパッシベーション層と呼ばれるバリア層を設ける事がよく行われている。パッシベーション層は主にシリコンの窒化物、あるいは酸窒化物の膜を用いることが知られていて、この膜はCVD法、あるいはスパッタ法等で成膜する事で形成される。   Furthermore, in order to prevent the organic EL element from deteriorating due to the influence of moisture contained in the binder resin of the overcoat layer, the color filter layer, and the color conversion layer, a barrier layer called a passivation layer is formed on the overcoat layer. It is often done. As the passivation layer, it is known that a silicon nitride or oxynitride film is mainly used, and this film is formed by a CVD method, a sputtering method or the like.

ところで、オーバーコート層の上にパッシベーション層を形成する際にオーバーコート層の表面に微小な異物が付着していると、パッシベーション層の成膜時に異物の部分だけピンホール状に成膜不良の部分が発生し、ここからカラーフィルタ層、あるいは色変換層に含まれる水分がしみだして、この部分のEL発光層にダメージを与え、ダークスポットと呼ばれる点状の非発光部を生じさせてしまう。   By the way, when forming a passivation layer on the overcoat layer, if a minute foreign matter adheres to the surface of the overcoat layer, only the foreign matter portion at the time of film formation of the passivation layer is a part where the film formation is poor in a pinhole shape. From this, moisture contained in the color filter layer or the color conversion layer oozes out and damages this portion of the EL light emitting layer, resulting in a point-like non-light emitting portion called a dark spot.

このパッシベーション層の成膜時にピンホールを生じさせないようにする為には、パッシベーション層を厚く形成したり、複数層を成膜するなどの方法が行われているが、パッシベーション層の吸収による光の透過率が低下したり、パッシベーション層の膜厚が厚くなることで膜の応力が強まってパッシベーション層にクラックが入るなどの問題が生じる。   In order to prevent the generation of pinholes during the formation of the passivation layer, methods such as forming the passivation layer thickly or forming a plurality of layers have been performed. However, light absorption by the absorption of the passivation layer is performed. As the transmittance is reduced or the thickness of the passivation layer is increased, the stress of the film is increased and cracks are generated in the passivation layer.

また、パッシベーション層の作成プロセスを工夫する事で、オーバーコート層上に異物があってもうまく成膜することは可能であるが、異物の高さが高い場合、その部分だけパッシベーション層の高さが高くなり、その上に積層して作成する電極層や有機発光層に悪影響を及ぼす。特に有機発光層は複数の層を積相して作成することが広く行われているが、その複数の層を合わせても、膜厚は0.5μmにも満たない非常に薄い層である。
そのため、パッシベーション層に、例えば1μm程度の突起が出来ていると、有機発光層の形成がうまく行われず、電極がショートしてしまうという問題も発生する。
Also, by devising the passivation layer creation process, it is possible to form a film successfully even if there are foreign objects on the overcoat layer. However, if the height of the foreign objects is high, the height of the passivation layer is only that part. Which adversely affects the electrode layer and the organic light-emitting layer formed by being laminated thereon. In particular, the organic light-emitting layer is widely formed by stacking a plurality of layers, but even if the plurality of layers are combined, the film thickness is a very thin layer of less than 0.5 μm.
For this reason, if the passivation layer has protrusions of about 1 μm, for example, the organic light emitting layer cannot be formed well and the electrodes are short-circuited.

一方、液晶ディスプレイは、表面に電極と配向膜、カラーフィルタなどが形成された二枚のガラス基板を、フォトリソグラフィ法などにより基板上に形成されたフォトスペーサや、基板上に撒かれたスペーサビーズなどを介して適切な隙間を空けて貼り合わせ、その隙間に液晶材料を注入して作成される。一般的にその2枚のガラス基板がなす隙間(セルギャップ)は5μm程度であるが、近年、液晶ディスプレイの高画質化に伴い、セルギャップは小さくなる傾向にある。   Liquid crystal displays, on the other hand, have two glass substrates with electrodes, alignment films, color filters, etc. formed on the surface, photo spacers formed on the substrate by photolithography or the like, or spacer beads that are sown on the substrate For example, the liquid crystal material is injected into the gap by bonding with an appropriate gap. In general, the gap (cell gap) formed by the two glass substrates is about 5 μm, but in recent years, the cell gap tends to become smaller as the image quality of the liquid crystal display increases.

ところで、カラーフィルタ基板上に異物が存在していると、そのカラーフィルタ基板上に透明導電膜による電極を作成する際に、その部分だけ電極が盛り上がって形成され、その高さがセルギャップよりも大きいと、対向電極に接してしまい、ショートの原因になる。
また、液晶の駆動方式がIPS方式等、カラーフィルタ上に透明電極を形成しない液晶パネルの方式もあるが、この場合でも、カラーフィルタ上に異物などの突起が存在すると、その部分だけ液晶分子の配向に影響を及ぼしてしまう。
By the way, if foreign matter exists on the color filter substrate, when the electrode made of the transparent conductive film is formed on the color filter substrate, the electrode is formed so that only that portion rises, and its height is higher than the cell gap. If it is large, it will come into contact with the counter electrode, causing a short circuit.
In addition, there is a liquid crystal panel method in which a transparent electrode is not formed on a color filter, such as an IPS method for driving a liquid crystal. However, even in this case, if a projection such as a foreign substance exists on the color filter, only that portion of liquid crystal molecules It will affect the orientation.

上述のような液晶パネルや有機ELパネルの作成時に不良を発生させないためには、カラーフィルタ基板の検査を行って異物が存在する基板を排除又は欠陥部の修正を行う必要がある。   In order to prevent the occurrence of defects when the liquid crystal panel or the organic EL panel as described above is produced, it is necessary to inspect the color filter substrate to eliminate the substrate on which foreign matter exists or to correct the defective portion.

一般に、カラーフィルタの異物及び欠陥の検査は、カラーフィルタ基板を検査装置のステージ上に載置して、基板上方に配した光源から照明を行うか、又は光源を基板下方に配して透過照明を行い、CCDカメラなどによりカラーフィルタ基板を上方から基板を移動或いはカメラをスキャニングさせながら撮影し、画像処理を行い撮りこんだ画像から欠陥
部を抽出することで欠陥情報として出力する。
In general, inspecting foreign matters and defects of a color filter is performed by placing a color filter substrate on a stage of an inspection apparatus and illuminating from a light source arranged above the substrate, or by arranging a light source below the substrate and transmitting illumination. The color filter substrate is photographed by moving the substrate from above or scanning the camera with a CCD camera or the like, image processing is performed, and defect portions are extracted from the photographed image to output as defect information.

ところで、上述のようにカラーフィルタ基板の画像を基板の真上から取り込むと、カラーフィルタ基板上に異物又は欠陥が存在した場合、検査装置によって異物又は欠陥を検出できても、その基板水平方向のサイズしか認識出来ず、高さ方向のサイズは認識することが出来ない。   By the way, when the image of the color filter substrate is taken from right above the substrate as described above, if there is a foreign object or defect on the color filter substrate, even if the inspection apparatus can detect the foreign object or defect, Only the size can be recognized, and the size in the height direction cannot be recognized.

そのため、カラーフィルタ基板の高さ方向に関する欠陥の判定を行うためには、まず、上記の検査によって基板水平方向にある値以上のサイズを持つ欠陥を検出した後、その基板のレビューを行い、レビューの際に検出された異物又は欠陥1箇所毎に、その異物又は欠陥の高さ方向の測定を行う必要がある。
この高さ方向の測定には一般的な表面測定の手段、例えば、触針式の段差計やレーザ顕微鏡、干渉顕微鏡、原子間力顕微鏡などを用いることが可能であるが、検出された欠陥の1箇所毎に高さの測定を行わなければならず、非常に手間がかかる。
Therefore, in order to determine the defect in the height direction of the color filter substrate, first, after detecting a defect having a size larger than a certain value in the horizontal direction of the substrate by the above inspection, the substrate is reviewed and reviewed. It is necessary to measure the foreign matter or defect in the height direction for each foreign matter or defect detected at the time.
For the measurement in the height direction, it is possible to use a general surface measurement means such as a stylus type step gauge, a laser microscope, an interference microscope, an atomic force microscope, etc. The height must be measured at each location, which is very time consuming.

一方、上記の方法で異物の高さ又は欠陥の深さの計測を行うために、検査装置により認知されたカラーフィルタ基板上の全ての欠陥を出力させてしまうと、光学検出素子におけるノイズに起因する擬似欠陥も含めて、その欠陥数が膨大になってしまい、レビュー時の高さ測定がさらに煩雑になってしまう。
そのため、はじめに検査装置により検出しなければならない欠陥のサイズを設定する必要がある。この場合、検出すべき欠陥の水平方向のサイズを小さく設定するとレビュー時に高さ測定を行わなければならない欠陥数が増大してしまい、検出すべき欠陥の水平方向のサイズを大きく設定すると、欠陥の水平方向のサイズが小さいにもかかわらず、高さを有するような異物または欠陥については検出をすることが出来ない。
特開2003−315527号公報 特開平8−145849号公報
On the other hand, if all the defects on the color filter substrate recognized by the inspection apparatus are output in order to measure the height of the foreign matter or the depth of the defect by the above method, it is caused by noise in the optical detection element. The number of defects including the pseudo defects to be increased becomes enormous, and the height measurement at the time of review becomes more complicated.
Therefore, it is necessary to first set the size of the defect that must be detected by the inspection apparatus. In this case, if the horizontal size of the defect to be detected is set small, the number of defects that need to be height-measured at the time of review increases, and if the horizontal size of the defect to be detected is set large, the defect In spite of the small size in the horizontal direction, it is impossible to detect a foreign object or defect having a height.
JP 2003-315527 A JP-A-8-145849

本発明は、斯かる問題に鑑みてなされたものであり、例えば、有機EL素子におけるオーバーコート層上に付着した異物、欠陥(ピンホール)、液晶ディスプレイにおけるカラーフィルタ基板上に付着した異物、欠陥(ピンホール)など、基板上の異物及び欠陥(ピンホール)、異物の高さ、欠陥(ピンホール)の深さを効率的に検出することが可能な異物及び欠陥検査装置を提供することを課題とする。   The present invention has been made in view of such a problem. For example, foreign matters and defects (pinholes) attached on an overcoat layer in an organic EL element, foreign matters and defects attached on a color filter substrate in a liquid crystal display. To provide a foreign matter and defect inspection apparatus capable of efficiently detecting foreign matter and defects (pinholes) such as (pinholes), heights of foreign matters, and depths of defects (pinholes). Let it be an issue.

本発明は、基板上に付着した異物及び欠陥の検出を行う検査装置において、
1)基板の法線に対し、光軸を角度θ(0°<θ<20°)傾けた入射光を基板に照射する光源であって、入射光が基板面で反射される点(P)で、反射光の光軸に垂直な、下記ピンホールに対応した共焦点面に入射光の焦点を合わせる光源、
2)基板面からの反射光を集光する、該反射光の光軸上に配置された共焦点の光学系を有する対物レンズ、
3)入射光が基板面で反射される点(P)と、光学的に共役な位置に配置されたピンホール、
4)該ピンホールを通過した反射光を検出する、反射光の光軸に垂直な光学検出素子、
5)上記基板の法線に対し、光軸を角度θ(0°<θ<20°)傾けた方向をx軸方向とし、x軸方向へ基板を移動又は入射光をスキャンさせる機構、
を具備することを特徴とする異物及び欠陥検査装置である。
The present invention provides an inspection apparatus for detecting foreign matter and defects attached on a substrate.
1) A light source that irradiates a substrate with incident light whose optical axis is inclined at an angle θ (0 ° <θ <20 °) with respect to the normal of the substrate, and the point at which the incident light is reflected by the substrate surface (P) A light source that focuses the incident light on a confocal plane corresponding to the pinhole below, perpendicular to the optical axis of the reflected light,
2) an objective lens having a confocal optical system arranged on the optical axis of the reflected light, which collects the reflected light from the substrate surface;
3) A point (P) where incident light is reflected on the substrate surface, and a pinhole disposed at an optically conjugate position,
4) an optical detection element that detects reflected light that has passed through the pinhole and is perpendicular to the optical axis of the reflected light;
5) A mechanism that moves the substrate in the x-axis direction or scans incident light with the direction in which the optical axis is inclined at an angle θ (0 ° <θ <20 °) with respect to the normal of the substrate as the x-axis direction,
A foreign matter and defect inspection apparatus.

また、本発明は、上記発明による異物及び欠陥検査装置において、前記入射光が基板面で反射される点(P)を通るx軸方向の軸をx軸とし、点(P)で基板面上をx軸と直交する軸をy軸とした際に、
1)光学検出素子の検出面にてy軸方向に線状に現れる検出光のピーク(pk1)を、点(P)に位置する基板面上の位置と認知し、
2)該検出面のx軸方向にて点状に現れる検出光のピーク(pk2)を、異物又は欠陥と認知し、
3)基板の移動又は入射光のスキャンによって、異物又は欠陥からの反射光による検出光のピーク(pk2)がデフォーカスの黒点へと変化して、黒点が上記検出光のピーク(pk1)中に重なった位置をもって、異物又は欠陥の基板面上の位置と認知し、
4)上記検出光のピーク(pk2)が検出面の入射光側にある場合には、異物又は欠陥を異物と識別し、また、検出面の反射光側にある場合には、異物又は欠陥を欠陥と識別し、異物及び欠陥の基板面上の位置を算出する手段を具備することを特徴とする異物及び欠陥検査装置である。
In the foreign matter and defect inspection apparatus according to the present invention, the axis in the x-axis direction passing the point (P) where the incident light is reflected on the substrate surface is defined as the x-axis, and the point (P) on the substrate surface. Is the axis perpendicular to the x axis and the y axis.
1) Recognizing the peak (pk1) of the detection light appearing linearly in the y-axis direction on the detection surface of the optical detection element as the position on the substrate surface located at the point (P),
2) Recognize the peak of detection light (pk2) appearing in a point shape in the x-axis direction of the detection surface as a foreign substance or a defect,
3) Due to the movement of the substrate or the scan of incident light, the peak (pk2) of the detection light due to the reflected light from the foreign matter or defect changes to a defocused black point, and the black point is in the detection light peak (pk1). Recognize the position on the substrate surface of the foreign object or defect with the overlapping position,
4) When the detection light peak (pk2) is on the incident light side of the detection surface, the foreign object or defect is identified as a foreign object, and when it is on the reflected light side of the detection surface, the foreign object or defect is detected. A foreign matter and defect inspection apparatus comprising means for discriminating a defect and calculating the position of the foreign matter and the defect on the substrate surface.

また、本発明は、上記発明による異物及び欠陥検査装置において、前記入射光が基板面で反射される点(P)を通るx軸方向の軸をx軸とし、点(P)で基板面上をx軸と直交する軸をy軸とした際に、
1)光学検出素子の検出面にてy軸方向に線状に現れる検出光のピーク(pk1)を、点(P)に位置する基板面上の位置(Q)と認知し、
2)該検出面のx軸方向にて点状に現れる検出光のピーク(pk2)を、異物又は欠陥の位置(R)と認知し、
3)検出面での検出光のピーク(pk1)の位置と検出光のピーク(pk2)の位置の差(L)を求め、
4)下記に表される数式(1)により、基板面上の位置(Q)と異物又は欠陥の位置(R’)の差(M)を算出し、差(M)をもって、基板面上の位置(Q)から異物又は欠陥の基板面上の位置(R’)までの距離と認知し、
5)上記検出光のピーク(pk2)が検出面の入射光側にある場合には、異物又は欠陥を異物と識別し、また、検出面の反射光側にある場合には、異物又は欠陥を欠陥と識別し、異物及び欠陥の基板面上の位置を算出する手段を具備することを特徴とする異物及び欠陥検査装置である。
M=L・cosθ ・・・・・・・・・(1)。
In the foreign matter and defect inspection apparatus according to the present invention, the axis in the x-axis direction passing the point (P) where the incident light is reflected on the substrate surface is defined as the x-axis, and the point (P) on the substrate surface. Is the axis perpendicular to the x axis and the y axis.
1) The detection light peak (pk1) appearing linearly in the y-axis direction on the detection surface of the optical detection element is recognized as the position (Q) on the substrate surface located at the point (P),
2) Recognize the peak of detection light (pk2) appearing in a point shape in the x-axis direction of the detection surface as the position (R) of the foreign matter or defect,
3) Obtain the difference (L) between the position of the detection light peak (pk1) and the position of the detection light peak (pk2) on the detection surface,
4) The difference (M) between the position (Q) on the substrate surface and the position (R ′) of the foreign matter or defect is calculated by the following formula (1), and the difference (M) is calculated on the substrate surface. Recognizing the distance from the position (Q) to the position (R ') on the substrate surface of the foreign object or defect,
5) When the detection light peak (pk2) is on the incident light side of the detection surface, the foreign object or defect is identified as a foreign object, and when it is on the reflected light side of the detection surface, the foreign object or defect is detected. A foreign matter and defect inspection apparatus comprising means for discriminating a defect and calculating the position of the foreign matter and the defect on the substrate surface.
M = L · cos θ (1).

また、本発明は、上記発明による異物及び欠陥検査装置において、前記入射光が基板面で反射される点(P)を通るx軸方向の軸をx軸とし、点(P)で基板面上をx軸と直交する軸をy軸とした際に、
1)光学検出素子の検出面にてy軸方向に線状に現れる検出光のピーク(pk1)を、点(P)に位置する基板面上の位置(Q)と認知し、
2)該検出面のx軸方向にて点状に現れる検出光のピーク(pk2)を、異物又は欠陥の位置(R)と認知し、
3)検出面での検出光のピーク(pk1)の位置と検出光のピーク(pk2)の位置の差(L)を求め、
4)下記に表される数式(2)により、基板面と異物又は欠陥上面の高さの差(H)を算出し、
5)上記検出光のピーク(pk2)が検出面の入射光側にある場合には、異物又は欠陥を異物と識別し、高さの差(H)に+符号を与えて異物の高さと認知し、また、検出面の反射光側にある場合には、異物又は欠陥を欠陥と識別し、高さの差(H)に−符号を与えて欠陥の深さと認知し、
異物の基板面上の高さ、及び欠陥の基板面上の深さを算出する手段を具備することを特徴
とする異物及び欠陥検査装置である。
H=L・sinθ ・・・・・・・・・(2)。
In the foreign matter and defect inspection apparatus according to the present invention, the axis in the x-axis direction passing the point (P) where the incident light is reflected on the substrate surface is defined as the x-axis, and the point (P) on the substrate surface. Is the axis perpendicular to the x axis and the y axis.
1) The detection light peak (pk1) appearing linearly in the y-axis direction on the detection surface of the optical detection element is recognized as the position (Q) on the substrate surface located at the point (P),
2) Recognize the peak of detection light (pk2) appearing in a point shape in the x-axis direction of the detection surface as the position (R) of the foreign matter or defect,
3) Obtain the difference (L) between the position of the detection light peak (pk1) and the position of the detection light peak (pk2) on the detection surface,
4) Calculate the difference in height (H) between the substrate surface and the top surface of the foreign substance or defect by the mathematical formula (2) shown below.
5) When the detection light peak (pk2) is on the incident light side of the detection surface, the foreign object or defect is identified as a foreign object, and the height difference (H) is given a plus sign to recognize the height of the foreign object. In addition, when it is on the reflected light side of the detection surface, the foreign object or the defect is identified as a defect, and the depth difference (H) is given a minus sign to recognize the depth of the defect,
A foreign matter and defect inspection apparatus comprising means for calculating a height of a foreign matter on a substrate surface and a depth of a defect on the substrate surface.
H = L · sin θ (2).

また、本発明は、上記発明による異物及び欠陥検査装置において、前記異物及び欠陥の検出数、前記数式(2)により算出された高さ/深さの値が、予め設定された判定式を満たすか否かを判定する手段を具備することを特徴とする異物及び欠陥検査装置である。   In the foreign matter and defect inspection apparatus according to the present invention, the number of detected foreign matter and defects and the height / depth value calculated by the mathematical formula (2) satisfy a predetermined judgment formula. It is a foreign substance and defect inspection apparatus characterized by comprising means for determining whether or not.

また、本発明は、上記発明による異物及び欠陥検査装置において、前記基板を移動又は入射光をスキャンし、基板と入射光との相対位置が順次更新される際に、光学検出素子の検出面のx軸方向にて点状に現れる検出光のピーク(pk2)の位置と強度が、ある周期をもって規則的に変化をする場合、該変化をもって基板の正規のパターンであると判定する手段を具備することを特徴とする異物及び欠陥検査装置である。   In the foreign matter and defect inspection apparatus according to the present invention, the detection surface of the optical detection element is moved when the substrate is moved or the incident light is scanned and the relative position between the substrate and the incident light is sequentially updated. When the position and intensity of the detection light peak (pk2) appearing in a dot shape in the x-axis direction change regularly with a certain period, there is provided means for determining that the change is a regular pattern of the substrate. This is a foreign matter and defect inspection apparatus.

また、本発明は、上記発明による異物及び欠陥検査装置において、前記基板を移動又は入射光をスキャンし、基板と入射光との相対位置が順次更新される際に、光学検出素子の検出面にてy軸方向に線状に現れる検出光のピーク(pk1)が、上記基板の移動又は入射光のスキャンに連動して検出面をx軸方向にシフトする場合、該シフトをもって基板面のうねりであると判定する手段を具備することを特徴とする異物及び欠陥検査装置である。   In the foreign matter and defect inspection apparatus according to the present invention, when the substrate is moved or the incident light is scanned, and the relative position between the substrate and the incident light is sequentially updated, the detection surface of the optical detection element is provided. When the detection light peak (pk1) appearing linearly in the y-axis direction shifts the detection surface in the x-axis direction in conjunction with the movement of the substrate or the scan of the incident light, the shift causes undulations on the substrate surface. A foreign matter and defect inspection apparatus characterized by comprising means for determining that there is a foreign object.

また、本発明は、上記発明による異物及び欠陥検査装置において、前記検出光のピーク(pk1)が、基板の移動又は入射光のスキャンに連動して検出面をx軸方向にシフトしたシフト距離(L’)を求め、
1)下記に表される数式(3)により、基板面のうねりの高さ(H’)を算出し、
2)検出光のピーク(pk1)のシフトが検出面の入射光側である場合には、うねりの方向は基板面の上方方向であると識別し、検出光のピーク(pk1)がシフトを開始する前の前記数式(2)により算出された異物の高さの値に、高さ(H’)の減算補正を行い、基板の基準面からの正しい異物の高さを算出し、
検出光のピーク(pk1)のシフトが検出面の反射光側である場合には、うねりの方向は基板面の下方方向であると識別し、検出光のピーク(pk1)がシフトを開始する前の前記数式(2)により算出された異物の高さの値に、高さ(H’)の加算補正を行い、基板の基準面からの異物の正しい高さを算出する手段を具備することを特徴とする異物及び欠陥検査装置である。
H’=L’・sinθ ・・・・・・・・・(3)。
In the foreign matter and defect inspection apparatus according to the present invention, the detection light peak (pk1) shifts the detection surface in the x-axis direction in conjunction with the movement of the substrate or the scan of the incident light ( L ′)
1) The height (H ′) of the swell of the substrate surface is calculated by the following formula (3),
2) When the shift of the detection light peak (pk1) is on the incident light side of the detection surface, the direction of the undulation is identified as the upward direction of the substrate surface, and the detection light peak (pk1) starts to shift. Subtracting the height (H ′) from the height of the foreign matter calculated by the mathematical formula (2) before the calculation, and calculating the correct height of the foreign matter from the reference surface of the substrate,
When the shift of the detection light peak (pk1) is on the reflected light side of the detection surface, the direction of undulation is identified as the downward direction of the substrate surface, and before the detection light peak (pk1) starts shifting. A means for performing addition correction of the height (H ′) to the height value of the foreign matter calculated by the mathematical formula (2) and calculating a correct height of the foreign matter from the reference surface of the substrate. This is a foreign matter and defect inspection apparatus.
H ′ = L ′ · sin θ (3).

また、本発明は、上記発明による異物及び欠陥検査装置において、前記入射光がレーザ光であることを特徴とする異物及び欠陥検査装置である。   The present invention is also the foreign matter and defect inspection apparatus according to the above invention, wherein the incident light is a laser beam.

また、本発明は、上記発明による異物及び欠陥検査装置において、前記レーザ光を視野内でスキャンさせることを特徴とする異物及び欠陥検査装置である。   The present invention is also the foreign matter and defect inspection apparatus according to the above invention, wherein the laser beam is scanned within a visual field.

また、本発明は、上記発明による異物及び欠陥検査装置において、前記基板を移動又は入射光をスキャンし、基板と入射光との相対位置が順次更新される際に、光学検出素子の検出面にはy軸方向に線状に現れる検出光のピーク(pk1)のみが現れ、且つ異物又は欠陥のデフォーカの黒点が検出光のピーク(pk1)中に重なった場合、
1)検出光のピーク(pk1)中への黒点の重なりが入射光側からであれば、異物又は欠陥は異物と識別し、また、検出光のピーク(pk1)中への黒点の重なりが反射光側からであれば、異物又は欠陥は欠陥と識別し、
2)検出面での検出光のピーク(pk1)の位置から、入射光側のx軸方向の検出面端(視野端)までの距離(L’’)を求め、又は、検出面での検出光のピーク(pk1)の位
置から、反射光側のx軸方向の検出面端(視野端)までの距離(L’’’)を求め、
3)下記に表される数式(5)又は数式(6)により、高さ(H’’)又は深さ(H’’’)を算出し、
4)異物の高さは高さ(H’’)よりも高い、又は、欠陥の深さは深さ(H’’’)よりも深いと認知する手段を具備することを特徴とする異物及び欠陥検査装置である。
H’’=L’’・sinθ ・・・・・・・・・(4)。
H’’’=L’’’・sinθ ・・・・・・・(5)。
In the foreign matter and defect inspection apparatus according to the present invention, when the substrate is moved or the incident light is scanned, and the relative position between the substrate and the incident light is sequentially updated, the detection surface of the optical detection element is provided. When only the detection light peak (pk1) appearing linearly in the y-axis direction appears, and the defocused black spot of the foreign matter or defect overlaps the detection light peak (pk1),
1) If the black spot overlaps in the detection light peak (pk1) from the incident light side, the foreign matter or defect is identified as a foreign matter, and the black spot overlap in the detection light peak (pk1) is reflected. If from the light side, the foreign object or defect is identified as a defect,
2) Obtain the distance (L ″) from the position of the detection light peak (pk1) on the detection surface to the detection surface end (field end) in the x-axis direction on the incident light side, or detect on the detection surface Obtain the distance (L ′ ″) from the position of the light peak (pk1) to the detection surface end (field end) in the x-axis direction on the reflected light side,
3) The height (H ″) or the depth (H ′ ″) is calculated by the following formula (5) or formula (6),
4) a foreign matter characterized by comprising means for recognizing that the height of the foreign matter is higher than the height (H ″) or the depth of the defect is deeper than the depth (H ′ ″); It is a defect inspection device.
H ″ = L ″ · sin θ (4).
H ′ ″ = L ′ ″ · sin θ (5).

また、本発明は、上記発明による異物及び欠陥検査装置において、前記基板を取り替えて別な基板の検査を行う際、スキャン前に、ステージ上の別な基板面と共焦点面との交点を光学検出素子の検出面で認知し、該交点の検出面での位置を検出面の予め設定された基準位置に合わせる、検出光学系と基板との距離の調節機構を具備することを特徴とする異物及び欠陥検査装置である。   Further, according to the present invention, in the foreign matter and defect inspection apparatus according to the above-described invention, when the substrate is replaced and another substrate is inspected, the intersection point between the other substrate surface on the stage and the confocal surface is optically measured before scanning. A foreign object characterized by comprising a mechanism for adjusting the distance between the detection optical system and the substrate, which is recognized by the detection surface of the detection element and matches the position of the intersection on the detection surface to a preset reference position of the detection surface. And a defect inspection apparatus.

また、本発明は、上記発明による異物及び欠陥検査装置において、前記基板を移動又は入射光をスキャンする際に、光学検出素子の検出面にてy軸方向に線状に現れる検出光のピーク(pk1)のx軸方向の位置が、予め設定された位置範囲を越えて変位している場合には、該変位を予め設定された位置範囲内に戻す、検出光学系と基板との距離の調節機構を具備することを特徴とする異物及び欠陥検査装置である。   According to the present invention, in the foreign matter and defect inspection apparatus according to the above invention, when the substrate is moved or incident light is scanned, the peak of detection light that appears linearly in the y-axis direction on the detection surface of the optical detection element ( When the position of pk1) in the x-axis direction is displaced beyond a preset position range, the distance between the detection optical system and the substrate is adjusted to return the displacement to the preset position range. A foreign matter and defect inspection apparatus comprising a mechanism.

また、本発明は、上記発明による異物及び欠陥検査装置において、前記基板を移動又は入射光をスキャンする際に、基板面の高さが、基板を移動又は入射光をスキャンする方向と垂直な方向で急激に変化する箇所がある場合には、該箇所を予め設定しておくことにより、該箇所毎に基板の移動又は入射光のスキャンを中断し、光学検出素子の検出面にてy軸方向に線状に現れる検出光のピーク(pk1)の検出面での位置を検出面の予め設定された基準位置に合わせ、基板の移動又は入射光のスキャンを再開する検出光学系と基板との距離の調節機構を具備することを特徴とする異物及び欠陥検査装置である。   In the foreign matter and defect inspection apparatus according to the present invention, when the substrate is moved or incident light is scanned, the height of the substrate surface is perpendicular to the direction in which the substrate is moved or incident light is scanned. If there is a location that changes rapidly, the location is set in advance so that the movement of the substrate or the scan of incident light is interrupted for each location, and the y-axis direction is detected on the detection surface of the optical detection element. The distance between the detection optical system and the substrate for resuming the movement of the substrate or scanning of the incident light by matching the position of the detection light peak (pk1) appearing linearly on the detection surface with the preset reference position of the detection surface It is a foreign matter and defect inspection apparatus characterized by comprising the adjustment mechanism.

また、本発明は、上記発明による異物及び欠陥検査装置において、前記基板を移動又は入射光をスキャンする際に、基板面の高さが、基板を移動又は入射光をスキャンする方向と平行な方向で急激に変化する箇所がある場合には、該箇所を予め設定しておくことにより、該箇所毎に基板の移動又は入射光のスキャンを中断し、光学検出素子の検出面にてy軸方向に線状に現れる検出光のピーク(pk1)の検出面での位置を検出面の予め設定された基準位置に合わせ、基板の移動又は入射光のスキャンを再開する検出光学系と基板との距離の調節機構を具備することを特徴とする異物及び欠陥検査装置である。   In the foreign matter and defect inspection apparatus according to the present invention, when the substrate is moved or incident light is scanned, the height of the substrate surface is parallel to the direction in which the substrate is moved or incident light is scanned. If there is a location that changes rapidly, the location is set in advance so that the movement of the substrate or the scan of incident light is interrupted for each location, and the y-axis direction is detected on the detection surface of the optical detection element. The distance between the detection optical system and the substrate for resuming the movement of the substrate or scanning of the incident light by matching the position of the detection light peak (pk1) appearing linearly on the detection surface with the preset reference position of the detection surface It is a foreign matter and defect inspection apparatus characterized by comprising the adjustment mechanism.

また、本発明は、上記発明による異物及び欠陥検査装置において、前記基板の任意の箇所を非検査領域として設定する手段を具備することを特徴とする異物及び欠陥検査装置である。   According to another aspect of the present invention, there is provided a foreign matter and defect inspection apparatus comprising: means for setting an arbitrary portion of the substrate as a non-inspection region.

また、本発明は、上記発明による異物及び欠陥検査装置において、前記基板がフラットパネルディスプレイ用の基板であることを特徴とする異物及び欠陥検査装置である。   The present invention is the foreign matter and defect inspection apparatus according to the above invention, wherein the substrate is a substrate for a flat panel display.

また、本発明は、上記発明による異物及び欠陥検査装置において、前記基板がカラーフィルタ基板であることを特徴とする異物及び欠陥検査装置である。   The present invention is the foreign matter and defect inspection apparatus according to the above invention, wherein the substrate is a color filter substrate.

本発明は、1)基板の法線に対し、光軸を角度θ(0°<θ<20°)傾けた入射光を基板に照射する光源であって、入射光が基板面で反射される点(P)で、反射光の光軸に垂直な、下記ピンホールに対応した共焦点面に入射光の焦点を合わせる光源、2)基板面
からの反射光を集光する、該反射光の光軸上に配置された共焦点の光学系を有する対物レンズ、3)入射光が基板面で反射される点(P)と、光学的に共役な位置に配置されたピンホール、4)該ピンホールを通過した反射光を検出する、反射光の光軸に垂直な光学検出素子、5)上記基板の法線に対し、光軸を角度θ(0°<θ<20°)傾けた方向をx軸方向とし、x軸方向へ基板を移動又は入射光をスキャンさせる機構を具備する異物及び欠陥検査装置であるので、基板上の異物及び欠陥(ピンホール)、異物の高さ、欠陥の深さを効率的に検出することが可能な異物及び欠陥検査装置となる。
The present invention is a light source that irradiates a substrate with incident light whose optical axis is inclined at an angle θ (0 ° <θ <20 °) with respect to the normal line of the substrate, and the incident light is reflected by the substrate surface. At point (P), a light source that focuses the incident light on a confocal surface that is perpendicular to the optical axis of the reflected light and that corresponds to the following pinhole, and 2) collects the reflected light from the substrate surface. Objective lens having a confocal optical system arranged on the optical axis, 3) A point (P) where incident light is reflected by the substrate surface, and a pinhole arranged at an optically conjugate position, 4) Optical detection element that detects reflected light that has passed through the pinhole and is perpendicular to the optical axis of the reflected light. 5) Direction in which the optical axis is inclined at an angle θ (0 ° <θ <20 °) with respect to the normal of the substrate. Is a foreign matter and defect inspection apparatus equipped with a mechanism for moving the substrate in the x-axis direction or scanning the incident light. It becomes a foreign matter and defect inspection apparatus capable of efficiently detecting an object and a defect (pinhole), the height of the foreign matter, and the depth of the defect.

また、本発明は、上記異物及び欠陥検査装置において、検出光のピーク(pk1)が、基板の移動又は入射光のスキャンに連動して検出面をx軸方向にシフトしたシフト距離(L’)を求め、1)前記数式(3)により、基板面のうねりの高さ(H’)を算出し、2)検出光のピーク(pk1)のシフトが検出面の入射光側である場合には、うねりの方向は基板面の上方方向であると識別し、検出光のピーク(pk1)がシフトを開始する前の前記数式(2)により算出された異物の高さの値に、高さ(H’)の減算補正を行い、基板の基準面からの正しい異物の高さを算出し、検出光のピーク(pk1)のシフトが検出面の反射光側である場合には、うねりの方向は基板面の下方方向であると識別し、検出光のピーク(pk1)がシフトを開始する前の前記数式(2)により算出された異物の高さの値に、高さ(H’)の加算補正を行い、基板の基準面からの異物の正しい高さを算出する手段を具備するので、実際の基板にて基板自身のうねりや、基板上に形成されたパターンの膜厚のうねりなどが存在していても、このz軸方向のうねりの高さの値を補正し異物の高さを正確に求めることが可能になる。   In the foreign matter and defect inspection apparatus according to the present invention, the detection light peak (pk1) shifts the detection surface in the x-axis direction in conjunction with the movement of the substrate or the scan of the incident light (L ′). 1) Calculate the height (H ′) of the waviness of the substrate surface by the equation (3), and 2) When the shift of the peak (pk1) of the detection light is on the incident light side of the detection surface The direction of the undulation is identified as the upward direction of the substrate surface, and the height of the foreign matter calculated by the equation (2) before the peak (pk1) of the detection light starts to shift to the height ( H ′) is subtracted and the correct foreign object height from the reference surface of the substrate is calculated, and when the shift of the peak (pk1) of the detection light is on the reflected light side of the detection surface, the direction of waviness is Identifies the direction below the substrate surface, and the peak of detection light (pk1) shifts A means for performing addition correction of the height (H ′) on the height value of the foreign matter calculated by the mathematical formula (2) before starting to calculate the correct height of the foreign matter from the reference surface of the substrate; Therefore, even if there is undulation of the substrate itself in the actual substrate or undulation of the film thickness of the pattern formed on the substrate, the height value of the undulation in the z-axis direction is corrected to correct the foreign matter. It becomes possible to obtain the height accurately.

また、本発明は、上記異物及び欠陥検査装置において、基板を取り替えて別な基板の検査を行う際、スキャン前に、ステージ上の別な基板面と共焦点面との交点を光学検出素子の検出面で認知し、該交点の検出面での位置を検出面の予め設定された基準位置に合わせる、検出光学系と基板との距離の調節機構を具備するので、検査基板を取り替えて複数の基板を検査する場合に、基板毎に基板自身の厚みや、基板上に形成されたパターンの厚みに僅かなながらもバラツキが生じていても、基板ごとのz軸方向のバラツキによらず、常に最適な検出系をもって検査を行うことが可能である。   Further, in the foreign matter and defect inspection apparatus, when the substrate is replaced and another substrate is inspected, the intersection of the other substrate surface on the stage and the confocal surface is determined before scanning. It has a mechanism for adjusting the distance between the detection optical system and the substrate, which is recognized by the detection surface and matches the position of the intersection on the detection surface with a preset reference position of the detection surface. When inspecting a substrate, even if there is a slight variation in the thickness of the substrate itself or the pattern formed on the substrate for each substrate, it is always independent of the variation in the z-axis direction for each substrate. Inspection can be performed with an optimal detection system.

また、本発明は、上記異物及び欠陥検査装置において、基板を移動又は入射光をスキャンする際に、光学検出素子の検出面にてy軸方向に線状に現れる検出光のピーク(pk1)のx軸方向の位置が、予め設定された位置範囲を越えて変位している場合には、該変位を予め設定された位置範囲内に戻す、検出光学系と基板との距離の調節機構を具備するので、基板中のうねりによって、検出可能な異物の高さの限界または欠陥(ピンホール)の深さの限界が小さくなることはない。   Further, according to the present invention, in the foreign matter and defect inspection apparatus, when the substrate is moved or incident light is scanned, the peak of detection light (pk1) appearing linearly in the y-axis direction on the detection surface of the optical detection element. When the position in the x-axis direction is displaced beyond a preset position range, a mechanism for adjusting the distance between the detection optical system and the substrate is provided to return the displacement to a preset position range. Therefore, the limit of the height of the detectable foreign matter or the depth of the defect (pinhole) is not reduced by the undulation in the substrate.

以下に、本発明による異物及び欠陥検査装置を詳細に説明する。
図1は、本発明による異物及び欠陥検査装置の模式図である。図1に示すように、異物及び欠陥検査装置は、ステージ上に配された基板105の法線に対して角度θ(0°<θ<20°)だけ光軸を傾けた光源101から、検査用の入射光201を当て、基板105からの反射光203を、その光軸上に配置された共焦点の光学系を有する対物レンズ102で集光し、光学検出素子104で検出する機構を備えている。
反射光203は、入射光201が前記基板に当たる点Pと光学的に共役な位置に配置されたピンホール103を通過し、光学検出素子104に達する。
Hereinafter, the foreign matter and defect inspection apparatus according to the present invention will be described in detail.
FIG. 1 is a schematic diagram of a foreign matter and defect inspection apparatus according to the present invention. As shown in FIG. 1, the foreign matter and defect inspection apparatus inspects from a light source 101 whose optical axis is inclined by an angle θ (0 ° <θ <20 °) with respect to a normal line of a substrate 105 placed on a stage. And a mechanism for converging the reflected light 203 from the substrate 105 with the objective lens 102 having a confocal optical system disposed on the optical axis and detecting it with the optical detection element 104. ing.
The reflected light 203 passes through the pinhole 103 disposed at a position optically conjugate with the point P where the incident light 201 strikes the substrate, and reaches the optical detection element 104.

図2は、図1の視野106を拡大した模式図である。対物レンズ102を挟んで、ピンホール103と、点Pで基板105と交差した反射光203に垂直な面204は光学的に共役になっている(以降、面204を共焦点面と呼ぶ)。
点Pは、入射光201aと反射光203aの交点、すなわち、この位置に物体があると入射光201aを反射光203aとして正反射させる点である。
また、光源からの入射光201は、この共焦点面204上でフォーカスされている。このとき、視野106(図2)において、上記共焦点面204は基板面105に対してθだけ反射光203側に傾斜しており、共焦点面204は点Pにおいて基板面105と交差している。
FIG. 2 is an enlarged schematic view of the visual field 106 of FIG. The surface 204 perpendicular to the reflected light 203 intersecting the substrate 105 at the point P across the objective lens 102 is optically conjugate (hereinafter, the surface 204 is referred to as a confocal surface).
Point P is an intersection of incident light 201a and reflected light 203a, that is, a point that regularly reflects incident light 201a as reflected light 203a when an object is present at this position.
Further, the incident light 201 from the light source is focused on the confocal plane 204. At this time, in the field of view 106 (FIG. 2), the confocal surface 204 is inclined toward the reflected light 203 side by θ with respect to the substrate surface 105, and the confocal surface 204 intersects the substrate surface 105 at a point P. Yes.

この場合、入射光201で検査される視野106の中で点Pを通る入射光201aは、共焦点面204上でフォーカスされていることになり、点P上の基板105上で反射したその反射光203aは対物レンズ102を通してピンホール103上で再度フォーカスし、ピンホール103を通過して光学検出素子104上で検出される。   In this case, the incident light 201a passing through the point P in the visual field 106 to be inspected by the incident light 201 is focused on the confocal plane 204, and the reflection reflected on the substrate 105 on the point P is reflected. The light 203 a is focused again on the pinhole 103 through the objective lens 102, passes through the pinhole 103, and is detected on the optical detection element 104.

一方、入射光201の中で点Pを通らない光201bや201cは反射面である基板105上でデフォーカスの状態になり、これらの光の反射光203b、203cはピンホール103上でもデフォーカスになり、反射光203b、203cはピンホール103で遮断される為、光学検出素子では検出されない。   On the other hand, the light 201b and 201c that do not pass through the point P in the incident light 201 is in a defocused state on the substrate 105 that is a reflection surface, and the reflected light 203b and 203c of these lights is also defocused on the pinhole 103. Therefore, the reflected lights 203b and 203c are blocked by the pinhole 103 and are not detected by the optical detection element.

そのため、光学検出素子104上には、点Pにある基板面上の、点Pで直交する直線(以降y軸と呼ぶ)上からの反射光のみが検出されることになる。従って、光学検出素子104で得られる画像は図3中、aのようになり、y軸上で得られるx軸方向の検出強度I分布は図3中、bのようになる。   Therefore, on the optical detection element 104, only the reflected light from the straight line (hereinafter referred to as the y-axis) orthogonal to the point P on the substrate surface at the point P is detected. Therefore, an image obtained by the optical detection element 104 is as shown in FIG. 3, and the detected intensity I distribution in the x-axis direction obtained on the y-axis is as shown in b in FIG.

また、この検査装置は、少なくともx軸方向にスキャンすることが可能なようになっている。図4のようにスキャン(図4中、白太矢印で示すように、x軸の左側に基板105を移動させることにする)中に、基板105上に異物又は欠陥が存在した場合、それが突起状の異物であると、位置31において、異物301の上面が共焦点面204と重なったときに、光源からの入射光のうち、異物301に照射された入射光201fは異物上でフォーカスされ、その反射光203fはピンホール103を通過して光学検出素子104で検出される。   The inspection apparatus can scan at least in the x-axis direction. If a foreign object or a defect exists on the substrate 105 during the scan as shown in FIG. 4 (the substrate 105 is moved to the left side of the x-axis as indicated by a thick arrow in FIG. 4), When the upper surface of the foreign material 301 overlaps the confocal surface 204 at the position 31, the incident light 201 f applied to the foreign material 301 is focused on the foreign material. The reflected light 203 f passes through the pinhole 103 and is detected by the optical detection element 104.

図5中、aに示すように、このとき光学検出素子104上で検出される光は、点Pでx軸に直交するy軸上からの反射光203dと、位置31における異物301からの反射光203fである。そして検出強度I分布は図5中、bのようになる。
図5中、aに示すように、点Pからの反射光203d以外の反射光が光学検出素子104の検出面で入射光側にある場合には、その異物又は欠陥は異物であると識別される。また、後述のように、その反射光が光学検出素子104の検出面で反射光側にある場合には、その異物又は欠陥は欠陥(ピンホール)であると識別される。また、光学検出素子104は基板面に対してθだけ傾いているので、検出画像はx軸方向にcosθ倍圧縮された形になっている。
As indicated by a in FIG. 5, the light detected on the optical detection element 104 at this time is reflected light 203 d from the y-axis orthogonal to the x-axis at the point P and reflected from the foreign substance 301 at the position 31. Light 203f. The detected intensity I distribution is as shown in FIG.
In FIG. 5, when the reflected light other than the reflected light 203d from the point P is on the incident light side on the detection surface of the optical detection element 104, the foreign object or defect is identified as a foreign object. The As will be described later, when the reflected light is on the reflected light side of the detection surface of the optical detection element 104, the foreign substance or defect is identified as a defect (pinhole). Further, since the optical detection element 104 is inclined by θ with respect to the substrate surface, the detected image is compressed by cos θ times in the x-axis direction.

図6のように、さらに基板105が移動されて位置32に来たとき、異物301に照射される入射光201gは異物301の上面が共焦点面204から外れているため、異物301上でデフォーカスgになり、その反射光203gはピンホール103で遮断され、図7中、aのように光学検出素子104で検出されない。すなわち、光学検出素子104は異物の上面が共焦点面204上にあるときにのみ、異物の上面を検出することが出来る。   As shown in FIG. 6, when the substrate 105 is further moved to the position 32, the incident light 201 g applied to the foreign material 301 is degenerated on the foreign material 301 because the upper surface of the foreign material 301 is out of the confocal surface 204. The focus g is reached and the reflected light 203g is blocked by the pinhole 103 and is not detected by the optical detection element 104 as shown by a in FIG. That is, the optical detection element 104 can detect the top surface of the foreign material only when the top surface of the foreign material is on the confocal surface 204.

図8に示すように、この状態からさらに基板105をx軸方向(図7中左方)に移動させて異物301が点Pと同じ位置である位置33に到達した場合、これまでの点Pからの反射光はなくなる。点P(位置33)からの反射光は異物301によってデフォーカスdになり、対物レンズ102とピンホール103を通過して光学検出素子104で検出され
なくなる。そのため、図9中、aのように、検出面ではこれまで検出されてきたy軸の中に異物301が欠点として認識される。よって、検出された異物301の基板上の位置、すなわち、図9に示す位置33をもって、基板上の異物の位置として認識、出力することが可能となる。
As shown in FIG. 8, when the substrate 105 is further moved in the x-axis direction (leftward in FIG. 7) from this state and the foreign object 301 reaches the position 33 which is the same position as the point P, the previous point P The reflected light from is lost. The reflected light from the point P (position 33) is defocused d by the foreign substance 301, passes through the objective lens 102 and the pinhole 103, and is not detected by the optical detection element 104. Therefore, as shown by a in FIG. 9, the foreign substance 301 is recognized as a defect in the y axis that has been detected so far on the detection surface. Therefore, the position of the detected foreign substance 301 on the substrate, that is, the position 33 shown in FIG. 9 can be recognized and output as the position of the foreign substance on the substrate.

上述のように、異物の上面を検出した位置は、点Pを通るz軸に対して入射光201の存在する側(図5では右側)であるとしたが、これが図10のようにz軸に対して反射光203の存在する側(図5では左側)の位置34で検出した場合、共焦点面204は位置34においてz軸方向で基板105よりも低い位置に存在することになる。このような場合、光学検出素子104上で検出される画像は図11中、aのようになり、位置34で検出した異物又は欠陥(ピンホール)304は欠陥(ピンホール)であると識別される。
また、検出された欠陥(ピンホール)304の位置34は、図9に示す位置33をもとに算出することが可能となる。
尚、z軸は、点Pにてx軸とy軸の交点上の、x軸とy軸のなす面に垂直な軸を指している。
As described above, the position where the upper surface of the foreign object is detected is the side where the incident light 201 exists (the right side in FIG. 5) with respect to the z axis passing through the point P, but this is the z axis as shown in FIG. On the other hand, when the detection is made at the position 34 on the side where the reflected light 203 exists (left side in FIG. 5), the confocal plane 204 exists at a position lower than the substrate 105 in the z-axis direction at the position 34. In such a case, the image detected on the optical detection element 104 is as indicated by a in FIG. 11, and the foreign matter or defect (pinhole) 304 detected at the position 34 is identified as a defect (pinhole). The
Further, the position 34 of the detected defect (pinhole) 304 can be calculated based on the position 33 shown in FIG.
The z-axis indicates an axis perpendicular to the surface formed by the x-axis and the y-axis on the intersection of the x-axis and the y-axis at the point P.

また、図5に示すように、光学検出素子104上で検出される光、点Pでx軸に直交するy軸上からの反射光203dと、位置31における異物301からの反射光203fの、検出面での距離から異物又は欠陥の基板上の位置を算出することが可能である。
すなわち、図5に示すように、光学検出素子上で検出された該距離をL、基板105上での該距離(QR’間)をMとすると、基板105に対し光学検出素子104もまたθだけ傾いているので、LとMとは数式(1)の関係になる。
M=L・cosθ ・・・・・・・・・(1)。
Further, as shown in FIG. 5, the light detected on the optical detection element 104, the reflected light 203d from the y-axis orthogonal to the x-axis at the point P, and the reflected light 203f from the foreign substance 301 at the position 31, It is possible to calculate the position of the foreign matter or defect on the substrate from the distance on the detection surface.
That is, as shown in FIG. 5, when the distance detected on the optical detection element is L and the distance on the substrate 105 (between QR ′) is M, the optical detection element 104 is also θ relative to the substrate 105. Therefore, L and M are in the relationship of Equation (1).
M = L · cos θ (1).

また、図5中、aに示す、光学検出素子104上で検出される点Pからの反射光以外の、検出面に点状に現れる検出光のピーク(pk2)の面積をもって異物の面積を算出することが可能である。
同様に、図11中、aに示す、点Pからの反射光以外の、検出面に点状に現れる検出光のピーク(pk2)の面積をもって欠陥の面積を算出することが可能である。
In addition, the area of the foreign matter is calculated based on the area of the detection light peak (pk2) appearing in a dotted manner on the detection surface other than the reflected light from the point P detected on the optical detection element 104 shown in FIG. Is possible.
Similarly, the area of the defect can be calculated from the area of the peak (pk2) of the detection light that appears in a dot shape on the detection surface other than the reflected light from the point P shown in FIG.

すなわち、反射光の光軸203に垂直である光学検出素子104は基板105に対してθだけ傾いているので、光学検出素子104の検出面のx軸方向で検出される面積(S’)は、x軸方向でcosθ倍圧縮されている。しかし、θは7°〜5°程度が好適であるので、異物又は欠陥の基板上での面積(S)は便宜的にS≒S’とみなせる。   That is, since the optical detection element 104 perpendicular to the optical axis 203 of the reflected light is inclined by θ with respect to the substrate 105, the area (S ′) detected in the x-axis direction of the detection surface of the optical detection element 104 is , Compressed by cos θ times in the x-axis direction. However, since θ is preferably about 7 ° to 5 °, the area (S) of the foreign matter or defect on the substrate can be regarded as S≈S ′ for convenience.

さらに異物又は欠陥の水平方向のサイズが十分大きい場合、光学検出素子で検出されるy軸の反射光の、x軸方向の幅よりも異物又は欠陥によって生じる欠点が大きくなることもあり得るが、この場合、基板105は移動しているので、欠点のサイズは順次更新され、これを移動方向で重ね合わせることにより欠点の光学検出素子104上での面積が求まる。   Further, when the horizontal size of the foreign matter or defect is sufficiently large, the defect caused by the foreign matter or the defect may be larger than the width in the x-axis direction of the reflected light of the y axis detected by the optical detection element. In this case, since the substrate 105 is moving, the size of the defect is sequentially updated, and the area of the defect on the optical detection element 104 is obtained by superimposing the defect size in the moving direction.

また、基板上の異物301を、x軸方向に基板と共に移動させた場合、位置31において異物の頂点を認識することが可能である。図5に示すように、位置31における共焦点面204と基板105のz軸方向の距離、即ち異物の高さHは、基板上での位置31と点P(位置33)の距離がMであるので、異物の高さHとは下記に表される数式(6)の関係にあり、光学検出素子で検出されたピーク間の距離をLとすれば、HとLの間には下記に表される数式(2)で表される関係になる。これにより異物の高さを算出することが可能である。
H=M・tanθ ・・・・・・・・(6)。
H=L・sinθ ・・・・・・・・(2)。
In addition, when the foreign substance 301 on the substrate is moved together with the substrate in the x-axis direction, the vertex of the foreign substance can be recognized at the position 31. As shown in FIG. 5, the distance in the z-axis direction between the confocal surface 204 and the substrate 105 at the position 31, that is, the height H of the foreign matter is M at the distance between the position 31 and the point P (position 33) on the substrate. Therefore, the height H of the foreign substance is in the relationship of the following formula (6). If the distance between peaks detected by the optical detection element is L, the distance between H and L is as follows. The relationship represented by the mathematical formula (2) is obtained. Thereby, it is possible to calculate the height of the foreign matter.
H = M · tan θ (6).
H = L · sin θ (2).

また、同様に、図11に示すように、距離Lに負の符号を与えることで、数式2により欠陥(ピンホール)の深さを算出することが可能である。   Similarly, as shown in FIG. 11, by giving a negative sign to the distance L, it is possible to calculate the depth of the defect (pinhole) by Equation 2.

上述の場合において、これまでは基板105をz軸に対して入射光201の存在する側からz軸に対して反射光203の存在する側(図1中では左の方向)に移動させたが、これを逆の方向に移動させて検査しても何ら問題はない。   In the above case, the substrate 105 has been moved from the side where the incident light 201 exists with respect to the z axis to the side where the reflected light 203 exists (the left direction in FIG. 1) with respect to the z axis. Even if this is moved in the opposite direction, there is no problem.

上述のように計算することで基板105上の異物の基板上における位置と面積、更に異物の高さを検出することが可能である。この場合、スキャン長を基板105のx軸方向の一方の端部から他の端部までに設定し、y軸方向に関してはx軸方向のスキャンが1回終わる毎に基板105と検査光学系のy軸方向の位置を更新して再度x軸方向にスキャンする、あるいは複数の検査光学系を用いてスキャンを行う、あるいは前記2つの方法を組み合わせることで、基板105の全面に対して検査を行うことが可能であることは言うまでもない。   By calculating as described above, the position and area of the foreign matter on the substrate 105 on the substrate and the height of the foreign matter can be detected. In this case, the scan length is set from one end of the substrate 105 in the x-axis direction to the other end, and with respect to the y-axis direction, each time the scan in the x-axis direction ends once, the substrate 105 and the inspection optical system The entire position of the substrate 105 is inspected by updating the position in the y-axis direction and scanning again in the x-axis direction, or scanning using a plurality of inspection optical systems, or a combination of the two methods. It goes without saying that it is possible.

更に、検出された異物の位置と異物数、面積、異物の高さを統計し、その異物数、面積、高さに関して、予め設定された判定式を満たすかどうかの判定を行う手段と判定結果の出力手段を備えていれば、検査を行った基板に対し、合否判定や、レビュー機、欠陥修正機への基板の欠陥情報の提供が可能になり、検査を効率良く行うことが可能である。また、前記判定を行う手段としては広く一般に使用されるコンピュータなどを用いることが可能である。   Further, the position and the number of foreign objects detected, the area, the height of the foreign object are statistically determined, and the means and the determination result for determining whether or not the predetermined determination formula is satisfied with respect to the number of foreign objects, the area and the height If the output means is provided, it is possible to perform pass / fail judgment and to provide defect information of the substrate to the review machine and defect repair machine for the board that has been inspected, and the inspection can be performed efficiently. . Further, as the means for performing the determination, a widely used computer or the like can be used.

検査される基板がカラーフィルタ基板などの場合、基板上にRGBの画素マトリクスやフォトスペーサ等が形成されている。この場合、基板表面には規則的な高さの変化が生じる。そのためこの基板をスキャンさせて検査を行うと光学検出素子上には、ある周期をもった規則的な反射光が検出されるが、規則的な反射光の検出は該基板の正規のパターンであると判定を行うことで、反射光を異物として判定することがなくなる。   When the substrate to be inspected is a color filter substrate or the like, an RGB pixel matrix, a photo spacer, or the like is formed on the substrate. In this case, regular height changes occur on the substrate surface. Therefore, when this substrate is scanned and inspected, regularly reflected light having a certain period is detected on the optical detection element, but the regular reflected light is detected in a regular pattern of the substrate. , The reflected light is not determined as a foreign object.

これまでの場合、基板105は特に断わることなく幾何的に平面であると仮定していたが、実際の基板には基板自身のうねりや、該基板上に形成されたパターンの膜厚のうねりなどが存在する。このような場合、基板105の表面の検査光学系に対する距離がスキャン中に変化するため、基板105面と共焦点面204の交点のx軸方向の位置は、前記点Pからずれたものになる。
すなわち、基板の位置が順次更新される毎に、この交点の位置は連続的に変化する。基板105が移動されて基板105と検査光学系の相対位置が順次更新される際に、基板105と共焦点面204が交差する線のx軸方向の位置がスキャンに順じて連続的に変位する場合、該基板の表面のうねりであると判定を行うことにより、該基板のうねりを検出することが可能である。
In the past, it has been assumed that the substrate 105 is geometrically flat without any particular limitation. However, the actual substrate has undulation of the substrate itself, undulation of the film thickness of the pattern formed on the substrate, etc. Exists. In such a case, since the distance of the surface of the substrate 105 with respect to the inspection optical system changes during scanning, the position of the intersection of the substrate 105 surface and the confocal surface 204 in the x-axis direction is shifted from the point P. .
That is, every time the position of the substrate is sequentially updated, the position of the intersection changes continuously. When the substrate 105 is moved and the relative position between the substrate 105 and the inspection optical system is sequentially updated, the position in the x-axis direction of the line intersecting the substrate 105 and the confocal plane 204 is continuously displaced according to the scan. In this case, it is possible to detect the undulation of the substrate by determining that the undulation is on the surface of the substrate.

本来、実際の基板や基板上に形成されたパターンの膜厚には少なからずのうねりが存在する。うねり自身の高さが小さく、うねりの傾きも緩やかであれば、これはパネル作成時にショートなどの不良を引き起こさない。しかしながら、基板にうねりがある場合、その上に存在する異物の高さを正確に求める際に誤差が発生する。   Originally, there is a certain amount of undulation in the film thickness of an actual substrate or a pattern formed on the substrate. If the undulation itself is small in height and the undulation slope is gentle, this will not cause defects such as a short circuit during panel creation. However, if the substrate has waviness, an error occurs when accurately obtaining the height of the foreign material existing on the substrate.

基板105面にうねりがなく平坦であれば、前記図5中、aに示すように、光学検出素子104上で検出される光は、点Pでx軸に直交するy軸上からの反射光203dと、位置31における異物301からの反射光203fである。
この際には、基板105面が平坦であるので、基板を更に移動させても点Pからの反射光203dの、光学検出素子104の検出面での検出光のピーク(pk1)の位置は静止し
ており、x軸方向へのシフトはない。
If the surface of the substrate 105 is flat and has no waviness, the light detected on the optical detection element 104 is reflected light from the y-axis orthogonal to the x-axis at the point P as shown in a in FIG. 203d and reflected light 203f from the foreign substance 301 at the position 31.
At this time, since the surface of the substrate 105 is flat, the position of the peak (pk1) of the detection light on the detection surface of the optical detection element 104 of the reflected light 203d from the point P is stationary even if the substrate is further moved. There is no shift in the x-axis direction.

一方、基板105面にうねりが有る場合には、図12(イ)に示すように、点P(位置37)では、基板105は未だ平坦な部分であるので、光学検出素子104の検出面で検出される光は、点P(位置37)での基板105からの反射光、すなわち、検出光のピーク(pk1)と、異物305からの反射光である検出光のピーク(pk3)である。
しかし、異物305の上面が検出された位置35から、基板105を図12中左方向に移動させたときには、符号Uで示すうねり部分は、図12(イ)中の位置37に達する前に共焦点面204と交わってしまう。
On the other hand, when the surface of the substrate 105 has waviness, the substrate 105 is still a flat portion at the point P (position 37) as shown in FIG. The detected lights are the reflected light from the substrate 105 at the point P (position 37), that is, the detection light peak (pk1) and the detection light peak (pk3) reflected from the foreign material 305.
However, when the substrate 105 is moved in the left direction in FIG. 12 from the position 35 where the upper surface of the foreign material 305 is detected, the wavy portion indicated by the reference symbol U is shared before reaching the position 37 in FIG. It intersects with the focal plane 204.

従って、光学検出素子104の検出面で検出される検出光のピーク(pk1)の位置は、本来の点P(位置37)の位置、すなわち、例えば、検出面でのx軸方向の中央部から図12中右方向へシフトを開始する。
基板105の移動を継続し、光学検出素子104の検出面でこの検出光のピーク(pk1)のシフトが停止した時点が、すなわち、うねりが安定した時点である。
Therefore, the position of the peak (pk1) of the detection light detected on the detection surface of the optical detection element 104 is from the original point P (position 37), that is, for example, from the center in the x-axis direction on the detection surface. Shifting starts in the right direction in FIG.
The time when the shift of the peak (pk1) of the detection light is stopped on the detection surface of the optical detection element 104 is continued, that is, the time when the swell is stabilized.

図12(ロ)では、位置36において光学検出素子104の検出面で検出光のピーク(pk1)のシフトが停止したことを示している。光学検出素子104の検出面における、位置37での検出光のピーク(pk1)から位置36での検出光のピーク(pk1)へのピークのシフト量をL’とすると、位置36で算出される高さは、下記に表される数式(3)で求められる高さH´分だけ高さがずれることになる。
H’=L’・sinθ ・・・・・・・・(3)。
FIG. 12B shows that the shift of the detection light peak (pk1) at the position 36 on the detection surface of the optical detection element 104 has stopped. If the shift amount of the peak from the detection light peak (pk1) at the position 37 to the detection light peak (pk1) at the position 36 is L ′ on the detection surface of the optical detection element 104, the calculation is performed at the position 36. The height is deviated by the height H ′ obtained by the following formula (3).
H ′ = L ′ · sin θ (3).

図12(ロ)の位置36が点P(位置37)に対し入射光側(図12中右側)にずれたときにはうねりはz軸方向に高くなっていて、逆に、反射光側(図12中左側)にずれたときにはうねりはz軸方向に低くなっている。
本発明によれば、このz軸方向のうねりの高さの値を補正することができるので、基板にうねりが存在していても異物の高さを正確に求めることが可能になる。
When the position 36 in FIG. 12B is shifted to the incident light side (right side in FIG. 12) with respect to the point P (position 37), the undulation is higher in the z-axis direction, and conversely, the reflected light side (FIG. 12). When shifted to the middle left), the undulation is lowered in the z-axis direction.
According to the present invention, since the value of the height of the undulation in the z-axis direction can be corrected, the height of the foreign matter can be accurately obtained even when the undulation is present on the substrate.

本発明に用いられる光源は、本発明の光学系に適用できる光源であれば特に問わないが、分解能の点からスキャンを行うレーザ光が好ましい。レーザ光をスキャンさせる手段としてはガルバノミラーやポリゴンミラー、音響光学素子などを用いることが可能である。   The light source used in the present invention is not particularly limited as long as it is a light source applicable to the optical system of the present invention, but laser light for scanning from the point of resolution is preferable. As a means for scanning the laser light, a galvanometer mirror, a polygon mirror, an acoustooptic device, or the like can be used.

本発明において、検査光学系は有限の視野を有しているが、図13(イ)のように視野106のx軸方向に対する検出面端部(視野端部)である位置28において、異物306が存在してる場合に、異物306の高さH36が点P(位置25)と位置28の検出面でのx軸方向の距離L´´をもとに数式(4)で計算される値H´´よりも高い場合(H36>H´´)、異物306が位置28から点P(位置25)、位置29と移動してスキャンされても、異物306の上面は共焦点面204と交わらないので光学検出素子104には異物306の上面は検出されない。
H’’=L’’・sinθ ・・・・・・・・・(4)。
In the present invention, the inspection optical system has a finite field of view. However, as shown in FIG. 13 (a), the foreign object 306 at a position 28 that is the detection surface end (field end) with respect to the x-axis direction of the field 106. When the height H36 of the foreign material 306 is present, the value H calculated by the equation (4) based on the distance L ″ in the x-axis direction between the point P (position 25) and the detection surface 28 When the height is higher than ″ (H36> H ″), the top surface of the foreign material 306 does not intersect the confocal surface 204 even if the foreign material 306 is moved from the position 28 to the point P (position 25) and scanned from the position 29. Therefore, the upper surface of the foreign material 306 is not detected by the optical detection element 104.
H ″ = L ″ · sin θ (4).

同様に欠陥(ピンホール)307が位置29に来た時点で、位置29と点P(位置25)の検出面でのx軸方向の距離L´´´をもとに数式(6)で計算される値H´´´よりも欠陥(ピンホール)307の深さH37が深い場合、欠陥(ピンホール)307の底面は位置28から点P(位置25)、位置29とスキャンされても共焦点面204と交わらないので光学検出素子104には欠陥(ピンホール)の底面は検出されない。
H’’’=L’’’・sinθ ・・・・・・・(5)。
Similarly, when the defect (pinhole) 307 arrives at the position 29, the calculation is performed by Expression (6) based on the distance L ″ ′ in the x-axis direction between the position 29 and the point P (position 25) on the detection surface. When the depth H37 of the defect (pinhole) 307 is deeper than the value H ′ ″, the bottom surface of the defect (pinhole) 307 is scanned from the position 28 to the point P (position 25) and the position 29. Since it does not intersect with the focal plane 204, the bottom surface of the defect (pinhole) is not detected by the optical detection element 104.
H ′ ″ = L ′ ″ · sin θ (5).

しかしながら、図13(ロ)のように、異物306又は欠陥(ピンホール)307が点
P(位置25)の位置に来た場合、点P(位置25)で通常反射し、光学検出素子104にて検出されるはずの反射光の線が、異物306又は欠陥(ピンホール)307によって遮られるため、その時点で点P(位置25)に異物306又は欠陥(ピンホール)307の存在を検出することが可能である。
本発明においては、図13(ロ)に示す光学検出素子104の検出面の検出光のピーク(pk1)中に、異物又は欠陥のデフォーカスによる黒点が検出されるまでの基板105の移動量、すなわち、検出面の視野両端部からの距離によって、H´´’以上の高さをもつ異物か、又はH´´´以上の深さをもつ欠陥(ピンホール)が存在していると判定をおこなうことが可能である。
However, as shown in FIG. 13B, when the foreign matter 306 or the defect (pinhole) 307 comes to the position of the point P (position 25), it is normally reflected at the point P (position 25) and is reflected on the optical detection element 104. The line of reflected light that should be detected in this way is blocked by the foreign matter 306 or the defect (pinhole) 307, so the presence of the foreign matter 306 or the defect (pinhole) 307 is detected at the point P (position 25) at that time. It is possible.
In the present invention, the amount of movement of the substrate 105 until a black spot due to defocusing of a foreign substance or a defect is detected in the detection light peak (pk1) of the detection surface of the optical detection element 104 shown in FIG. That is, it is determined that there is a foreign object having a height of H ″ ″ or more or a defect (pinhole) having a depth of H ″ ″ or more depending on the distance from both ends of the visual field of the detection surface. It is possible to do.

本発明により提供される検査装置は、検査基板を取り替えて複数の基板を検査することが可能であるが、同じ仕様で作成された基板でも、基板毎に基板自身の厚みや、基板上に形成されたパターンの厚みに僅かなながらもバラツキが生じている。そこで本発明によれば、ステージ上にセットされた、図2に示す基板105と共焦点面204との交点をスキャン前に認知し、該交点の位置を視野中の予め設定された基準の位置に合わせるように光学検出系と基板105との距離を変化させることが可能な機構を有している。   The inspection apparatus provided by the present invention can inspect a plurality of substrates by replacing the inspection substrate, but even a substrate created with the same specifications is formed on the substrate itself or on each substrate. There is a slight variation in the thickness of the formed pattern. Therefore, according to the present invention, the intersection of the substrate 105 and the confocal plane 204 shown in FIG. 2 set on the stage is recognized before scanning, and the position of the intersection is a preset reference position in the field of view. A mechanism capable of changing the distance between the optical detection system and the substrate 105 so as to meet the above requirements.

このため、本発明が提供する検査機は、基板ごとのz軸方向のバラツキによらず、常に最適な検出系をもって検査を行うことが可能である。光学検出系と基板105との距離を変化させることが可能な方法としては、光源101と、反射光を検出する対物レンズ102、ピンホール103、光学検出素子104とを有する検出部にピエゾ素子やボールネジなどによる駆動機構を設けるなどの方法があるが、これに限定されるものではない。   For this reason, the inspection machine provided by the present invention can always inspect with an optimal detection system regardless of variations in the z-axis direction for each substrate. As a method capable of changing the distance between the optical detection system and the substrate 105, a detection unit including a light source 101, an objective lens 102 for detecting reflected light, a pinhole 103, and an optical detection element 104 may include a piezoelectric element or the like. There is a method of providing a drive mechanism using a ball screw or the like, but the method is not limited to this.

上述した基板中のうねりによって、基板105と焦点面204との交点のx軸方向の位置には変化が発生するが、その変位が大きいと検出面で交点から視野端部までの距離が短くなる、すなわち、検出可能な異物の高さの限界またはピンホールの深さの限界が小さくなる。そこで本発明によれば、予め設定された位置範囲を超えて、基板105と焦点面204との交点のx軸方向の位置が変化する場合には、その変位がはじめに設定された基準の位置に戻るように光学検出系と基板105との距離を変化させることが可能な機構を有している。   The above-described undulation in the substrate causes a change in the position in the x-axis direction of the intersection between the substrate 105 and the focal plane 204. However, if the displacement is large, the distance from the intersection to the edge of the field of view on the detection surface is shortened. That is, the limit of the height of the detectable foreign matter or the limit of the depth of the pinhole is reduced. Therefore, according to the present invention, when the position of the intersection of the substrate 105 and the focal plane 204 in the x-axis direction changes beyond the preset position range, the displacement is set to the reference position set first. A mechanism capable of changing the distance between the optical detection system and the substrate 105 so as to return is provided.

この場合、基板105と焦点面204との交点のx軸方向の位置が設定された範囲を超えるように変化した場合は、はじめに設定された基準の位置に戻るようにフィードバックが行われる。光学検出系と基板105との距離を変化させるための方法は上述したものと同じ機構が使用可能である。   In this case, when the position in the x-axis direction of the intersection of the substrate 105 and the focal plane 204 changes so as to exceed the set range, feedback is performed so as to return to the initially set reference position. The same mechanism as described above can be used as a method for changing the distance between the optical detection system and the substrate 105.

また、検査される基板には通常何らかのパターニングがなされており、検査する基板の仕様によっては、パターニングされている部分の基板表面とパターニングがない部分の基板表面では基板表面の高さが異なる。そこで本発明によれば、図14のように、基板105上のパターン部107の、スキャン方向に対して垂直な方向の境界部108等で、該基板表面の高さがスキャン方向に対して垂直な方向に急激に変化する箇所において、予め設定された位置で、該交点の位置を検出面の予め設定された基準の位置に合わせるように光学検出系と基板105との距離を変化させて、基板105と共焦点面204の交点の位置を検出面の適切な場所に現れるように検出光学系と検査される基板との距離を再度調節し直し、スキャンを再開する機構を備えている。これにより、パターンによらず、常に最適な条件で検査を行うことが可能である。光学検出系と基板105との距離を変化させるための方法は上述したものと同じ機構が使用可能である。   Further, the substrate to be inspected is usually subjected to some patterning, and depending on the specification of the substrate to be inspected, the height of the substrate surface differs between the part of the substrate surface that is patterned and the part of the substrate surface that is not patterned. Therefore, according to the present invention, as shown in FIG. 14, the height of the surface of the substrate is perpendicular to the scanning direction at the boundary portion 108 of the pattern portion 107 on the substrate 105 in the direction perpendicular to the scanning direction. In a place that changes rapidly in a certain direction, at a preset position, the distance between the optical detection system and the substrate 105 is changed so that the position of the intersection point matches the preset reference position of the detection surface, A mechanism is provided for re-adjusting the distance between the detection optical system and the substrate to be inspected so that the position of the intersection of the substrate 105 and the confocal surface 204 appears at an appropriate location on the detection surface, and restarting scanning. As a result, it is possible to always perform inspection under optimum conditions regardless of the pattern. The same mechanism as described above can be used as a method for changing the distance between the optical detection system and the substrate 105.

更に、図15のようにパターニング部107のスキャン方向に対して平行な方向の境界部109等でも、基板105と共焦点面204の交点の位置が検出面で異なる。この場合
、本発明によれば、高さの異なる部分については、その部分だけ、該交点の位置を検出面の予め設定された基準の位置に合わせるように光学検出系と基板105との距離を変化させて、基板105と共焦点面204の交点の位置を検出面の適切な場所に現れるように検出光学系と検査される基板との距離を再度調節し直してスキャンし直す機構を有している。これにより、パターンによらず、常に最適な条件で検査を行うことが可能である。光学検出系と基板105との距離を変化させるための方法は上述したものと同じ機構が使用可能である。
Further, as shown in FIG. 15, the position of the intersection of the substrate 105 and the confocal surface 204 is different on the detection surface even in the boundary portion 109 in the direction parallel to the scanning direction of the patterning unit 107. In this case, according to the present invention, for the portions having different heights, the distance between the optical detection system and the substrate 105 is set so that only the portion matches the position of the intersection with the preset reference position of the detection surface. It has a mechanism for changing the distance between the detection optical system and the substrate to be inspected again so that the position of the intersection of the substrate 105 and the confocal plane 204 appears at an appropriate place on the detection surface. ing. As a result, it is possible to always perform inspection under optimum conditions regardless of the pattern. The same mechanism as described above can be used as a method for changing the distance between the optical detection system and the substrate 105.

検査される基板は通常、画素マトリクス等の規則的なパターンの他に、アライメントマーク等の不規則なパターンも有していることが多い。本発明によれば、この場合、基板のスキャンによって不規則なパターンを基板の欠陥として認識しないようにするために、予め基板中に不規則なパターンがある部分等について任意に検査装置に設定しておき、該設定部分については検査判定を行わないような機構を有している。これにより、不規則なパターンを欠陥として認識することがなくなる。   The substrate to be inspected usually has an irregular pattern such as an alignment mark in addition to a regular pattern such as a pixel matrix. According to the present invention, in this case, in order to prevent an irregular pattern from being recognized as a defect of the substrate by scanning the substrate, a portion having an irregular pattern in the substrate is arbitrarily set in the inspection apparatus in advance. In addition, the setting portion has a mechanism that does not perform inspection determination. Thereby, an irregular pattern is not recognized as a defect.

本発明により提供される検査装置は、フラットパネルディスプレイ用の基板の異物あるいは欠陥の検査に好適であり、またカラーフィルタ基板の検査に好適であり、更には液晶ディスプレイ用カラーフィルタ基板、あるいは有機ELディスプレイ用カラーフィルタ基板の検査に好適である。   The inspection apparatus provided by the present invention is suitable for inspection of foreign matters or defects on a substrate for a flat panel display, is suitable for inspection of a color filter substrate, and further, is used for a color filter substrate for a liquid crystal display or an organic EL. It is suitable for inspection of a color filter substrate for display.

本発明による異物及び欠陥検査装置の模式図である。It is a schematic diagram of the foreign material and defect inspection apparatus by this invention. 図1における視野を拡大した模式図である。It is the schematic diagram which expanded the visual field in FIG. 図2における反射光の、光学検出素子で得られる画像である。It is an image obtained with the optical detection element of the reflected light in FIG. 基板上の異物が入射光を反射する様子を示す模式図である。It is a schematic diagram which shows a mode that the foreign material on a board | substrate reflects incident light. P点での基板からの反射光、異物からの反射光、光学検出素子で得られる画像及び検出強度分布の説明図である。It is explanatory drawing of the reflected light from the board | substrate in P point, the reflected light from a foreign material, the image obtained by an optical detection element, and detection intensity distribution. 異物の上面が共焦点面から外れた様子を示す説明図である。It is explanatory drawing which shows a mode that the upper surface of the foreign material remove | deviated from the confocal surface. 異物が図6に示す位置での光学検出素子で得られる画像である。7 is an image obtained by the optical detection element at a position shown in FIG. 異物の位置がP点のとき、異物の上面からは反射しない様子を示した説明図である。It is explanatory drawing which showed a mode that it does not reflect from the upper surface of a foreign material, when the position of a foreign material is P point. 異物が図8に示す位置での光学検出素子で得られる画像である。FIG. 9 is an image obtained by the optical detection element at a position shown in FIG. 基板上の欠陥(ピンホール)が入射光を反射する様子を示す模式図である。It is a schematic diagram which shows a mode that the defect (pinhole) on a board | substrate reflects incident light. 欠陥(ピンホール)が図10に示す位置での光学検出素子で得られる画像である。FIG. 11 shows an image obtained by the optical detection element at a position shown in FIG. 10 where a defect (pinhole) is present. (イ)は、うねりがP点に達する前の、光学検出素子で得られる画像及び検出強度分布の説明図である。(ロ)は、うねりがP点に達した時の、光学検出素子で得られる画像及び検出強度分布の説明図である。(A) is explanatory drawing of the image and detection intensity distribution which are obtained with an optical detection element before a wave | undulation reaches | attains P point. (B) is an explanatory diagram of an image obtained by the optical detection element and the detected intensity distribution when the undulation reaches the point P. (イ)は、異物の高さが、視野端部で検出できる高さより高い場合に、反射光が得られない様子を示す説明図である。(ロ)は、異物の高さが、視野端部で検出できる高さより高い場合に、P点に達すると黒点が得られる様子を示す説明図である。(A) is explanatory drawing which shows a mode that reflected light is not obtained when the height of a foreign material is higher than the height which can be detected by a visual field edge part. (B) is an explanatory view showing a state where a black spot is obtained when the point P is reached when the height of the foreign object is higher than the height that can be detected at the edge of the visual field. 基板上のパターン部の、スキャン方向に対して垂直な方向の境界部で、基板表面の高さが急激に変化する箇所を示す説明図である。It is explanatory drawing which shows the location where the height of a substrate surface changes rapidly in the boundary part of the direction perpendicular | vertical to a scanning direction of the pattern part on a board | substrate. 基板上のパターン部の、スキャン方向に対して平行な方向の境界部で、基板表面の高さが急激に変化する箇所を示す説明図である。It is explanatory drawing which shows the location where the height of a substrate surface changes rapidly in the boundary part of the direction parallel to a scanning direction of the pattern part on a board | substrate.

符号の説明Explanation of symbols

101・・・光源
102・・・対物レンズ
103・・・ピンホール
104・・・光学検出素子
105・・・基板
106・・・視野
107・・・パターン部
108、109・・・境界部
201・・・入射光
203・・・反射光
204・・・共焦点面
301、305、306・・・異物
304、307・・・欠陥(ピンホール)
H、H36・・・異物の高さ
H37・・・欠陥(ピンホール)の深さ
H’・・・うねりの高さ
L・・・光学検出素子上で検出された距離
M・・・基板上での距離
P・・・物体があると入射光を反射光として正反射させる点
U・・・うねり部分
a・・・光学検出素子で得られる画像
b・・・光学検出素子で得られる検出強度分布
d、g・・・デフォーカス
pk1・・・検出面にてy軸方向に線状に現れる検出光のピーク
pk2、pk3・・・検出面のx軸方向にて点状に現れる検出光のピーク
DESCRIPTION OF SYMBOLS 101 ... Light source 102 ... Objective lens 103 ... Pinhole 104 ... Optical detection element 105 ... Substrate 106 ... Field of view 107 ... Pattern part 108, 109 ... Boundary part 201- .... Incident light 203 ... Reflected light 204 ... Confocal surfaces 301, 305, 306 ... Foreign matter 304, 307 ... Defect (pinhole)
H, H36 ... Foreign object height H37 ... Defect (pinhole) depth H '... Waviness height L ... Distance M detected on optical detection element ... On substrate The distance P at the point P ... The point U that regularly reflects the incident light as reflected light when there is an object ... The wave portion a ... The image b obtained with the optical detection element ... The detection intensity obtained with the optical detection element Distributions d, g, defocus pk1, detection light peaks pk2, pk3, which appear linearly in the y-axis direction on the detection surface, and detection lights, which appear in the form of dots in the x-axis direction on the detection surface peak

Claims (18)

基板上に付着した異物及び欠陥の検出を行う検査装置において、
1)基板の法線に対し、光軸を角度θ(0°<θ<20°)傾けた入射光を基板に照射する光源であって、入射光が基板面で反射される点(P)で、反射光の光軸に垂直な、下記ピンホールに対応した共焦点面に入射光の焦点を合わせる光源、
2)基板面からの反射光を集光する、該反射光の光軸上に配置された共焦点の光学系を有する対物レンズ、
3)入射光が基板面で反射される点(P)と、光学的に共役な位置に配置されたピンホール、
4)該ピンホールを通過した反射光を検出する、反射光の光軸に垂直な光学検出素子、
5)上記基板の法線に対し、光軸を角度θ(0°<θ<20°)傾けた方向をx軸方向とし、x軸方向へ基板を移動又は入射光をスキャンさせる機構、
を具備することを特徴とする異物及び欠陥検査装置。
In the inspection device that detects foreign matter and defects attached on the substrate,
1) A light source that irradiates a substrate with incident light whose optical axis is inclined at an angle θ (0 ° <θ <20 °) with respect to the normal of the substrate, and the point at which the incident light is reflected by the substrate surface (P) A light source that focuses the incident light on a confocal plane corresponding to the pinhole below, perpendicular to the optical axis of the reflected light,
2) an objective lens having a confocal optical system arranged on the optical axis of the reflected light, which collects the reflected light from the substrate surface;
3) A point (P) where incident light is reflected on the substrate surface, and a pinhole disposed at an optically conjugate position,
4) an optical detection element that detects reflected light that has passed through the pinhole and is perpendicular to the optical axis of the reflected light;
5) A mechanism that moves the substrate in the x-axis direction or scans incident light with the direction in which the optical axis is inclined at an angle θ (0 ° <θ <20 °) with respect to the normal of the substrate as the x-axis direction,
A foreign matter and defect inspection apparatus characterized by comprising:
前記入射光が基板面で反射される点(P)を通るx軸方向の軸をx軸とし、点(P)で基板面上をx軸と直交する軸をy軸とした際に、
1)光学検出素子の検出面にてy軸方向に線状に現れる検出光のピーク(pk1)を、点(P)に位置する基板面上の位置と認知し、
2)該検出面のx軸方向にて点状に現れる検出光のピーク(pk2)を、異物又は欠陥と認知し、
3)基板の移動又は入射光のスキャンによって、異物又は欠陥からの反射光による検出光のピーク(pk2)がデフォーカスの黒点へと変化して、黒点が上記検出光のピーク(pk1)中に重なった位置をもって、異物又は欠陥の基板面上の位置と認知し、
4)上記検出光のピーク(pk2)が検出面の入射光側にある場合には、異物又は欠陥を異物と識別し、また、検出面の反射光側にある場合には、異物又は欠陥を欠陥と識別し、異物及び欠陥の基板面上の位置を算出する手段を具備することを特徴とする請求項1記載の異物及び欠陥検査装置。
When the axis in the x-axis direction passing through the point (P) where the incident light is reflected by the substrate surface is the x-axis, and the axis perpendicular to the x-axis on the substrate surface at the point (P) is the y-axis,
1) Recognizing the peak (pk1) of the detection light appearing linearly in the y-axis direction on the detection surface of the optical detection element as the position on the substrate surface located at the point (P),
2) Recognize the peak of detection light (pk2) appearing in a point shape in the x-axis direction of the detection surface as a foreign substance or a defect,
3) Due to the movement of the substrate or the scan of incident light, the peak (pk2) of the detection light due to the reflected light from the foreign matter or defect changes to a defocused black point, and the black point is in the detection light peak (pk1). Recognize the position on the substrate surface of the foreign object or defect with the overlapping position,
4) When the detection light peak (pk2) is on the incident light side of the detection surface, the foreign object or defect is identified as a foreign object, and when it is on the reflected light side of the detection surface, the foreign object or defect is detected. 2. The foreign matter and defect inspection apparatus according to claim 1, further comprising means for identifying the defect and calculating the position of the foreign matter and the defect on the substrate surface.
前記入射光が基板面で反射される点(P)を通るx軸方向の軸をx軸とし、点(P)で基板面上をx軸と直交する軸をy軸とした際に、
1)光学検出素子の検出面にてy軸方向に線状に現れる検出光のピーク(pk1)を、点(P)に位置する基板面上の位置(Q)と認知し、
2)該検出面のx軸方向にて点状に現れる検出光のピーク(pk2)を、異物又は欠陥の位置(R)と認知し、
3)検出面での検出光のピーク(pk1)の位置と検出光のピーク(pk2)の位置の差(L)を求め、
4)下記に表される数式(1)により、基板面上の位置(Q)と異物又は欠陥の位置(R’)の差(M)を算出し、差(M)をもって、基板面上の位置(Q)から異物又は欠陥の基板面上の位置(R’)までの距離と認知し、
5)上記検出光のピーク(pk2)が検出面の入射光側にある場合には、異物又は欠陥を異物と識別し、また、検出面の反射光側にある場合には、異物又は欠陥を欠陥と識別し、異物及び欠陥の基板面上の位置を算出する手段を具備することを特徴とする請求項1記載の異物及び欠陥検査装置。
M=L・cosθ ・・・・・・・・・(1)
When the axis in the x-axis direction passing through the point (P) where the incident light is reflected by the substrate surface is the x-axis, and the axis perpendicular to the x-axis on the substrate surface at the point (P) is the y-axis,
1) The detection light peak (pk1) appearing linearly in the y-axis direction on the detection surface of the optical detection element is recognized as the position (Q) on the substrate surface located at the point (P),
2) Recognize the peak of detection light (pk2) appearing in a point shape in the x-axis direction of the detection surface as the position (R) of the foreign matter or defect,
3) Obtain the difference (L) between the position of the detection light peak (pk1) and the position of the detection light peak (pk2) on the detection surface,
4) The difference (M) between the position (Q) on the substrate surface and the position (R ′) of the foreign matter or defect is calculated by the following formula (1), and the difference (M) is calculated on the substrate surface. Recognizing the distance from the position (Q) to the position (R ') on the substrate surface of the foreign object or defect,
5) When the detection light peak (pk2) is on the incident light side of the detection surface, the foreign object or defect is identified as a foreign object, and when it is on the reflected light side of the detection surface, the foreign object or defect is detected. 2. The foreign matter and defect inspection apparatus according to claim 1, further comprising means for identifying the defect and calculating the position of the foreign matter and the defect on the substrate surface.
M = L · cos θ (1)
前記入射光が基板面で反射される点(P)を通るx軸方向の軸をx軸とし、点(P)で基板面上をx軸と直交する軸をy軸とした際に、
1)光学検出素子の検出面にてy軸方向に線状に現れる検出光のピーク(pk1)を、点(P)に位置する基板面上の位置(Q)と認知し、
2)該検出面のx軸方向にて点状に現れる検出光のピーク(pk2)を、異物又は欠陥の位置(R)と認知し、
3)検出面での検出光のピーク(pk1)の位置と検出光のピーク(pk2)の位置の差(L)を求め、
4)下記に表される数式(2)により、基板面と異物又は欠陥上面の高さの差(H)を算出し、
5)上記検出光のピーク(pk2)が検出面の入射光側にある場合には、異物又は欠陥を異物と識別し、高さの差(H)に+符号を与えて異物の高さと認知し、また、検出面の反射光側にある場合には、異物又は欠陥を欠陥と識別し、高さの差(H)に−符号を与えて欠陥の深さと認知し、
異物の基板面上の高さ、及び欠陥の基板面上の深さを算出する手段を具備することを特徴とする請求項1、請求項2、又は請求項3記載の異物及び欠陥検査装置。
H=L・sinθ ・・・・・・・・・(2)
When the axis in the x-axis direction passing through the point (P) where the incident light is reflected by the substrate surface is the x-axis, and the axis perpendicular to the x-axis on the substrate surface at the point (P) is the y-axis,
1) The detection light peak (pk1) appearing linearly in the y-axis direction on the detection surface of the optical detection element is recognized as the position (Q) on the substrate surface located at the point (P),
2) Recognize the peak of detection light (pk2) appearing in a point shape in the x-axis direction of the detection surface as the position (R) of the foreign matter or defect,
3) Obtain the difference (L) between the position of the detection light peak (pk1) and the position of the detection light peak (pk2) on the detection surface,
4) Calculate the difference in height (H) between the substrate surface and the top surface of the foreign substance or defect by the mathematical formula (2) shown below.
5) When the detection light peak (pk2) is on the incident light side of the detection surface, the foreign object or defect is identified as a foreign object, and the height difference (H) is given a plus sign to recognize the height of the foreign object. In addition, when it is on the reflected light side of the detection surface, the foreign object or the defect is identified as a defect, and the depth difference (H) is given a minus sign to recognize the depth of the defect,
4. The foreign matter and defect inspection apparatus according to claim 1, further comprising means for calculating a height of the foreign matter on the substrate surface and a depth of the defect on the substrate surface.
H = L · sinθ (2)
前記異物及び欠陥の検出数、前記数式(2)により算出された高さ/深さの値が、予め設定された判定式を満たすか否かを判定する手段を具備することを特徴とする請求項1〜請求項4のいずれか1項に記載の異物及び欠陥検査装置。   A means for determining whether or not the number of detected foreign matters and defects and the height / depth value calculated by the mathematical formula (2) satisfy a predetermined judgment formula is provided. The foreign matter and defect inspection apparatus according to any one of claims 1 to 4. 前記基板を移動又は入射光をスキャンし、基板と入射光との相対位置が順次更新される際に、光学検出素子の検出面のx軸方向にて点状に現れる検出光のピーク(pk2)の位置と強度が、ある周期をもって規則的に変化をする場合、該変化をもって基板の正規のパターンであると判定する手段を具備することを特徴とする請求項1〜請求項5のいずれか1項に記載の異物及び欠陥検査装置。   When the substrate is moved or incident light is scanned and the relative position between the substrate and the incident light is sequentially updated, the peak of detection light (pk2) appearing in a dot shape in the x-axis direction of the detection surface of the optical detection element 6. The apparatus according to claim 1, further comprising means for determining that the position and intensity of the substrate regularly change with a certain period as a regular pattern of the substrate. Foreign matter and defect inspection apparatus as described in the paragraph 前記基板を移動又は入射光をスキャンし、基板と入射光との相対位置が順次更新される際に、光学検出素子の検出面にてy軸方向に線状に現れる検出光のピーク(pk1)が、上記基板の移動又は入射光のスキャンに連動して検出面をx軸方向にシフトする場合、該シフトをもって基板面のうねりであると判定する手段を具備することを特徴とする請求項1〜請求項6のいずれか1項に記載の異物及び欠陥検査装置。   The peak of detection light (pk1) that appears linearly in the y-axis direction on the detection surface of the optical detection element when the substrate is moved or the incident light is scanned and the relative position between the substrate and the incident light is sequentially updated. 2. When the detection surface is shifted in the x-axis direction in conjunction with the movement of the substrate or the scan of incident light, there is provided means for determining that the shift is the undulation of the substrate surface. The foreign matter and defect inspection apparatus according to claim 6. 前記検出光のピーク(pk1)が、基板の移動又は入射光のスキャンに連動して検出面をx軸方向にシフトしたシフト距離(L’)を求め、
1)下記に表される数式(3)により、基板面のうねりの高さ(H’)を算出し、
2)検出光のピーク(pk1)のシフトが検出面の入射光側である場合には、うねりの方向は基板面の上方方向であると識別し、検出光のピーク(pk1)がシフトを開始する前の前記数式(2)により算出された異物の高さの値に、高さ(H’)の減算補正を行い、基板の基準面からの正しい異物の高さを算出し、
検出光のピーク(pk1)のシフトが検出面の反射光側である場合には、うねりの方向は基板面の下方方向であると識別し、検出光のピーク(pk1)がシフトを開始する前の前記数式(2)により算出された異物の高さの値に、高さ(H’)の加算補正を行い、基板の基準面からの異物の正しい高さを算出する手段を具備することを特徴とする請求項7記載の異物及び欠陥検査装置。
H’=L’・sinθ ・・・・・・・・・(3)
The peak (pk1) of the detection light determines the shift distance (L ′) obtained by shifting the detection surface in the x-axis direction in conjunction with the movement of the substrate or the scan of incident light,
1) The height (H ′) of the swell of the substrate surface is calculated by the following formula (3),
2) When the shift of the detection light peak (pk1) is on the incident light side of the detection surface, the direction of the undulation is identified as the upward direction of the substrate surface, and the detection light peak (pk1) starts to shift. Subtracting the height (H ′) from the height of the foreign matter calculated by the mathematical formula (2) before the calculation, and calculating the correct height of the foreign matter from the reference surface of the substrate,
When the shift of the detection light peak (pk1) is on the reflected light side of the detection surface, the direction of undulation is identified as the downward direction of the substrate surface, and before the detection light peak (pk1) starts shifting. A means for performing addition correction of the height (H ′) to the height value of the foreign matter calculated by the mathematical formula (2) and calculating a correct height of the foreign matter from the reference surface of the substrate. The foreign matter and defect inspection apparatus according to claim 7, wherein
H ′ = L ′ · sin θ (3)
前記入射光がレーザ光であることを特徴とする請求項1〜請求項8のいずれか1項に記載の異物及び欠陥検査装置。   The foreign matter and defect inspection apparatus according to claim 1, wherein the incident light is laser light. 前記レーザ光を視野内でスキャンさせることを特徴とする請求項9記載の異物及び欠陥検査装置。   The foreign matter and defect inspection apparatus according to claim 9, wherein the laser beam is scanned within a visual field. 前記基板を移動又は入射光をスキャンし、基板と入射光との相対位置が順次更新される際に、光学検出素子の検出面にはy軸方向に線状に現れる検出光のピーク(pk1)のみが現れ、且つ異物又は欠陥のデフォーカスの黒点が検出光のピーク(pk1)中に重なった場合、
1)検出光のピーク(pk1)中への黒点の重なりが入射光側からであれば、異物又は欠陥は異物と識別し、また、検出光のピーク(pk1)中への黒点の重なりが反射光側からであれば、異物又は欠陥は欠陥と識別し、
2)検出面での検出光のピーク(pk1)の位置から、入射光側のx軸方向の検出面端(視野端)までの距離(L’’)を求め、又は、検出面での検出光のピーク(pk1)の位置から、反射光側のx軸方向の検出面端(視野端)までの距離(L’’’)を求め、
3)下記に表される数式(4)又は数式(5)により、高さ(H’’)又は深さ(H’’’)を算出し、
4)異物の高さは高さ(H’’)よりも高い、又は、欠陥の深さは深さ(H’’’)よりも深いと認知する手段を具備することを特徴とする請求項1〜請求項10のいずれか1項に記載の異物及び欠陥検査装置。
H’’=L’’・sinθ ・・・・・・・・・(4)
H’’’=L’’’・sinθ ・・・・・・・(5)
When the substrate is moved or the incident light is scanned and the relative position between the substrate and the incident light is sequentially updated, the peak of detection light (pk1) appearing linearly in the y-axis direction on the detection surface of the optical detection element Only, and the defocused black spot of the foreign object or defect overlaps the peak (pk1) of the detection light,
1) If the black spot overlaps in the detection light peak (pk1) from the incident light side, the foreign matter or defect is identified as a foreign matter, and the black spot overlap in the detection light peak (pk1) is reflected. If from the light side, the foreign object or defect is identified as a defect,
2) Obtain the distance (L ″) from the position of the detection light peak (pk1) on the detection surface to the detection surface end (field end) in the x-axis direction on the incident light side, or detect on the detection surface Obtain the distance (L ′ ″) from the position of the light peak (pk1) to the detection surface end (field end) in the x-axis direction on the reflected light side,
3) Calculate the height (H ″) or the depth (H ′ ″) by the following formula (4) or formula (5),
4) A means for recognizing that the height of the foreign matter is higher than the height (H ″) or the depth of the defect is deeper than the depth (H ′ ″) is provided. The foreign matter and defect inspection apparatus according to any one of claims 1 to 10.
H ″ = L ″ · sin θ (4)
H '''=L''' · sin θ (5)
前記基板を取り替えて別な基板の検査を行う際、スキャン前に、ステージ上の別な基板面と共焦点面との交点を光学検出素子の検出面で認知し、該交点の検出面での位置を検出面の予め設定された基準位置に合わせる、検出光学系と基板との距離の調節機構を具備することを特徴とする請求項1〜請求項11のいずれか1項に記載の異物及び欠陥検査装置。   When performing inspection of another substrate by replacing the substrate, before scanning, the intersection of another substrate surface on the stage and the confocal surface is recognized by the detection surface of the optical detection element, The foreign object according to any one of claims 1 to 11, further comprising a mechanism for adjusting a distance between the detection optical system and the substrate, the position of which is adjusted to a preset reference position of the detection surface. Defect inspection equipment. 前記基板を移動又は入射光をスキャンする際に、光学検出素子の検出面にてy軸方向に線状に現れる検出光のピーク(pk1)のx軸方向の位置が、予め設定された位置範囲を越えて変位している場合には、該変位を予め設定された位置範囲内に戻す、検出光学系と基板との距離の調節機構を具備することを特徴とする請求項1〜請求項12のいずれか1項に記載の異物及び欠陥検査装置。   The position in the x-axis direction of the peak (pk1) of the detection light that appears linearly in the y-axis direction on the detection surface of the optical detection element when moving the substrate or scanning the incident light is a preset position range. 13. A mechanism for adjusting the distance between the detection optical system and the substrate is provided to return the displacement to a preset position range when the displacement is exceeded. The foreign matter and defect inspection apparatus according to any one of the above. 前記基板を移動又は入射光をスキャンする際に、基板面の高さが、基板を移動又は入射光をスキャンする方向と垂直な方向で急激に変化する箇所がある場合には、該箇所を予め設定しておくことにより、該箇所毎に基板の移動又は入射光のスキャンを中断し、光学検出素子の検出面にてy軸方向に線状に現れる検出光のピーク(pk1)の検出面での位置を検出面の予め設定された基準位置に合わせ、基板の移動又は入射光のスキャンを再開する検出光学系と基板との距離の調節機構を具備することを特徴とする請求項1〜請求項13のいずれか1項に記載の異物及び欠陥検査装置。   When moving the substrate or scanning incident light, if there is a portion where the height of the substrate surface changes abruptly in a direction perpendicular to the direction of moving the substrate or scanning incident light, the portion is By setting, the movement of the substrate or the scan of incident light is interrupted for each location, and the detection surface of the detection light peak (pk1) appearing linearly in the y-axis direction on the detection surface of the optical detection element A mechanism for adjusting the distance between the detection optical system and the substrate, wherein the position of the detection optical system is matched with a preset reference position of the detection surface and the movement of the substrate or scanning of incident light is resumed, is provided. Item 14. The foreign matter and defect inspection device according to any one of Items 13 to 14. 前記基板を移動又は入射光をスキャンする際に、基板面の高さが、基板を移動又は入射光をスキャンする方向と平行な方向で急激に変化する箇所がある場合には、該箇所を予め設定しておくことにより、該箇所毎に基板の移動又は入射光のスキャンを中断し、光学検出素子の検出面にてy軸方向に線状に現れる検出光のピーク(pk1)の検出面での位置を検出面の予め設定された基準位置に合わせ、基板の移動又は入射光のスキャンを再開する検出光学系と基板との距離の調節機構を具備することを特徴とする請求項1〜請求項14のいずれか1項に記載の異物及び欠陥検査装置。   When moving the substrate or scanning incident light, if there is a place where the height of the substrate surface changes suddenly in a direction parallel to the direction of moving the substrate or scanning incident light, the position is previously determined. By setting, the movement of the substrate or the scan of incident light is interrupted for each location, and the detection surface of the detection light peak (pk1) appearing linearly in the y-axis direction on the detection surface of the optical detection element A mechanism for adjusting the distance between the detection optical system and the substrate, wherein the position of the detection optical system is matched with a preset reference position of the detection surface and the movement of the substrate or scanning of incident light is resumed, is provided. Item 15. The foreign matter and defect inspection device according to any one of Items 14 to 14. 前記基板の任意の箇所を非検査領域として設定する手段を具備することを特徴とする請求項1〜請求項15のいずれか1項に記載の異物及び欠陥検査装置。   The foreign matter and defect inspection apparatus according to claim 1, further comprising a unit that sets an arbitrary portion of the substrate as a non-inspection region. 前記基板がフラットパネルディスプレイ用の基板であることを特徴とする請求項1〜請
求項16のいずれか1項に記載の異物及び欠陥検査装置。
The foreign substance and defect inspection device according to claim 1, wherein the substrate is a substrate for a flat panel display.
前記基板がカラーフィルタ基板であることを特徴とする請求項1〜請求項17のいずれか1項に記載の異物及び欠陥検査装置。   The foreign substance and defect inspection apparatus according to claim 1, wherein the substrate is a color filter substrate.
JP2004118701A 2004-04-14 2004-04-14 Foreign matter and flaw inspecting device Withdrawn JP2005300395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004118701A JP2005300395A (en) 2004-04-14 2004-04-14 Foreign matter and flaw inspecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004118701A JP2005300395A (en) 2004-04-14 2004-04-14 Foreign matter and flaw inspecting device

Publications (1)

Publication Number Publication Date
JP2005300395A true JP2005300395A (en) 2005-10-27

Family

ID=35332089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004118701A Withdrawn JP2005300395A (en) 2004-04-14 2004-04-14 Foreign matter and flaw inspecting device

Country Status (1)

Country Link
JP (1) JP2005300395A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017053775A (en) * 2015-09-10 2017-03-16 東レエンジニアリング株式会社 Apparatus for imaging inside of light-transmissive object, and inspection apparatus
CN111656260A (en) * 2018-01-24 2020-09-11 赛博光学公司 Structured light projection for mirrored surfaces
CN113466960A (en) * 2021-05-21 2021-10-01 山东威鼎航检测设备有限公司 Method, system and equipment for detecting foreign matters on airport road

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017053775A (en) * 2015-09-10 2017-03-16 東レエンジニアリング株式会社 Apparatus for imaging inside of light-transmissive object, and inspection apparatus
CN111656260A (en) * 2018-01-24 2020-09-11 赛博光学公司 Structured light projection for mirrored surfaces
CN113466960A (en) * 2021-05-21 2021-10-01 山东威鼎航检测设备有限公司 Method, system and equipment for detecting foreign matters on airport road

Similar Documents

Publication Publication Date Title
US10281409B2 (en) Inspection apparatus and inspection method using the same
JP2006323032A (en) Apparatus and method for repairing defective pixel of flat panel display device
JP2018091807A (en) Defective flaw determination method and device
US10495584B2 (en) Inspection apparatus and inspection method using the same
KR20070099398A (en) Apparatus for inspecting substrate and method of inspecting substrate using the same
KR101368150B1 (en) Test correction method and apparatus of thin film display device
US7847239B2 (en) Calibration strip and the laser calibration system using thereof
WO2013038454A1 (en) Organic el element manufacturing method and evaluation method
JP2010151479A (en) Wiring pattern inspecting device
KR101400757B1 (en) Display panel inspection apparatus
KR101316539B1 (en) Device for detecting materials organic light emission diode
JP2006292412A (en) Surface inspection system, surface inspection method and substrate manufacturing method
JP2008068284A (en) Apparatus and method for correcting defect, and method for manufacturing pattern substrate
JP2009068889A (en) Inspection jig of flaw detection function in visual examination device for color filter
KR20200026371A (en) Apparatus for inspecting defections of display panel
JP2005300395A (en) Foreign matter and flaw inspecting device
JP2010176966A (en) Inspection and repair device of organic el display panel
JP4312706B2 (en) Film thickness difference detection apparatus, film thickness difference detection method, color filter inspection apparatus, color filter inspection method
JP4708292B2 (en) Substrate inspection apparatus and substrate inspection method
JP2009075044A (en) Film thickness defective inspection device for conductive polymer layer of organic el panel substrate, and method for inspecting film thickness defective using the same
JP5045581B2 (en) Inspection method of light emitting device
JP2007279026A (en) Substrate inspecting apparatus and substrate inspecting method using same
JP5531405B2 (en) Periodic pattern unevenness inspection method and inspection apparatus
JP2008242191A (en) Test method for color filter substrate, test device for picture element of color filter substrate, manufacturing method of color filter substrate and display device with color filter substrate
JP2013029326A (en) Defect inspection method and defect inspection device for organic el panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070323

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070802